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a b s t r a c t 

In this paper, we propose a novel robust blind color image watermarking method, namely 

SMLE, that allows to embed a gray-scale image as watermark into a host color image in 

the wavelet domain. After decomposing the gray-scale watermark to component binary 

images in digits ordering from least significant bit (LSB) to most significant bit (MSB), the 

retrieved binary bits are then embedded into wavelet blocks of two optimal color chan- 

nels by using an efficient quantization technique, where the wavelet coefficient difference 

in each block is quantized to either two pre-defined thresholds for corresponding 0-bits 

and 1-bits. To optimize the watermark imperceptibility, we equally split the coefficient 

modified quantity on two middle-frequency sub-bands instead of only one as in existing 

approaches. The improvement of embedding rule increases approximately 3 dB of water- 

marked image quality. An adequate trade-off between robustness and imperceptibility is 

controlled by a factor representing the embedding strength. As for extraction process, we 

exploit 2D Otsu algorithm for higher accuracy of watermark detection than that of 1D Otsu. 

Experimental results prove the robustness of our SMLE watermarking model against com- 

mon image processing operations along with its efficient retention of the imperceptibility 

of the watermark in the host image. Compared to state-of-the-art methods, our approach 

outperforms in most of robustness tests at a same high payload capacity. 
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1. Introduction 

Nowadays with the explosion of mobile devices and the Internet, digital images are easily and ubiquitously captured,

stored and shared on common social networks such as Facebook, Twitter and Instagram. They are usually uploaded to

the Internet directly using wireless communication channels without any preliminary protection schemes [40] . This makes

several urgent issues relating to copyright protection and authentication in transmission, storage, and usage of images [12] .

For example, a personal image shared on a social network can be accessed, downloaded, modified, and reused by the others

illegally for commercial or other purposes. To prevent such kind of risks, digital image watermarking techniques are needed

for owner authentication. Digital watermarking is further applied in video streaming services [7,28] . 

A general digital image watermarking model fundamentally includes two processes: (i) the embedding process encodes

the watermark containing the private information of the owners into the host image in order to be invisible to the human

eyes and (ii) the extraction process recovers the watermark from the embedded image to retrieve the hidden information for

originality authentication. Most of existing digital image watermarking methods deal with the perceptibility in the embed-

ment process and the robustness in the extraction process. At first, embedding a watermark requires a modification on the

host image, which ordinarily degrades the quality of the host image and exposes the hidden information [1] . Many proposed

models, therefore, concentrate to minimize the perceptibility of the watermark on gray-scale image instead of color images

due to less visual recognition. Secondly, the watermark must be robust to withstand common image processing operations

to precisely recover the hidden information from the embedded image [14] . In practice, the watermark can be modified,

destroyed, and even removed from the host image by combining several operations. Additionally, the copyright privacy of

an owner, an important impact whenever developing image watermarking models, is thoughtfully considered. As known as

the most challenging model, the blind watermarking [23,39] requires neither the original image nor the watermark for the

recovery process while the semi-blind watermarking [21] and non-blind watermarking [25] need the original host image

and all of them, respectively. It is obvious to realize that the blind watermarking scheme is more convenient than the oth-

ers. However, it should be noted that a secret key which contains variety of information such as wavelet block locations,

embedded color profiles, permutation code, and etc., must be provided for extracting watermark. Another important aspect,

which is usually ignored when evaluating a watermarking model, is the payload capacity. Most of existing works are de-

veloped for gray-scale images [13] and color images [10] with a binary image served as watermark [31,33] . However, the

utilization of a binary image as the watermark has some limitations. At first, since binary images contain less information

than gray-scale images, the content represented in binary images is more difficult for recognition than that of gray-scale im-

ages in case they are attacked by image processing operations. Secondly, binary images utilized as watermarks are sensitive

and fragile to common image transformations due to only two states of a bit for decision. In the case of using gray-scale

images as the watermark, as long as some most significant bits are correctly detected, we can precisely recover the primary

content without paying much attention to remaining less significant bits. Currently, quite a few models use gray-scale im-

age as watermark [25] , in which, their performance in terms of imperceptibility and robustness is not impressive due to the

constraint to payload capacity. Other approaches have trouble with high payload embedding, for example, the capacity of a

gray-scale image is eight times the capacity of a binary image at the same resolution because the bit depth of gray-scale and

binary image is 8 and 1, respectively. Hence, three major characteristics, i.e. imperceptibility, robustness, and payload capac-

ity should be firstly addressed in any image watermarking models. The benefits of using gray-scale images as watermarks

and also the challenges of developing a high payload embedding scheme for color images motivate us in this research. 

