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a b s t r a c t 

Objective: Manual evaluation of machine learning algorithms and selection of a suitable classifier from 

the list of available candidate classifiers, is highly time consuming and challenging task. If the selec- 

tion is not carefully and accurately done, the resulting classification model will not be able to produce 

the expected performance results. In this study, we present an accurate multi-criteria decision making 

methodology (AMD) which empirically evaluates and ranks classifiers’ and allow end users or experts to 

choose the top ranked classifier for their applications to learn and build classification models for them. 

Methods and material: Existing classifiers performance analysis and recommendation methodologies lack 

(a) appropriate method for suitable evaluation criteria selection, (b) relative consistent weighting mech- 

anism, (c) fitness assessment of the classifiers’ performances, and (d) satisfaction of various constraints 

during the analysis process. To assist machine learning practitioners in the selection of suitable clas- 

sifier(s), AMD methodology is proposed that presents an expert group-based criteria selection method, 

relative consistent weighting scheme, a new ranking method, called optimum performance ranking cri- 

teria, based on multiple evaluation metrics, statistical significance and fitness assessment functions, and 

implicit and explicit constraints satisfaction at the time of analysis. For ranking the classifiers perfor- 

mance, the proposed ranking method integrates Wgt.Avg.F-score, CPUTimeTesting, CPUTimeTraining, and 

Consistency measures using the technique for order performance by similarity to ideal solution (TOP- 

SIS). The final relative closeness score produced by TOPSIS, is ranked and the practitioners select the best 

performance (top-ranked) classifier for their problems in-hand. 

Findings: Based on the extensive experiments performed on 15 publically available UCI and OpenML 

datasets using 35 classification algorithms from heterogeneous families of classifiers, an average Spear- 

man’s rank correlation coefficient of 0.98 is observed. Similarly, the AMD method has showed improved 

performance of 0.98 average Spearman’s rank correlation coefficient as compared to 0.83 and 0.045 corre- 

lation coefficient of the state-of-the-art ranking methods, performance of algorithms (PAlg) and adjusted 

ratio of ratio (ARR). 

Conclusion and implication: The evaluation, empirical analysis of results and comparison with state-of- 

the-art methods demonstrate the feasibility of AMD methodology, especially the selection and weighting 

of right evaluation criteria, accurate ranking and selection of optimum performance classifier(s) for the 

user’s application’s data in hand. AMD reduces expert’s time and efforts and improves system perfor- 

mance by designing suitable classifier recommended by AMD methodology. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Machine learning algorithm selection is a real-world prob-

em in various domains, such as data mining business, knowl-

dge acquisition and reasoning, research and many others areas
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 Kumar, Sehgal, & Chauhan, 2012 ). Large business firms and re-

earch institutions hire machine learning experts, such as prac-

itioners, data analysts and knowledge engineers to analyze the

usiness data for different types of strategic planning. Usually, ex-

erts choose appropriate machine learning algorithm(s) using their

euristic knowledge about the domain and the available classifica-

ion algorithms ( Luo, 2015 ). The heuristics-based algorithm(s) se-

ection is a risky task and sometimes result in selection of a sub-

ptimal performance algorithm(s). The reasons may include lack
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of the complete knowledge about the domain application, i.e., the

datasets have different intrinsic characteristics, and the candidate

classifiers have different capabilities and strengths. This process

become more challenging when the selection of best classifier is

based on multiple-criteria under strict conditions and constraints.

According to the well-known “no free lunch” theorem ( Wolpert &

Macready, 1997 ), no machine learning algorithm performs well on

all kind of learning problems. However, it can be made possible to

estimate the selection of a suitable machine learning algorithm for

an application in hand ( Berrer, Paterson, & Keller, 20 0 0 ). This se-

lection process of the classifiers is an application dependent task,

because it has been theoretically and empirically proved that no

machine learning algorithm is universally superior on all datasets

due to the different characteristics and features of the domain data

( Caruana & Niculescu-Mizil, 2006 ). 

In real-world applications, the requirements assessment of the

applications and deciding which specific qualities need to be eval-

uated has great importance. Clear application’s requirements eas-

ily clarify the ingredients of evaluation criteria and their individual

contributions in the final decision making ( Lavesson & Davidsson,

2007 ). The evaluation methods for different domains are different

due to different objectives of the domains. Some domains require

single evaluation criteria, while others need multi-criteria evalu-

ation. In classification problems, the most commonly used single

criterion metric used for evaluations is the accuracy, which can

be evaluated using the well-known metrics, such as area under

the ROC curve ( Fawcett, 2006 ), success rate, average accuracy, and

balanced accuracy. However, the evaluation only on the basis of

accuracy may misleads the selection of optimum performance al-

gorithm ( Lavesson, Boeva, Tsiporkova, & Davidsson, 2014 ). To se-

lect optimum performance algorithm, multiple evaluation criteria,

such as average accuracy, execution time, training time, consis-

tency and many others need to be used. The objective of multi-

criteria evaluation is to balance the trade-off between these criteria

rather than maximizing a single criterion ( Lavesson & Davidsson,

2007 ). The main issue in multi-criteria evaluation is the selection

and prioritization of suitable criteria and excluding those which

have conflicting behaviors. This is a subjective issue and requires

the involvement of stockholders, such as domain experts and ma-

chine learning practitioners and users ( Lavesson et al., 2014 ). In

the criteria weight assignment, experts’ preferences are quantified

as weight scores and assigned to each metric of the evaluation

criteria. The weights can be either assigned manually by experts

or can be done using some semi-automatic weighting method,

such as analytical hierarchy process (AHP) ( Saaty, 2003 ).The man-

ual weight assignment is a hard task, which has been realized by

the simple and intuitive measure (SIM) ( Soares, Costa, & Brazdil,

20 0 0 ), measure-based evaluation (MBE) ( Andersson, Davidsson, &

Lindén, 1999 ) and application-oriented validation and evaluation

(APPrOVE) ( Lavesson et al., 2014 ) approaches. Statistical meth-

ods ( Elazmeh, Japkowicz, & Matwin, 2006; Wang, Song, Zhang, &

Zhang, 2014 ) have also been used for the evaluation of machine

learning algorithms from different. 

Apart from the criteria selection and prioritization issues, the

non-uniformity of dimensionality of data for the evaluation metrics

is another challenging issue ( Zavadskas, Zakarevicius, & Antuchevi-

ciene, 2006 ). To overcome this issue, a number of normalization

techniques ( Hwang & Yoon, 2012 ; Lavesson et al., 2014 ) have been

proposed in literature in which the unit or scale of measurements

are transformed to a common compatible format to be fairly used

in the evaluation process ( Freitas, 2004 ). 

In literature, a number of studies can be found that evaluates

classifiers on the basis of single evaluation criterion, such as ac-

curacy ( Aha, 1992; Alexandros & Melanie, 2001; Brodley, 1993;

Gama & Brazdil, 1995; Lindner & Studer, 1999; Smith, Woo, Ciesiel-

ski, & Ibrahim, 2002 ). The evaluation of classification algorithms
n the basis of multiple criteria, such as accuracy and time, in

on-simultaneous way, is presented in Ali and Smith-Miles, 2006 ,

razdil, Soares, Costa, and da Costa, 2003 , Lim, Loh, and Shih,

0 0 0 and on the basis of sensitivity, precision, F-score, and area

nder the curve (AUC) is presented in Romero, Olmo, and Ventura,

013 . Ali and Smith, 2006 performed evaluation among 8 clas-

ifiers with 100 different classification problems using extended

easures of average accuracy (true positive rate, true negative rate

nd percent accuracy) and time complexity (training time and test-

ng time). Similarly, for various real-world applications, the perfor-

ance evaluation of various classifiers have been done, for exam-

les, handwritten recognition ( Singh, Verma, & Chaudhari, 2016 ),

olor prediction of rice paddy plant leaf ( Singh & Singh, 2016 ),

rediction of diabetes mellitus ( Kandhasamy & Balamurali, 2015;

erveen, Shahbaz, Guergachi, & Keshavjee, 2016 ) The most com-

only used criteria for algorithms evaluation are the adjusted ratio

f ratio (ARR) ( Brazdil et al., 2003 ) and performance of algorithm

PAlg) on dataset ( Song, Wang, & Wang, 2012 ), which use accuracy

nd time. Reif, Shafait, Goldstein, Breuel, and Dengel, 2014 ) used

oot mean squared error (RMSE) and Pearson product-moment cor-

elation coefficient (PMCC) ( Gayen, 1951 ) for the evaluation and

ecommendation of the best classification algorithm. The methods

iscussed in literature use absolute or partial relative weights to

rioritize evaluation criteria. However, recently, the focus of re-

earchers has shifted to relative criteria weighting, using multi-

riteria. In medical knowledge acquisition, relative criteria weight-

ng has been proposed ( Khanmohammadi & Rezaeiahari, 2014 ) that

ses AHP process ( Saaty, 2003 ). They used average training time,

ccuracy and memory usage as the criteria. Five multi-criteria de-

ision making methods, including TOPSIS ( Tzeng & Huang, 2011

un 22 ), elimination et choix traduisant la realité III (ELECTRE III)

 Figueira, Greco, & Ehrgott, 2005 ), grey relational analysis, vlse kri-

erijumska optimizacija i kompromisno resenje (VIKOR), and pref-

rence ranking organization method for enrichment of evaluations

I (PROMETHEE II) have been discussed in article ( Kou, Lu, Peng, &

hi, 2012 ). The contributions of state-of-the-art methods are sig-

ificant, however a number of shortcomings still exist. These in-

lude, lack of appropriate guidelines and method for suitable crite-

ia selection, consistent relative weight assignment to criteria, sig-

ificance and fitness evaluation mechanism for algorithms perfor-

ance results generation, constraints satisfaction and selection of

he consistent algorithm. 

To overcome these issues, an accurate multi-criteria decision

aking methodology (AMD) is proposed and experimented on 15

eal-world datasets, from UCI ( Lichman, 2013 ) and OpenML ( Van

ijn et al., 2013 ) repositories, using 35 classification algorithms

rom Weka. According to this methodology, The problem of ac-

urate classifier selection is tackled using the steps: (a) a user is

iven a machine learning task (e.g. predicting diabetes type based

n the patient observations data); (b) The AMD method recom-

ends top classifiers (from the basket of 35 classifiers) that would

e most effective in solving this machine learning task. The main

ngredients of the AMD method are (i) a machine learning task and

he associated goal and objectives, (ii) a collection of classifiers and

heir performance evaluation metrics, called quality meta-metrics

QMM) (as well as sub-classification of QMM, i.e., performance

etrics). A stage-wise processing of these metrics with input from

omain experts in the forms of preferences (weights) to select cor-

ect performance evaluation criteria and weight them (iii) apply-

ng each classifier from the basket to training and testing data-

ets, and computing its performances based on the selected perfor-

ance evaluation criteria and their weights, and (iv) ranking the

lassifiers using OPR method based on the results from step (ii)

nd step (iii), and (v) finally recommending the top k classifier to

he user for his/her machine learning task. 
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Fig. 1. Evaluation of algorithms on the basis of multiple evaluation criteria. 
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The key contributions made through this methodology are sum-

arized as follows. 

• A list of general guidelines are defined for performance eval-

uation of classifiers, based on extensive literature study of the

classification algorithms. 
• We analyzed and categorized classification algorithms’ evalua-

tion metrics and introduced the concept of classifiers quality

meta-metrics (QMM) to construct QMM classification model,

which is useful for non-experts of machine learning who need

to make evaluation decision about classifiers selection. The

QMM model further assists users in understanding physical

meanings of the evaluation metrics. 
• Proposed an experts’ consensus-based group decision making

method that assists experts to first select appropriate QMM and

then select suitable evaluation criteria, satisfying interdepen-

dence and explicit global constraints, enforced by the objectives

of the end user’s application. 
• An expert group-based relative criteria weighting technique is

proposed, which can easily quantify and estimates experts’ rel-

ative preferences about each evaluation criterion. 
• A new ranking criteria, called optimum performance ranking

(OPR) is proposed, which ranks classifiers based on Wgt.Avg.F-

Score, CPUTimeTraining, CPUTimeTesting and Consistency per-

formance metrics, integrated using TOPSIS method. 
• Accurate statistical significance and fitness evaluation functions

are defined, which inspect algorithms’ fitness, prior to their in-

clusion in the final list of candidate algorithms for ranking. 
• Implicit and explicit constraints are defined at different levels

of the evaluation process for accurate ranking of the classifiers. 

Rest of the paper is organized as follows. In Section 2 , we

ormulate algorithm selection as a multi-metric decision mak-

ng problem. In Section 3 , methodology of the proposed multi-

etric decision making process for algorithms selection is de-

cribed technically. In Section 4 , AMD methodology is validated

sing step-wise experiments on the classification algorithms and

atasets. In Section 5 , experiments and results are discussed in de-

ail with comparison against state-of-the-art methods in the area

f ranking classifiers on the basis of performance results. Finally,

ection 6 concludes the work done and describes possible future

xtensions. 
. Algorithm selection: multi-metric decision making process 

Each machine learning algorithm performs differently on differ-

nt datasets because of different features of the data. The evalua-

ion of these algorithms on the basis of single criterion sometimes

isleads the decision of selecting best algorithm from a list of

vailable candidate algorithms. For example, consider the follow-

ng scenario with four classification algorithms: multinomial logis-

ic regression, decision table/naive Bayes hybrid classifier (DTNB),

unctional trees (FT) and J48 which are tested on anneal dataset

 Lichman, 2013 ) using 10 × 10-fold cross validation and evaluated

sing the criteria, Wgt.Avg.F-score, CPUTimeTesting, CPUTimeTrain-

ng and average consistency, as shown in Fig. 1. 

