
J. Parallel Distrib. Comput. 102 (2017) 103–114
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Energy efficiency for cloud computing system based on predictive
optimization
Dinh-Mao Bui a, YongIk Yoon b, Eui-Nam Huh a, SungIk Jun c, Sungyoung Lee a,∗

a Computer Engineering Department, Kyung Hee University, Suwon, Republic of Korea
b Department of Multimedia Science SookMyung Women’s University, Seoul, Republic of Korea
c HPC system research section/Cloud computing department/ETRI, Daejeon, Republic of Korea

h i g h l i g h t s

• Balance between energy efficiency and quality of service in the cloud computing.
• Apply prediction technique to enhance the usefulness of monitoring statistics.
• Design optimal energy efficiency architecture to orchestrate the cloud system.
• After VM consolidation, adaptively turn-off idle physical machines to save energy.

a r t i c l e i n f o

Article history:
Received 25 January 2016
Received in revised form
26 October 2016
Accepted 6 November 2016
Available online 19 December 2016

Keywords:
Energy efficiency
IaaS cloud computing
Predictive analysis
Convex optimization
Gaussian process

a b s t r a c t

In recent years, power consumption has become one of the hottest research trends in computer science
and industry. Most of the reasons are related to the operational budget and the environmental issues. In
this paper, we would like to propose an energy-efficient solution for orchestrating the resource in cloud
computing. In nature, the proposed approach firstly predicts the resource utilization of the upcoming
period based on the Gaussian process regression method. Subsequently, the convex optimization
technique is engaged to compute an appropriate quantity of physical servers for eachmonitoringwindow.
This quantity of interest is calculated to ensure that a minimum number of servers can still provide an
acceptable quality of service. Finally, a corresponding migrating instruction is issued to stack the virtual
machines and turn off the idle physical servers to achieve the objective of energy savings. In order to
evaluate the proposed method, we conduct the experiments using synthetic data from 29-day period of
Google traces and real workload from theMontage open-source toolkit. Through the evaluation, we show
that the proposed approach can achieve a significant result in reducing the energy consumption as well
as maintaining the system performance.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Widely accepted as a system model for providing service,
cloud computing has gradually obtained the popularity among the
platforms that manage the operation of data center. In nature,
cloud computing indeed changes the routine of using and scaling
the physical infrastructure. Instead of separately utilizing different
combinations of servers, storage disks and network facilities for
each client, it would be more convenient and robust to provide

∗ Corresponding author.
E-mail addresses:mao.bui@khu.ac.kr (D.-M. Bui), yiyoon@sm.ac.kr (Y. Yoon),

johnhuh@khu.ac.kr (E.-N. Huh), sijun@etri.re.kr (S. Jun), sylee@oslab.khu.ac.kr
(S. Lee).

http://dx.doi.org/10.1016/j.jpdc.2016.11.011
0743-7315/© 2016 Elsevier Inc. All rights reserved.
a transparent access to the computing resources via the Internet
connection. This can be seen as an effort to unify the capacity
of multiple computing nodes to achieve higher level of service
composition. In the perspectives of cloud service provider, cloud
computing makes it possible to reduce the management cost and
the energy consumption which consequently save the budget.

Theoretically, cloud computing mostly relies on the virtual-
ization technology. First, the users interact with the system by
choosing the package of service based on their requirement and
budget. Depending on the submission of users, the cloud orches-
trator allocates the requested resources as virtual machines (VMs).
These VMs are usually hosted on the same physical server or clus-
ter according to the objectives of service provider. The procedure
of translating from the resource demand to the VM configuration is
conducted transparentlywithout the awareness of the user. In fact,

http://dx.doi.org/10.1016/j.jpdc.2016.11.011
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.11.011&domain=pdf
mailto:mao.bui@khu.ac.kr
mailto:yiyoon@sm.ac.kr
mailto:johnhuh@khu.ac.kr
mailto:sijun@etri.re.kr
mailto:sylee@oslab.khu.ac.kr
http://dx.doi.org/10.1016/j.jpdc.2016.11.011


104 D.-M. Bui et al. / J. Parallel Distrib. Comput. 102 (2017) 103–114
the resource provisioning is done elastically, which is themain rea-
son that makes the cloud computing flexible enough to engage in
the large scale system. However, in order to do the tasks efficiently,
the challenge of balancing between the system performance and
the power consumption has been emerged as a crucial issue.

In order to reduce the power consumption, it is worth to list
out the source of energy burning as well as the methodology to
obtain the energy savings. Clearly, most of the computing facilities
use the energy to maintain their working status. Therefore, the
waste of power can be originated from the inefficient utilization
of provisioned facilities. The common approach to achieve the
energy reduction is to dynamically scale down the size of running
clusters. With the help of virtualization, the target can be done by
applying the VM migration. It means that the VMs can be stacked
into aminimumnumber of physicalmachines (PMs). After that, the
decision of turning on/off the running PMs can help to satisfy the
requirement of maintaining the performance as well as reducing
the used power.

Although the idea to compact the size of cloud clusters is quite
interesting, the problem of latency and inaccuracy in measuring
and monitoring the resource utilization might affect the precision
of making the optimization. This problem might lead to the in-
appropriate decisions in migrating and stacking the VMs. Conse-
quently, the effectiveness of the energy savings method might be
degraded drastically. To overcome this issue, wewould like to pro-
pose an approach based on the predictive optimization technique.
In our approach, the Gaussian process regression (GPR) is applied
to provide the predictive monitoring information instead of the
aforementioned obsolete data. Theoretically, GPR can be consid-
ered as one of the most effective regression techniques in terms
of accuracy, flexibility and robustness. By using GPR in processing
the monitoring data, the awareness of futuristic trends on the sys-
tem utilization can be obtained. Subsequently, this benefit helps
the convex optimization to producemore adaptive and precise en-
ergy savings scheme for the cloud orchestrator. To summarize, in
this research, we couple the prediction technique and the convex
optimization to solve two questions. The first one is how to effec-
tively reduce the power consumption in cloud computing based
on early predictive system statistics. Subsequently, the remaining
question to answer iswhether it is possible to find the boundary so-
lution that balances the energy savings and the quality of services.

In particular, our contributions focus on two main points as
follows:

• We apply our prediction technique [7] to provide the predictive
statistics that enhance the usefulness of monitoring data. Note
that the usefulmonitoring data is defined to support the system
making early appropriate reactions just in time by providing the
futuristic analysis. In our approach, this special kind of data is
effectively used to consolidate the virtualmachines through the
optimization procedure.

• We design an energy efficiency model using convex optimiza-
tion to optimally create the migrating instructions for the
orchestrator. By consolidating the VMs via themigrationmech-
anism, the orchestrator can reduce the power consumption as
well as improve the cluster utilization by turning-off the idle
physical machines, but still keep an acceptable performance for
the currently running tasks.

It is worth noting that the meaning of acceptable performance
mainly involves two conditions. The first condition is to maintain
the quality of services which is specified in the service level
agreement (SLA) document. In case the first condition is violated,
the second condition is to minimize the catastrophic effects on
the system performance as well as balance the penalty cost with
regard to the power savings in the optimization module. When
these conditions are still firmly hold, the system performance are
kept in an acceptable level. The mechanism of how to preserve
these conditions can be found in the following sections.

