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Abstract Availability is one of the most important requirements in production sys-
tem. Keeping a persistent level of high availability in the Infrastructure-as-a-Service
(IaaS) cloud computing is a challenge due to the complexity of service providing.
By definition, the availability can be maintained by coupling with the fault tolerance
approaches. Recently, many fault tolerance methods have been developed, but few
of them adequately consider the fault detection aspect, which is critical to issue the
appropriate recovery actions just in time. In this paper, based on a rigorous analysis
on the nature of failures, we would like to introduce a method to early identify the
faults occurring in the IaaS system. By engaging fuzzy logic algorithm and prediction
technique, the proposed approach can provide better performance in terms of accuracy
and reaction rate, which subsequently enhances the system reliability.

Keywords Approximate reasoning · IaaS cloud computing · Fault detection · Fuzzy
logic · Prediction technique

1 Introduction

Cloud computing is a technology to deliver the infrastructure facilities such as com-
putation, storage or network bandwidth over the Internet. This technology is actually
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based on the mechanism to elastically allocate the resources in a versatile man-
ner. Subsequently, users can remotely initiate their services on-line and pay only
for the amount that they actually use. The philosophy of this mechanism can be
seen as the idea of re-usability. In addition, the scalability and the multi-tenancy
are also the advantages of cloud computing which are transparent to end-users.
With these kinds of features, users can focus more on the business model instead
of spending time and effort to manage and maintain the underlying computing
resources.

Among the technologies that are implemented in cloud computing, virtualization
is one of the most basic things the system relies on. In this system, users actually
access the physical resources via the virtual machines, which are created on top of the
virtualization. Basically, these machines are parts of a three-layer model: the physical
layer, the virtualization layer and the application layer. However, this three-layer sys-
temmakes difficulties to unify the management, especially in the failures recovery [1].
In fact, managing failures in a cloud system is considered as a very high complexity
duty because of various kinds of faulty sources.

Discussion on faults and fault tolerance is interesting. Indeed, even the cloud plat-
forms consider a huge amount of functionalities, very few of them are related to
fault tolerance [2]. Clearly, to make an effective solution dealing with the faults, all
kinds of potential faults should be collected and identified in advance to issue the
corresponding treatments [3]. However, not many studies concentrate on improv-
ing the fault detection in cloud computing. Due to this reason, the objective of
this paper first is to analyze the current fault handling solutions. Also, the faulty
sources, where the faults originate from, are considered thoroughly. After that, we
propose our solution based on fuzzy logic and prediction technique to early detect
the faults. Finally, the experiments are conducted to verify the effectiveness of this
solution.

This paper is organized as follows. In Sect. 2, we provide a summary of the related
works that are relevant to this topic. We also include the background knowledge of
cloud computing as well as the potential failures in Sect. 3. In Sect. 4, we introduce
the proposed approach to pro-actively detect the failures in IaaS cloud computing.
The performance evaluation is conducted on Sect. 5. Eventually, the conclusion and
direction for future work are summarized in Sect. 6.

2 Related works

There are two kinds of fault tolerance models which are reactive and proactive
approaches [4,5]. The reactive approach is implemented to reduce the effects of faults
on the system [6]. In the other hand, the proactive model avoids recovering from faults
by predicting and pro-actively replacing the suspected component with the good one
[7]. In “Byzantine Fault Tolerance for theCloud” [8], the authors proposed an approach
based on Byzantine fault tolerance (BFT). By investigating how to use BFT to develop
fault and intrusion tolerance applications, the authors designed a modular architecture
for BFT replication and built blocks for BFT consensus (configuration for various
trust settings). Although BFT is an effective algorithm in the case of fault tolerance,
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the cost paying for the redundancy and the voters is expensive in terms of time con-
sumption and computation. Therefore, this approach might be not suitable for cloud
computing.

In the research of “Autonomic Fault Tolerance using HA Proxy in Cloud Envi-
ronment” [9], several instances of virtual machines running the same application are
implemented. When one machine gets into trouble, the autonomic fault tolerance
technique might detect and handle the failure to reassure the system reliability and
availability. In addition, the authors also proposed a specific cloud virtualized system
using HAProxy for monitoring. However, the metrics are not considered thoroughly,
which subsequently decreases the accuracy of the fault detection.