Fig. 1 (a) shows that FT algorithm performs well, measured

n terms of weighted average f-score (0.992%) and is the win-

er amongst all algorithms. However, it performs poor from the

PUTimeTesting perspective (0.083 s). Similar interpretations can

e made for CPUTimeTraining and the Consistency criteria. This

nalysis shows that no algorithm can be declared for all criteria. 

From the empirical evidence, predictive accuracy is one of

he traditional evaluation metric, estimated using cross-validation

 Stone, 1974 ) that focuses on maximizing the accuracy, but ignores

ther criteria, such as comprehensibility, interestingness ( Freitas,

006 ) and complexity. The formal measurement of comprehensi-

ility and interestingness may not be possible like accuracy, but it

ore relevant than accuracy when the objective is discovering ac-

urate knowledge ( Lavesson et al., 2014 ) in medical domain for rec-

mmendation generation services. Similarly, time and space com-

lexities are also the key criteria for evaluating algorithms and se-

ecting the right algorithm for an application in hand. In situation,

here the datasets are either large or the storage space or com-

utational power is limited ( Bucilu ̌a, Caruana, & Niculescu-Mizil,

006 ), the time and space complexities criteria need to be used

or evaluation of the algorithms. Thus, in order to select appropri-

te classifiers or algorithms for such applications we must need to

valuate algorithms performance in terms of space and time com-

lexities. 

In light of the results shown in Fig. 1 and the empirical evi-

ences from the literature, the well-known no-free-lunch theorems

 Wolpert & Macready, 1997 ) is confirmed. Hence, we conclude the

iscussion that no classification algorithms is superior on all prob-

ems and is therefore no single evaluation criterion is always su-

erior for their evaluation. If one algorithm outperforms others on
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one criterion, it may underperforms on other criteria. As a conse-

quence, the algorithm selection problem is a multiple criteria de-

cision making problem which requires an accurate methodology to

evaluate them properly. The rest of the study is focused to find a

solution to this problem. 

3. Material and methods 

In this section, first we define a set of general guidelines and

then describe the methodology for evaluating classification algo-

rithms on the basis of multiple evaluation criteria. 

3.1. Guidelines for algorithms evaluation 

For selecting suitable algorithm(s), a sequence of essential tasks

need to be performed. To efficiently perform these tasks, a set of

guidelines are presented as follows. 

1. Define an unambiguous goal for which the algorithm(s) need to

be selected 

2. Analyze and specify goal as either single-objective or multi-

objectives and specify the corresponding quality meta-metrics

(QMM) 

a. Categorize objective(s) as cost and benefit criteria 

b. Define essential constraints on the objective(s), reflecting

goal’s constraints 

3. Analyze the specified objective(s) and constraints against exist-

ing criteria 

a. If existing criteria work, then go to step 4. 

b. If existing criteria do not fit well, then go to step 5. 

4. Evaluate the algorithms performances using the available crite-

rion under the constraints, defined in step 2(b), and rank them

for the best selection 

5. Define a generic multi-metrics evaluation criteria using the fol-

lowing steps 

a. Analyze QMM for conflict among evaluation criteria (inter-

dependence/fuzziness) 

b. Select suitable QMM, defining the objectives. 

c. Select suitable evaluation metrics for the selected QMM (ob-

jectives) 

d. Prioritize the selected evaluation metrics 

e. Rank algorithms based on the aggregate value of the

weighted metrics 

f. Repeat step 5, if any of the constraints, defined in step 2(b),

is not satisfied 

In the above guidelines, steps 1–4 are straightforward and can

be easily followed. However step 5 is more challenging and needs

technical contributions to accomplish the task of selecting suitable

algorithm in the basis of multiple criteria. Generally, the outlined

guidelines are generic, where only the domain specific parame-

ters, such as the goal, objectives, evaluation criteria, and weights

for each criterion need to be strictly followed while building a

system. These guidelines are mainly focused on two essential as-

pects of the algorithms evaluation and recommendations systems.

These aspects include (a) how to integrate multiple evaluation cri-

teria and (b) what criteria should be integrated. To answer the first

question, we designed and proposed a list of guidelines that were

partially presented by Lavesson and Davidsson, 2007 and Lavesson

et al., 2014 . Similarly, to extend answer of the first question and

find solution to the second question, we have provided detail de-

scription in the next section. 

3.2. Multi-metric decision making for algorithm selection 

The proposed accurate multi-metric decision making methodol-

ogy (AMD) consists of the following steps: goal and objectives def-
nition, criteria selection and weighting, measuring algorithm per-

ormance, ranking algorithms, and ordering and application. 

Abstractly, the working methodology of AMD is described

elow, which is algorithmically presented in Algorithm 1 and pic-

orially depicted in Fig. 2 . 

• Goal and objective definition: describes the final goal, its cor-

responding objectives and the associated constraints to achieve

the goal. For example, the selection of optimum performance

classification algorithm for multi-class problems. In this state-

ment, goal G is the “selection of optimum performance classi-

fication algorithm” and the global constraint C is “multi-class

problems”. The corresponding objectives against this goal can

be, e.g., (o 1 ) accuracy, (o 2 ) computational complexity, and (o 3 )

consistency. 
• Criteria selection and weighting: contains a set of methods to

first select quality metrics for the objectives, then select suit-

able metric for each of the quality and finally assign consistent

weight to each metric. 
• Measuring performance: includes the tasks of generating per-

formance results for the selected criteria using the candidate

algorithms (considered in the study) on the datasets (one at a

time) and performing significance and fitness tests. The purpose

of this step is to generate significant matrix of the algorithms

performance results for the selected evaluation criteria. 
• Ranking algorithms: is used to rank the list of candidate al-

gorithms by utilizing their performance results and the criteria

weights. 
• Ordering and application: consists of the trivial functions, such

as sorting the ranked algorithms and selecting the top-k for the

user’s application in hand. 
• Constraints: represent restrictions, i.e., for which fam-

ily/families of problems the methodology should be activated

(single class/multi-class), how experts’ preferences should be

quantified (explicit criteria weights), introduction of special

criteria as constraint i.e., consistency, which is measured in

terms of standard deviation. 

The proposed AMD methodology is algorithmically represented

n Algorithm 1 . 

In Algorithm 1 , each step of the methodology is explicitly de-

cribed in separate section except steps 9–11. In step 9, average

anking of the relative closeness scores RC of the algorithms are

enerated using the Microsoft Excel 2010 ( Pinto, 2010 ) built-in

unction RANK.AVG() with its generic form RANK.AVG(number, ref,

order]). In step 10, the selectTopK() function is used to select top-

 ranked algorithms while in step 11, the users build his/her model

sing the selected algorithms and deploy in their applications. 

.2.1. Selecting suitable quality Meta-metrics 

To select an optimal performance algorithm, a machine learn-

ng (ML) user/expert must be aware of the physical meaning of

he evaluation metrics. For understanding physical meaning of the

valuation metrics, we propose the idea to first abstract the eval-

ation metrics in the form of classifiers quality meta-metrics and

hen let the users know to select quality metrics compliant to their

oal and objectives. This will help the users in identification of

ppropriate metrics and figuring out the conflicting (fuzzy) met-

ics, for example comprehensibility against correctness (accuracy)

 Freitas, 1998 ) and complexity ( Gaines, 1996 ). The conflicting cri-

eria are interdependent among each other and need special treat-

ent during evaluation. The independent (crisp) criteria are simple

o evaluate and result in unbiased decisions. 

.2.1.1. Classifiers quality meta-metrics classification model. Classi-

ers can be evaluated using a number of commonly used evalu-

tion criteria, such as RMSE, predictive accuracy and ROC curves
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Algorithm 1 Selection of optimum performance algorithm on the basis of multi-metric evaluation. 

Begin 

inputs: d – dataset 

A = { a 1 , a 2 , . . . , a n } // list of n algorithms 

output: R = top-k algorithms; where, R ⊆A 

Let QMM = Classifiers quality meta-metrics; // See Section 3.2.1 . 

1 [Define Goal] 

G = { o 1 , o 2 , . . . , o n } ; // where, n is the number of objectives, See Section 3.2 . 

2 [Select Suitable Quality Meta-metrics] 

Q̄ = selectSuitQuality ( QMM , G ) ; // See Section 3.2.1 

3 [Select Suitable Evaluation Metrics] 

Q = selectSuitEvalMetrics ( ̄Q , G ) ; //where, Q ⊆ Q̄ . See Section 3.2.2 . 

4 [Estimate Relative Weight of the Evaluation Metrics] 

W = estimateRelativeWeights ( Q ) ; //where, W is weight vector. See Section 3.2.3 . 

5 [Generate Performance Results of the Algorithms] 

foreach algorithm a in A perform 10 × 10-fold cross-validation in Weka to produce an 

n ∗m performance matrix P for the evaluation metrics Q . See Section 3.2.4 . 

end for 

6 [Perform Statistical Significance Test] 

P̄ = performStatSigTest (P ) ; //where, P̄ is the significance labelled matrix. See Section 3.2.5 . 

7 [Perform Algorithm Fitness Test] 

S = Perform Algorithm Fitness Test ; See Section 3.2.6 , Eq. (8) 

8 [Compute Relative Closeness (RC) to Ideal Algorithm] 

RC = rankAlgorithms ( S , W ) ; See Section 3.2.7 . 

9 [Rank the Algorithms] 

RankedList = RANK . AVG ( R C 1 , R C 1 : R C n , 1 ) ; 

10 [Select Top-K Algorithms] 

R = selectTopK ( Ranke dList , k ) ; 

11 apply R to learn d 

End 
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 Fawcett, 2006 ). A general problem with users and domain experts

s that they do not know physical meaning of the evaluation met-

ics. This creates difficulty for them to select suitable metric(s) for

heir evaluation. To resolve this problem, we define physical mean-

ng of the classifiers evaluation metrics in terms of quality meta-

etrics (QMM). We defined eight families of QMM for those eval-

ation metrics which are implemented in Weka library ( Bouckaert

t al., 2010 ). These include: responsiveness or computational effi-

iency, separability or coherency, robustness or sensitivity, consis-

ency, correctness, complexity or simplicity, reliability and compre-

ensibility or interestingness or interpretability. The definitions of

hese qualities along with their evidences are given below. 

• Correctness . It can be either measured directly from the correct

cases or indirectly from the number of errors made. We cate-

gorize it into two sub-groups of accuracy (‘ + ’cor) and accuracy

(‘ −’cor). This family contains metrics for binary class problems,

multi-class problems and balanced and imbalanced data prob-

lems. 
• Complexity . It can be measured either in terms of time spent

in building the model, i.e., computational complexity (ccom) or

the memory space consumed to complete the process of build-

ing and accommodating the model, i.e., memory/space com-

plexity (scom). 
• Responsiveness . It measures the computational efficiency of a

classifier in terms of testing or execution time. We abbreviated

it as res that stands for responsiveness of the model. 
• Consistency. Consistency of a classifier, with respect to an eval-

uation metric, can be measured in terms of its standard devi-

ation. If the classifier maintain a certain level of performance

for a subsets of the main dataset then it will be consistent

otherwise inconsistent one. For example, standard deviation of

the accuracy measure of a classifier over the 10-fold of a test

dataset measures its consistency in terms of predictive accuracy

( Lavesson et al., 2014 ). We abbreviated it as con in this study. 
• Comprehensibility, interestingness and interpretability. It is com-

bination of related subjective metrics that describes the nature

of classifiers from the user’s understanding and interpretation
perspective. It measures the user oriented aspects, such as how

well the classifier’s output and the process of decision making

be understood ( Lavesson et al., 2014 ). These metrics are favored

in the knowledge acquisition scenario where understandability

matters ( Freitas, 1998 ). Comprehensibility may also results in

model complexity. A complex model is intuitively more diffi-

cult to understand and interpret as compared to a simple model

( Gaines, 1996 ). Similarly, for a recommender system, the inter-

pretability criterion has great importance, where user needs to

understand and verify the results of a trained model. This qual-

ity metric is abbreviated as com. 
• Reliability. This family of metrics measures how much the user

can trust on the quality of correctness of the performance re-

sults of a classifier. It can be measured using error metrics,

which are based on the probabilistic understanding of the er-

rors that measures the deviation from the true probability, such

as mean absolute error, mean squared error, LogLoss (cross-

entropy), etc. ( Ferri, Hernández-Orallo, & Modroiu, 2009 ). Simi-

larly, information-theoretic metrics, also estimate the reliability

aspects of classifiers ( Sprinkhuizen-Kuyper, Smirnov, & Nalban-

tov, 2005 ). We abbreviated it as rel and categorized into dis-

tance or error measure (erel) and information-theoretic mea-

sure (irel). 
• Robustness. It is a subjective measure used in diverse situa-

tions, such as ability of the classifier to make correct predic-

tions on noisy dataset or a dataset with missing values ( Han,

Kamber, & Pei, 2011 ) or have high sensitivity or true positive

rate ( Lavesson & Davidsson, 2007 ). Sophisticated AUC measures

have been reported recently for improving the quality of ro-

bustness of classifiers ( Vanderlooy & Hüllermeier, 2008 ). We

abbreviated it as rob in our study. 
• Separability and coherency. In the context of binary classifica-

tion problems, area under the receiver operating curve (AUC) is

closely related to the concept of separability ( Ferri et al., 2009 ).