The remainder of the paper is organized as follows. In Section 2,
we introduce some related works in the area of energy efficiency.
Section 3 presents an overview of our proposed architecture. Next,
Section 4 illustrates our analysis and proposal to enhance the
nature of the monitoring data by using GPR technique. Section 5
includes the optimization steps to minimize the size of running
facilities with regard to the predictive analysis provided by GPR.
Section 6 evaluates the effectiveness of the proposed approach.
Finally, Section 7 gives the conclusion of paper and outlines our
future work.

2. Related works

Energy efficiency in cloud computing can be achieved via
two main approaches: by optimizing the operation of physical
machines (PMs), or by consolidating the virtual machines (VMs)
in the clusters. While the former approach targets on reducing
the energy consumption of individual server, the latter one
tries to schedule and migrate the virtual machines to serve the
user’s requirement on a minimum number of PMs. Both of these
approaches have their own pros and cons as shown below.

For the PMs optimization approaches, the dynamic voltage and
frequency scaling (DVFS) [8,24] is a technique to automatically
change the frequency and the voltage ‘on the fly’. The purpose of
this technique is to save the power and mitigate the heat from
processors. Less heat generated allows the cooling system to be
under-performed or even turned off. This fact also leads to the
noise reduction and better energy savings. The main drawback of
this technique is to reduce the performance proportionally to the
saved energy. Because of this reason, DVFS is usually used in lap-
tops and hand-held devices which prefer the long-lasting battery
rather than the power of computation [22]. Besides, this technique
is also used in the systemwhich prefers lowheat emission. For high
performance computing or computational intensive system, DVFS
might not be a suitable solution. The DVFS technique can be im-
plemented either on hardware and software levels. For example,
Intel and AMD applied DVFS in their hardware throttling technolo-
gies, namely SpeedStep and Cool’n’Quite, respectively. On software
level, the Linux OS governors can control the frequency of proces-
sors via the ACPI interfaces.

In the other hand, the power capping [20] or power budgeting
is usually used in the power-limited data centers. This solution
enables the capability of controlling the power budget on system-
level or rack-level. In fact, power capping is considered to be a
key factor for engaging the power shifting, which is the technique
to individually allocate the power to each server in the cluster.
According to the original design of this idea, the high priority
servers might receive more power than the lower ones. Because
power capping can be done out-of-band, the failure of operating
systemdoes not affect the functionality of the powermanagement.
The implementation of power capping can be found in HP
Intelligent Power Discovery and IBM Systems Director.

Nowadays, most of the recent processors are equipped with
the power saving modes, namely C-states [26]. This configuration
enables the capability for the idle processors to turn off the unused
components in order to save the power. Although C-states existed
in laptops for lengthening the battery life for a while, they are
rarely used in the server because of the disadvantage of deep
sleep. This issue happenswhen the processor sticks in some energy
saving states and yet requires for a long period to wake up. Clearly,
the problem of deep sleep state makes the server unable to fulfill
the requirement of computational intensive tasks. Another issue
of C-states is that this mechanism depends on the functionality of



D.-M. Bui et al. / J. Parallel Distrib. Comput. 102 (2017) 103–114 105
the system kernel which sometimes fails to provide the suitable
instructions.

For the VM consolidation approaches, most of the solutions fo-
cus on solving the problem of VMs placement with regard to the
performance of PMs [4]. Since the VMs and the PMs can be partially
considered as the objects and the bins, respectively, the aforemen-
tioned problem is narrowed down to the bin packing issue which
is NP-hard [2]. As a consequence, the heuristics approaches such
as best fit decreasing [2] and first fit decreasing [10] are known to
be the standard solutions. By applying these approaches, the VMs
can be distributed to the smaller size of PMs pool. Because of this
reason, the family of bin packing algorithms seems to be really at-
tractive to provide a closely optimal solution over the cloud system.
Unfortunately, the requirement of heuristics approaches is that the
number of VMs must be fixed and known in advance at the start-
ing time. Obviously, this requirement directly violates the elasticity
and the multi-tenancy features of cloud computing. Moreover, the
fluctuation in the workload of computing nodes definitely makes
the bin packing approaches defective and subsequently violates
the quality of service.

To overcome the above issue, the prediction techniques can be
the potential solutions. By equipping the system with the capabil-
ity of anticipating the utilization of computing nodes in near future,
the orchestrator can make better decision and mitigate the nega-
tive effect of workload changes. Basically, there have been a num-
ber of approaches to predict the workload such as Hidden Markov
model [13] and polynomial fitting [37] in grid systems. However,
these solutions are not appropriate in dealingwith the cloudwork-
loads which follow the philosophy of on-demanded resource pro-
visioning. Lastly, the approach in [12] uses the Wiener filter as
a predictor to estimate the cluster workload. Unfortunately, the
Wiener filter only works best with the stationary signal and noise
spectrum. This reason makes the solution potentially inapplicable
for predicting the utilization of the cloud cluster.

On the other hand, the research in [11,30,3] propose many
specific schedulers to cope with other system aspects such
as network traffic, communication rates, system powers and
resource reconfiguration in the fog computing and the networked
data centers. These approaches might help to optimize the
network throughput, the wireless transmission rate as well as the
resource balancing, particularly for TCP/IP vehicular connections
and networking in data centers; finally, also obtaining the energy
efficiency.

By examining the related works, we have come to a conclusion
that although the research on energy efficiency exists, not many
researchers have thoroughly attempted to balance the energy
savings and the performance of cloud computing within a
reasonable price. The reason is that none of the existing works has
considered the nature of the cloud system as a truly probabilistic
queuing system and proposed the corresponding suitable solution.
Based on this motivation, we would like to propose our approach
to practically and thoroughly solve the energy issue of cloud
computing by using the knowledge of queuing theory and convex
optimization.

3. Proposed architecture

3.1. System description

In the perspectives of physical system, cloud computing can
be considered as the clusters as seen in Fig. 1. These clusters
consist of a number of physical servers which host many virtual
machines inside. Also in this figure, each virtualmachine possesses
various utilization and capacity of computing resources. It is worth
noting that the mentioned infrastructure is homogeneous system
for the reason of computational convenience. It means that every
Fig. 1. Representation of resource utilization of virtual machines over a physical
cluster.

physical machines are equipped with the same type and the same
capacity of facilities. Generally, the heterogeneous system might
be treated with a similar approach by adding some extra weighted
parameters to reflect the differences in configurations. However,
this issue is not in the scope of the paper and would not be
considered at this moment.

For setting the final goal of research, the proposed architecture
is targeted to reduce the power consumption of the cloud. To
achieve this goal, the appropriate decision of turning off the idle
physical servers is chosen. Theoretically, a machine in the idle
state burns the electricity up to 60% [14,23,18] of the peak energy
(which is used to run the machine in peak performance). Contrary
to this point, turning on a machine just costs 23.9% [29] of the
peak power. Moreover, idle-energy waste is also increased by
the losses in delivering the power as well as maintaining the
cooling system,whichwould be an upsurge in power consumption
requirements. Therefore, shutting the idlemachines down can save
more power than keeping them in the idle mode, even we have to
pay the extra costs to turn on the machines subsequently. Based
on this philosophy, we would like to introduce the architecture of
energy efficiencymanagement (E2M) systemdepicted in Fig. 2. The
objective of this architecture is to optimally schedule and re-locate
the virtualmachines over the physical servers of the cloud clusters.
Finally, the idle physical nodes are temporarily terminated to save
the power. The functionality of each component in E2M system is
as follows:

• The Ganglia [32] monitoring component takes responsibility of
collecting the information of resources utilization. Ganglia is
considered to be simple but robust and effective to monitor
most of the requiredmetrics. The objects of this component are
the PMs as well as the VMs denoted as the monitored nodes.
Periodically, Ganglia reliably provides the input statistics to the
predictor component.