In this work, we develop a robust color image watermarking method, namely selective MSB-LSB embedding (SMLE),

where gray-scale image is aimed as watermark. A gray-scale watermark is decomposed to eight component binary images

following digits ordering which are then embedded into middle-frequency sub-bands of the host color image in the wavelet

domain. The embedding process is performed by a quantization technique where the coefficient difference of each wavelet

block is quantized to two pre-defined thresholds by an improved embedding rule. The total error of coefficient modification

caused on the host image by the embedding rule is minimized by equally spreading adjustment quantities of quantization on

two sub-bands simultaneously. In order to precisely recover watermark in the extraction process, a classification threshold

for detecting binary bits hidden in wavelet blocks of the watermarked image is calculated by 2D Otsu algorithm. Compared

with existing approaches, the proposed watermark model has following advantages: (i) a selective MSB-LSB embedding

scheme for efficiently hiding a gray-scale watermark image into a color image, (ii) an efficient embedding rule used for

optimal coefficient quantization to improve image imperceptibility, (iii) a factor representing the embedding strength for a

pleasant trade-off between robustness and imperceptibility, and (iv) an adaptive classification threshold defined by 2D Otsu

algorithm for extracting watermark accurately. Although the model is designed with a very high embedding rate of 1/64

byte/pixel (or 1/8 bit/pixel), it achieves high robustness against typical image manipulations like average filtering, median

filtering, linear motion blurring, scaling, additional noise, and JPEG compression. 

The remaining of the paper is organized as follows. Related works in the field of digital image watermarking are reviewed

in Section 2 . Section 3 describes the proposed digital image watermarking model for color image. Experimental results and

discussion are presented in Section 4 . Finally, conclusion and future work are outlined in Section 5 . 
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2. Related work 

Due to natural limitations of watermarking in the spatial domain involving visualization and robustness, most image

watermarking models are built on transformed domain, such as the cosine transform [8,18,23] , Fourier transform [39] , con-

tourlet transform [22] , wavelet transform [10,16] , and gyrator transform [26] . Hu et al. [8] modulated a partly sign-altered

(PSA) mean of selective discrete cosine transform (DCT) coefficients for binary embedding. The method is successful in en-

hancing imperceptibility of the watermark by handling the variation margin of each DCT coefficient based on either the

JPEG quantization table or the just noticeable distortion (JND). Based on quantizing DCT coefficient difference of adjacent

blocks at the same position to a particular pre-defined range, Parah et al. [18] modified coefficients by an amount which is

depended upon the binary watermark bit and the median of certain zig-zag ordered AC-coefficients. Roy and Pal [23] de-

veloped a multiple watermarking approach which allows to embed two binary watermark images by adjusting the mid-

dle significant AC-coefficients of green and blue components of the host image. Although the multiple watermarking is so

convenient for the multiple owners’ authentication, it needs to be improved in terms of robustness, imperceptibility, and

computational complexity. In [39] , a good visual quality of embedded images was achieved by encoding binary bits into real

quaternion Fourier coefficients, but the approach significantly consumed computational resources for least squares support

vector machine (LS-SVM) training in the extraction process. Ranjbar et al. [22] developed a two-stage embedding scheme

to preserve the visualization of host images by embedding a binary watermark bit for only one contourlet coefficient. The

method is highly robust under several common attacks, however, its extracting speed is very slow because of the local and

global watermark embedment on low and high frequency sub-bands. Compared to the cosine transform, the wavelet trans-

form is much more efficient in multi-resolution representation and analysis of an image in the frequency domain, so it has

been widely used in the field of image processing, for example, image decomposition for de-noising, quality assessment,

feature extraction, image watermarking [9,10,36] and classification [27] . Nguyen et al. [16] and Huynh-The et al. [9,10] per-

formed image watermarking in the wavelet domain for gray-scale and color image, respectively. Nguyen et al. proposed a

reversible watermarking scheme that achieves high accuracy of watermark detection with less degradation of image qual-

ity. By formulating a color channel selection algorithm, a blind color image watermarking approaches [9,10] achieved high

imperceptibility while maintaining great robustness of watermark under various image processing manipulations. A double

random phase encoding (DRPE) scheme [26] was developed for image authentication with more security in the quaternion

gyrator transform (GT) domain, an extension of the 2D fractional Fourier transform (FRFT). Moreover, some other trans-

formation techniques have been explored to particularly address the geometric distortion such as nonsubsampled shearlet

transform (NSST) [38] , polar harmonic transform (PHT) [37] , quaternion radial moments (QRMs) [31] , radial harmonic fourier

moments (RHFMs) [6] , and quaternion exponent moments (QEMs) [20] . By optimizing NSST for image decomposition, Wang

et al. [37] developed PHT to estimate the geometrical degradations parameters for precise watermark extraction. Besides

expensively computational requirement, the approach is fragile to random bending, and column or line removal. Similarly,

Wang et al. [6,20] calculated and selected the most robust fourier moments for moment magnitudes quantization, which

was served for watermark embedment. However, rigorous design for the square image and poor robustness of the large

scale cropping are two typical limitations of moments-based watermarking models compared to other approaches. 