Malik et al. [10] presented a model for result checking and decision making based
on variant algorithm. By engaging a number of virtual machines (VMs) with the
same configuration to be as the replications, this approach can provide a high level
of reliability. However, there are still some drawbacks. First, the VMs, which belong
to different users, are difficult to share the same configuration. Second, the VMs
with high workload may not pass the reliability test due to insufficient resources.
These kinds of VMs may be wrongly replaced without saving the working result.
Intuitively, this approach is not a good choice for the large-scale and elastic cloud
system.

The next study is “Towards a scalable, fault-tolerant, self-adaptive storage for the
clouds” [11]. The authors focused on designing a storage infrastructure based on
BlobSeer. Subsequently, a joint architecture was defined with the global behavior
modeling phase. Besides, the author also provided the quality of services to achieve
the desired goal for the storage system. Generally, the research partially focused on
creating the fault tolerance scheme for cloud storage rather than making a solution for
service providing cloud system.

In the research of “Algorithmic-Based Fault Tolerance for Matrix Multiplication
on Amazon EC2” research [12], the authors extended the idea of implementing the
algorithmic-based fault tolerance (ABFT) from high performance computing to the
cloud. Nevertheless, this algorithm has the drawback of performance due to the high
complexity. This issue actually slows down the system and might not be appropriate
for the production [13].

Lastly, in the research of “Method of Fault Detection in CloudComputing Systems”
[14], the authors proposed a detection approach based onC4.5 decision algorithm. This
algorithm is also combined with the characteristics of cloud computing to improve
the correctness and effectiveness. However, the complexity of C4.5 is quite high (up
to O(mn2)), which might be slow when coping with a large number of data.

By examining the related works, we have come to the conclusion that although the
research on fault tolerance exists, notmany researchers have thoroughly considered the
detection method with regard to the characteristics of the cloud system. Meanwhile,
without a suitable detection mechanism, the fault tolerance solution cannot execute
correctly at right time to maintain the availability and reliability. Because of that, there
is a need to develop a low complexity and efficient method to early detect the failures.
This is our motivation to propose the proactive fault detection approach based on fuzzy
logic and prediction technique.
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3 Background

3.1 Cloud system

IaaS cloud service providers tend to satisfy the users in terms of computing resources
and relevances. To do that, the providers have to consider deploying the resources on a
distributed system to meet the different quality of service as well as to efficiently load
balance between clusters. In our research, we implement the following general IaaS
cloud computing model (Fig. 1) to cover most of the requirement for service providers
in real world. The system mainly consists of these following layers:

• Cloud balancing layer: this layer is a combined component of filters and authoriza-
tion system. In this component, the input requests are classified and checked for
the validity. By using the predefined rules created by the administrator, the requests
are forwarded and answered based on the query results from cache system. After
the classification process, the requests are passed to the appropriate servers for
load balancing purpose.

• Service management (SM) layer: this layer takes responsibility to automate the
provision of the cloud resources by collecting the capacity information and redi-
recting the virtual machine deployment requests.

• Orchestrator management (OM) layer: this layer takes responsibility to deploy
the virtual machines to the Worker Nodes. In fact, the OM layer receives the
requests from the service management layer and chooses the best worker node
which satisfies all the constraints for VM deployment.

Fig. 1 IaaS cloud computing model
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• Worker node (WN): this is the layer of physical servers. Many physical servers are
put together into the same clusterswith regard to their configurations and character-
istics. In each worker node, we also implement the abstraction layer of virtualiza-
tionbyusing the hypervisors such asHyper-V,XENorVMware.These hypervisors
interact with the physical resources and manage all the VMs in worker nodes.

3.2 Failures in IaaS

Fault types can be classified according to the positions where they occur. The fault
can come from physical infrastructure (worker node failure), from virtualized system
(VM failure) or from orchestration manager (orchestrator failure). In the Open Nebula
orchestrator [15], which is chosen to implement, the fault types and the corresponding
pre-supports are as follows:

• Worker node failure: when a worker node is down, the predefined hook can be
dispatched to solve the problem. Usually, this hook re-deploys the failed VM to
another worker node to continue running the service.

• Virtual machine failure: there are two failure situations which can occur in the
virtual machine life cycle: the VM fails and the VM crashes. In the VM fails, the
error in the network prevents the image to be copied into the worker node. When
this situation happens, the VM enters the “failed” state. To solve this situation, the
same method dealing with the worker node failure is engaged. In the VM crash,
the physical servers sometimes stop working due to some unknown reasons. In
this case, a script might be embedded to restart the VM automatically.

