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Abstract
Processing huge repository of medical literature for extracting relevant and high-quality evidences demands 
efficient evidence support methods. We aim at developing methods to automate the process of finding quality 
evidences from a plethora of literature documents and grade them according to the context (local condition). 
We propose a two-level methodology for quality recognition and grading of evidences. First, quality is recognized 
using quality recognition model; second, context-aware grading of evidences is accomplished. Using 10-fold 
cross-validation, the proposed quality recognition model achieved an accuracy of 92.14 percent and improved 
the baseline system accuracy by about 24 percent. The proposed context-aware grading method graded 808 out 
of 1354 test evidences as highly beneficial for treatment purpose. This infers that around 60 percent evidences 
shall be given more importance as compared to the other 40 percent evidences. The inclusion of context in 
recommendation of evidence makes the process of evidence-based decision-making “situation-aware.”

Keywords
context-aware evidence grading, evidence-based medicine, evidence-based practice, evidence informed 
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Introduction

There is an exponential growth in the medical literature, and medical practitioners are finding it 
difficult to obtain the most relevant information in their limited time span. Young physicians, 

Corresponding author:
Sungyoung Lee, Department of Computer Science and Engineering, Kyung Hee University, Seocheon-dong, Giheung-gu, 
Yongin-si 446-701, Gyeonggi-do, Korea. 
Email: sylee@oslab.khu.ac.kr

719560 JHI0010.1177/1460458217719560Health Informatics JournalAfzal et al.
research-article2017

Original Article

https://uk.sagepub.com/en-gb/journals-permissions
https://journals.sagepub.com/home/jhi
mailto:sylee@oslab.khu.ac.kr


2 Health Informatics Journal 00(0)

particularly, are open to innovation, but they seek to minimize the costs either to themselves or to 
their patients.1 Without automation, processing of huge amount of literature is a costly and a chal-
lenging task for even the existing systems, leave aside manual efforts of the medical practitioners. 
Practicing evidence-based medicine2–4 requires the medical practitioners to extract high-quality 
evidence from published research in addition to their own knowledge and experience.2 Finding 
high-quality evidence is essential for successful practice,3 but medical practitioners face many bar-
riers in using evidence-based answers at point-of-care.4 If done at all, most of the time, seeking best 
evidence is done manually.5 It requires a lot of manual computation time in order to reach to the 
desired quality appraised evidences. The importance of recognizing and appraising the evidences 
can be realized from the fact that more than 100 grading scales are in use today as reported in 
Agency of Healthcare Research and Quality research report.6 Regardless of a grading scale, the 
strength of computing evidences should consider three key elements: quality, quantity, and con-
sistency. A few of them such as Grading of Recommendations Assessment, Development, and 
Evaluation (GRADE)7,8 and Strength Of Recommendation Taxonomy (SORT)9 focus on develop-
ing guidelines for quality of evidences and strength of recommendations. GRADE provides the 
definitions for grading the quality of the evidence on four levels: high, moderate, low, and very 
low. SORT, on the other hand, provides a taxonomy to determine the strength of the recommenda-
tion of a body of evidence based on three ratings: A (strong), B (moderate), and C (weak).

Currently, some approaches10–12 focus on query building to find information resources but lack 
automatic appraisal of evidence quality. Using Boolean approaches with search filters, “hedges” 
can improve the retrieval of clinically relevant and scientifically sound studies from MEDLINE 
and similar databases,13,14 but the statistical approaches3,5 presented a proof of better accuracy in 
recognizing quality articles as compared to Boolean approaches. Very recently, Sarker et al.15 pre-
sented an approach of evidence quality prediction through supervised classification model. The 
approach uses the SORT9 to grade the evidences. A number of other approaches16–18 are proposed 
in the area of text classification. Ruiz-Rico et al.16 combine the existing techniques innovatively for 
the classification of MEDLINE abstracts based on a noun phrase extraction. Kim and Choi18 pro-
vide automatic classification of key sentences to support evidence-based medicine. A support vec-
tor machine (SVM)-based approach is presented for systematic review of related high-quality 
article classification.18 Domain-specific post-retrieval re-ranking approach19 is proposed in the 
domain of depression that attempts to re-rank the articles returned by the search engine.