• The predictor,which is built on theGaussian process regression,
is responsible to produce the predictive statistics of the next
monitoring epoch based on the data coming from Ganglia.
This futuristic utilization information of the virtual machines
and the physical servers is subsequently used in the energy
optimizer.

• The energy optimizer, as its name, does the optimization to
balance between saving the energy andmaintaining the system
performance. Basically, this component makes the decision
of how many physical servers are appropriate to cover the
VMs requests. Besides, the energy optimizer also evaluates the
potential nodes to issue the migration. After that, the migrating
instruction would be sent to the cloud orchestrator for further
execution.



106 D.-M. Bui et al. / J. Parallel Distrib. Comput. 102 (2017) 103–114
Fig. 2. Architecture of energy efficiency management (E2M) system.
Fig. 3. Flowchart of energy efficiency management (E2M) system.
For the convenience of presentation, the migrating instruction
created in the energy optimizer would be introduced in the next
section. This instruction comprises the nature of migration as well
as the selection of the source and destination PMs to extract and
send the VMs, respectively.

3.2. Migrating instruction

In order to clarify the nature of VMmigration, we would like to
mention that Xen’s live migration is engaged in the orchestrator.
By definition, live migration is used to ensure the operation and
mitigate the down time of the VMs during the transfer period.
Due to this reason, the availability and the seamlessness of the
service can be preserved. In fact, when this migration mechanism
is activated, only the memory of VMs is sent via the network.
Therefore, the VM is kept running and suffered only for a very
short period of postponed state. Indeed, there is an evidence [31]
showing that live migration might cost less than 100 ms for the
amount of downtime, which is acceptable in the service providing.
Besides, this technique helps to get rid of the network contention
and the processing overhead. Eventually, in case there is any
serious degradation of system performance, the suspended PMs
would be started by using Wake on LAN protocol. In our design,
the migrating instruction is generated in the power management
component of the energy optimizer as shown in Fig. 3.

In order to issue the VM migration, we assume that the
energy optimizer has collected enough predictive statistics of
monitored nodes and calculated the optimal number of PMs. From
this assumption, the problem now is how to decrease/increase
the current number of PMs to the aforementioned optimal one.
Obviously, choosing the physical source node to extract the target
VMs is not an obstacle. In fact, the lowest utilization node in terms
of CPU and memory is chosen to be the source node. Then, the
only remaining issue is to choose the placement for the extracted
VMs. Depending on the knowledge of operating system [35,15],
as well as the queuing theory, various critical conditions must be
considered in order to judge the destination. First, the destination
node should not be the same as the source node. Moreover, the
destination node should not be blocked (the node should not be
too busy, as it would be failed to accept the target VM). Finally,
when these conditions are matched, the node with the highest
estimation of utilization is selected as the next destination node.
In the following part, we study how to estimate the blocking rate
of a physical node. This study relies on the queuing theory of task
processing.

Assuming that an arriving task comes to a specified node, the
task might ‘see’ an average number of currently running tasks
which are being held in progress. Because the arrival counting
follows the Poisson process, the Poisson arrival see time averages
(PASTA) theory [16] is applicable when estimating the desired
average number of running tasks. Following the PASTA theory, the
average arrival time is considered to be equal to the time average or
the expectation ofwaiting time in the considerednode. By applying
the Pollaczek–Khintchine formula [16], the expectation waiting



D.-M. Bui et al. / J. Parallel Distrib. Comput. 102 (2017) 103–114 107
time Ej of node j can be calculated as follows:

Ej(W ) =
λτ

1/µ2

2(1 − λτ
1/µ)

, (1)

inwhich, λτ is the arrival rate of the tasks at time τ ,µ is the service
rate of the considered physical server j and W is the expected
scheduling latency in this server [16]. After estimating the arrival
average, the blocking rate of the server j can be obtained via
dividing this value by the service rate as follows:

BRj =
Ej(W )

µ
. (2)

By evaluating the blocking rate BRj of each physical server j, it
is easy for the power management component to determine the
destination to migrate the target VM. If there is no available node
for destination promotion, the migration procedure is postponed
until there is at least one unblocked node. Finally, in the worst
case scenario when all of the running nodes are blocked, a turning-
on procedure is issued via Wake on LAN protocol in order to start
the inactive servers one by one. Practically, this strategy helps the
cloud system to maintain an acceptable performance.

4. Prediction model

Before establishing the above migrating instruction, the opti-
mization procedure should be issued in advance. In order to do
that, this section illustrates the study of how we build the predic-
tionmodel. In our architecture, the objective of prediction is to an-
ticipate the utilization of the resources. The anticipation process
is mostly executed in the predictor component as seen in Fig. 3.
Inside this component, the Bayesian learning and Gaussian pro-
cess regression (GPR) are employed as the inference technique and
probability framework, respectively. Because the input data for this
model is the time-series utilization, the curve-fitting is preferred
over the function mapping for mapping approach.

The working of prediction depends on the monitoring statistics
which reflect the historical utilization of the cluster facilities.
In order to conveniently organize and execute these data, we
define a special terminology, namely the monitoring window,
which describes a fixed period of workload collection. Assuming
that the input data is a limited collection of time location x =

[x1, x2, x3, . . . , xn] (the gap between two consecutive elements of
this set x forms up a monitoring window denoted by m), a finite
set of random variable y = [y1, y2, y3, . . . , yn] represents the
corresponding joint Gaussian distribution of historical monitoring
statistics of the resourcewith regard to the time order. This set over
the time actually forms up the Gaussian process:

f (y|x) ∼ GP

m(x), k(x, x′)


, (3)

with

m(x) = E

f (x)


, (4)

k(x, x′) = E


f (x) − m(x)

f (x′) − m(x′)


, (5)

in which,m(x) is the mean function, evaluated at the time location
variable x, and k(x, x′) is the covariance function, also known as the
kernel function [25]. By definition, the kernel function is a positive-
definite function which is used to define the prior knowledge
of the underlying relationship. In addition, the kernel function
comprises some special parameters that specify its own shape.
These parameters are referred to as the hyper-parameters. Because
the input data comes to the predictor as a set of n time locations,
the kernel should be engaged in the matrix form as follows:

K =


k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
...