AUC can best distinguish the positive and negatives classes of a

dataset. We abbreviate it as sep in our study. 
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Fig. 2. A general view of the accurate multi-metric decision making methodology (AMD) for algorithms evaluation and selection. 

Classifiers 
Quality Meta-

Metrics 
(QMM) 

Correctness (cor)
Accuracy (+cor) Examples: percent correct, 

precision, recall, F measure etc.

Accuracy (-cor) - error 
metrics

Examples: percent incorrect, FPR, 
FP, TN etc.

Complexity 
(complex)

Computational (ccom) Examples: Elapsed Time training, 
User CPU Time training etc.

Memory/Space (scom) Examples: Num Rules, Tree Size, 
Num Leaves etc.

Responsiveness 
(res) Examples: Elapsed time testing,  UserCPU time testing

Consistency (con) Examples: Standard deviation

Comprehensibility 
(com)

Examples: Measures Interestingness  and Interpretability, e.g., Num. 
Rules, Tree Size etc.

Reliability (rel)

Information-Theoritic
(irel)

Examples: Entropy, entropy gain 
etc.

Distance or Error Measure 
(erel)

Examples: MAR, RMSE 
etc.

Robustness (rob) Examples: Measure sensitivity in terms of True positive rate

Separability (sep) Examples: Graphical measures that best visualize the results 
in binary classification, e.g., ROC, AUC etc.

Fig. 3. Classification model of the classifiers quality meta-metrics. 
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A partly similar concept of classifiers qualities can

be found from Tsiporkova, Tourwé, and Boeva, 2010 and

Lavesson and Davidsson, 2007 with limited scope and number of

qualities defined. We have proposed and defined a classification

model for these qualities, as shown in Fig. 3. 

While selecting qualities form the QMM classification model, to

evaluate classifiers, intensive care should be taken to select only

those qualities which satisfy the properties of legibility (containing

e

ufficiently small number of criteria), operational, exhaustiveness

containing all points of view), monotonicity and non-redundancy

each criterion should be counted only once). These properties

ere initially defined in article ( Bouyssou, 1990 ). A mathematical

epresentation of the proposed QMM is shown in Eq. (1) . 

MM = { cor , complex , res , con , com , rel , rob , sep } (1)

Based on QMM classification model, the list of Weka classifiers’

valuation metrics are categorized, as shown in Table 1. 
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Table 1 

Categorization of Weka classifiers evaluation metrics on the basis of quality meta-metrics. 

Id Evaluation Metric QMM Sub-QMM Id Metric QMM Sub-QMM 

1 Number_correct cor + cor 27 Elapsed_Time_training complex ccom 

2 Percent_correct cor + cor 28 UserCPU_Time_training complex ccom 

3 Kappa_statistic cor + cor 29 measureNumRules complex, com scom 

4 True_positive_rate cor + cor 30 measurePercentAttsUsedByDT complex, com scom 

5 Num_true_positives cor + cor 31 measureTreeSize complex, com scom 

6 False_negative_rate cor + cor 32 measureNumLeaves complex, com scom 

7 Num_false_negatives cor + cor 33 measureNumPredictionLeaves complex, com scom 

8 IR_precision cor + cor 34 measureNodesExpanded complex, com scom 

9 IR_recall cor + cor 35 Elapsed_Time_testing res ures 

10 F_measure cor + cor 36 UserCPU_Time_testing res sres 

11 Weighted_avg_true_positive_rate cor + cor 37 SF_prior_entropy rel irel 

12 Weighted_avg_false_negative_rate cor + cor 38 SF_scheme_entropy rel irel 

13 Weighted_avg_IR_precision cor + cor 39 SF_entropy_gain rel irel 

14 Weighted_avg_IR_recall cor + cor 40 SF_mean_prior_entropy rel irel 

15 Weighted_avg_F_measure cor + cor 41 SF_mean_scheme_entropy rel irel 

16 Number_incorrect cor -cor 42 SF_mean_entropy_gain rel irel 

17 Number_unclassified cor -cor 43 KB_information rel irel 

18 Percent_incorrect cor -cor 44 KB_mean_information rel irel 

19 Percent_unclassified cor -cor 45 KB_relative_information rel irel 

20 False_positive_rate cor -cor 46 Mean_absolute_error rel erel 

21 Num_false_positives cor -cor 47 Root_mean_squared_error rel erel 

22 True_negative_rate cor -cor 48 Relative_absolute_error rel erel 

23 Num_true_negatives cor -cor 49 Root_relative_squared_error rel erel 

24 Weighted_avg_false_positive_rate cor -cor 50 Area_under_ROC sep, cor -’ 

25 Weighted_avg_true_negative_rate cor -cor 51 Weighted_avg_area_under_ROC sep, cor -’ 

26 True_positive_rate cor, rob + cor – – –

Procedure 1 selectSuitQuality. 

Begin 

inputs: QMM – classifiers quality meta-metrics 

G – goal 

output: Q 

′′ – highly rated/ranked quality meta-metrics 

1 [Select key qualities by each expert] 

Q = extractSalientQMM ( QMM , G ) ; //where, Q ⊆ QMM 

2 [Vote each quality by each expert] 

Q 

′ = preliminaryVoteAggQuality ( Q 

′ ) ; //where, Q ′ is the initial list of selected QMM 

a. If Q 

′ contains Consistent qualities, then 

i. Q 

′′ = selectTopKQMM ( Q 

′ , k ) ; // where, k represents the number of qualities experts are interested in 

ii. goto setp 3; 

b. Else 

i. repeat step 2; 

3 return Q 

′′ ; 
End 
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.2.1.2. Selecting suitable quality meta-metrics. In this section, we

roposed a formal expert group-based quality meta-metrics se-

ection method, where a group of experts participate in a closed

iscussion and rate the quality metrics. We are motivated to

he experts’ group-based decision making method due to the ef-

ectiveness of nominal group technique (NGT) ( Gallagher, Hares,

pencer, Bradshaw, & Webb, 1993 ) that quantifies the experts’

references in the form of quantitative score. The proposed

xperts’ group-based QMM selection process is represented in

rocedure 1 . 

In Procedure 1 , step 1, experts’ panel uses extractSalientQMM()

o extract those quality metrics from QMM classification model,

hich are essential for the evaluation of classifiers under the de-

ned goal G. The salient qualities are collected by the head ex-

ert and presented for discussion, if needed, otherwise, prelimi-

aryVoteAggQuality() is used (step 2,) to vote salient qualities by

ach expert. For voting salient qualities, rating or ranking methods

an be used. The output of this function is to select top-k quali-

ies, if they are consistent. A quality is said to be consistent if all

he experts have uniformly rated/ranked it. For example, if ¾ of

he experts rate correctness as rank 1 and only one expert rates it

egatively, then it may be due to the inconsistent rating by the ex-

erts. In this case, re-voting is done and the process is continued
 r  
ill consensus are made. The final output of Procedure 1 is the list

f most desirable qualities for the defined goal. 

.2.2. Selecting suitable evaluation-metrics 

Once suitable qualities, Q̄ , are selected, the next step is to se-

ect suitable evaluation metrics. However, in case of classification

lgorithms, for each Q̄ , a large number of metrics are available (a

ew are shown in Table 1 ). 

The selection of suitable metrics (i.e., metrics to integrate) de-

ends on the scope of the classifiers under analysis, which is de-

ned in terms of the number of families of classifiers taken un-

er consideration. A few of the commonly used families of clas-

ifiers, i.e., probabilistic family, lazy learners’ family, function fam-

ly, rule family, decision tree family and meta-learners family, are

mplemented in Weka ( Bouckaert et al., 2010 ), which are focused

n this study. Apart from the scope of the classifiers, the do-

ain/application requirements also influence the selection of suit-

ble metrics. To resolve the metrics selection problem, we adopt

he idea of experts group-based decision making, motivated by the

GT ( Gallagher et al., 1993 ). The methodology used is algorithmi-

ally represented in Procedure 2 . 

In Procedure 2 , step 1, experts’ panel uses extractSalientMet-

ics() to extracts those quality metrics from Q̄ , which qualify
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Procedure 2 selectSuitEvalMetrics. 

Begin 

inputs: Q̄ –highly rated/ranked quality meta-metrics 

G – goal 

output: SM 

′′ –highly rated/ranked evaluation metrics 

Let specAlgEvlMetrics = Specification of evaluation metrics. See Table 1. 

1 [Select salient evaluation metrics (SM) from each quality metric] 

SM = extractSalientMetrics ( ̄Q , G , specAlgEvlMetrics ) ; 

2 [Vote each evaluation metric by each expert] 

S M 

′ = preliminaryVoteAggMetrics () ; //where, S M 

′ 
is initial list of selected metrics 

a. If SM 

′ contains Independent metrics, then 

i. SM 

′′ = selectTopKSuitMetrics ( S M 

′ , k ) ; //where, SM 

′′ ⊂ S M 

′ 
and k is the number of metrics 

ii. goto setp 3; 

b. Else 

i. repeat step 2; 

3 return SM 

′′ ; 
End 
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the goal G. The salient evaluation metrics from each quality are

extracted by utilizing specAlgEvlMetrics (see Table 1 ). This pro-

cess is completed in step 2 by using preliminaryVoteAggMet-

rics(). For voting the same method as described in previous sec-

tion is used. The output of this function is to select top-k met-

rics, if they are crisp/independent. An evaluation metric is said

to be independent if it is not duplicate with other metrics. For

example, percent accuracy and percent incorrect/errors are inter-

dependent evaluation metrics and both should not be included

in the evaluation metrics. The final output of this procedure is

the list of selected suitable evaluation metrics SM 

′′ , which are

the main ingredients of the generic multi-metric criteria Our fo-

cus is to select metrics that have the following features: (a) eas-

ily computable, (b) perform best on all types of datasets, (c) co-

herent with the final decision, (d) non-conflicting/independent of

each other, (e) same representation with same scale, (f) quan-

tifiable/measurable and (g) related with the algorithms eval-

uation. While selecting metrics, preference should be given

to those metrics that qualify maximum of these qualities

( Majumder, 2015 ). 

3.2.3. Consistent relative criteria weighting 

The selected evaluation metrics are the final ingredients of the

evaluation criteria that play their corresponding roles in achiev-

ing the final goal. The roles define the preference or priority or

weight of the metrics, which should be first estimated and then

used during evaluation. State-of-the-art algorithm evaluation and

recommendation studies, discussed in literature, follow absolute

or partial relative weighting techniques that support limited num-

ber of criteria. The weights are assigned by experts, utilizing their

own knowledge of the domain. In order to resolve shortcomings of

the existing work, we proposed the idea of group decision mak-

ing for consistent relative weights of the criteria. For this task,

we are motivated by the AHP weighting method ( Saaty, 1990 ),

which has the ability to quantify experts’ preferences in the form

of weight scores, using the pairwise-wise comparisons procedure

utilizing Saaty’s preference scale (SPS) ( Saaty, 1980 ), shown in

Table 2. 

According to the interpretation of this scale, if an evaluation

metric e 1 is extremely more important than evaluation metric e 2 ,

it is rated as 9 and then e 2 must be extremely less important than

e 1 , which is rated as 1/9. Table 2 has all the possible values of

importance of evaluation criteria and its inverse along with their

interpretations. 

For weighting the evaluation criteria, the AHP expert group-

based prioritization mechanism is followed in the sequence: pri-

oritizing experts, creating a pairwise comparison matrix of the se-

lected metrics ( Q ), assigning experts’ relative priority weights, eval-

uating consistency of the individual weights and aggregating indi-
idual’s weights into group weights. The process is described in

rocedure 3 . 

In step 1 of the Procedure 3 , an n 

∗n comparison matrix (DMM)

s designed to estimate the decision power of each decision maker.

hese weights are assigned using function estimateDMWgt() (step

). The weights are estimated using the AHP pairwise compar-

son procedure. Each entry dm ij of the matrix DMM is entered

y the head expert, on the basis of his/her understanding about

he expertise of other experts (DM). Each of these values repre-

ents the superiority of i th DM relative to the j th DM. If dm ij > 1,

hen the i th DM is more influential in decision making than the

 

th DM, but if dm ij < 1, then the i th DM is less influential than

he j th DM. However, if d mij = 1 both i th and j th DM have the same

evel of importance in the decision. For estimating the DM deci-

ion weights, DMM = d m ij is first transformed to the normalized

atrix, DMM = dm ij , where each entry dm ij is computed using

q. (2) and then a column weight vector W = w j is produced using

q. (3) , 

m ij = d m ij 

/
n ∑ 

i=1 

d m ij (2)

 j = 

∑ n 

j=1 
dm ij / n = 

⎛ 

⎜ ⎜ ⎝ 

w 1 

w 2 

. . . 
w n 

⎞ 

⎟ ⎟ ⎠ 

, where i & j = 1 , 2 , . . . , n . (3)

To verify correctness of the experts’ judgment and preferences

bout the relative weights assigned to each DM, consistency is

hecked using the eigenvector method ( Saaty, 2003 ), which com-

utes consistency ratio (CR) using Eqs. 4 –7 , 

R = CI / RI , (4)

here, RI is the random consistency index value from the ran-

om consistency table ( Saaty, 1980 ), shown in Table 3 . Similarly,

he value of CI measures the deviation which is computed using

q. (5) , 

I = ( λmax − n) / ( n − 1 ) , (5)

here, λmax is the principal eigenvalue, such as λmax ∈ � > n. The

igenvalue is computed by averaging values of the consistency vec-

or Cv, as shown in Eq. (6) , 

max = 

( 

n ∑ 

i=1 

C v ij 

) 

/ n , (6)

here, each value Cv ij of the consistency vector, is computed by

aking product of the pairwise comparison matrix DMM with the
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Table 2 

Saaty’s preference scale for pair-wise comparison of the evaluation criteria. 