The investigation leads us to the conclusion of utilizing quality-based context-aware graded 
evidences in the evidence-based decision-making process. The strengths of the existing work moti-
vated us to explore improvements in the area of automatic quality processing and grade computa-
tion. Based on this motivation, we formulated a consistent two-level methodology: quality evidence 
recognition (level 1) and context-aware grading (level 2). The methodology is capable of identify-
ing high-quality evidence for recommendation to the medical practitioners or caregivers, or even 
patients according to their contexts.

We differentiate our proposed approach with the existing ones in the following areas: (a) 
automatic extraction of metadata features and standardization for improved quality prediction 
through a supervised classification model called quality recognition model (QRM) and (b) con-
text elements identification, mappings, and aggregation to grade evidences through our proposed 
method called context-aware grading (CAG). In our approach, we exploited the strengths of 
existing approaches3 using the data features (title, abstract) and metadata features (MeSH terms 
and publication type) for developing the QRM model. We adhere to the suggestions of GRADE8 
and SORT9 grading scales in CAG-based grading with the exception of involving decision-
making context influenced from the conceptual framework for context-based evidence-based 
decision-making.20,21
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Objective

Physicians, whether serving individual patients or populations, always have sought to base their deci-
sions and actions on the best possible evidence.22 Based on evidence-adaptive clinical decision support 
systems,23 the researchers and developers need to customize the literature-based evidence for local 
conditions. Adhering to these needs and recommendations, the task of finding best possible evidence 
from the literature, customized to the local conditions, becomes a priority. We aim at developing meth-
ods to automate the process of finding quality (best possible) evidences from a plethora of literature 
documents and grade them according the context (local condition). Previously, we developed auto-
mated methods for knowledge-based query construction, assisting the medical practitioners in query 
preparation.24,25 This work is a step forward to focus on evidence quality evaluation and CAG.

Materials and methods

We propose a hierarchical strategy for the evaluation of quality evidence at two different levels as 
depicted in Figure 1. At first level, the quality of evidences is recognized on the basis of methodological 
rigorousness through the QRM classification model. If an article passes the criteria of being methodo-
logical rigorous, the article is recognized as a quality evidence. At second level, the recognized quality 
evidences are graded on the basis of user and resource contextual information using CAG method.

Level 1: quality recognition

Prior describing the method of quality evidence recognition, it is necessary to agree upon quality 
parameters. Quality of an evidence and what makes an evidence a quality evidence for a user are 

Figure 1. Two-level evidence evaluation: quality recognition and context-aware grading.
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two different considerations. The definitions of a quality evidence are available in the literature for 
clinical care. SORT9 includes ratings of A, B, or C for the strength of recommendation for a body 
of evidence. The analogy of a best evidence aligned with category “A” of SORT grading which is 
defined as “Recommendation based on consistent and good quality patient oriented evidence.”9 
Good-quality patient-oriented evidence has different meanings with respect to different purposes 
such as diagnosis, treatment, and prognosis. For treatment purposes, the meaning of good quality 
evidence is provided in Definition 1.

Definition 1. “Systematic Review or meta-analysis of randomized controlled trials (RCTs) with 
consistent findings or high-quality individual RCT.9”

In a study protocol,14 an article is considered as high quality if it passes the “methodological 
rigorous” criteria. Methodological rigorous article for different purposes has different meanings. 
For treatment purpose, a methodological rigor article is defined as in Definition 2.

Definition 2. “Random allocation of participants to comparison groups, outcome assessment of at 
least 80% of those entering the investigation accounted for in 1 major analysis at any given follow 
up assessment, and analysis consistent with study design.”14

For this study, Definition 2 is considered for quality evaluation of the evidences. For quality 
evaluations, we develop a supervised classification model called QRM. We follow the steps of data 
collection, feature selection, corpus preparation, algorithm selection, and parameter tuning for 
QRM development.

Data collection. We use the data that were manually created by a team of specialized experts for the 
purpose of clinical query filters in PubMed.14 The data collection consists of 50,594 MEDLINE 
documents, of which 49,028 documents are unique. The collection is classified across four dimen-
sions: format (O = original study, R = review, GM = general and miscellaneous articles, and 
CR = case report), human healthcare interest (yes/no), scientific rigor (yes/no), and purpose (diag-
nosis, etiology, prognosis, treatment, economic studies, reviews, and clinical predication guides). 
Among 50,594 documents, 3363 are labeled as being scientifically rigorous.