. . .
...

k(xn, x1) k(xn, x2) · · · k(xn, xn)

 . (6)

Generally, the square-exponential (SE) kernel, also known as
the radial basis function (RBF) kernel, is chosen as the basic
kernel function. In reality, SE kernel is favored in most of the
Gaussian process applications, because this kernel requires only a
few parameters to calculate. The formula for SE kernel is described
as follows:

kSE(x, x′) = σ 2
f exp


−

(x − x′)2

2l2


, (7)

in which, σf is the output-scale amplitude and l is the time-scale
of the variable x from one moment to the next. l also stands for the
bandwidth of the kernel and the smoothness of the function. In the
next step, we evaluate the posterior distribution of the Gaussian
process. Assuming that the incoming value of the input data is
(x∗, y∗), the joint distribution of training output y, and test output
y∗ is as follows:

p


y
y∗


= GP


m(x)
m(x∗)


,


K(x, x′) K(x, x∗)
K(x∗, x) K(x∗, x∗)


, (8)

here, K(x∗, x∗) = k(x∗, x∗), K(x, x∗) is the column vector made
from k(x1, x∗), k(x2, x∗) . . ., k(xn, x∗). In addition, K(x∗, x) =

K(x, x∗)
⊤ is the transposition of K(x, x∗). Subsequently, the

posterior distribution over y∗ can be evaluated with the below
mean m∗ and covariance C∗:

m∗ = m(x∗) + K(x∗, x)K(x, x′)−1(y − m(x)), (9)

C∗ = K(x∗, x∗) − K(x∗, x)K(x, x′)−1K(x, x∗), (10)

then

p(y∗) ∼ GP (m∗, C∗). (11)

The best estimation of y∗ is the mean of the above distribution:

y∗ = K(x∗, x)K(x, x′)−1y. (12)

In addition, the uncertainty of the estimation is captured in the
variance of the distribution as follows:

var(y∗) = K(x∗, x∗) − K(x∗, x)K(x, x′)−1K(x, x∗). (13)

Theoretically, the predictive system statistics retrieved from
GPR is highly accurate compared to other regressionmethods [28].
However, the standard implementation of GPR costs O(n3) for
computational complexity and O(n2) for storage complexity
when calculating n training points of the dataset [9]. Most of
the complexity comes from calculating the matrix inverse and
log determinant in both hyper-parameter learning and training
phases, which are two main phases of GPR. This can be seen as
the drawback of GPR, which prevents the prediction from being
quickly calculated on a large dataset. To solve this problem, we
use the complexity reduction technique applying to each phase of
the prediction process. For the hyper parameters learning phase,
the combination of the law of log determinant, the fast Fourier
transform and the stochastic gradient descent are proposed to
reduce the complexity to O(n log n) with n stands for the number
of training points. For the training phase, we have proposed the
parallel improved fast Gauss transform (pIFGT) to achieve O(n)
for the complexity, which is really fast to do the prediction.
These techniques have been already proposed in our previous



108 D.-M. Bui et al. / J. Parallel Distrib. Comput. 102 (2017) 103–114
research [7]. Further discussion can be found in detail in the
original paper.

5. Energy optimization

After having the predictive statistics, the final step is to calculate
the suitable amount of needed physicalmachines (PMs). It is worth
mentioning that the amount is referred to as the energy decision
and used to produce the VMmigrating instruction. The calculation
process is known as the optimization, which is mainly held in
the energy optimizer as seen in Fig. 3. Analytically, the energy
optimizer consists of two components: the cluster optimizer and
the power management that produce the energy decision as well
as the VMmigrating instruction, respectively. Note that the power
management keeps track of the cluster resource pool to estimate
the blocking rate, which is presented in the previous migrating
instruction section. In this section, the working of the cluster
optimizer would be included in detail.

5.1. System description

As mentioned in the system description section, the target
system is known in advance to be a homogeneous system. At the
monitoring window m, the system comprises Pm ∈ N+ physical
machines. The number of Pm might be changed as time progresses
due to the scaling factor of fault tolerant issue. Each physical
machine possesses a set of facilities denoted by f ∈ N+. Usually,
we focus on two types of facilities which are CPU and memory.
These facilities actually provide the major information to operate
the optimization. To measure this information in cluster level, the
global utilizationU fi

m ∈ R+ aswell as the individual utilization I fim ∈

R+ of each resource are needed to collect continuously at every
monitoring window m. Note that fi stands for a general element
i in the set f . For example, fc might stands for CPU, particularly.
Among the set of Pm physicalmachines, only the runningmachines,
denoted by am at the monitoring m, are worth considering.

At this stage, the target is to reduce am but still maintains
the system performance. If this requirement can be obtained, the
cloud system might significantly save the power, condense the
utilization and ensure the quality of service. In the next sections,
the modeling of these imperative objectives would be described
one by one in detail.

5.2. Performance modeling

In this section, we model the performance issue into the cost.
It is obvious that consolidating the VMs to a reduced pool of
the PMs leads to the high utilization in each node. However, if
the utilization increases without the control, the performance is
critically affected. This issue might result in system overhead and
high latency in task scheduling [38]. Due to this reason, we would
like to take into account the performance issue as a penalty cost to
ensure the quality of service.

There are evidences [29,6] showing that the utilization of a
machine and the average latency in task scheduling (hereinafter:
average latency) are in a linear relationship. Therefore, it is
reasonable tomeasure the performance of a cluster via the average
latency denoted by lm. Certainly, the variable lm should be limited
by the threshold l, which is described in the service level agreement
(SLA) document. Usually, the violation of SLA occurs when the
whole system comes to the state of peak performance. We denote
the CPU resource of the exhausted nodes by variable z. Due to the
goal of getting high utilization for every nodes, the utilization of z
is given by:

Izm = max
fc

{I fcm} = max
fc


U fc
m

amC fc


. (14)
We would like to simplify this equation by setting δm =

max{U fc
m/C fc}, then (14) turns into:

Izm = max
fc

{I fcm} =
δm

am
. (15)

From (15), it is obvious that Izm is a decreasing function of am.
It means that the average latency would increase along with the
decline in the number of running machines. Subsequently, the
average latency lm can be calculated by using the expectation
waiting time Ez of the exhausted CPU as described in themigrating
instruction section:

lm(Izm) = E(z) =
λm1/µ2

2(1 − λm1/µ)
, (16)

where λm is the arrival rate of the tasks at monitoring window m,
µ is the service rate of CPU z. After having the result of lm, we can
determine whether the quality of service is still satisfied or not by
comparingwith the threshold l. If there is any violation, the penalty
cost denoted by Cp

m should be applied. This cost is exponentially
increased with regard to the number of violations and given by:

Cp
m = wmsp(lm(Izm) − l)+, (17)

where wm and sp stand for the weight factor showing the
criticalness of the violation at monitoring windowm and the basic
price of the penalty, respectively.

Since the penalty cost depends on the measurement of
exhausted nodes and the weight factor wm, the performance
degradation is safely limited. Furthermore, the weight factor wm
is calculated based on the fault tolerance β , which measures the
difference between the most recent average latency lm−1 and the
current one lm. The value of β is normalized into the range of
[−0.1, 0.1] by using the Irritates algorithm. Initially, w0 is set to
1; i.e.,w0 = 1, and for themonitoring windowm,wm is updated as

wm = (1 + β)w+

m−1. (18)

The weight factor wm is designed to make positive impact
on the system if the average latency increases. It means there
would be a limited number of running nodes that are slightly kept
under-performance to deal with the fluctuation in VM requests.
Practically, the redundancy is necessary to reduce the criticalness
of SLA violation as well as improve the stability of the physical
infrastructure.