Definition Intensity of importance Definition Intensity of importance 

Equally important 1 Equally important 1/1 

Equally or slightly more important 2 Equally or slightly less important 1/2 

Slightly more important 3 Slightly less important 1/3 

Slightly to much more important 4 Slightly to way less important 1/4 

Much more important 5 Way less important 1/5 

Much to far more important 6 Way to far less important 1/6 

Far more important 7 Far less important 1/7 

Far more important to extremely more important 8 Far less important to extremely less important 1/8 

Extremely more important 9 Extremely less important 1/9 

Procedure 3 estimatRelativeWeight. 

Begin 

inputs: Q = { e 1 , e 2 , . . . , e m } ; // selected evaluation metrics 

output: W – weights vector Let DM = { d m 1 , d m 2 , . . . , d m n } ; // Group of experts 

SPS = Saaty’s preference scale (see Table 2 ) 

GDMM = m 

∗n ‘group decision making matrix’, where m represents metrics and n represents decision makers 

1 [Design comparison matrix for decision makers] 

DMM = d m ij ; //where, DMM is n ∗n comparison matrix of decision makers with dm ij is the decision weight of the i th decision maker relative to the 

j th decision maker 

2 [Estimate decision makers decisions weight] 

a. DMWeight = estimateDMWgt ( SPS , DMM ) ; //where, DMWeight is a single column weights vector containing preferences of decision makers. // See 

Eqs. 2 and 3 

b. Check consistency of DMWeight ; // See Eqs. 4 –7 

3 [Estimate metrics weights] 

for dm = 1 to n do 

a. [Design comparison matrix for evaluation metrics] 

EM = e ij ; //where, EM is m 

∗m comparison matrix of the evaluation metrics with e ij is the preference of i th metric against the j th metric 

b. EMWeigh t dm = estimateEvalMetricsWgt ( SPS , EM ) ; //where, EMWeight is single column weights vector for metrics Q . // See Eqs. 2 and 3 

c. Check consistency of EMWeight dm ; // See Eqs. 4 –7 

d. Insert 〈 EMWeight dm 〉 into GDMM ; 

End for 

4 [Aggregate weights of all decision makers using group decision making] 

foreach e ∈ GDMM 

W = 

∑ 

( 
n ∏ 

dm =1 

( DMWeigh t T , EMWeight ) ) ; //where, W is the aggregate weights vector 

End for 

5 return W ; 

End 

Table 3 

Random consistency indices (RI) for different number of evaluation criteria (n). 

Number of evaluation criteria (n) 1 2 3 4 5 6 7 8 9 10 11 

Random consistency index (RI) 0 .00 0 .00 0 .58 0 .9 1 .12 1 .24 1 .32 1 .41 1 .45 1 .49 1 .51 
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Table 4 

List of Weka classifiers for evaluation, comparison and selection of the best classi- 

fier. 

SNo Classifier SNo Classifier 

1 bayes.BayesNet 19 trees.J48 

2 bayes.NaiveBayes 20 trees.J48graft 

3 bayes.NaiveBayesUpdateable 21 trees.LADTree 

4 functions.Logistic 22 trees.RandomForest 

5 functions.RBFNetwork 23 trees.RandomTree 

6 functions.SMO 24 trees.REPTree 

7 misc.HyperPipes 25 trees.SimpleCart 

8 misc.VFI 26 meta.AdaBoostM1 

9 rules.ConjunctiveRule 27 meta.Bagging 

10 rules.DecisionTable 28 meta.Dagging 

11 rules.DTNB 29 meta.END 

12 rules.JRip 30 meta.FilteredClassifier 

13 rules.OneR 31 meta.LogitBoost 

14 rules.PART 32 meta.RacedIncrementalLogitBoost 

15 rules.Ridor 33 meta.RandomSubSpace 

16 rules.ZeroR 34 meta.Stacking 

17 trees.BFTree 35 meta.Vote 

18 trees.FT — —
eight vector W. This relationship is shown in Eq. (7) , 

 v ij = E ∗ W . (7) 

In step 3 (a), m comparison matrices (i.e., EM) are created, one

or each decision maker to relatively weight all the evaluation met-

ics Q . In step 3 (b), each decision maker (dm) uses the func-

ion estimateEvalMetricsWgt() to assign and estimate the weight

or each evaluation metric. In step 3 (c) the consistency of met-

ics weights are checked using Eqs. 4 –7 . In step 3 (d), the weight

ector EMWeight is added to the group decision making matrix,

DMM. In step 4, the weights estimated for the evaluation met-

ics Q by the n decision makers, DM, are aggregated using the

roup decision making process, which are returned to the main

lgorithm 1 using step 5. 

.2.4. Measuring algorithms performance 

In this phase, first the candidate list of algorithms are selected

rom the pool of freely available classification algorithms. We se-

ected 35 multiclass classification algorithms, from six heteroge-

eous families of the classifiers, implemented in Weka ( Bouckaert

t al., 2010 ). The list of these algorithms is shown in Table 4. 



266 R. Ali et al. / Expert Systems With Applications 71 (2017) 257–278 

Procedure 5 performStatSigTest. 

Begin 

inputs: P – performance matrix 

output : P̄ – n ∗m performance matrix, where n is the number of algorithms and m is the number of evaluation metrics; 

Let d – given dataset 

A = { a 1 , a 2 , .., a n } – set of classification algorithms 

Q = { e 1 , e 2 , .., e m } - set of evaluation metrics 

1 foreach e ∈ Q in performance matrix P 

a. if e ∈ benefit metric 

i. referenceAlg = selectReferenceAlg ( maxPerformValue (e ) ) ; 

b. else 

i. referenceAlg = selectReferenceAlg ( minPerformValue (e ) ) ; 

c. P̄ = performCorrectedPairedtTest ( referenceAlg , P , e ) ; 

2 end for 

3 return P̄ 

End 
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To rank these algorithms, A, on a classification dataset, d , using

the performance results of evaluation metrics Q , all the algorithms

(A) are executed sequentially on dataset d in Weka environment

and the results are stored into the performance matrix P for later

use. 

3.2.5. Testing significance of performance results 

Unlike the traditional ranking methods that directly select top-

rank algorithm (without considering significance tests of the re-

sults) for learning models, we propose the idea of checking the

performance results for statistical significance. According to this

idea, the performance results of the candidates algorithms A are

first tested for statistical significance and then the for the signifi-

cance fitness. The objective of significance test is to identify which

algorithms perform significantly better, which perform significantly

poor and which perform similar with respect to a reference algo-

rithm. For this purpose, we adopted corrected paired t -test with

significance of 0.05 ( Witten & Frank, 2005 ) implemented in Weka

( Bouckaert et al., 2010 ), which checks the significance of the algo-

rithms results and labels them either ‘v’ (for better performance),

or ‘ ∗’ (for worst performance) or ‘’ for equal significance perfor-

mance with respect to a baseline algorithm. In our case, the defi-

nition of the reference algorithm a ∈ A is the algorithm which per-

formances best as compared to all the algorithms. The selection of

the reference for each metric e ∈ Q is done within its local scope

rather than the global scope of all metrics Q . 

For a performance matrix P = p ij , with p ij as the performance

value of i th algorithm on the j th evaluation metric, the process of

corrected paired t -test and the production of final labelled perfor-

mance matrix P̄ = p̄ ij is described in Procedure 5 . 

In Procedure 5 , the criteria for selecting reference algorithm is

the maximum value for a benefit metric and minimum value for

a cost metric, respectively. Benefit metric are those whose higher

values are preferred, e.g., accuracy, while cost metrics are those

whose lower value is preferred, e.g., training time. For labeling the

algorithms as either significant, or poor or equal in performance,

step 1(c) is used. For this purpose, Weka corrected paired t -test is

used, which takes reference algorithm (referenceAlg), single evalu-

ation metric (e) and the performance matrix (P) together as inputs

and returns a labelled matrix ( ̄p = p̄ ij ) as output. Each value p̄ ij of

the labelled matrix is either labelled as (v) or, ( ∗) or (‘’). 

3.2.6. Algorithmic fitness evaluation 

In this step, the algorithms’ fitness levels are evaluated for con-

sideration in the next step of evaluation. The motivation for includ-

ing the fitness evaluation as an additional step is to reduce the al-

gorithm space by filtering out the algorithms that poorly perform

on all evaluation metrics on a single dataset. This is reasonable and

makes sense that not to allow poor performance algorithms to the
ext stage of evaluation. Furthermore, it reduces the chance of se-

ection of bad algorithm. 

To implement this idea, we proposed a fitness function that

valuates labels in the labeled performance matrix P̄ = p̄ ij . This

unction can be defined as follows. Let Q = { e 1 , e 2 , .., e m 

} be the

et of m evaluation metrics for evaluating performance of an algo-

ithm a ∈ A on a classification dataset d and P̄ = p̄ ij be the labeled

erformance matrix, obtained after significance test. The target sig-

ificant matrix S, containing the list of significantly fit algorithms,

an be generated using the fitness function, defined in Eq. (8) , 

 = 

{ 

∀ a ∈ A : a ∈ P̄ | ∀ e : e ∈ Q . ∼ nonSignificant ( e ) 

} 

, (8)

here, nonSignificant(e) is the function that determines the sig-

ificance level of each a ∈ A for each evaluation metric e ∈ Q and

eturns true if it either performs significantly better or equal and

dd to the significant matrix S. The process is repeated for all al-

orithms A against all metrics Q and the final results are accumu-

ated in S, which is the reduced version of the original labelled ma-

rix P̄ , in terms of number of candidate algorithms i.e., SizeOf (S) <

izeOf ( ̄P ) . Internally, the function nonSignificant(e) processes the

abels, i.e., ‘v’, ‘ ∗’ and ‘’, of the values of each metric e ∈ Q , assigned

y the corrected paired t -test of the procedure 4. In the significant

atrix S, each value is represented by s ij , where i represents the

lgorithm and j represents the evaluation metric. 

.2.7. Ranking algorithms 

State-of-the-art methods for ranking algorithms are based on

he aggregate score of multiple evaluation metrics Q , combined to-

ether in different ways, consuming absolute weights, which are

ssigned by domain experts and lake appropriate normalization

echanism for the values of the criteria. These methods have min-

mal support for extension in terms of number of metrics to be

dded and lack support for implicit and explicit constraints satis-

action. Our idea is to evaluate the candidate algorithms and rank

hem according to their relative closeness score to the ideal algo-

ithm with the consumption of relative consistent weights and dif-

erent constraints. To achieve these objectives, we are motivated

y the flexibility and ranking power of the TOPSIS multi-criteria

ecision making method ( Garcia-Cascales & Lamata, 2012; Tzeng

 Huang, 2011 Jun 22 ). The TOPSIS steps used during algorithms

anking are shown in Procedure 6 . 

The value RC lies between 0 and 1, i.e., 0 ≤ RC ≤ 1. If RC = 1, the

OPSIS has the best condition of the top-k algorithms selection;

nd if RC = 0, the TOPSIS has the worst condition of algorithm se-

ection. Any other value in-between these two values measures the

ppropriateness level of that algorithm. 
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Procedure 6 rankAlgorithms. 