Feature selection. Feature selection plays an important role in predicting performance. From the 
existing studies, we come across features including data features (title, abstract) and metadata fea-
tures (MeSH terms, publication type, publication year, publication venue, and publication authors). 
In some studies, concepts used are semantic prediction, UMLS concepts, and UMLS relation in 
predictions.3 The data features that are used in earlier studies3,15 have proved their importance. 
Publication type (one of the metadata features) is the most important feature reported from the 
same studies. MeSH terms is also reported in Kilicoglu et al.3 as one of the important contributors. 
Other metadata features including publication year and publication venue are reported as less 
significant features to affect the classification accuracy. In our experiments, we also found that 
publication year, venue, and author are the least significant in metadata feature list as compared to 
other metadata. Finally, we select four features; title, abstract, MeSH, and publication type.

Corpus preparation. Getting the data for the selected features, we implemented eUtils service API26 
to retrieve the documents from the PubMed database. The documents are processed to get indi-
vidual features and store to MS SQL Server database for experimentation.

Word vector preparation. The selected features are composed of “bag-of-words” which need  
to be cleaned prior to use for learning methods. We apply the text processing method “process 
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documents from data” using TD-IDF27 in RapidMiner tool.28 To remove the least and too frequent 
words from the list, the prune method is set to absolute with below absolute = 2 and above abso-
lute = 100. The preprocessing steps are described in Figure 2 to get the final word vector. Title and 
abstract are first tokenized, transform the case, remove English stop words, stemming the words 
using the Porter29 stemmer, and filtering the tokens by length having minimum characters of 2 
and maximum of 999 characters. Unlike data features (title, abstract), vectors of the metadata 
features (MeSH, publication type) are created through tokenization and case transformation as 
there was no need to remove stop words and stemming. The complete workflow designed in Rapid-
Minor tool is made available on a public domain (https://www.myexperiment.org/workflows/4958.
html?version=1) for the general public to reuse for their own experimentation.

Standardizing language of publication type. The publication types text retrieved through eUtils 
API26 are not consistent with the vocabulary of publication types provided by PubMed. Publication 
types found in PubMed are reported in count as 73,30 which is quite less than the count 248 returned 
for the documents in our selected data set. Algorithm 1 mapped the inconsistent publication types 
to standard publication types taking the list of articles as input. The publication type of each article 
is a string which may contain one or more than one publication types. Using getPType() function, 
the string is parsed into a list of atomic publication type. For each atomic publication type, rank 
is determined with getRank() function. The getRank() function finds the rank of each publication 
type in R mapping table. Ranks of each publication type are dependent on the goal of the study 
such as diagnosis, treatment, and others. The ranks for publication types based on their importance 
and effectiveness are derived from the literature evidences8,9,14,31,32 as shown in Table 1. The rank 
value 1 shows the highest rank of publication types of the treatment goal with respect to their 
importance. For instance, meta-analysis of RCTs is considered the most important publication type 
for treatment, so it is ranked on top by assigning value 1. Table 1 is not an exhaustive representa-
tion to have a rank entry for each possible publication type rather it holds the most prominent and 
influential publication types for the treatment goal.

Parameter setting. Rigorous recognition on the articles is a binary classification problem. We 
surveyed multiple methods from different sources and selected some that work well with text 
categorization tasks.33,34 For the chosen methods, Naïve Bayes (NB) kernel,35 k-nearest neigh-
bor (kNN),36 SVM linear,37 and decision tree (DT),38 we tested the performance at different 
parameter settings. NB is experimented with kernel values 5, 10, and 15 with a minimum 

Figure 2. Process of word vectors (title, abstract, MeSH, Publication type) creation.

https://www.myexperiment.org/workflows/4958.html?version=1
https://www.myexperiment.org/workflows/4958.html?version=1
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Table 1. Rank values of publication types (1 shows the 
highest and 4 is the lowest).

Publication type Rank

Meta-analysis of RCTs 1
Systematic Review of RCTs 2
RCT 3
Meta-analysis of CTs 4
Systematic review of CTs 5
CT 6
Cohort study 7
Case-control study/report 7
Guidelines 8
Opinion 9
Observational study 10
Any other publication type 11

RCT: randomized controlled trial; CT: control trial.

Algorithm 1. Standardizing language of publication types.