5.3. Energy modeling

Prior to this section, we know that the power consuming
overtime is the result of maintaining the operation of physical
machines [1,17]. Regarding to each physical node, the relationship
between the cost of energy consumption and the running devices
at monitoring window m can be mapped into a linear increasing
function as follows:

em = Pidle + Prunning . (19)

Denote sm as the basic price of electricity atmonitoringwindow
m, with am running machines of the cluster, the energy cost
denoted by C e

m is given by:

C e
m(am) = smamem = smam(Pidle + Prunning). (20)

In (20), the energy of running machines cannot be cut down
because of the performance, so this part should be dropped from
the energy modeling as follows:

C e
m(am) = smamPidle. (21)



D.-M. Bui et al. / J. Parallel Distrib. Comput. 102 (2017) 103–114 109
5.4. Cluster optimizer

In this section, we include the description of the energy opti-
mizer in detail. After having the modeling of performance and en-
ergy, the optimization can be conducted with regard to the goal
of saving the energy and maintaining the performance. As dis-
cussed in the introduction section, the quantity of running ma-
chines needs to be minimized to reduce the energy consumption.
This requirement is modeled by using the convex optimization
technique as follows:

min
0≤am≤Pm

(wmsp(lm(Izm) − l)+ + smamPidle). (22)

Denote the optimal number of running machines by a∗
m, as

shown in the performance modeling section, the function lm(Izm)
is a decreasing function of am. Thus, we have the condition on a∗

m
as below:

a∗

m ≤
δm

l−1
m (l)

. (23)

The reason for this condition is that if a∗
m ≥ δm/l−1

m (l) and
(lm(Izm) − l) = (lm(δm/am) − l)+ = 0, then the decline of a∗

m to
δm/l−1

m (l) canmitigate the energy consumptionwhen still preserving
the performance. Because of that, (22) can be clarified as shown
below:

min
0≤am≤

δm
l−1
m (l)

(wmsp(lm(Izm) − l)+ + smamPidle). (24)

The Lagrangian function of the problem shown by (24) is given
by:

L(am, γ ) = wmsp


lm


δm

am


− l
+

+ smamPidle + γ


am −

δm

l−1
m (l)


+ α(0 − am). (25)

Using Karush–Kuhn–Tucker (KKT) conditions on the Lagrangian
function shown by (25), we would have the partial derivatives as
follows:

∂L

∂a
= smPidle − wmspδm

∂ lm


δm
am


∂a


1
a2m


+ γ − α,

αam = 0,

γ


δm

l−1
m (l)

− am


= 0,

0 ≤ am ≤
δm

l−1
m (l)

,

α, γ ≥ 0.

(26)

There are two cases of solving this optimization problem,which
are:
• γ > 0 or α > 0. In this case, the conditions become boundary

conditions, then the feasible solution can be a∗
m = δm/l−1

m (l) or
a∗
m = 0.

• γ = 0 and α = 0. Because the function lm(.) following
Pollaczek Khinchin formula which is convex [21], the solution
for the above optimization problem can be achieved by solving
the first condition of (26) as shown below:

a∗

m = δm +


wmspδm
2µsmPidle

, (27)

where µ is the service rate of the CPU z as shown in (16). Ob-
viously, the solution shows the fact that the optimization is an
effort to keep balance between reducing the energy consump-
tion and maintaining the quality of service as discussed before.
Table 1
Google cluster’s organization and configuration.

Quantity of nodes Category CPU RAM

1 1 0.50 0.06
3 3 1.00 0.50
5 1 0.50 0.97
5 1 0.50 0.03

52 1 0.50 0.12
126 2 0.25 0.25
795 3 1.00 1.00

1001 1 0.50 0.75
3863 1 0.50 0.25
6732 1 0.50 0.50

Table 2
Summary of Google traces’ characteristics.

Time span # of PMs #VM requests Trace size # of users

29 days 12583 >25 M >39 GB 925

6. Performance evaluation

6.1. Experiment design

In this section, we conduct the experiments to evaluate the
performance of the proposed approach (E2M). All the experiments
are benchmarked on a system of 16 homogeneous servers. Each of
them is equipped with the quad-core Intel Xeon E7-2870 2.4 Ghz,
12GBof RAMandhosts up to 8VMs. For the connection, theGigabit
Ethernet Controller is used to communicate between these servers.
In summary, the physical infrastructure is able to host up to 128
connected VMs to serve the experiments.

There are two kinds of experiments in the evaluation. In the first
experiment, Google traces [33] are used to simulate the workload
for training the energy efficiencymanagement system. Announced
by Google, these traces provide the monitoring data on cluster
level from more than 12,500 machines during the period of 29
days. The organization and configuration of these machines can be
found in Table 1. Because the whole cluster is heterogeneous in
terms of system type and capacity, we decide to choose the largest
homogeneous set which consists of 6732 machines to conduct
the experiment. It is worth noting that the capacities of traced
machines are normalized by Google. Due to the super large size
of Google traces (over 39 GB of compressed data), we choose some
random parts of the aforementioned homogeneous subset to do
the experiments. Each part consists of 24-hour period of traces.
The total size of this portion is over 2.26 GB. For the ease of
presentation, we scale the maximum length of measurement to
60 s. We also use this duration as the length of our monitoring
window.

For more information, Google traces consist of greater than 25
million tasks. Each task can be referred to as a VM request and be
scheduled on a physical machine (PM). Since there are a number
of VM requests sending to the PM, these requests should follow a
queuing model. Obviously, the queuing delay is unavoidable and
can be referred to as the aforementioned average latency in task
scheduling. The computing resources, which are used to initialize
the VMs, are up to the user’s demand. It is worth noting that even
the user does not utilize all the requested resources intensively,
these resources are maintained until the corresponding requests
are fully released. Only when all the VMs in a specific PM are
released, the PM is allowed to shut down. The summary of Google
traces’ characteristics can be found in Table 2.

In the second experiment, we use the Montage workflow
[19,5] to test the energy efficiency of the proposed approach in
real-world scenario. It is worth noting that Montage is an effort of
NASA to assemble the flexible image transport system (FITS) into



110 D.-M. Bui et al. / J. Parallel Distrib. Comput. 102 (2017) 103–114
(a) Average memory utilization (higher is better). (b) Average CPU utilization (higher is better).

Fig. 4. Utilization evaluation of the proposed method in Google traces experiment.
custom mosaics [34]. There are four steps to produce an image
mosaic in Montage. First, the geometry of the input images is
discovered from the input FITS keywords and used to calculate
the geometry of the output mosaic. After that, the re-projection
of the input images to the same spatial scale and rotation is
performed. Subsequently, the background radiation in the input
images is modeled to achieve common flux scales and background
levels. Finally, the re-projected, background-corrected images are
co-added to create the output mosaic. The Montage execution is
measured to consist of 10429 tasks. The detail information of
Montage can be found in the original references and website.

6.2. Implementation

For the information of scheduling algorithm, we engage the
default first fit algorithm which is popularly used in many well-
known orchestrators such as Nimbus, OpenNebula and OpenStack.
We conduct the experiments under four schemes for comparison
purpose. These schemes are as follows:

• The default schemes: which is the scheme that all themachines
of the cluster are turned on from the beginning to the end of
the benchmark. No power saving technique is applied in this
scheme.

