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Abstract. Principle Component Analysis (PCA) technique is an important and 
well-developed area of image recognition and to date many linear 
discrimination methods have been put forward. Despite these efforts, there 
persist in the traditional PCA some weaknesses. In this paper, we propose a 
new PCA-based method that can overcome one drawback existed in the 
traditional PCA method. In face recognition where the training data are labeled, 
a projection is often required to emphasize the discrimination between the 
clusters. PCA may fail to accomplish this, no matter how easy the task is, as 
they are unsupervised techniques. The directions that maximize the scatter of 
the data might not be as adequate to discriminate between clusters. So we 
proposed a new PCA-based scheme which can straightforwardly take into 
consideration data labeling, and makes the performance of recognition system 
better. Experiment results show our method achieves better performance in 
comparison with the traditional PCA method. 

Index Terms – Principle component analysis, face recognition. 

1. Introduction 

Principal component analysis (PCA), also known as Karhunen-Loeve expansion, is 
a classical feature extraction and data representation technique widely used in the 
areas of pattern recognition and computer vision. Sirovich and Kirby [1], [2] first used 
PCA to efficiently represent pictures of human faces. They argued that any face 
image could be reconstructed approximately as a weighted sum of a small collection 
of images that define a facial basis (eigenimages), and a mean image of  the face. 
Within this context, Turk and Pentland [3] presented the well-known Eigenfaces 
method for face recognition in 1991. Since then, PCA has been widely investigated 
and has become one of the most successful approaches in face recognition [4], [5], 
[6], [7]. However, Wiskott et al. [10] pointed out that PCA could not capture even the 
simplest invariance unless this information is explicitly provided in the training data.  

Recently, two PCA-related methods, independent component analysis (ICA) and 
kernel principal component analysis (Kernel PCA) have been of wide concern. 
Bartlett et al. [11] and Draper et al. [12] proposed using ICA for face representation 
and found that it was better than PCA when cosines were used as the similarity 
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measure (however, their performance was not significantly different if the Euclidean 
distance is used). Yang [14] used Kernel PCA for face feature extraction and 
recognition and showed that the Kernel Eigenfaces method outperforms the classical 
Eigenfaces method. However, ICA and Kernel PCA are both computationally more 
expensive than PCA. The experimental results in [14] showed the ratio of the 
computation time required by ICA, Kernel PCA, and PCA is, on average, 8.7: 3.2: 
1.0. 

In face recognition where the data are labeled, a projection is often required to 
emphasize the discrimination between the clusters. PCA may fail to accomplish this, 
no matter how easy the task is, as they are unsupervised techniques. The directions 
that maximize the scatter of the data might not be as adequate to discriminate between 
clusters. In this paper, our proposed PCA scheme can straightforwardly take into 
consideration data labeling, which makes the performance of recognition system 
better. The remainder of this paper is organized as follows: In Section 2, the 
traditional PCA method is reviewed. The idea of the proposed method and its 
algorithm are described in Section 3. In Section 4, experimental results are presented 
on the ORL, and the Yale face image databases to demonstrate the effectiveness of 
our method. Finally, conclusions are presented in Section 5. 

2. Principle Component Analysis 

Let us consider a set of N sample images 1 2{ , ,..., }Nx x x  taking values in an n-

dimensional image space, and the matrix 1 2[ ... ] nxN
NA x x x= ∈  with i ix x µ= −  

and nµ ∈  is the mean image of all samples. Let us also consider a linear 
transformation mapping the original n-dimensional image space into an m-
dimensional feature space, where m < n. The new feature vectors m

ky ∈  are 
defined by the following linear transformation : 

T
k ky W x=  and TY W A=  (1) 

where 1, 2,...,k N=  and nxmW ∈  is a matrix with orthonormal columns. 
If the total scatter matrix  is defined as 

1
( )( )

N
T T

T k k
k

S AA x xµ µ
=

= = − −∑  
(2) 

where n is the number of sample images, then after applying the linear 
transformation TW , the scatter of the transformed feature vectors 1 2{ , ,..., }Ny y y  is 

T
TW S W  . In PCA, the projection optW   is chosen to maximize the determinant of 

the total scatter matrix of the projected samples, i.e., 
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1 2arg max [ ... ]T
opt W T mW W S W w w w= =  (3) 

where { 1,2,..., }iw i m=  is the set of n-dimensional eigenvectors of  TS  
corresponding to the m largest eigenvalues. 

It also can be proved that PCA finds the projections that maximizes the trace of the 
total scatter matrix of the projected samples, i.e , 

1

( )
m

T T
opt T opt i T i

i

trace W S W w S w
=

=∑  
(4) 

is maximized. 

3. Our proposed PCA 

 In the following part, we show that PCA finds the projection that maximizes the 
sum of all squared pairwise distances between the projected data elements and we 
also propose our approach. Firstly we will take a look at some necessary background. 

The Laplacian is a key entity for describing pairwise relationships between data 
elements. This is an symmetric positive-semidefinite matrix, characterized by having 
zero row and column sums. Let L be an NxN  Laplacian and 

1 2[ ... ]T N
Nz z z z= ∈  then we have 

2

2 2 2

2

( ) 2 ( )

T
ii i ij i j

i i j

ij i j ij i j ij i j
i j i j i j

z Lz L z L z z

L z z L z z L z z
<

< < <

= + =

= − + + = − −

∑ ∑

∑ ∑ ∑
 

(5) 

Let 1 2, ,..., N
mr r r ∈  be m columns of the matrix TY , applying (5) we have  

2 2

1 1
(( ) ( ) ) ( , )

m m
T
k k ij k i k j ij i j

k i j k i j
r Lr L r r L d y y

= < = <

⎛ ⎞= − − = −⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑  
(6) 

with ( , )i jd y y  is the Euclidean distance. Now we turn into proving the following 
theorem, and develop it to our approach. 