Begin

  inputs: A a a an− { , , , }1 2  ;//the list of articles

  output: ′ −A a a an{ , , , }1 2  ;//the list of articles with standardized publication type

1.   Let;

2.       pt representspublication type;

3.       rank ptrepresents therank of ;

4.       tempRank = 0; //holds the previous rank temporarily for comparison

5.       spt represents the standardized publication type;

6.   for each a in A

7.      do

8.       pt a← . ();getPublicationType

9.       rank← ( )getRank pt,R ; //where R is the rank table for publication types.

10.       if ( )rank tempRank>

11.        ;tempRank rank←

12.        spt pt;←

13.       endif

14.     while a.getPublicationType exists( )
15.     a.PublicationType spt← ;

16.     ′A .add(a);

17.   endfor

18.   return ′A ;

End
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bandwidth of 0.1, and it was found that kernel value = 10 showed slightly better performance. 
Finding the best value of k for kNN, we experimented k values in the range of 1–20 for odd 
values and found k = 5 with measure type = NumericalMeasure and numerical measure =  
CosineSimilarity as better setting. DT performed better on RapidMiner default settings with 
confidence value of 0.25 for the pessimistic error calculation of pruning. SVM with different 
parameter settings is tested to find the best value of complex cost parameter C. Values less than 
0.0 showed similar results to C = 0.0. Similarly, values greater than 0.1 produces similar results 
to C = 0.1. The kernel cache value is set to 200 and maximum iterations are set to 100,000. 
Finally, we were left with C = 0.0 and C = 0.1 to choose from; however, C = 0.0 for our experi-
ment produced better results as compared to C = 0.1. The performance for different parameter 
settings of SVM is shown in Table 2.

Method selection. We choose a subset that is treatment-related documents of our selected data set 
for the experiment to find quality evidence. The subset includes 6882 documents out of which 
4999 are labeled as “non-rigor” and 1883 are labeled as “rigor.” We determine the performance 
of chosen methods on F-measure, accuracy, and area under curve (AUC) criteria (Table 3). 
F-measure and accuracy are included to judge how accurately the rigorousness of an article is 
predicted and AUC criterion is included to judge how consistently they are predicted. In the lit-
erature, it is reported that AUC is statistically consistent and more discriminant than accuracy.39,40 
SVM classifier performs the best in accuracy than DT and kNN; however, it is lower than NB. 
AUC of SVM was lower than DT; however, it was higher than NB and kNN. Overall, SVM 
showed better overall ranking score than all other competing algorithms and kNN showed poor 
performance as compared to others. Because of the higher performance, SVM is chosen for the 
development of QRM.

Table 2. SVM complexity cost (C) parameter setting and the corresponding results.

Method Parameter Value Result (accuracy)

SVM Complex cost 
parameter C

−0.2 80.15
−0.1 80.15

0.0 80.15
0.1 75.38
0.2 75.38

SVM: support vector machine.

Table 3. Performance of machine learning algorithms in terms of accumulative sum score of F-measure, 
accuracy, and AUC using data and metadata features with standard publication type on training and 
development test data.

Algorithm/
criteria

Training Testing Sum score

F-measure Accuracy AUC F-measure Accuracy AUC

SVM 0.849 0.771 0.807 0.870 0.785 0.735 4.818
DT 0.914 0.883 0.969 0.289 0.316 0.762 4.134
NB 0.835 0.764 0.752 0.721 0.602 0.548 4.223
kNN 0.812 0.707 0.782 0.847 0.752 0.777 4.678

The bold value shows that SVM secured the highest accumulative sum score thus selected for the experiment;  
AUC: area under curve; SVM: support vector machine; kNN: k-nearest neighbor; DT: decision tree; NB: Naïve Bayes.
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Level 2: context-aware evidence grading

Evidence recognition on the basis of user query and statistical methods may not fully determine the 
user preferred evidences. The statistical approach described in Level 1: quality recognition recog-
nizes the evidence quality on the basis of methodological rigorousness, which is a necessary step; 
however, it is not sufficient to reflect the user perspective. In order to reflect the user perspective, we 
conceive the user context in relation to a resource (evidence) context. Context has a vast meaning,  
it exhibits its characteristics according to the goal and application domain. Vebert et al.41 present a 
context framework that identities relevant context dimensions for technology enhanced learning 
applications. We derive the classification of context information that is relevant to evidence-based 
clinical applications. In evidence-based clinical applications, user’s main objective is to interact with 
online resources for finding support in evidence-based decision-making. We derive the contextual 
elements from the context framework in Dobrow et al.,20 Verbert et al.,41 and Rycroft-Malone42 that 
is relevant to the objective of evidence-based clinical applications. User context has multiple ele-
ments such as basic information which shows user educational level, background is the experience of 
the user, goal shows short-term learning or long-term learning, interest represents the preferences, 
and learning style is the pattern of user learning such as textual and visual. An evidence possess  
multiple properties such as the publication type, publication avenue (journal, book, etc.), and year of 
publication. For grading an evidence, we design a method as shown in Figure 3 and describe in 
Algorithm 2, which evaluates an evidence on the basis of different user context elements.