• The greedy first fit decreasing (FFD) approach: represents the
modified VM placement algorithm which is originated from
an interesting research of VM consolidation [27] to improve
the energy efficiency in cloud computing environment. This
approach actually sorts the VMs by the decreasing order of CPU
requests and places the queue of VMs into the first host fitting
the resource requirement. The VM placement is conducted
according to the bin packing methodology.

• The proposed approach (E2M): is implemented and evaluated
with all the prediction and optimization enabled.

• The optimal energy-aware approach: represents the scheme in
which the optimizer cares only for the energy consumption.
Because of that, the powermanagement component in this case
always produce the optimal solutions to greatly save the energy
regardless of the performance.

6.3. Utilization analysis

All four schemes start running with the same configuration of
the cluster. For the evaluation purpose, the memory and the CPU
Table 3
Average utilization of cluster facilities.

Default FFD E2M Optimal

CPU 27.40% 45.26% 89.02% 91.13%
Memory 28.35% 39.87% 70.12% 71.49%

utilizations of these schemes are collected continuously and shown
in Fig. 4(a) and (b), respectively, during the benchmarking time.
By analyzing the monitoring data, it is clear to comment that the
default scheme with no power saving solution possesses very low
resource utilization. The reason for this issue is that many PMs are
left idle. Meanwhile, the FFD approach achieves a better utilization
in comparison to the default scheme. Unfortunately, this approach
is unable to cover the fluctuation in the cluster workload and
leave many nodes in under-utilized circumstances after placing
the VMs. Obviously, due to this reason, FFD falls behind in the
race with the optimal solution. Contrary to the FFD algorithm,
the proposed approach predicts exactly the required number of
running machines and scales the cluster based on this number.
Obviously, the utilization of the system is enhanced significantly
and sometimes can closely catch the level of optimal solution. It
is worth noting that the optimization of E2M is limited according
to the performance. Because of that, there would be always a
distance compared with the optimal solution. Also, the context
switching might hurt the final result. In fact, this issue happens
to every solutions in any realistic system and can be considered
as an unavoidable problem. Finally, the summary of overall cluster
utilization can be found in Table 3.

6.4. Energy vs. performance

Due to the fact that our first experiment based on Google traces
which only consist of the cluster workload, we have to use an
external study of energy measurement, which is defined in the
CloudESE research [29], to estimate the energy consumption. The
detail of measuring parameters can be found in the original paper
and summarized in Table 4. As shown in Figs. 5 and 6, the default
scheme burns a huge amount of electricity by keeping all the
physical machines running even without any workload. The FFD
approach, in the other hand, burns less energy than the default
scheme but still wastes the power in many under-utilized nodes.
Without the migration and workload anticipation, FFD cannot
preemptively compact the size of PMs pool. This drawback is the



D.-M. Bui et al. / J. Parallel Distrib. Comput. 102 (2017) 103–114 111
Fig. 5. Percentage of active physical servers in Google traces experiment.

Fig. 6. Power consumption evaluation of the proposed method in Google traces
experiment (lower is better).

Fig. 7. Power consumption vs. average latency in Google traces experiment.
Fig. 8. Power consumption vs. average latency inMontage experiment.

Fig. 9. Mean prediction and error bar of the proposed method given 20 training
points in the memory utilization benchmark.

nature of bin packing algorithm family as discussed before. In
contrast to the first two schemes, the energy consumption of the
proposed approach is dropped dramatically due to the prediction
of the futuristic workload and the optimization of PMs pool with
regard to the performance. Note that most of the idle machines
are completely turned-off rather than keeping in the idle state.
Obviously, there is a short distance between E2M and optimal
solution as discussed in the utilization analysis section.

For the energy saving measurement, as seen in Fig. 7, the
proposed method can reduce up to 34.89% of energy consumption
in comparison to the default scheme. It is worth noting that the
optimal solution only reduces 37.08% of energy consumption. It
means that our approach closely achieves the final goal of energy
efficiency. Even in the Montage experiment, as seen in Fig. 8, the
proposedmethod can cut down 22.71% of the energy consumption
compared with the default scheme. Clearly, this amount of energy
savings is a significant result in real-world scenario. Besides, it is
worthmentioning that the energy loss in the empirical experiment
is always higher than in the experiment based on synthetic data
due to the environmental conditions and devices. Last but not least,
also in Figs. 7 and 8, the average latencies in task scheduling of the
proposed method are around 20.74 and 10.12 s which are 54.72%



112 D.-M. Bui et al. / J. Parallel Distrib. Comput. 102 (2017) 103–114
(a) Memory. (b) CPU.

Fig. 10. Prediction evaluation of the proposed method in Google traces experiment.
and 58.14% less than the optimal solution, when conducting on
Google traces andMontage toolkit, respectively.

6.5. Prediction evaluation

The last part is the evaluation of the prediction in terms of ac-
curacy. It is worth noting that we also use Google traces as our
training and validation datasets. The training set is engaged in
the hyper-generator of the predictor to find the hyper-parameters.
Fig. 9 shows that for an accuracy benchmark of 20 consecutive test-
ing points in the memory utilization, the mean prediction adapts
quite well to the testing data with 95% of confidence maintained
by the variance. Subsequently, the validation set plays the role of
investigator to evaluate the correctness of the prediction. In order
to assess this metric, we would like to include the error measure-
ment mechanism. The error measurement is also referred to as the
error functionwhich is based on the rootmean square error (RMSE)
method. Note that the RMSEmethod is stricter than the popularly-
used mean square error (MSE) method. Let n stands for the size of
validation dataset, by using the RMSE error function, the gap be-
tween the current value and the predicted one can be evaluated at
every steps of the anticipation. Following is the equation of RMSE:

RMSE =

 n
i=1

R
(m)
i − P

(m)
i

n
, (28)

where R
(k)
i and P

(k)
i stand for the current and predicted values of

the resource utilization atmonitoringwindowm, respectively. The
variable i stands for the order of the values in validation array. Since
our prediction technique based on the improved fast Gauss trans-
form (IFGT) [36], which strictly controls the RMSE limited to 10−11,
the result of the anticipation is very close to the real resource uti-
lization. In fact, as shown in Fig. 10(a) and (b), the proposedmethod
outperforms the polynomial fitting regression for both memory
and CPU utilizations, respectively.

7. Conclusion

In this research, we propose a comprehensive energy-efficient
resource orchestrating solution for cloud computing system.
Based on the workload prediction and the convex optimization,
the proposed approach can provide the appropriate migrating
Table 4
Energy estimation parameters.

Parameter Value Unit

Esleep 107 Watt
Eidle 300.81 Watt
Epeak 600 Watt
Eactive→sleep 1.530556 Watt-hour
Esleep→active 1.183333 Watt-hour
Eactive→off 1.544444 Watt-hour
Eoff→active 11.95 Watt-hour

instructions for the cloud to stack the VMs and cut down the
number of running PMs. Consequently, the power consumption
is significantly reduced while still maintaining the quality of
service. Besides, by evaluating on both Google traces and Montage
toolkit, we show that our approach is not only effective on the
synthetic data, but also save the energy on the realistic system.
Furthermore, due to the fact that most of the computation focuses
on creating the predictive workload information, the complexity
of the corresponding component, which is O(n log n), should be
taken into account as the complexity of the proposed approach. In
reality, this level of low complexity is quite feasible to be integrated
as an energy savings module into any popular cloud orchestrators
(such as OpenStack, OpenNebula, Nimbus, etc.). In future, we plan
to extend our idea to the heterogeneous system to improve the
adaptation of the proposed approach for real-life scenario.