• Orchestrator failure: the orchestrator can be recovered from a failures by restarting
the core daemon.The runningVMsare then reconnected and run as usual. In case of
the pendingVMs, theseVMsmight be re-deployed on a suitable host. However, the
remainingVMs,which are not in the final state,mayneed to be recoveredmanually.

Bydefault,OpenNebula takes care of any pending clean-up operation like removing
image files or canceling the VMs. An external VM-collector script can be set up to
automatically recover or delete theVMswhen the core ofOpenNebula is restarted after
a crash. Although Open Nebula fault tolerance is mostly based on the reactive policies,
this framework is actually supposed to reduce the effect of failures in the worker
nodes, the VMs and the core of the orchestrator. However, the fault detection is really
incompetent which sometimes results in the system in obsolete reactions. Obviously,
the late response of the fault tolerance component makes the system unreliable. Due
to this reason, the proactive fault detection is proposed to cover the blind spot of fault
tolerance.

4 Proposed method

4.1 System description

In the perspectives of physical infrastructure, a cloud computing system can be con-
sidered as a group of clusters as seen in Fig. 2. These clusters consist of a number of
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Fig. 2 Proposed fault detection architecture

physical servers which host many virtual machines. Each virtual machine possesses
various utilizations and capacities of computing resources such as CPU, RAM, net-
work bandwidth and storage volume. In order to establish the appropriate tolerance
scheme, the proposed architecture is targeted to early detect the failures of the cloud in
advance. To achieve this goal, the prediction technique is utilized to provide the infor-
mation of the predictive monitoring statistics. After that, the faults are recognized by
using fuzzy logic algorithm. Basically, the organization of the proposed architecture
is as follows:

• The monitoring system: includes two applications, namely Ganglia [16] and HA
Proxy [17]. The main task of this component is to collect system parameters as
the input dataset for the prediction process. On the one hand, Ganglia is used to
collect the working nodes’ parameters such as CPU usage, RAM usage, disk I/O.
On the other hand, HA Proxy [5] is aimed to monitor the network parameters such
as response time, bandwidth, throughput, request/response ratio. Periodically, the
monitoring system provides the input statistics to the predictor component.

• The predictor, which is built on the Gaussian process regression, is responsible
to produce the predictive statistics of the next monitoring epoch. This futuristic
utilization information is subsequently used in the fault trigger component.

• The fault trigger, as its name, does the fault detection based on the fuzzy logic
method. Whenever a failure is identified, the result is forwarded to the fault toler-
ance system to recover in advance. Because the suitable actions would be applied
in the early stage of failure, the consequence of potential errors is taken over much
better.

For the convenience of presentation, the predictor would be introduced first in the
next section.
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Fig. 3 Architecture of predictor component

4.2 Predictor

In our application, the objective of the prediction is to anticipate the utilization of
resources. This anticipation process is mostly executed in the predictor component
as seen in Fig. 3. Inside this component, the Bayesian learning and Gaussian process
regression (GPR) are employed as the inference technique and probability framework,
respectively. Because the input data for this model are the time-series utilization,
the curve-fitting is preferred over the function mapping for mapping approach. It is
important to note that the curve-fitting is more flexible with regard to the time-series
data and non-stationary model.

The working of the prediction depends on the monitoring statistics, which reflect
the historical utilization of cluster’s facilities. To conveniently organize and execute
this data, we define a special terminology, namely the monitoring window which
describes a fixed period of statistics. Assuming that the input data are a limited col-
lection of time location x = [x1, x2, x3, . . . xn] (the gap between two consecutive
elements of this set x forms up a monitoring window denoted by m), a finite set of
random variable y = [y1, y2, y3, . . . yn] represents the corresponding joint Gaussian
distribution of historical monitoring statistics. Theoretically, the statistics consist of
the physical resources utilization (CPU usage, RAM usage, disk I/O) and the network
metrics (response time, bandwidth, throughput, request/response ratio) with regard
to the time order. This set over the time constraint actually forms up the Gaussian
process:

f (y|x) ∼ GP(
m(x), k(x, x ′)

)
(1)
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with

m(x) = E
(
f (x)

)
(2)

k(x, x ′) = E

((
f (x) − m(x)

)(
f (x ′) − m(x ′)

))
(3)

in which, m(x) is the mean function, evaluated at the time location variable x , and
k(x, x ′) is the covariance function, also known as the kernel function [18]. By def-
inition, the kernel function is a positive-definite function which is used to define
the prior knowledge of the underlying relationship. Basically, the kernel function
is only a mandatory requirement when there is lack of finite dimensional form of
the feature space. Otherwise, it can be dropped by directly calculating the sample.
However, this feature space dimension is frequently infinite, which means that the
kernel function cannot be directly calculated. For this reason, the kernel function
technique is often chosen to tackle the Gaussian process regression. In addition, the
kernel function comprises some special parameters that specify its own shape. These
parameters are referred to as the hyper-parameters. Because the input data comes to
the predictor as a set of n time locations, the kernel should be engaged in the matrix
form.