First, the properties associated with the evidences are extracted and each property is evaluated 
with each of the elements of different contexts. For instance, an evidence E has properties P1  and 
P2  and user U who is interested in E possesses the contexts C1  and C2 . The algorithm first evalu-
ates the property P1  of E according to C1  and C2  by putting the grading value from expert-based 
contextual mappings. The process is repeated for property P2  in the similar way as that of P1 . If 
there are more contexts or properties, this process will occur for all of them. In Figure 3, user con-
texts C1  and C2  are mapped to the two properties P1  and P2  of an evidence. The mappings of 
context to evidence are made based on two type of analysis: literature-based and expert-based. We 
investigate the well-known study protocols and grading systems8,9,14 and two senior physicians to 
grade evidence with different contexts. The grade values are chosen as L = low, M = Medium, 
H = High, and U = Unknown, for each user context against a property of an evidence. The grade 
values for evidences are stored in the form of matrix where rows represent the user context ele-
ments and columns represent the properties of evidence as shown in Table 4.

Figure 3. User context mapping with evidence properties.
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Context aggregation. Based on the grade values, the aggregate contextual grade values are inferred 
from each column of Table 5. The aggregate contextual grade values accumulatively make the 
aggregate contextual vector. Table 5 shows the aggregate contextual grade vector (ACGV) consist-
ing of aggregate contextual grade values. The aggregate contextual grade values are inferred using 
a simple rule of picking the highest rank value among H, M, L, and U in the respective column. 
Highest to lowest definition is provided in equation (1). For instance, L is selected as the aggregate 
value because L > U.

H M L U> > >  (1)

Final grade value (FGV) is inferred from the values of ACGV on the same rule as in equation 
(1). For the user explanation, the FGV value is interpreted according to equation (2)

Algorithm 2. Grading evidences based on user context.

Begin

  input: E e e en− { , , , }1 2  ;//the list of rigor evidences

  output: GE e g e g e gn n− {{ , }, { , }, , { , }};1 1 2 2 
//where g represents the grades h, m, l, u.

1.    Let;

2.      C c c cn– { , , , };1 2 ⊃ //current context

3.      P p p pn− …{ }1 2, , , ; //properties of E

4.      G g g gn– , , , ;{ }1 2 ⊃ //properties of E

5.   for each e in E

6.     for each p in P

7.       for each c in C

8.        grade p,c← ( )computeGrade ;

9.        G. ( );add grade

10.       endfor

11.     endfor

12.     finalGrade G← ( )getHighestGrade ;

13.     GE. ( , )add e finalGrade ;

14.   endfor

15.   return GE;

16. End

Table 4. Grade value population for an evidence with respect to contexts.

Context\evidence P1 P2 … Pn

C1 (H or M or L or U) (H or M or L or U) … (H or M or L or U)
C2 (H or M or L or U) (H or M or L or U) … (H or M or L or U)
… … … … …
Cn (H or M or L or U) (H or M or L or U) … (H or M or L or U)
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Experimental results

As mentioned, the proposed methodology is implemented in hierarchical fashion. The implemen-
tation framework for conducting different experiments is described in Figure 4. Using this imple-
mentation framework, three types of experiments are conducted where two of the experiments are 
pertinent to QRM and one of them is related to CAG:

Experiment 1. Demonstration of QRM performance on development test data set for four differ-
ent features and their combinations.

Experiment 2. Comparison of QRM performance on publication type feature in default (non-
standardized) and in a standardized form.

Experiment 3. Contextual grading results CAG method on the basis of “physician interested 
in treatment” case study.