Begin 

inputs: S – n ∗m matrix containing performance results of significant algorithms 

W – 1 ∗m (single row) weight vector 

output: RC – n ∗1 (single column) matrix of the relative closeness score 

Let d –dataset 

A = { a 1 , a 2 , .., a n } – set of classification algorithms 

Q = { e 1 , e 2 , .., e m } – set of evaluation metrics 

1 [create performance evaluation matrix from S] 

S = ( s ij ) n ∗m ; //where, s ij represents value of algorithm i for evaluation metric j 

2 Define local/implicit constraints on Q ; 

3 [normalize performance evaluation matrix S] 

S̄ = r ij = s ij / 

√ 

n ∑ 

i=1 

s ij 2 ; //where, i = 1, 2, …, n and j = 1, 2, …, m 

4 [compute weighted normalized decision matrix V] 

V = ( v ij ) n ∗m = r ij ∗ W j ; //where, W j is the weight vector 

5 [compute positive ideal solution (PIS) and negative ideal (NIS) solution] 

a. PIS = { ( max 
i 

( v ij ) | j ε C b ) , ( min 
i 

( v ij ) | j ε C c ) } = { v ∗
j 

| j = 1 , 2 , . . . , m } 
b. NIS = { ( min 

i 
( v ij ) | j ε C b ) , ( max 

i 
( v ij ) | j ε C c ) } = { v −

j 
| j = 1 , 2 , . . . , m } 

6 [compute separation measures using m-dimensional Euclidean distance] 

a. PIS ∗i = 

√ 

m ∑ 

j=1 

( v ij − v ∗
j 
) 

2 
, j = 1 , 2 , . . . , m 

b. NIS −i = 

√ 

m ∑ 

j=1 

( v ij − v −
j 
) 

2 
, j = 1 , 2 , . . . , m 

7 [compute relative closeness (RC) of algorithms with respect to ideal algorithm] 

RC = 

NIS −i 
PIS ∗i + NIS −i 

, i = 1 , 2 , . . . , n ; where, RC is a n ∗1 matrix 

8 return RC ; 

End 

Fig. 4. Classification of constraints on the evaluation criteria. 
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.2.8. Constraints satisfaction 

The constraints used in our study can be categorized into in-

ividual level, limited to a single metric of the evaluation criteria,

nd global level, applicable to all the metrics in the evaluation cri-

eria. Individual level constraints are satisfied in the pre-ranking

nd ranking steps of evaluation process. These are further catego-

ized into explicit and implicit constrains. The explicit constraints

re defined by the users or experts, such as users’ relative pref-

rences on the metrics. An example can be, “the accuracy metric

hould be favored 10-times as compared to training time”. The im-

licit constraints are the inherit characteristics of individual met-

ics, such as the value of cost criteria which should be as minimum

s possible and the values of benefit criteria should be as higher

s possible. Contrary to the local constraints, global constraints are

he explicit constraints that are based on the local constraints and

pplicable to the overall criteria in the pre-ranking evaluation pro-

ess. Examples of the global constraints are the consistency of es-

imated weights of the criteria, significance of the performance re-

ults of the algorithms and consistency in the performance results

f the algorithms. Fig. 4 shows different types of constraints with

heir examples that are applied at different levels of the algorithms

valuation and ranking process. 
s  
In this paper, for satisfaction of the local constraints, we pro-

osed the idea of relative weighting using AHP process, and the

dea of cost and benefits analysis of the metrics using the TOP-

IS method. Similarly, for the satisfaction of global constraints, we

dopted the AHP weights consistency check methods using eigen-

ector computation, and proposed the idea of paired t -test embed-

ed in the algorithmic fitness evaluation function for checking the

ignificance of the algorithms performance results. The local con-

traints can be satisfied through the configuration of AHP and TOP-

IS methods, but the global constraints’ satisfaction need more ad-

anced level user-defined functions. We measure the consistency

f algorithms in terms of standard deviation of their results. The

lgorithm that has lowest standard deviation value is the consis-

ent algorithm and vice versa. 

. Validation of the AMD methodology - a scenario 

In order to evaluate the effectiveness of AMD methodology, ver-

fy its potential use in real-world scenarios and allow other re-

earchers to confirm our results, we perform step-by-step process

n this section with the necessary experiments. First consider a

cenario in which a user is interested in learning his dataset with
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Table 5 

Characteristics of UCI machine learning repository/OpenML datasets. 

Datasets Characteristics of Datasets 

Attributes Nominal Attributes Numeric Attributes Binary Attributes Classes Instance Count Missing 

abalone-3class 9 1 7 0 3 4177 0 

rabe-148 9 1 7 0 3 4177 0 

acute-inflammations-nephr 6 0 5 0 2 66 0 

ADA_Agnostic 7 5 1 5 2 120 0 

ADA_Prior 49 0 48 0 2 4562 0 

adult-40 0 0 15 8 6 1 2 4562 88 

adult-80 0 0 15 8 6 1 2 3983 0 

aileron 15 8 6 1 2 80 0 0 0 

analcatdata-AIDS 41 0 40 0 2 5795 0 

analcatdata-apnea2 5 2 2 0 2 50 0 

analcatdata-apnea2 4 2 1 0 2 475 0 

analcatdata-asbestos 4 2 1 0 2 475 0 

analcatdata-authorship 4 2 1 1 2 83 0 

analcatdata-bankruptcy 71 0 70 0 4 841 0 

analcatdata-birthday 7 1 5 0 2 50 0 

Table 6 

Experts’ group-based rating of quality metrics for heterogeneous classifiers. 

Quality Metrics DM#1 DM#2 DM#3 DM#4 Total 

Correctness (cor) 60 50 55 70 235 

Computational Complexity (ccom) 5 20 15 – 40 

Responsiveness (res) 15 – 20 20 55 

Consistency (con) 10 15 – – 25 

Comprehensibility (com) – 15 – 7 23 

Reliability (rel) 5 – – – 5 

Robustness (rob) – – 10 3 13 

Separability (sep) 5 – – – 5 

Total 100 100 100 100 400 

∗[ Each expert distributes 100 points across the qualities metrics ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Selected evaluation metrics for evaluation of the heterogeneous classifiers. 

Evaluation Metrics (DM#1 - DM#5) Decision maker 

Correctness (cor) Wgt. Avg. F-score 

Computational Complexity (ccom) CPUTimeTraining 

Responsiveness (res) CPUTimeTesting 

Consistency (con) Consistency (Stdev.) 

a  

q

Q  

 

m  

i  

t  

d

 

e

Q

 

 

b  

i  

p  

s

 

P  

W  

i  

e  

g

 

s  

C

 

t  
a classification algorithm, which he does not really know. The key

problem he faces is the selection of an optimum performance clas-

sification algorithm that fits well into his requirements and expec-

tations, expressed in terms of goal and associated objectives. In

this scenario, the user is given a choice to select the best algorithm

from a list of most commonly used 35 multi-class classification al-

gorithms, shown in Table 4 for the 15 classification datasets, 1 sown

in Table 5 . Due to the space issue, the AMD steps are described

only for one dataset. 

A machine learning practitioner can use the proposed AMD

methodology as follows. 

Step 1: Goal and objectives definition 

The goal of the study is to select an optimum performance multi-

class classification algorithm from the heterogeneous families of al-

gorithms (see Table 4 ) for binary and multiclass problems (see

Table 5 ) that has optimum performance. 

Step 2: Selecting suitable quality meta-metrics 

For the goal in step 1, Procedure 1 is used to select the suit-

able quality metrics. Four machine learning experts, i.e., machine

learning and data mining expert (DM#1), a data and knowledge

engineering expert (DM#2), a scientist, researcher and developer

(DM#3) and an expert user of the classification algorithms in di-

verse application area (DM#4) were chosen to select the qualities.

Using Procedure 1 , the experts selected correctness (accuracy), re-

sponsiveness, computational complexity and consistency (as shown

in Table 6 ) as the relevant qualities that are compliant to the goal

and satisfy the heterogeneity constraint of the classifiers. 

Table 6 shows the importance score of each quality metrics. The

top 4 qualities are non-conflicting and reflect the general char-
1 Some of the datasets are used with minor modifications by changing the type 

of the class label to nominal etc. 

s  

T  

u  

a  
cteristics of all the classifiers, therefore they are selected. These

ualities are represented in Eq. (9) , 

¯
 = { cor , ccom , res , con } . (9)

The physical meaning of Eq. (2) , is that the optimum perfor-

ance algorithm is the one that has high level of correctness

n its results, low computational complexity, quick response time

o users’ requests, and high consistency in its results for a test

ataset. 

Step 3: Selecting suitable evaluation metrics 

Procedure 2 is used to assist expert in the selection of suitable

valuation metrics, shown by Eq. (10) and Table 7 , respectively, 

 = { Wgt . Avg . F − score , CPUTimeTraining , CPUTimeTesting , 

Consistency } . (10)

In Table 7 , the consistency metric cannot be directly measured

y any of the metric shown in Table 1 . It is defined by the experts

n their discussion of voting for metrics selection. It is a global ex-

licit constraint that helps in selecting an algorithm that has con-

istent results. 

Step 4: Weighting Metrics 

The estimation of evaluation metrics is done using

rocedure 3 and the results are shown in Table 8 and Fig. 5 .

eights of the decision power of each decision maker is shown

n Table 8 (a). The relative weights, for each metric, estimated by

ach decision maker, are shown in Table 8 (b-e). The final, experts’

roup-based weights are shown in Table 8 (f). 

According to the weight scores of these metrics, Wgt. Avg. F-

core is the most preferable, followed by consistency, followed by

PUTimeTesting followed by CPUTimeTraining. 

Step 5: Measuring algorithms performance 

For generating real performance results of the 35 classifica-

ion algorithms, Weka environment is used. Table 10 , column 2–5,

hows the results for ADA_Agnostic dataset ( Van Rijn et al., 2013 ).

he consistency column 5 of Table 10 is not directly measurable

sing the existing evaluation metrics, therefore we compute it by

veraging standard deviations of the first three evaluation metrics,
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Table 8 

Criteria relative weighting, based on experts group decision making using analytical hierarchy process (AHP) pair-wise com- 

parison. 

(a). Experts’ (decision makers’) decisions’ prioritization 

DM/DM DM#1 DM#2 DM#3 DM#4 DM Decision Weights 

DM#1 1 3 2 5 0 .49 

DM#2 0 .33 1 1 3 0 .21 

DM#3 0 .50 1 .00 1 3 0 .23 

DM#4 0 .20 0 .33 0 .33 1 0 .08 

CI: 0 .009 1 .00 

(b) DM#1 relative weighting 

Criteria/Criteria WgtAvgF-score CPUTimeTesting CPUTimeTraining Consistency Weights 

WgtAvgF-score 1 8 9 7 0 .70 

CPUTimeTesting 0 .13 1 3 1/2 0 .09 

CPUTimeTraining 0 .11 0 .33 1 1/5 0 .04 

Consistency 0 .142857143 2 .00 5 1 0 .16 

CI:0 .050 1 .00 

(c) DM#2 relative weighting 

Criteria/Criteria WgtAvgF-score CPUTimeTesting CPUTimeTraining Consistency Weights 

WgtAvgF-score 1 7 9 5 0 .68 

CPUTimeTesting 0 .14 1 2 1 0 .12 

CPUTimeTraining 0 .11 0 .50 1 1/3 0 .06 

Consistency 0 .2 1 .00 3 1 0 .14 

CI:0 .012 1 .00 

(d) DM#3 relative weighting 

Criteria/Criteria WgtAvgF-score CPUTimeTesting CPUTimeTraining Consistency Weights 

WgtAvgF-score 1 7 8 6 0 .68 

CPUTimeTesting 0 .14 1 2 1/2 0 .10 

CPUTimeTraining 0 .13 0 .50 1 1/3 0 .06 

Consistency 0 .17 2 .00 3 .00 1 0 .16 

CI:0 .021 1 .00 

(e) DM#4 relative weighting 

Criteria/Criteria WgtAvgF-score CPUTimeTesting CPUTimeTraining Consistency Weights 

WgtAvgF-score 1 8 9 8 0 .71 

CPUTimeTesting 0 .13 1 4 1 0 .12 

CPUTimeTraining 0 .11 0 .25 1 1/6 0 .04 

Consistency 0 .13 1 .00 6 1 0 .13 

CI:0 .073 1 .00 

(f) Criteria weights based on group decision making 

DM Decision Weights 0 .49 0 .21 0 .23 0 .08 

Criteria \ DM DM#1 DM#2 DM#3 DM#4 Weight 

WgtAvgF-score 0 .70 0 .68 0 .68 0 .71 0 .70 

CPUTimeTesting 0 .09 0 .12 0 .10 0 .12 0 .10 

CPUTimeTraining 0 .04 0 .06 0 .06 0 .04 0 .05 

Consistency 0 .16 0 .14 0 .16 0 .13 0 .15 

1 .00 

Table 9 

A partial list of the average standard deviation (average consistency) of the classifiers on the ADA_ Agnostic dataset. 

Algorithms Wgt.Avg.F-score (Stdev) CPUTimeTraining (Stdev) CPUTimeTesting (Stdev) Average (Stdev) - Consistency 

bayes.BayesNet 0 .018 0 .015 0 .005 0 .013 

bayes.NaiveBayes 0 .017 0 .006 0 .008 0 .010 

bayes.NaiveBayesUpdateable 0 .017 0 .007 0 .008 0 .011 

functions.Logistic 0 .015 0 .019 0 .002 0 .012 

… … … … …

meta.Vote 0 .017 0 .010 0 .0 0 0 0 .009 

u

C

w  

A  

c  

c  

s  
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f  

i  

a  

r  
sing Eq. (11) , 

onsistenc y a ∈ A = 

∑ m 

i=1 Stde v i 
m 

(11) 

here, a represents an algorithm belonging to the algorithm space

 and m represents the number of measurable metrics (3 in this

ase). For simplicity purpose, in this paper, we use the concept

onsistency instead of the average consistency. The consistency
cores for a partial list of the algorithms are shown in Table 9 (last

olumn). 

Step 6: Testing significance of performance results 

For checking the statistical significance of the algorithms per-

ormance results, procedure 4 is used, whose results are shown

n Table 10 , column 2–4. In this table, the reference classifiers

re marked by bold faced keyword “ref ” and the statistically poor

esults are marked with symbol “∗” . The results, in these three
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Fig. 5. Weight for the selected criteria, estimated using group-based crisp analytic hierarchy process. 

Table 10 

Performance results of classification algorithms on ADA_Agnostic dataset and their ranking with respect to relative distance from the ideal algorithm. 