K =

⎛

⎜⎜⎜
⎝

k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
...

. . .
...

k(xn, x1) k(xn, x2) · · · k(xn, xn)

⎞

⎟⎟⎟
⎠

(4)

Generally, the Square-Exponential (SE) kernel, also known as the Radial Basis
Function (RBF) kernel, is chosen as the basic kernel function. In reality, the SEkernel is
favored inmost of theGaussian process applications, because it requires the calculation
for only few parameters. Moreover, there is a theoretical reason to choose this method,
as it is an appropriately universal kernel for any continuous function whenever enough
data are given. The formula for SE kernel is described as follows:

kSE (x, x ′) = σ 2
f exp

(
− (x − x ′)2

2l2

)
(5)

in which, σ f is the output-scale amplitude and l is the timescale of the variable x from
onemoment to the next. l also stands for the bandwidthof the kernel and the smoothness
of the function. In addition, l also plays the role of judgment for Automatic Relevance
Detection (ARD) to discard the irrelevant input dimension. In the next step,we evaluate
the posterior distribution of the Gaussian process. Assuming that the incoming value
of the input data is (x∗, y∗), the joint distribution of the training output is y, and the
test output is y∗ as shown below:

p

( [
y
y∗

] )
= GP

([
m(x)
m(x∗)

]
,

[
K(x, x ′) K(x, x∗)
K(x∗, x) K(x∗, x∗)

] )
(6)
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here, K(x∗, x∗) = k(x∗, x∗), K(x, x∗) is the column vector made from k(x1, x∗),
k(x2, x∗) · · · , k(xn, x∗). In addition, K(x∗, x) = K(x, x∗)T is the transposition of
K(x, x∗). Subsequently, the posterior distribution over y∗ can be evaluated with the
below mean m∗ and covariance C∗.

m∗ = m(x∗) + K(x∗, x)K(x, x ′)−1(y − m(x)) (7)

C∗ = K(x∗, x∗) − K(x∗, x)K(x, x ′)−1K(x, x∗) (8)

then
p(y∗) ∼ GP(m∗,C∗) (9)

The best estimation for y∗ is the mean of this distribution:

y∗ = K(x∗, x)K(x, x ′)−1y (10)

In addition, the uncertainty of the estimation is captured in the variance of the distri-
bution as follows:

var(y∗) = K(x∗, x∗) − K(x∗, x)K(x, x ′)−1K(x, x∗) (11)

Theoretically, the predictive statistics retrieved from the GPR is highly accurate
compared to other regression methods [19]. However, the standard implementation
of GPR costs O(n3) for computational complexity and O(n2) for storage complexity
when calculating n training points of the dataset [20]. Most of the complexity comes
from calculating the matrix inverse and log determinant in hyper-parameter learning
phase. This can be seen as the drawback of GPR, which prevents the prediction from
being quickly calculated on a large dataset. To solve this problem, we use the com-
plexity reduction technique applying to the hyper-parameters learning phase of the
prediction process. Theoretically, the law of log determinant, the fast Fourier trans-
form and the stochastic gradient descent are combined to reduce the complexity to
O(nlogn)with n representing the number of training points. Formore information, the
detail of the complexity reduction has been already proposed in our previous research
[21]. Further discussion can be found also in this original paper. Subsequently, the pre-
dictive monitoring statistics could be generated and utilized for the failure detection
in the fault trigger component, which is presented in the next section.

4.3 Fault trigger

The architecture of the fault trigger is described in Fig. 4. This architecture is used
to identify the failures in IaaS cloud computing system based on fuzzy logic and pre-
dictive statistics. Intuitively, the predictive statistics provides the futuristic awareness
of the system status. With this ability, the fault tolerance would make more sense and
more appropriate to cover the potential issues. On the other hand, the attractive ben-
efit of fuzzy logic algorithm is the approximate reasoning with imprecise proposition
based on the fuzzy set theory. In order to implement the fault trigger component, the
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Fig. 4 Architecture of fault trigger component

rule form of fuzzy logic algorithm is formulated as below:

Rui : if (X1 is F1i ) and · · · and (Xn is Fni ) then Y is Gi . (12)

where X j , j = 1,. . .,n are called antecedent variables defined on a domain Uj . Simi-
larly, Y is the consequent variable defined on a domain V . Each Fji is a linguistic term
expressed by a fuzzy subset over the corresponding Uj . For any u j ∈ Uj , the degree
of membership function μFji u j shows the magnitude to which u j is compatible with
the term Fji . Similarly, Gi is a linguistic term expressed by means of a fuzzy subset
on V . For any v ∈ V , the degree of membership function μGi (v) is the degree which
v is conformant to the term Gi .