Experiment 1: QRM performance on development test data set

We here present the classification results obtained in the 10-fold cross-validation performed on the 
training set of 5682 documents and development test set of 1300 documents. In Table 6, accuracies 
on different features are presented. Using publication type feature, QRM produced second better 
results (79%) for testing documents. At training stage, the combination of three features (title, 
abstract, and standard publication type) stand second with 89.7 percent accuracy. Title feature 
remains the lowest in both training and testing cases and abstract feature remains second lowest. At 
training stage, MeSH feature performed better than standardized publication type (SPT), while at 
testing stage, it is reversed. Overall, in both training and testing, QRM performed exceptionally 
well on the combination of all features (title, abstract, MeSH, and standard publication type).

Table 5. Aggregate contextual grade values and vector.

Context\evidence P1 P2 … Pn  

C1 (H or M or L or U) (H or M or L or U) … (H or M or L or U)  
C2 (H or M or L or U) (H or M or L or U) … (H or M or L or U)  
… … … … …  
Cn (H or M or L or U) (H or M or L or U) … (H or M or L or U)  

Aggregate 
contextual grade 
values

(H or M or L or U) (H or M or L or U) … (H or M or L or U) (H or M or L or U)

Aggregate Contextual Grade Vector Final Grade Value
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Table 6. QRM accuracy on features separately and their overall combination.

Features Title (%) Abstract (%) MeSH (%) SPT (%) Title, abstract, SPT (%) All (%)

Training 76.28 82.81 86.4 85.71 89.7 92.14
Testing 73.31 75.46 76.9 79 78.15 80.15

QRM: quality recognition model.

Figure 4. Proposed methodology implementation framework for conducting experiments.
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Experiment 2: QRM performance on standardized and non-standardized 
publication types

With Entrez eUtils service, we get the publication types for the 5682 articles in our training data 
set. Overall, 249 different variations are found in publication types as shown in Figure 5(a). Using 
algorithm 1, we normalized the 249 variations into 13 standard publication types having different 
frequencies as shown in Figure 5(b). We experimented the performance of QRM on 5682 docu-
ments on publication type both in default and standard form. Journal article, RCTs, and research 
reports are in the higher distributions of 1484, 1416, and 1230, respectively, depicted in Figure 
5(b). The standard form publication type produced better results as described in Table 7. QRM 
performed exceptionally on standard publication type. The recall value showed about 2 percent, 
precision about 40 percent, and accuracy about 24 percent increase in the standardized form.

Experiment 3: CAG results for “physician interested in treatment” case study

The QRM model predicted 1355 out of 5682 documents as Rigor. Using equations (1) and (2), all 
1355 documents are assigned aggregate value for the contexts as; user type = physician and user 
goal = treatment. As shown in Table 8, Out of 1355 documents, about 60 percent documents are 
graded as H which means highly beneficial for the physician to benefit in treatment-related clinical 
decisions. Other approximately 20 percent are graded as M (moderate beneficial), 8 percent as L 
(low beneficial), and 13 percent as U (unknown).

Figure 5. (a) Publication types and (b) standardized publication types.

Table 7. QRM performance on standard and non-standard publication types.

Recall (%) Precision (%) Accuracy (%)

Non-standard Standard Non-standard Standard Non-standard Standard

66.07 68.27 40.81 80.52 61.56 85.71

QRM: quality recognition model.
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The higher number of H graded evidence complements the QRM performance and also it con-
fers the definitions of quality (Definition 2). Moreover, these evidences need to be evaluated from 
the experts in particular domains. In this study, since the documents are not related to any specific 
domain so human evaluation is not feasible to conduct.

Case study: results evaluation

To assess the performance of the models on a field test data, we perform experimentation on a real-
world case study. The study is related to the retrieval of evidentiary documents pertinent to head 
neck cancer treatment decision-making. We utilize eUtils functions of PubMed and run the three 
types of queries described in Table 9. The reason of having three different queries is to test queries 
of various scales, small, medium, and large.

In the next step, universal resource locators (URLs) are generated as described in Table 10 for 
execution of these queries on the PubMed search service.

All the queries are executed on PubMed database and retrieve the evidentiary documents. The 
retrieved documents are processed and the processed documents are passed through the trained 
QRM. On the average, 17.53 documents are filtered out from the final set of evidentiary document 
list as shown in Table 11.

Discussion

QRM model

Considering appraisal using the SORT scale as performed in a very recent article,15 we compared 
the results on the basis of same feature set. Unlike,15 our appraisal model evaluates articles on two 

Table 8. Evidence grading distribution among high, moderate, low, and unknown.