Constraints 

Max Min Min Min 

Algorithms F-score CPUTimeTraining CPUTimeTesting Consistency PIS = NIS - RC Ranking 

bayes.BayesNet 0 .78 ∗ 0 .027 ∗ 0 .002 0 .013 0 .00906 0 .03830 0 .80874 26 

bayes.NaiveBayes ∗ 0 .825 ∗ 0 .013 ∗ 0 .008 ∗ 0 .010 0 .00264 0 .04180 0 .94068 19 

bayes.NaiveBayesUpdateable ∗ 0 .825 ∗ 0 .011 ∗ 0 .01 ∗ 0 .011 0 .00272 0 .04171 0 .93882 20 

functions.Logistic 0 .836 0 .229 ∗ 0 .0 0 0 0 .012 0 .0 0 088 0 .04317 0 .97995 4 

functions.RBFNetwork 0 .733 ∗ 0 .232 ∗ 0 .004 0 .043 0 .01593 0 .03492 0 .68672 29 

functions.SMO 0 .830 1 .99 ∗ (ref) 0 .0 0 0 0 .041 0 .00181 0 .04239 0 .95905 12 

misc.HyperPipes 0 .66 ∗ (ref) 0 .001 0 .0 0 0 0 .005 0 .02658 0 .03309 0 .55457 32 

misc.VFI 0 .716 ∗ 0 .008 ∗ 0 .004 0 .012 0 .01841 0 .03433 0 .65097 31 

rules.ConjunctiveRule 0 .645 ∗ 0 .043 ∗ 0 .0 0 0 0 .006 0 .02877 0 .03301 0 .53432 35 

rules.DecisionTable 0 .829 1 .086 ∗ 0 .0 0 0 0 .043 0 .00195 0 .04231 0 .95597 14 

rules.DTNB 0 .832 88 .16 ∗ 0 .004 2 .611 0 .02792 0 .03234 0 .53668 33 

rules.JRip 0 .825 ∗ 0 .648 ∗ 0 .0 0 0 0 .067 0 .00257 0 .04180 0 .94203 18 

rules.OneR 0 .739 ∗ 0 .014 ∗ 0 .0 0 0 0 .007 0 .01504 0 .03574 0 .70380 28 

rules.PART 0 .819 ∗ 1 .161 ∗ 0 .001 0 .057 0 .00341 0 .04126 0 .92367 23 

rules.Ridor 0 .795 ∗ 0 .453 ∗ 0 .0 0 0 0 .034 0 .00687 0 .03942 0 .85156 24 

rules.ZeroR 0 .645 ∗ 0 .0 0 0 0 .0 0 0 0 .001 0 .02877 0 .03305 0 .53463 34 

trees.BFTree 0 .838 0 .79 ∗ 0 .0 0 0 0 .024 0 .0 0 063 0 .04328 0 .98557 2 

trees.FT 0 .827 1 .38 ∗ 0 .161 ∗ 0 .044 0 .01790 0 .03819 0 .68088 30 

trees.J48 0 .828 0 .221 ∗ 0 .0 0 0 0 .014 0 .00205 0 .04241 0 .95392 15 

trees.J48graft 0 .829 0 .29 ∗ 0 .0 0 0 0 .014 0 .00190 0 .04251 0 .95715 13 

trees.LADTree 0 .833 1 .676 ∗ 0 .0 0 0 0 .020 0 .00134 0 .04281 0 .96967 10 

trees.RandomForest 0 .837 2 .304 ∗ 0 .022 ∗ 0 .022 0 .00255 0 .04223 0 .94299 17 

trees.RandomTree 0 .791 ∗ 0 .028 ∗ 0 .001 0 .009 0 .00745 0 .03923 0 .84041 25 

trees.REPTree 0 .835 0 .084 ∗ 0 .0 0 0 0 .012 0 .00103 0 .04308 0 .97669 7 

trees.SimpleCart 0 .836 0 .713 ∗ 0 .0 0 0 0 .021 0 .0 0 090 0 .04311 0 .97950 5 

meta.AdaBoostM1 0 .822 ∗ 1 .074 ∗ 0 .001 0 .021 0 .00293 0 .04176 0 .93440 21 

meta.Bagging (ref) 0 .842 0 .753 ∗ 0 .0 0 0 0 .013 0 .0 0 014 0 .04373 0 .99681 1 

meta.Dagging ∗ 0 .824 ∗ 0 .013 ∗ 0 .107 ∗ 0 .010 0 .01209 0 .03861 0 .76154 27 

meta.END 0 .828 0 .215 ∗ 0 .003 0 .013 0 .00207 0 .04228 0 .95323 16 

meta.FilteredClassifier 0 .832 0 .065 ∗ 0 .0 0 0 0 .009 0 .00146 0 .04282 0 .96697 11 

meta.LogitBoost 0 .835 1 .948 ∗ 0 .002 0 .058 0 .00121 0 .04267 0 .97245 9 

meta.RacedIncr.LogitBoost 0 .82 ∗ 0 .062 ∗ 0 .001 0 .012 0 .00322 0 .04166 0 .92833 22 

meta.RandomSubSpace 0 .837 0 .412 ∗ 0 .001 0 .012 0 .0 0 075 0 .04322 0 .98299 3 

meta.Stacking 0 .834 0 .724 ∗ 0 .001 0 .014 0 .00118 0 .04292 0 .97318 8 

meta.Vote 0 .835 0 .076 ∗ 0 .0 0 0 0 .009 0 .00103 0 .04310 0 .97676 6 

Relative Weights 0 .69520 0 .05067 0 .10097 0 .15315 

Positive Ideal Solution (PIS) 0 .12296 0 .00874 0 .01776 0 .02647 

Negative Ideal Solution (NIS) 0 .09419 0 .0 0 0 0 0 0 .0 0 0 0 0 0 .0 0 0 0 0 
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olumns, with no symbol mentioned, are either same in perfor-

ance or cannot be decided surely. 

Step 7: Algorithmic fitness evaluation 

The fitness function is performed on the labelled significant

atrix of the algorithms results, which are marked as significant,

on-significant and equally significant. In our proposed fitness

valuation function, described by Eq. (8) , the non-significant algo-

ithms are identified and are either filter out and dropped from the

ext step of evaluation or leaved as they are but not considered,

hen final selection is made from the ranked list of algorithms.

pplying the fitness function, the algorithms bayes.NaiveBayes,

ayes.NaiveBayesUpdateable, and meta.Dagging are identified as

ignificantly poor on ADA_Agnostic dataset (see Table 10 ). The re-

ults of Eq. (8) , for all the datasets, are summarized in Table 14. 

Step 8: Ranking algorithms 

To generate recommended ranking, Procedure 5 is applied on

he performance matrix, Table 10 , columns 2–5) with the specifica-

ion of local constraints (i.e. , Max and Min) and global constraints

i.e. , consistency). 

The relative closeness score (RC) (8th column) is produced for

hich the corresponding ranking is generated in the 9th col-

mn. This column is the recommended ranking for the algo-

ithms. According to this ranking, meta.Dagging, trees.BFTree and

eta.RandomSubSpace are ranked first, second, and third, respec-

ively, on the ADA_Agnostic dataset. For evaluation of these results,

n evaluation criteria and methodology is used, which is described

n the next section. 

. Experiments and evaluation 

.1. Classifiers and datasets 

We performed the experiments on 35 most commonly used

ulti-class classification algorithms, shown in Table 4 , which are

mplemented in Weka machine learning library ( Bouckaert et al.,

010 ). These algorithms belong to six heterogeneous families’ of

lassifiers including: probabilistic learners, functions-based learn-

rs, decision trees learners, rules-based learners, meta-learners,

nd miscellaneous learners. The meta-classifiers, i.e., Adaboost M1,

andomspace, and Voting are used with REPTree as the base clas-

ifier. Similarly, Dagging and Stacking are used with Naïve Bayes

s the base classifier. The rest of algorithms are used with Weka

efault parameters. Similarly, 15 classification datasets, 2 shown in

able 5 , from UCI machine learning repository ( Lichman, 2013 ) and

penML repositories ( Van Rijn et al., 2013 ) are used. 

.2. Evaluation methodology and criteria 

To empirically evaluate the recommended ranking, the follows

hree steps methodology ( Brazdil et al., 2003 ) is used, which is pic-

orially depicted in Fig. 6. 

i. build a recommended ranking for a dataset d using the pro-

posed AMD method 

ii. build an ideal ranking for dataset d , and 

ii. measure the agreement score between the two rankings 

In step (i), the recommended ranking is obtained from the rel-

tive closeness score, which is computed using the proposed AMD

ethod. In step (ii), the ideal ranking (IR) are constructed by ap-

lying ranking operation to the average score of algorithms perfor-

ances, obtained by taking average of the weighted sum of nor-

alized performance results of all the algorithms, A , on dataset d .
2 Some of the datasets are used with minor modifications by changing the type 

f the class label to nominal etc. 

i  

t  

t  

f  
e proposed the weighted sum average multi-criteria ideal rank-

ng method (WAMR), described in Eqs. 12 and 13 , where the steps

erformed follow the sequence: (a) performance results for each

etric are estimated (i,e., s ij is produced) using 10 × 10-fold CV,

b) normalized performance (i.e., N S ij ) is estimated using Eq. (13) ,

c) weighted performance, i.e., W j 
∗N S ij is computed, (d) weighted

um, i.e., 
m ∑ 

j=1 

( W j ∗ N S ij ) , results are generated for all the metrics, (e)

verage of the weighted sum score is taken, and finally (f) ranks

re generated. This process is described as follow, 

R = rank 

( ∑ m 

j=1 

(
W j ∗ N S ij 

)
m 

) 

, (12) 

here, W j is weight vector of evaluation metrics, E, m is the num-

er of evaluation metrics and N S ij is the normalized performance

alue of the i th algorithm for j th evaluation metric, computed using

q. (13) , 

 S ij = 

s ij √ ∑ n 
i=1 s ij 

2 
, (13) 

here, i = 1, 2, …, n and j = 1, 2, …, m . 

The rank operation of Eq. (12) is described in Algorithm 1 . Simi-

arly, in Eq. (13) , the value s ij is the performance of i th algorithm for

 

th evaluation metric, obtained using 10 × 10-fold cross-validation

trategy (CV). Moreover the variables n and m represents number

f algorithms and number of evaluation metrics, respectively. 

In literature, different methods are used to compute ideal

anking, such as N-orderings, average correlation (AC) and aver-

ge weighted correlation (AWC) ( Brazdil & Soares, 20 0 0; Soares,

razdil, & Costa, 20 0 0 ). In N orderings method ( Brazdil et al.,

003 ), first 10-fold CV results are generated for all the algorithms

n a single dataset and a pair-wise comparison using statistical sig-

ificance tests is performed. The algorithms are ordered based on

heir significance results score. In the average correlation method,

anks are computed for each fold of the 10-fold CV results which

re then averaged to get the ideal rank. All the algorithms are ar-

anged based on their average correlation score. Similarly, in the

WC method, weights are assigned to the ranks of individual folds

nd are then averaged together for get the final ranks. 

The motivation for proposing the new ideal ranking genera-

ion method, so called WAMR, is that it is designed for multiple-

riteria rather than single criterion, where the following essential

teps take place prior to ideal ranks generation, such as normal-

zations of the criteria values, weighting the normalized value for

niformity with the AMD method, aggregating the weighted per-

ormance of all the criteria and taking average to get global perfor-

ance results. 

In step (iii), the agreement score, which is the mean agreement

etween the recommended ranking and the ideal ranking, is mea-

ured using the Spearman’s ranked correlation coefficient ( Neave

 Worthington, 1992 ; Neave & Worthington, 1988 ). The final value

f the agreement is a measure of the quality of the recommended

anking and proves the level of correctness of the proposed AMD

ethod. The formula for Spearman’s rank correlation coefficient is

hown in Eq. (14) . 

 s = 1 − 6 ∗∑ n 
i=1 ( I R i − R R i ) 

2 

n 

3 − n 

, (14) 

here, IR i and RR i are the ideal and recommended ranking of al-

orithm i, respectively, and n is the number of algorithms to com-

are. If the value of R s = 1, it represents a perfect agreement and

f R s = − 1, it represents a perfect disagreement. If R s = 0, then both

he ranks are not related. Significance of Spearman rank correla-

ion can be determined by looking in the table of critical values

or R s with different levels of significance, i.e., α value ( Zar, 1972 ).
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Fig. 6. Three steps evaluation methodology of recommended ranking against ideal ranking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11 

Average Spearman’s rank correlation coefficient for fifteen classification 

datasets. 

Dataset ID Dataset Name R s 

1 abalone-3class 0 .988 

2 rabe-148 0 .985 

3 acute-inflammations-nephr 0 .994 

4 ADA_Agnostic 0 .990 

5 ADA_Prior 0 .991 

6 adult-40 0 0 0 .983 

7 adult-80 0 0 0 .975 

8 aileron 0 .979 

9 analcatdata-AIDS 0 .983 

10 analcatdata-apnea2 0 .932 

11 analcatdata-apnea2 0 .963 

12 analcatdata-asbestos 0 .973 

13 analcatdata-authorship 0 .999 

14 analcatdata-bankruptcy 0 .983 

15 analcatdata-birthday 0 .969 

AvgR s 0 .979 
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Similarly, the overall result for all the datasets is evaluated using

the average Spearman rank correlation coefficient (AvgR s ). This is

shown by Eq. (15) , 

Avg R s = 

∑ d 
i=1 R s ( d i ) 

d 

, (15)

where, R s (d i ) is the Spearman’s rank correlation coefficient for

dataset d i and d is the total number of datasets. 