In the proposed approach, the aforementioned predictive information is used as the
input data to early identify the potential problem. In order to do that, the first step of
establishing the fault trigger component is to identify the desired metrics [22]. Based
on the studies of system performance and network measurement [23–25], the most
fundamental metrics can be considered as below:

• Response time: the time elapsed between the moment that the node receives the
request to the time that this node returns the response.

• Throughput: the amount of data transfers in a given unit of time.
• Bandwidth: the bandwidth of computing nodes.
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Fig. 5 Fuzzy response time metric

• Resource utilization: the total amount of resources is actually allocated and served
the request.

Because of the similarity in the reasoning procedure, we would like to demonstrate
the estimation process for only one metric: the response time. Additionally, the detec-
tion process for other metrics can be implemented similarly with minor changes and
adjustments in the parameters.

4.4 Response time

In this demonstration, five linguistic terms are used to describe the value of response
time: very fast, fast, normal, slow, very slow. By definition, the input parameter x
determines the value of fuzzy variables. Figure 5 explains how the determination
process is conducted. Depending on the network status, the value of fuzzy variable
might fluctuate from 0 to 1. Accordingly, the trapezoidal membership functions μ are
described by using the aforementioned parameter x with p, q, r , s, t , u, v, andw being
the thresholds. These membership functions are given by the expressions below:

μvery f ast (x) =

⎧
⎪⎨

⎪⎩

0 if x ≥ q
q−x
q−p if p ≤ x < q

1 if x < p

(13)

μ f ast (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if (x < p) or (x > s)
x−p
q−p if p ≤ x < q
s−x
s−r if r ≤ x < s

1 if q ≤ x < r

(14)

μnormal(x) =

⎧
⎪⎨

⎪⎩

0 if (x < r) or (x ≥ t)
x−r
s−r if r ≤ x < s
t−x
t−s if s ≤ x < t

(15)
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μslow(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if (x < s) or (x ≥ v)
x−s
t−s if s ≤ x < t
v−x
v−u if u ≤ x < v

1 if t ≤ x < u

(16)

μveryslow(x) =

⎧
⎪⎨

⎪⎩

0 if x < u
x−u
v−u if u ≤ x < v

1 if x ≥ v

(17)

After calculating themembership functions via fuzzy process, we locally de-fuzzify
by applying the function Dcentroid , which is given by the expression below.

Dcentroid(x) =
∫ w

0 xμ(x)dx
∫ w

0 μ(x)dx
(18)

This local de-fuzzified value is used to evaluate status of the response time and
judge this metric based on the rules that is extracted from the knowledge base, which
is created by the administrator. Because of the similarity in the reasoning procedure,
other metrics such as throughput, bandwidth and resource utilization can be calculated
similarly by defining the suitable thresholds.

4.5 Metric priority

There is a bit different between the physical servers and the virtualmachines in terms of
using and providing the services, and then the reasoning procedure for each case should
be quite different. Specifically, the physical servers consider any issue occurring on
the resource utilization as the main reason for errors. These errors subsequently affect
the quality of services. Due to this reason, the issue related to the resource utilization
needs to be marked as a failure. For the virtual machines, the issue of the resource
utilization only affects the individual clients, and then the errors related to this metric
are marked as the regular problems only and assigned a lower priority than the other
metrics. Similarly, the bandwidth makes a major influence on the quality of services
of the virtual machines. Therefore, this metric should be considered as an important
factor. In order to avoid the multi-event problem affecting the result of reasoning, the
priority of the metrics will be specified with regard to each target system as below:

With physical servers:

1. Resource utilization
2. Throughput
3. Response time
4. Bandwidth

With virtual machines:

1. Response time
2. Throughput

123

Author's personal copy



Early fault detection in IaaS cloud computing…

3. Bandwidth
4. Resource utilization

By the end of the approximate reasoning, the issues causing the system failures can
be identified fairly and accurately within a fast reaction rate.