Acknowledgments

This research was supported by the MSIP (Ministry of Science,
ICT and Future Planning), Korea, under the ITRC (Information
Technology Research Center) support program (IITP-2015-H8501-
15-1015) supervised by the IITP (Institute for Information &
communications Technology Promotion).

This work was also supported by Institute for Information &
communications Technology Promotion (IITP) grant funded by
the Korea government (MSIP) (No. R0101-15-237, Development
of General-Purpose OS and Virtualization Technology to Reduce
30% of Energy for High-density Servers based on Low-power
Processors).

This work was also supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea government
(MSIP) NRF-2014R1A2A2A01003914.



D.-M. Bui et al. / J. Parallel Distrib. Comput. 102 (2017) 103–114 113
Thisworkwas also supported by the Industrial Core Technology
Development Program (10049079, Develop of mining core tech-
nology exploiting personal big data) funded by the Ministry of
Trade, Industry and Energy (MOTIE, Korea).

References

[1] Z. Abbasi, G. Varsamopoulos, S.K. Gupta, Thermal aware server provisioning
andworkload distribution for Internet data centers, in: Proceedings of the 19th
ACM International Symposium on High Performance Distributed Computing,
ACM, 2010, pp. 130–141.

[2] Y. Ajiro, A. Tanaka, Improving packing algorithms for server consolidation, in:
Int. CMG Conference, 2007, pp. 399–406.

[3] E. Baccarelli, N. Cordeschi, A. Mei, M. Panella, M. Shojafar, J. Stefa, Energy-
efficient dynamic traffic offloading and reconfiguration of networked data
centers for big data stream mobile computing: review, challenges, and a case
study, IEEE Netw. 30 (2) (2016) 54–61.

[4] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing,
Future Gener. Comput. Syst. 28 (5) (2012) 755–768.

[5] G.B. Berriman, E. Deelman, J.C. Good, J.C. Jacob, D.S. Katz, C. Kesselman, A.C.
Laity, T.A. Prince, G. Singh, M.-H. Su, Montage: a grid-enabled engine for
delivering custom science-grade mosaics on demand, in: SPIE Astronomical
Telescopes+ Instrumentation, International Society for Optics and Photonics,
2004, pp. 221–232.

[6] M.A. Blackburn, G. Grid, Five Ways to Reduce Data Center Server Power
Consumption, Green Grid, 2008.

[7] D.-M. Bui, H.-Q. Nguyen, Y. Yoon, S. Jun, M.B. Amin, S. Lee, Gaussian process for
predicting cpu utilization and its application to energy efficiency, Appl. Intell.
43 (4) (2015) 874–891.

[8] T.D. Burd, T. Pering, A.J. Stratakos, R.W. Brodersen, et al., A dynamic voltage
scaled microprocessor system, IEEE J. Solid-State Circuits 35 (11) (2000)
1571–1580.

[9] K. Chalupka, C.K.I. Williams, I. Murray, A framework for evaluating approxi-
mation methods for gaussian process regression., CoRR abs/1205.6326.

[10] E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Approximation algorithms for bin
packing: a survey, in: Approximation Algorithms for NP-Hard Problems, PWS
Publishing Co, 1996, pp. 46–93.

[11] N. Cordeschi, M. Shojafar, E. Baccarelli, Energy-saving self-configuring
networked data centers, Comput. Netw. 57 (17) (2013) 3479–3491.

[12] M. Dabbagh, B. Hamdaoui, M. Guizani, A. Rayes, Energy-efficient resource
allocation and provisioning framework for cloud data centers, IEEE Trans.
Netw. Serv. Manag. 12 (3) (2015) 377–391.

[13] C. Dabrowski, F. Hunt, Using markov chain analysis to study dynamic
behaviour in large-scale grid systems, in: Proceedings of the Seventh
Australasian Symposium on Grid Computing and e-Research-Volume 99,
Australian Computer Society, Inc., 2009, pp. 29–40.

[14] X. Fan, W.-D. Weber, L.A. Barroso, Power provisioning for a warehouse-sized
computer, in: ACMSIGARCHComputer ArchitectureNews, Vol. 35, ACM, 2007,
pp. 13–23.

[15] C. Fiandrino, D. Kliazovich, P. Bouvry, A. Zomaya, Performance and energy
efficiency metrics for communication systems of cloud computing data
centers, IEEE Trans. Cloud Comput. PP (99) (2015) http://dx.doi.org/10.1109/
TCC.2015.2424892, 1–1.

[16] R. Gallager, Stochastic Processes: Theory for Applications, Cambridge Univer-
sity Press, 2013, URL http://books.google.co.kr/books?id=CGFbAgAAQBAJ.

[17] B. Guenter, N. Jain, C. Williams, Managing cost, performance, and reliability
tradeoffs for energy-aware server provisioning, in: INFOCOM, 2011 Proceed-
ings IEEE, IEEE, 2011, pp. 1332–1340.

[18] A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C. Waldspurger, X. Zhu,
Vmware distributed resource management: Design, implementation, and
lessons learned, VMware Tech. J. 1 (1) (2012) 45–64.

[19] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G.Mehta, K. Vahi, Characterizing
and profiling scientific workflows, Future Gener. Comput. Syst. 29 (3) (2013)
682–692.

[20] C. Lefurgy, X. Wang, M. Ware, Power capping: a prelude to power shifting,
Cluster Comput. 11 (2) (2008) 183–195.

[21] C. Loch, Time competition is capability competition, INSEAD, 1994.
[22] J.R. Lorch, A.J. Smith, Improving dynamic voltage scaling algorithmswith pace,

in: ACM SIGMETRICS Performance Evaluation Review, Vol. 29, ACM, 2001,
pp. 50–61.

[23] D. Meisner, B.T. Gold, T.F. Wenisch, Powernap: eliminating server idle power,
in: ACM Sigplan Notices, Vol. 44, ACM, 2009, pp. 205–216.

[24] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony, R. Rajkumar,
Critical power slope: understanding the runtime effects of frequency scaling,
in: Proceedings of the 16th International Conference on Supercomputing,
ACM, 2002, pp. 35–44.
[25] K. Muller, S. Mika, G. Ratsch, K. Tsuda, B. Scholkopf, An introduction to kernel-
based learning algorithms, IEEE Trans. Neural Netw. 12 (2) (2001) 181–201.
http://dx.doi.org/10.1109/72.914517.

[26] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, D. Wetherall, Reducing
network energy consumption via sleeping and rate-adaptation., in: NSDI,
Vol. 8, 2008, pp. 323–336.

[27] T.K. Okada, A.D.L.F. Vigliotti, D.M. Batista, A.G. vel Lejbman, Consolidation of
vms to improve energy efficiency in cloud computing environments, 2015,
pp. 150–158.

[28] C. Rasmussen, C. Williams, Gaussian Processes for Machine Learning,
in: Adaptive Computation and Machine Learning, MIT Press, 2005, URL
http://www.gaussianprocess.org/gpml/chapters/.