5.3. Experiments and analysis of the results 

In this section we perform a set of experiments and ana-

lyze the results from diverse perspective to validate the proposed

AMD methodology. The set of experiments includes: (a) correct-

ness check using average Spearman’s correlation coefficient, (b)

generalization power check using sensitivity and consistency, and

(c) significance fitness evaluation. 

5.3.1. Correctness: average spearman’s rank correlation coefficient 

To estimate correctness level of the proposed AMD, average

Spearman’s rank correlation coefficient is computed for all the

datasets, using the AMD method, described in section 4.2. The av-

erage of recommended rankings for all the datasets is shown in

Table 11 . The weights used for generating the recommended rank-

ing are: Wgt.Avg.F-score (0.69520), CPUTimeTraining (0.05067),

CPUTimeTesting (0.10097), and Consistency (0.15315). In the sec-

ond step, ideal rankings for all the datasets are generated by tak-

ing average of the weighted sum of the normalized values of these

evaluation metrics. Finally, the R s is computed using Eq. (14) and

the AvgR s is calculated using Eq. (15) . 
The AvgR s value is very close to 1, which demonstrates cor-

ectness of the proposed AMD methodology. It accurately ranks

he algorithms and thus assists experts in the selection of accu-

ate algorithms under the specified criteria. The statistical signif-

cance test of Spearman’s rank correlation coefficient shows that

he value 0.979 is statistically significant at the level of 0.001, with

35–2 = 33) degree of freedom (df), because the average correlation

alue 0.979 is far greater than the critical value of the correlation,

.e., 0.554. 
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Classification Algorithms

Comparision of Ideal Ranking (IR) with Recommended Ranking (RR)

RR IR

Fig. 7. Comparison of the recommended ranking (RR) and ideal ranking (IR) for the abalone-3class dataset. 

Table 12 

Spearman’s rank correlation coefficient computation for abalone-3class dataset. 

Algorithms RR IR (IR-RR) (IR-RR) 2 

bayes.BayesNet 16 17 1 1 

bayes.NaiveBayes 19 20 1 1 

bayes.NaiveBayesUpdateable 20 21 1 1 

functions.Logistic 1 1 0 0 

functions.RBFNetwork 25 24 −1 1 

functions.SMO 13 13 0 0 

misc.HyperPipes 34 34 0 0 

misc.VFI 31 28 −3 9 

rules.ConjunctiveRule 33 31 −2 4 

rules.DecisionTable 11 11 0 0 

rules.DTNB 32 33 1 1 

rules.JRip 26 26 0 0 

rules.OneR 9 8 −1 1 

rules.PART 30 30 0 0 

rules.Ridor 29 29 0 0 

rules.ZeroR 35 35 0 0 

trees.BFTree 24 22 −2 4 

trees.FT 27 32 5 25 

trees.J48 8 7 −1 1 

trees.J48graft 12 12 0 0 

trees.LADTree 15 15 0 0 

trees.RandomForest 23 27 4 16 

trees.RandomTree 18 16 −2 4 

trees.REPTree 5 5 0 0 

trees.SimpleCart 21 19 −2 4 

meta.AdaBoostM1 17 18 1 1 

meta.Bagging 4 4 0 0 

meta.Dagging 22 23 1 1 

meta.END 14 14 0 0 

meta.FilteredClassifier 3 3 0 0 

meta.LogitBoost 28 25 −3 9 

meta.RacedIncrementalLogitBoost 10 10 0 0 

meta.RandomSubSpace 6 6 0 0 

meta.Stacking 7 9 2 4 

meta.Vote 2 2 0 0 

n ∑ 

i=1 

( I R i − R R i ) 
2 88 

R s = 1 − 6 ∗ ∑ n 
i=1 ( I R i −R R i ) 

2 

n 3 −n 
0 .988 
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To show the process of calculating R s , results for the abalone-

class dataset are shown in Table 12. 

The interpretation of R s result is the same as we did for the

vgR s . A pictorial view of the results of recommended and ideal

anking for the abalone-3class dataset is shown in Fig. 7. 
This figure shows that the recommended ranking of AMD is

losed to the ideal ranking. 

.3.2. Generalization of AMD: sensitivity and consistency analysis 

In multi-criteria decision making, the choice and number or

eights of the criteria affect the final recommended ranking

 Lopez & Carlos, 2005; Opricovic & Tzeng, 2004 ; Saaty, 2006;

avadskas, et al., 2006 ). It has been demonstrated that the choice

f criteria or the change in weights transforms the final recom-

ended ranking ( Saaty, 2006; Zavadskas, et al., 2006 ). In majority

f the algorithms ranking cases, it is hard for the decision mak-

rs to agree on the final ranks generated by a ranking method and

s therefore required to perform sensitivity analysis ( Goicoechea,

ansen, & Duckstein, 1982; Insua & French, 1991 ). The significant

esults of the ranking method under varying parameters demon-

trates generalization power of a ranking method. In our case, the

cope of sensitivity analysis is limited to the change in relative

eights of criteria. We change the weight of each criterion, i.e.,

gt.Avg.F-score, CPUTimeTesting, CPUTimeTraining and Consis- 

ency, one at a time, and compute the Spearman’s rank correlation

oefficient value to see how the proposed AMD behaves with the

hanged weights. For the criteria Wgt.Avg.F-score, CPUTimeTest-

ng, CPUTimeTraining and Consistency, the R s results generated by

he proposed AMD methodology using weights (0.70,0.05,0.10,0.15),

0.05,0.70,0.10,0.15), (0.05,0.10,0.70, 0.15) and (0.05,0.10,0.15,0.70) 

re shown in Table 13. 

In Table 13 , the R s value for each set of the weights of the eval-

ation criteria is computed (using Eq. (14) ) and evaluated in the

ame way as in previous section. However, in this case, the ideal

anking is computed for the individual criteria and compared with

he recommended ranking. In each set of the weights, more pref-

rence, i.e., weight 0.70, is given to only one criterion and thus

lgorithms are preferred with respect to that criterion, which is

atural. In Table 14 , the R s values shown in bold demonstrate neg-

tive/weak correlation with respect to the ideal ranking. The AvgR s 

for all datasets, computed using Eq. (15) ) in all the cases are posi-

ively correlated to ideal ranking, which demonstrate that the AMD

s a generalized and consistent methodology that performs well in

arying conditions. The statistical significance test of Spearman’s

ank correlation coefficient for the Wgt.Avg.F-score shows that the

orrelation value 0.523 is statistically significant at the level of

.0 05–0.0 02, with (35–2 = 33) degree of freedom (df), because it is
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Table 13 

Sensitivity analysis of the proposed accurate multi-metric decision making methodology (AMD) methodology with varying criteria weights. 

Sensitivity Analysis 

Dataset ID Dataset \ Weights, k = 35 R s Wgt.Avg F-score 

(0.70,0.05,0.10,0.15) 

R s CPUTimeTraining 

(0.05,0.70,0.10,0.15) 

R s CPUTimeTesting 

(0.05,0.10,0.70, 0.15) 

R s Consistency 

(0.05,0.10,0.15,0.70) 

1 abalone-3class 0 .454 0 .913 0 .523 0 .999 

2 rabe-148 0 .904 0 .758 0 .500 0 .992 

3 acute-inflammations- 

nephr 

0 .858 0 .798 0 .501 0 .979 

4 ADA_Agnostic 0 .880 0 .368 0 .819 0 .433 

5 ADA_Prior 0 .295 0 .943 0 .565 0 .985 

6 adult-40 0 0 0 .276 0 .890 0 .599 0 .979 

7 adult-80 0 0 0 .488 0 .792 0 .670 0 .943 

8 aileron 0 .946 0 .223 0 .806 0 .563 

9 analcatdata-AIDS 0 .654 0 .766 0 .500 0 .995 

10 analcatdata-apnea2 0 .107 0 .844 0 .652 0 .986 

11 analcatdata-apnea2 0 .158 0 .936 0 .618 0 .972 

12 analcatdata-asbestos 0 .508 0 .838 0 .500 0 .999 

13 analcatdata- 

authorship 

0 .880 −0 .265 0 .738 −0 .074 

14 analcatdata- 

bankruptcy 

0 .945 0 .863 0 .543 0 .998 

15 analcatdata-birthday −0 .506 0 .777 0 .618 0 .990 

AvgR s 0 .523 0 .696 0 .610 0 .849 

Table 14 

Analysis of significantly poor performing algorithms produced by significant fitness function. 

Algorithm ADA_Agnostic (rank) ADA_Prior (rank) adult-40 0 0 (rank) adult-80 0 0 (rank) aileron (rank) analcatdata-authorship (rank) 

bayes.BayesNet ∗ 26 4 2 7 27 4 

bayes.NaiveBayes ∗ 19 11 12 21 30 7 

bayes.NaiveBayesUpdateable ∗ 20 10 15 20 31 8 

trees.FT ∗ 30 32 32 32 25 2 

trees.RandomForest ∗ 17 25 23 24 17 6 

meta.Dagging ∗ 27 18 21 26 32 30 
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greater than the critical value 0.482 for R s . Similar interpretations

can be made for the rest of criteria. 

5.3.3. Significance fitness evaluation 

The results of Eq. (8) , which identifies significantly poor algo-

rithms for the datasets are shown in Table 14. 

These results show that the classification algorithms

bayes.BayesNet and bayes.NaiveBayes get higher ranks (4 and

7) on the analcatdata-authorship, however their performance on

this dataset does not remain significant for all the criteria. Hence,

prior applying the ranking process, the significance fitness function

is required to execute to filter out insignificant algorithms from

the competition. The values presented in bold represent the rank

of algorithms on the dataset shown in the columns. 

5.4. Comparison with existing methods 

In this section, we compare the results of AMD methodol-

ogy with two well-known methods: adjusted ratio of ratios (ARR)

( Brazdil et al., 2003 ) and automatic recommendation of classifica-

tion algorithms based on data set characteristics, abbreviated as

PAlg ( Song et al., 2012 ). These methods evaluate and rank classi-

fication algorithms on the basis of accuracy and time. 

The equation of ARR ranking methodology ( Brazdil et al., 2003 )

is shown in Eq. (16) , 

ARR = 

SR di 
ap 

SR di 
aq 

1+ ∝ ∗log 

(
T di 

ap 

T di 
aq 

) . (16)

The accuracy is represented as the ratio of success rates of al-

gorithm ap to algorithm aq on a dataset d as the numerator of the

ARR. The time, which is the total of training and execution times,
hich is represented as a ratio of times is used as the denomi-

ator. To enforce preferences on the criteria, parameter ∝ is intro-

uced with its value ∝ = 0.1, 1, and 10 to specify 10% preference of

he accuracy on time, equal preferences of both the accuracy and

ime and 10% preference of time over the accuracy, respectively. 

In the algorithm selection article ( Song et al., 2012 ), the perfor-

ances of algorithms are evaluated using Eq. (17) , where accuracy

nd total time are directly used instead of their ratios. The setting

or ∝ is the same as that of the ARR method. 

 Alg = 

Accurac y Alg , D 

1+ ∝ ∗log 
(
RTim e Alg , D 

) (17)

As these two methods are only based on accuracy and execu-

ion and training time (T/RTime), therefore to create a fair compar-

son, we formulate our proposed criteria accordingly. We picked

gt.Avg.F-score, CPUTimeTraining and CPUTimeTesting and omit-

ed the Consistency criterion. The values of CPUTimeTraining and

PUTimeTesting are averaged to get the uniform value for T/RTime,

sed in Eqs. 16 and 17 , respectively. For simplicity, we performed

xperiments only for ∝ = 0.1 with three different sittings, such as

anking for all 35 algorithms (k = 35), ranking for only top 5 algo-

ithms (k = 5) and ranking for top 3 algorithms (k = 3). The weight

or accuracy (Wgt.Avg.F-score) and T/RTime, in our proposed AMD

ethod, were taken as 0.55 and 0.45, which are compliant to

 = 0.1. 

We performed comparison experiments on the same 15

atasets and the results generated are shown in Table 15 and

ig. 8 (a-c). 

The performance results of the proposed AMD method are sig-

ificantly better than the results of the PAlg and ARR under the

hree different setup: all (k = 35) algorithms, top k = 5 algorithms

nd top k = 3 algorithms. For the proposed method, the statis-

ical significance test of Spearman’s rank correlation coefficient
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Table 15 

Comparison of the proposed method with state-of-the-art methods. 