5 Performance evaluation

The proposed architecture is implemented and tested on the datacenter ofVietnamDat-
acommunication Company (VDC). The computing system consists of 7 IBM3650M3
servers with the following specification: CPU Quad Core Intel Xeon E5600 series—
2.4 GHz—12M cache, SAS 600 GB, 8 GB RAM DDR3, Linux CentOS 5.8. For the
cloud configuration, OpenNebula 2.2 and XEN Hypervisor 4.0.4 are chosen as the
orchestrator and the hypervisor, respectively. This system hosts around 75–85 virtual
machines as time progresses. The simulated errors consist of four categories: resource
utilization, throughput, response time and bandwidth. These errors are randomly dis-
patched into the system following the uniform distribution with the probability of 0.3.
In addition to the implementation of proposed method, the Algorithmic-Based Fault
Tolerance (ABFT) is also implemented for the purpose of comparison. There are three
measurements for the evaluation: the accuracy, the response time of the fault detection
and the system reliability. As time goes by, the data are cumulatively calculated after
each period of 5 min.

In the accuracy test, according to Fig. 6a and Table 1, the proposed method scores
around 11% better than the ABFT by the end of the experiment. In the response time
test, although the reaction rate is fluctuated, the proposed method is measured to be
23.4% faster than the ABFT in the best case (Fig. 6b). To summarize, the proposed
approach is quite good to pro-actively trigger the fault detection when failures occur in
the cloud computing system. Furthermore, this improvement significantly reduces the
degradation of system reliability, which is caused by the simulated errors as mentioned
above. It is worth noting that the measurement of system reliability is calculated based
on the ratio of “failed nodes” over the properlyworking ones. Formore information, the
terminology ‘failed nodes’ stands for the physical servers and/or the virtual machines
that can not be or wrongly recovered. Intuitively, the result can be clearly seen in Fig 7
and Table 2.

The last part is about the evaluation of the prediction in terms of accuracy. In this
evaluation, we use the assessment of CPU and memory as the demonstrated metrics.
Whereby, the prediction procedure of other metrics is very similar. Thus, in order
to make the presentation more focused, these procedures are not included in this
section. In order to assess the aforementioned metrics, we would like to include the
error measurement mechanism. The error measurement is also referred to as the error
function which is based on the root mean square error (RMSE) method. Note that the
RMSE method is stricter than the popularly used mean square error (MSE) method.
Let n stand for the size of dataset, and by using the RMSE error function, the
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Fig. 6 a Accuracy evaluation in fault detection (higher is better). b Response time evaluation in fault
detection (lower is better). c Accuracy evaluation in memory utilization prediction. d Accuracy evaluation
in CPU utilization prediction. Performance evaluation of proposed method on cloud computing system.

Table 1 Summary of
algorithmic accuracy

Time (min) 20 30 40 50 60

Proposal (%) 78 85.2 90.3 94.1 96

ABFT (%) 70.5 76.3 80.6 83.8 85.9

gap between the current value and the predicted one can be evaluated at every steps
of the anticipation. Following is the represented equation of the RMSE:

RMSE =
√∑n

i=1R(m)
i − P(m)

i

n
(19)

where R(k)
i and P(k)

i stand for the current and the predicted values of the statistics
at the monitoring window m, respectively. The variable i stands for the order of the
value in the data array. As shown in Fig. 6c, d, the proposed method outperforms
the polynomial fitting regression in both memory and CPU utilization predictions,
respectively. It is worth noting that the polynomial fitting regression is very popular
in various prediction applications because of the convenience in implementation.
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Fig. 7 System reliability over benchmarking time (higher is better)

Table 2 Summary of system
reliability evaluation

Time (min) 20 30 40 50 60

Proposal (%) 96.8 93.7 92.6 91.3 90.2

ABFT (%) 95.7 90.8 87.6 84.8 79.9

6 Conclusion

In this research, we introduce a proactive approach to early detect the failures in IaaS
cloud computing based on the fuzzy logic method and the Gaussian process regres-
sion technique. With the proposed architecture, the faults can be detected accurately
without requiring the precise input dataset. With this advantage, the treatment for the
faults can be engaged in advance and improves the system reliability significantly.
Besides, because the reaction rate is accelerated, then the cost paying for this solution
is quite acceptable. For the future works, we might engage the probabilistic approach
to alternate the knowledge base to increase the ability of “self-decision making” for
the fault tolerance system.
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