Recently, machine learning techniques have been utilized for digital image watermarking such as genetic algorithms

(GAs) [15] , artificial bee colony (ABC) algorithm [1,3] , hidden Markov model (HMM) [4,33] , support vector machines (SVMs)

[34] , artificial neural networks (ANNs) [2,29] . In details, Moghaddam and Nemati [15] presented a spatial watermarking

model which applies imperialistic competition algorithm (ICA) to seek optimal regions for embedding. Due to processing

on the spatial domain, the watermark extracted from the model is breakable under such frequency domain based oper-

ations as lossy JPEG compression. Ali et al. [3] employed ABC algorithm to determine the optimal threshold for singular

value decomposition (SVD) coefficient quantization and the compensation parameter for visible distortion measurement in

case of imperceptibility increment. In [1] , the meta-heuristic technique developed on ABC algorithm was evaluated for sev-

eral recent image watermarking models to prove its efficiency in the issue of multi-objectives optimization. Amini et al.

[4] and Wang et al. [33] exploited HMM in the wavelet domain for locally optimal watermark detection. Although HMM-

based watermarking models provide an efficient trade-off between robustness and imperceptibility, significantly increased

complexity becomes a critical challenge for real-time processing. In [34] , a synchronous correction algorithm was developed

for watermark decoding using fuzzy least squares support vector machine (FLS-SVM). In training stage, the shape and scale

parameters of Bassel K form (BKF) distribution of wavelet coefficients extracted from image dataset are fed to construct the

FLS-SVM model. While Agarwal et al. [2] trained a hybrid back propagation neural network with genetic algorithm (GA-BPN)

by inference rules which contains three human visual system (HVS) parameters standing for luminance, edge, and contrast

sensitivity, Tsai and Liu [29] learned an ANN model with the JND profile to estimate watermarking without the original

image as requirement. Almost machine learning based watermarking approaches deliver comparative performance in terms

of robustness and imperceptibility, however, computational complexity is the major limitation compared to non-training

methods. 

Discrete wavelet transform (DWT), is one of the most popular time–frequency transformations, which has been widely

used in digital image watermarking. In general, both embedding and extraction processes are employed in the wavelet

domain by modifying DWT coefficients. Run et al. [24] encoded binary bits into wavelet-trees which are constructed by one

4-DWT coefficient and four 3-DWT coefficients of the low–high sub-band. Huynh-The et al. [10] grouped one coefficient

of the low–high sub-band and one coefficient of the high–low sub-band to be a block for hiding binary information. Most
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Fig. 1. The workflow of embedding process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the state-of-the-art watermarking approaches are proposed for encoding binary bits with a limited payload capacity,

for instance, the embedding rate factor is 1/256 bit/pixel [24] and 1/64 bit/pixel [2,29,33] for host gray-scale image, 1/16

bit/pixel [10] for host color image. It can be realized that payload increment in wavelet-based watermarking models still

remains as a touch challenge. Hence, controlling the performance balance of triangular imperceptibility-robustness-payload

criteria is needed to build an efficient watermarking model. Obviously, the use of gray-scale image as watermark is rarely

presented in color image watermarking systems, especially in the transformed domains. Recently, Saboori and Hosseine

[25] proposed a novel color image watermarking method where a gray-scale image is served as watermark, however, its

performance is not impressive and needs to be improved significantly. 

3. The methodology 

This section presents the proposed blind color image watermarking approach which consists of the watermark embed-

ding and extraction processes. 