Grade H M L U

No. of evidences 808 (59.63%) 266 (19.63%) 110 (8.12%) 170 (12.55%)

Table 9. Queries designed for retrieving evidentiary documents from PubMed database.

Query no. Query terms

Q1 (Oral Cavity) AND (cancer AND head neck) AND (Therapy/Broad [filter])
Q2 (Oral Cavity) AND (T1 OR Clinical Stage 1) AND (cancer AND head neck) AND (Therapy/

Broad[filter])
Q3 (Oral Cavity) AND (T3 OR Clinical Stage 3) AND (Squamous cell carcinoma) AND (cancer 

AND head neck) AND (Therapy/Broad[filter])

Table 10. eUtils web service URLs for retrieving evidentiary documents from PubMed database.

Query No PubMed service URLs

Q1 http://eutils.ncbi.nlm.nih.gov/entrez/eutils/eSearch.fcgi?/db=pubmed term = Q1
Q2 http://eutils.ncbi.nlm.nih.gov/entrez/eutils/eSearch.fcgi?/db=pubmed term = Q2
Q3 http://eutils.ncbi.nlm.nih.gov/entrez/eutils/eSearch.fcgi?/db=pubmed term = Q3

URLs: universal resource locators.

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/eSearch.fcgi?/db=pubmed
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/eSearch.fcgi?/db=pubmed
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/eSearch.fcgi?/db=pubmed
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classes “rigor” and “non-rigor.” The gold standard data set is not the same; however, we here pre-
sent the comparison on the basis of feature set and machine learning algorithm equivalency. MeSH 
terms feature set is not included in their experiment, which produced better results for most of the 
feature sets in our experiment. Repeating the same method with SVM classifier proposed in Sarker 
et al.15 on our data set and comparing the results, we obtained approximately 3 percent better results 
(89.7% increases to 92.14%) for the feature set that includes MeSH terms at the training stage as 
described in Table 6. At the testing stage, QRM showed 2 percent improved results (78.15% 
increases to 80.15%) as shown in Table 6.

CAG model

The proposed approach is different from existing approaches in terms of user context consideration 
for evidence grading. The existing approach15 uses SORT9 taxonomy to grade the evidences. SORT 
taxonomy is a strong system to determine a grade for an evidence; however, it may not decide 
whether the evidence fits in user context or not. Our approach introduced CAG; a scalable and 
robust method to include contexts applicable in a particular domain. The only requirement for the 
extension is the identification of values for the contextual mapping tables. The aggregation contex-
tual vector (section “Context aggregation”) parsing method is independent of contextual map-
pings’ identification and population in the tables.

Feature significance

During evaluations, we noticed that publication type is the most influential feature to contribute in 
determining the quality of an article. This publication type feature has the highest accuracy level 
among the pool of evaluated features especially when it is transformed into a standard form as 
shown in experiment 2. In addition to publication type, the metadata feature “MeSH terms” has 
also produced good results. By combining both publication type and MeSH term features with data 
features; title and abstract produced the best and stable results across majority of the machine 
learning algorithms.

Limitations

The proposed CAG method requires prior contextual mappings for the aggregate vector gen-
eration. The proposed method will not be able to grade evidences where mappings of user 
context against the properties of evidences are not available. This limitation can be overcome 
by conducting a survey on a larger scale to cover multiple user contexts with maximum evi-
dence properties and store the contextual mappings in a global repository or provide access for 
local utilization.

Table 11. Performance results of QRM in terms of filter rate.

Query No. of documents 
retrieved

Pred. rigor Pred. non-rigor Filter rate (%)

Q1 2218 1771 447 20.15
Q2 228 192 36 15.79
Q3 168 140 28 16.66

QRM: quality recognition model.
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Conclusion

Getting high-quality evidence from a large volume of diverse literature is an important task in 
clinical care. Automation to improve the evidence appraisal process is still required for clinical 
efficiency. We demonstrate the automation at the evidence appraisal stage by developing a super-
vised classification model called QRM and CAG mechanism. This approach assists medical prac-
titioners and other stakeholders making evidence informed clinical decisions in clinical setups.

We plan to extend context-aware evidence grading task creating domain-specific data set in 
order to make the evaluation more consistent and precise to a particular domain. The approval of 
evidence by domain experts will be a step toward generating domain-specific training data having 
characteristics of relevance and high-quality acquired by the methods presented in this study.
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