Id Dataset AMD PAlg ARR 

R s with α= 0.1 

(Wgt.F-Score = 0.55, 

Rtime = 0.45) 

R s with α= 0.1 

(Wgt.F-Score = 0.55, 

Rtime = 0.45) 

R s with α= 0.1 

(Wgt.F-Score = 0.55, 

Rtime = 0.45) 

k = 35 k = 5 k = 3 k = 35 k = 5 k = 3 k = 35 k = 5 k = 3 

1 abalone-3class 0 .9720 0 .9978 1 .0 0 0 0 0 .8473 0 .9926 0 .9944 0 .6012 0 .9769 0 .9842 

2 rabe-148 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 0 .9900 1 .0 0 0 0 1 .0 0 0 0 0 .5200 0 .9450 0 .9520 

3 acute-inflammations-nephr 1 .0 0 0 0 1 .0 0 0 0 1 .0 0 0 0 0 .9641 1 .0 0 0 0 1 .0 0 0 0 0 .5199 0 .9940 0 .9908 

4 ADA_Agnostic 0 .9852 0 .9974 0 .9989 0 .3187 ∗ 0 .9171 0 .9521 0 .2696 ∗ 0 .8752 0 .8865 

5 ADA_Prior 0 .9899 0 .9992 0 .9993 0 .8081 0 .9699 0 .9863 0 .4966 0 .8975 0 .9515 

6 adult-40 0 0 0 .9922 1 .0 0 0 0 1 .0 0 0 0 0 .8314 0 .9715 0 .9851 0 .3482 ∗ 0 .8641 0 .9342 

7 adult-80 0 0 0 .9824 0 .9997 1 .0 0 0 0 0 .7028 0 .9556 0 .9697 0 .2529 ∗ 0 .8871 0 .9158 

8 aileron 0 .9882 0 .9986 0 .9997 0 .7541 0 .9724 0 .9869 0 .5646 0 .9956 0 .9987 

9 analcatdata-AIDS 0 .9801 0 .9985 0 .9987 0 .9908 1 .0 0 0 0 1 .0 0 0 0 0 .5039 0 .8929 0 .9399 

10 analcatdata-apnea2 0 .9916 1 .0 0 0 0 1 .0 0 0 0 0 .9748 0 .9987 1 .0 0 0 0 0 .5162 0 .9799 0 .9910 

11 analcatdata-apnea2 0 .9955 1 .0 0 0 0 1 .0 0 0 0 0 .9501 1 .0 0 0 0 1 .0 0 0 0 0 .5292 0 .9636 0 .9854 

12 analcatdata-asbestos 0 .9711 1 .0 0 0 0 1 .0 0 0 0 0 .9706 1 .0 0 0 0 1 .0 0 0 0 0 .4764 0 .9359 0 .9410 

13 analcatdata-authorship 0 .9980 0 .9992 0 .9993 0 .5070 0 .9164 0 .9637 0 .2524 ∗ 0 .7271 0 .7921 

14 analcatdata-bankruptcy 0 .9975 1 .0 0 0 0 1 .0 0 0 0 0 .9756 0 .9997 1 .0 0 0 0 0 .4574 0 .8694 0 .9185 

15 analcatdata-birthday 0 .9854 1 .0 0 0 0 1 .0 0 0 0 0 .9728 0 .9977 1 .0 0 0 0 0 .5298 0 .9107 0 .9567 

AvgR s 0 .9886 0 .9993 0 .9997 0 .8372 0 .9794 0 .9892 0 .4559 0 .9143 0 .9426 
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hows that the correlation values, R s = 0 . 9886 , R s = 0 . 9993 , and

 s = 0 . 9997 , for k = 35, k = 5 and k = 3, respectively, are statistically

ignificant at the level of 0.001, with (35–2 = 33) degree of freedom

df). Similar interpretation can be made for PAlg method. However,

his method produces ranks for the algorithms (with k = 35) on the

DA_Agnostic dataset, which is statistically insignificant with re-

pect to the ideal ranking. Similarly, the results of ARR method are

ignificantly poor as compared to the proposed methods under all

he conditions of k = 35, k = 5 and k = 3. Under the setting, k = 35,

he ARR results are significant with respect to the critical value of

 s at the level of 0.01–0.005 with 33 °degree of freedom. Using this

ethod, four datasets, represented with ‘ ∗’ has the ranks which are

ignificantly poor and not correlated to the ideal ranking. 

Fig. 8 shows that AMD performs significantly better as com-

ared to the state-of-the art methods under all the settings of top

 = 35, top k = 5 and top k = 3 algorithms. 

.4.1. Statistical significance test for comparison of ranking methods 

To test whether the results produced by AMD methodology are

tatistically significant or not as compared to the comparing meth-

ds, we performed Friedman’s test ( Friedman, 1940 ). First we set

he following hypotheses: 

• H0: There is no difference in the mean average correlation co-

efficients, AvgR s , for the three ranking methods (AMD, ARR and

PAlg with all the datasets). 
• H1: There are some differences in the mean average correlation

coefficients, AvgR s , for the three ranking methods. 

For illustrating Friedman’s test process and the corresponding

esults, we compare the three ranking methods (i.e., j = 1, 2, 3) on

he 15 datasets. All the steps are shown in Table 16 (a-c). The steps

re performed as follows: (a) rank the correlation coefficients for

ach dataset, i.e., RR, (b) calculate the mean rank for each method,

.e., R R j = 

∑ 

j R R j / n , where n is the number of datasets (15 in this

ase), (c) calculate the overall mean rank (mR) across all the meth-

ds, i.e., mR = (m + 1) / 2 = 2 , where m is the number of methods

o compare (m = 3 in this case), (d) calculate sum of the squared

ifferences of mean rank for each method and the overall mean

ank, i.e., S = 

∑ 

j ( R R j − mR ) 2 , and (e) calculate Friedman’s statis-

ic, M = ( 12 nS ) / ( k( k + 1 ) ) . 

The calculation of these steps is shown in Table 16 (a-c), for all

he fifteen datasets, and the results are summarized in Table 17 . In

he example of Table 16 , where n = 15 and m = 3, the critical value
 is 10.99 for a confidence level of 95%. The Friedman’s test val-

es (M) for k = 35, k = 5 and k = 3 > C(10.99) is true, therefore the

ull hypothesis is rejected, which means 0.083 s that the average

erformance of the three methods is not similar and hence AMD

s significantly better than state-of-the-art methods in comparison.

. Conclusions and future work 

In this paper, Firstly, we introduced the concepts of algorithms’

uality meta-metrics (QMM), describing physical meaning of the

valuation criteria, and developed a classification model with the

elp of extensive literature to assist experts in the selection of suit-

ble evaluation criteria for comparison of the classifiers. Motivated

rom the experts’ consensus-based nominal grouped technique, we

roposed a standard, experts group-based, method for the selec-

ion of suitable evaluation metrics from a large set of evaluation

etrics and satisfying the constraints defined by the users/experts

t the goal and objectives definition time. 

Secondly, we estimated consistent relative weights for the eval-

ation metrics using the expert group-based decision making us-

ng the analytical hierarchy process. The experts’ preferences on

he criteria are quantified effectively and the weights are checked

or consistency. We have analyzed performance of classification al-

orithm using statistical significance test and our proposed fitness

unction to filter out algorithms, which are statistically insignificant

n all the evaluation criteria. For ranking the algorithms, we com-

uted the relative closeness value of all the algorithms with re-

pect to the ideal ranking, using the AHP-based estimated weights

nd local and global constraints on the evaluation criteria. The lo-

al constraints on criteria are used to encourage and discourage

ome of the criteria based on the categorization as cost and benefit

riteria. The global constraints are imposed in the form of consis-

ency measure that takes the standard deviation of all the criteria

nd consider an aggregate value to evaluate the quality of the se-

ected/recommended algorithm. 

Finally, we evaluated our AMD methodology by conducting a

eries of experiments on 15 different classification datasets using

5 classification algorithms. We compared the results of AMD with

wo stat-of-the-art methods. Results shows that the proposed AMD

ethodology performing significantly and produce good results. 

In future, we intend to combine meta-learning with the multi-

riteria decision making for automatically selecting a suitable

lgorithm for a new dataset. We also intend to use multi-view
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Table 16 

Steps of the Friedman’s test for compare ranking methods for statistical significance. 

(a) Friedman’s test steps for comparing ranking methods with k = 35 

Dataset d 1 d 2 d 3 d 4 d 5 d 6 d 7 d 8 d 9 d 10 d 11 d 12 d 13 d 14 d 15 

Method \ Rs R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR RR j (RR j -mR) 2 

AMD 0 .9720 1 .0 1 .0 0 0 0 1 .0 1 .0 0 0 0 1 .0 0 .9852 1 .0 0 .9899 1 .0 0 .9922 1 .0 0 .9824 1 .0 0 .9882 1 .0 0 .9801 2 .0 0 .9916 1 .0 0 .9955 1 .0 0 .9711 1 .0 0 .9980 1 .0 0 .9975 1 .0 0 .9854 1 .0 1 .1 0 .871111111 

PAlg 0 .8473 2 .0 0 .9900 2 .0 0 .9641 2 .0 0 .3187 2 .0 0 .8081 2 .0 0 .8314 2 .0 0 .7028 2 .0 0 .7541 2 .0 0 .9908 1 .0 0 .9748 2 .0 0 .9501 2 .0 0 .9706 2 .0 0 .5070 2 .0 0 .9756 2 .0 0 .9728 2 .0 1 .9 0 .004 4 4 4 4 4 4 

ARR 0 .6012 3 .0 0 .5200 3 .0 0 .5199 3 .0 0 .2696 3 .0 0 .4966 3 .0 0 .3482 3 .0 0 .2529 3 .0 0 .5646 3 .0 0 .5039 3 .0 0 .5162 3 .0 0 .5292 3 .0 0 .4764 3 .0 0 .2524 3 .0 0 .4574 3 .0 0 .5298 3 .0 3 .0 1 

S 1 .875555556 

(b) Friedman’s test steps for comparing ranking methods with k = 5 

Dataset d 1 d 2 d 3 d 4 d 5 d 6 d 7 d 8 d 9 d 10 d 11 d 12 d 13 d 14 d 15 

Method \ Rs R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR RR j (RR j -mR) 2 

AMD 0 .9978 1 .0 1 .0 0 0 0 1 .5 1 .0 0 0 0 1 .5 0 .9974 1 .0 0 .9992 1 .0 1 .0 0 0 0 1 .0 0 .9997 1 .0 0 .9986 1 .0 0 .9985 2 .0 1 .0 0 0 0 1 .0 1 .0 0 0 0 1 .5 1 .0 0 0 0 1 .5 0 .9992 1 .0 1 .0 0 0 0 1 .0 1 .0 0 0 0 1 .0 1 .2 0 .64 

PAlg 0 .9926 2 .0 1 .0 0 0 0 1 .5 1 .0 0 0 0 1 .5 0 .9171 2 .0 0 .9699 2 .0 0 .9715 2 .0 0 .9556 2 .0 0 .9724 3 .0 1 .0 0 0 0 1 .0 0 .9987 2 .0 1 .0 0 0 0 1 .5 1 .0 0 0 0 1 .5 0 .9164 2 .0 0 .9997 2 .0 0 .9977 2 .0 1 .9 0 .017777778 

ARR 0 .9769 3 .0 0 .9450 3 .0 0 .9940 3 .0 0 .8752 3 .0 0 .8975 3 .0 0 .8641 3 .0 0 .8871 3 .0 0 .9956 2 .0 0 .8929 3 .0 0 .9799 3 .0 0 .9636 3 .0 0 .9359 3 .0 0 .7271 3 .0 0 .8694 3 .0 0 .9107 3 .0 2 .9 0 .871111111 

S 1 .528888889 

(c) Friedman’s test steps for comparing ranking methods with k = 3 

Dataset d 1 d 2 d 3 d 4 d 5 d 6 d 7 d 8 d 9 d 10 d 11 d 12 d 13 d 14 d 15 

Method \ Rs R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR R s RR RR j (RR j -mR) 2 

AMD 1 .0 0 0 0 1 .0 1 .0 0 0 0 1 .5 1 .0 0 0 0 1 .5 0 .9989 1 .0 0 .9993 1 .0 1 .0 0 0 0 1 .0 1 .0 0 0 0 1 .0 0 .9997 1 .0 0 .9987 2 .0 1 .0 0 0 0 1 .5 1 .0 0 0 0 1 .5 1 .0 0 0 0 1 .5 0 .9993 1 .0 1 .0 0 0 0 1 .5 1 .0 0 0 0 1 .5 1 .3 0 .49 

PAlg 0 .9944 2 .0 1 .0 0 0 0 1 .5 1 .0 0 0 0 1 .5 0 .9521 2 .0 0 .9863 2 .0 0 .9851 2 .0 0 .9697 2 .0 0 .9869 3 .0 1 .0 0 0 0 1 .0 1 .0 0 0 0 1 .5 1 .0 0 0 0 1 .5 1 .0 0 0 0 1 .5 0 .9637 2 .0 1 .0 0 0 0 1 .5 1 .0 0 0 0 1 .5 1 .8 0 .054 4 4 4 4 4 4 

ARR 0 .9842 3 .0 0 .9520 3 .0 0 .9908 3 .0 0 .8865 3 .0 0 .9515 3 .0 0 .9342 3 .0 0 .9158 3 .0 0 .9987 2 .0 0 .9399 3 .0 0 .9910 3 .0 0 .9854 3 .0 0 .9410 3 .0 0 .7921 3 .0 0 .9185 3 .0 0 .9567 3 .0 2 .9 0 .871111111 

S 1 .415555556 
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Table 17 

Summary of the Friedman’s test for compare ranking methods based on different criteria. 

Friedman’s Test S M C M vs. C Interpretation 

Top-K = 35 1 .876 28 .133 10 .99 M > C M(28.13) > C(10.99) → null hypothesis is rejected at the confidence level α = 0.001 

Top-K = 5 1 .529 22 .933 10 .99 M > C M(22.93) > C(10.99) → null hypothesis is rejected at the confidence level α = 0.001 

Top-K = 3 1 .416 21 .233 10 .99 M > C M(21.23) > C(10.99) → null hypothesis is rejected at the confidence level α = 0.001 

Fig. 8. Comparison of the proposed method with state-of-the art methods. 
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