Theorem 1 . PCA computes the p-dimensional project that maximizes 
2( , )i j

i j
d y y

<
∑  (7) 

 

Before proving this Theorem, we define a NxN  unit Laplacian, denoted by uL , 
as 1u

ijL Nδ= − . We have  
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( )u T T T
N T TAL A A NI U A NS AUA NS= − = − =  (8) 

 with NI  is identity matrix and U  is a matrix of all ones. The last equality is due 
to the fact that the coordinates are centered. By (6), we get 

 2

1 1 1
( , )

m m m
T u T u T T

i j i i i i i T i
i j i i i

d y y y L y w AL A w N w S w
< = = =

= = =∑ ∑ ∑ ∑  
(9) 

Formulating PCA as in (7) implies a straightforward generalization—simply 
replace the unit Laplacian with a general one in the target function. In the notation of 
Theorem 1, this means that the p-dimensional projection will maximize a weighted 
sum of squared distances, instead of an unweighted sum. Hence, it would be natural to 
call such a projection method by the name weighted PCA. 

Let us formalize this idea. Let be , 1{ }N
ij i jwt = symmetric nonnegative pairwise 

weights, with measuring how important it is for us to place the data elements i and j 
further apart in the low dimensional space. Let define NxN  Laplacian 

ij
w i j
ij

ij

wt i j
L

wt i j
≠

⎧ =⎪= ⎨
⎪− ≠⎩

∑
 and 

0 ,

1/ ( , )
i j

ij
i j

x x same class
wt

d x x other

∈⎧⎪= ⎨
⎪⎩

. Generalizing (7), 

we have weighted PCA and it seeks for the m-dimensional projection that maximizes 
2( , )ij i j

i j

wt d y y
<
∑ . And this is obtained by taking the m highest eigenvectors of the 

matrix w TAL A . The proof of this is the same as that of  Theorem 1, just replace 
uL by wL . Now, we still have one thing need solving. It is how to get the eigenvectors 

of w T nxnAL A ∈ , because this is a very big matrix. And the other one is how to 
define ijwt . Let D  be the N  eigenvalues diagonal matrix of T w NxNA AL ∈  and 

V  be the matrix whose columns are the corresponding eigenvectors, we have 

( ) ( )T w w T w wA AL V VD AL A AL V AL V D= ⇔ =  (10) 

From (10), we see that wAL V  is the matrix whose columns are the first N  
eigenvectors of w TAL A  and D  is the diagonal matrix of eigenvalues. 

4. Experimental results 

This section evaluates the performance of our propoped algorithm compared with 
that of the original PCA algorithm and proposed algorithm (named WPCA) based on 
using ORL and Yale face image database. In our experiments, firstly we tested the 
recognition rates with different number of training samples. ( 2,3, 4,5)k k =  images 
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of each subject are randomly selected from the database for training and the 
remaining  images of each subject for testing. For each value of k , 30 runs are 
performed with different random partition between training set and testing set. And 
for each k training samples experiment, we tested the recognition rates with different 
number of dimensions , d , which are from 2 to 10. Table 1& 2 shows the average 
recognition rates (%) with ORL database and Yale database respectively. In Fig. 1, 
we can see that our method achieves the better recognition rate compared to the 
traditional PCA. 

Table 1. The recognition rates on ORL database 

d 2 4 6 8 10 
k PCA WPCA PCA WPCA PCA WPCA PCA WPCA PCA WPCA 
2 39.69 44.24 61.56 62.11 69.69 71.22 78.13 81.35 78.49 82.05 
3 40.36 44.84 66.79 68.49 70.00 72.75 78.21 82.09 80.36 82.72 
4 38.75 41.62 63.75 67.86 78.33 82.35 83.75 85.76 86.25 89.03 
5 37.00 41.33 68.00 72.57 79.50 84.57 85.50 88.97 89.00 91.39 

Table 2. The recognition rates on Yale database 

d 2 4 6 8 10 
k PCA WPCA PCA WPCA PCA WPCA PCA WPCA PCA WPCA 
2 40.56 42.95 58.33 62.37 66.48 69.18 70.93 73.44 76.11 78.14 
3 42.50 45.17 74.17 77.89 78.33 80.62 81.67 84.47 86.67 90.49 
4 43.10 53.20 71.67 73.11 83.10 87.13 88.81 90.72 90.71 94.06 
5 57.22 59.30 72.78 75.01 83.89 84.55 87.22 88.92 88.33 91.77 
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Fig. 1. The recognition rate (%) graphs on two databases 

5. Conclusions 

A new PCA-based method for face recognition has been proposed in this paper. 
The proposed PCA-based method can overcome one drawback existed in the 
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traditional PCA method. PCA may fail to emphasize the discrimination between the 
clusters, no matter how easy the task is, as they are unsupervised techniques. The 
directions that maximize the scatter of the data might not be as adequate to 
discriminate between clusters. So we proposed a new PCA-based scheme which can 
straightforwardly take into consideration data labeling, and makes the performance of 
recognition system better. The effectiveness of the proposed approach can be seen 
through our experiments based on ORL and Yale face databases. Perhaps, this 
approach is not a novel technique in face recognition, however it can improve the 
performance of traditional PCA approach whose complexity is less than LDA or ICA 
approaches. 
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