[29] I. Sarji, C. Ghali, A. Chehab, A. Kayssi, Cloudese: Energy efficiency model for
cloud computing environments, in: 2011 International Conference on Energy
Aware Computing, (ICEAC), IEEE, 2011, pp. 1–6.

[30] M. Shojafar, N. Cordeschi, E. Baccarelli, Energy-efficient adaptive resource
management for real-time vehicular cloud services, IEEE Trans. Cloud Comput.
PP (99) (2016) http://dx.doi.org/10.1109/TCC.2016.2551747, 1–1.

[31] A. Verma, P. Ahuja, A. Neogi, pmapper: power and migration cost aware
application placement in virtualized systems, in: Middleware 2008, Springer,
2008, pp. 243–264.

[32] What is ganglia? http://ganglia.sourceforge.net/, (accessed: 13.08.15).
[33] What is google traces? https://github.com/google/cluster-data/, (accessed:

21.01.16).
[34] What is montage? http://montage.ipac.caltech.edu/, (accessed: 02.08.16).
[35] X. Wu, Performance Evaluation, Prediction and Visualization of Parallel

Systems, in: The International Series on Asian Studies in Computer and
Information Science, Springer, US, 1999, URL http://books.google.co.kr/books?
id=IJZt5H6R8OIC.

[36] C. Yang, R. Duraiswami, N. Gumerov, L. Davis, Improved fast gauss
transform and efficient kernel density estimation., in: Computer Vision, 2003.
Proceedings. Ninth IEEE International Conference on, 2003, pp. 664–671 vol.1.
http://dx.doi.org/10.1109/ICCV.2003.1238383.

[37] Y. Zhang,W. Sun, Y. Inoguchi, Cpu load predictions on the computational grid*,
in: Sixth IEEE International Symposium on Cluster Computing and the Grid,
2006. CCGRID 06. Vol. 1, IEEE, 2006, pp. 321–326.

[38] Q. Zhang, M.F. Zhani, S. Zhang, Q. Zhu, R. Boutaba, J.L. Hellerstein, Dynamic
energy-aware capacity provisioning for cloud computing environments,
in: Proceedings of the 9th International Conference on Autonomic Computing,
ACM, 2012, pp. 145–154.

Dinh-Mao Bui received the B.S. degree in Computer
Science from the Computer Engineering Department at
Ton Duc Thang University, Vietnam, in 2009 and the M.S.
degree in Data Communication and Networking from the
Posts and Telecommunications Institute of Technology,
Vietnam, in 2012. He is now working toward the Ph.D.
degree in the Department of Computer Engineering
at Kyung Hee University, Korea. His research interests
include Convex Optimization, Stochastic Process and Big
Data.

YongIk Yoon is a Professor for Dept. of Multimedia
Science in SookMyung Women’s University, South Korea.
He received M.S and Ph.D. degree from Computer Science
of KAIST, in 1985 and 1994. He had researched for 15
years (1983–1997) like a member of senior Researcher of
ETRI, in Korea. Also he had worked a visiting professor
in University of Colorado at Denver, in USA, for three
years (2004–2007). His Research Interests are smart
services for future life, middleware for smart/future life,
collaboration service model in mobile cloud environment,
and intelligent mobile customer application platform. He

is now aMember of ACM, IEEE, KIISE (Korean Institute of Information Scientists and
Engineers), KIPS (Korean Information Processing Society), and OSIA (Open Standard
and Internet Association).

Eui-Nam Huh is a chair professor in Dept. of Computer
Engineering. His interesting research areas are: Cloud
Computing, Big Data Computing, IoT, Distributed Real
Time System, Network Security. He earned Master’s
degree in Computer Science from University of Texas,
USA in 1995 and Ph.D. degree from the Ohio University,
USA in 2002. He has also served for the WPDRTS/IPDPS,
SOICT, APIST, ICUIMC and ICCSA community as various
chair positions since 2003.

http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref1
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref3
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref4
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref5
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref6
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref7
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref8
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref10
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref11
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref12
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref13
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref14
http://dx.doi.org/10.1109/TCC.2015.2424892
http://dx.doi.org/10.1109/TCC.2015.2424892
http://dx.doi.org/10.1109/TCC.2015.2424892
http://dx.doi.org/10.1109/TCC.2015.2424892
http://dx.doi.org/10.1109/TCC.2015.2424892
http://dx.doi.org/10.1109/TCC.2015.2424892
http://dx.doi.org/10.1109/TCC.2015.2424892
http://dx.doi.org/10.1109/TCC.2015.2424892
http://dx.doi.org/10.1109/TCC.2015.2424892
http://books.google.co.kr/books?id=CGFbAgAAQBAJ
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref17
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref18
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref19
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref20
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref22
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref23
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref24
http://dx.doi.org/10.1109/72.914517
http://www.gaussianprocess.org/gpml/chapters/
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref29
http://dx.doi.org/10.1109/TCC.2016.2551747
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref31
http://ganglia.sourceforge.net/
https://github.com/google/cluster-data/
http://montage.ipac.caltech.edu/
http://books.google.co.kr/books?id=IJZt5H6R8OIC
http://books.google.co.kr/books?id=IJZt5H6R8OIC
http://books.google.co.kr/books?id=IJZt5H6R8OIC
http://books.google.co.kr/books?id=IJZt5H6R8OIC
http://books.google.co.kr/books?id=IJZt5H6R8OIC
http://books.google.co.kr/books?id=IJZt5H6R8OIC
http://books.google.co.kr/books?id=IJZt5H6R8OIC
http://dx.doi.org/10.1109/ICCV.2003.1238383
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref37
http://refhub.elsevier.com/S0743-7315(16)30170-8/sbref38


114 D.-M. Bui et al. / J. Parallel Distrib. Comput. 102 (2017) 103–114
SungIk Jun is a principal member of engineering staff for
High-Performance System Research team in ETRI (Elec-
tronics Telecommunication Research Institute), South Ko-
rea. He received M.S degree from Computer Science of
Chung-Ang University, in 1987. He had researched for
Real-time OS team during 15 years (1987–2001) like a
member of senior Researcher of ETRI, in Korea. Also he
had worked a team leader Wireless Security Application
Research team for eight years (2001.3–2009.4). His re-
search interests are Operating System, Wireless Security,
and M2M for future life.
Sungyoung Lee received his Ph.D. degree in Computer Sci-
ence from Illinois Institute of Technology (IIT), Chicago,
Illinois, USA in 1991. He has been a professor in the De-
partment of Computer Engineering, KyungHeeUniversity,
Korea since 1993. Before joining Kyung Hee University,
he was an assistant professor in the Department of Com-
puter Science, Governors State University, Illinois, USA
from1992 to 1993.His current research focuses onUbiqui-
tous Computing, Cloud Computing, Intelligent Computing
and eHealth.


	Energy efficiency for cloud computing system based on predictive optimization
	Introduction
	Related works
	Proposed architecture
	System description
	Migrating instruction

	Prediction model
	Energy optimization
	System description
	Performance modeling
	Energy modeling
	Cluster optimizer

	Performance evaluation
	Experiment design
	Implementation
	Utilization analysis
	Energy vs. performance
	Prediction evaluation

	Conclusion
	Acknowledgments
	References