3.1. Watermark embedding process 

The embedding process performs the information encoding in the wavelet domain following the workflow in Fig. 1 . At

first, a gray-scale watermark image W is decomposed to eight binary images w BI 1: BI 8 , respectively representing order dig-

its from LSB to MSB as shown in Fig. 2 . The binary bits of these images are then embedded to a host color image I by

a quantization technique in which the coefficient difference �i,k = 

∣∣H L k 
i 

− LH 

k 
i 

∣∣ of i th wavelet block in k th color channel is

encoded to the pre-defined thresholds δ0 and δ1 for 0-bits and 1-bits, respectively, by varying wavelet coefficient values. HL

(high–low) and LH (low–high), the coefficients of two middle-frequency sub-bands holding vertical and horizontal details,

are obtained by applying DWT decomposition to color channels, e.g. red (R), green (G) and blue (B) of the host image. Fol-

lowing [10] , wavelet blocks are sorted in the ascending order of difference, denoted �S 
i,k 

, to code 0-bits for blocks of smallest

coefficient differences and 1-bits for blocks of greatest coefficient differences. Two optimal color channels are chosen for bi-

nary embedment to minimize the differences between �S 
i,k 

and δ0 for w = 0 and δ1 for w = 1 . Concretely, the watermark

bits of four binary images w k #1 = { w BI2 , w BI4 , w BI6 , w BI8 } are encoded to the first optimal channel k #1 and the watermark bits

of remaining images w k #2 = { w BI1 , w BI3 , w BI5 , w BI7 } are encoded to the second optimal channel k #2 as illustrated in Fig. 3 (a).

Channel selection is executed as follows: 

k #1 = 

⎧ ⎨ 

⎩ 

arg min 

k 

(∣∣�S 
i,k 

− δ0 

∣∣) ∀ bi t i ∈ w k #1 = 0 

arg min 

k 

(∣∣�S 
i,k 

− δ1 

∣∣) ∀ bi t i ∈ w k #1 = 1 

k #2 = 

⎧ ⎨ 

⎩ 

arg min 

k 

(∣∣�S 
i, −k #1 − δ0 

∣∣) ∀ bi t i ∈ w k #2 = 0 

arg min 

k 

(∣∣�S 
i, −k #1 − δ1 

∣∣) ∀ bi t i ∈ w k #2 = 1 

(1) 
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Fig. 2. The illustration of bit decomposition. The gray-scale watermark is decomposed to eight binary images respectively representing digits from LSB to 

MSB. 

Fig. 3. The proposed selective scheme for watermark embedment: (a) splitting binary images into two classes to encode with two optimal channels, (b) 

embedding binary bits into ordered wavelet blocks in the case with the first optimal channel. 

 

 

 

 

 

 

 

 

The notation −k #1 indicates the remaining color channels except k #1 . In advance, two quantization thresholds δ0 and δ1 are

calculated as follows: 

( δ0 = υ, δ1 = υ + λ) = arg min 

υ
( MSE 0 + MSE 1 ) (2)

where λ is the robustness factor signifying the strength of watermark in the host image and υ is a value at which the total

adjustment error in the embedment stage is minimized as small as possible. MSE 0 and MSE 1 are the corresponding mean

square errors of 0-bits and 1-bits embedment, respectively, and defined as follows: 

MSE 0 = 

1 
( N 0 −n ) 

N 0 ∑ 

i = n | �S 
n >υ

(
�S 

i 
− υ

)2 

MSE 1 = 

1 
( m −N 0 −1 ) 

m | �S 
m = υ+ λ∑ 

i = N 0 +1 

(
υ + λ − �S 

i 

)2 

(3)

where N 0 is the number of 0-bits of all binary images w B 1: B 8 . A larger λ presents the stronger embedment of watermark

on the host image, that means, the watermark is more robust under several digital image transformations, yet its imper-

ceptibility on the host image is worse and worse. Therefore, λ should be flexibly selected for a reasonable balance between
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watermark robustness and image imperceptibility. Encoding binary bits is executed by an embedding rule which is devel-

oped to correspondingly adapt the binary images in w k #1 and w k #2 with two already determined optimal channels. This

process is implemented by replacing k ∗ by k #1 and k #2 as follows: 

For 0-bits coding If �S 
i, k ∗ > δ0 

LH 

k ∗
i 

≥ HL k 
∗

i 
→ 

{
LH 

k ∗
i 

= LH 

k ∗
i 

− χ0 
i 
/ 2 

HL k 
∗

i 
= HL k 

∗
i 

+ χ0 
i 
/ 2 

LH 

k ∗
i 

< HL k 
∗

i 
→ 

{
LH 

k ∗
i 

= LH 

k ∗
i 

+ χ0 
i 
/ 2 

HL k 
∗

i 
= HL k 

∗
i 

− χ0 
i 
/ 2 

(4) 

If �S 
i, k ∗ ≤ δ0 

LH 

k ∗
i 

= LH 

k ∗
i 

H L k 
∗

i 
= H L k 

∗
i 

(5) 

For 1-bits coding 

If �S 
i, k ∗ < δ1 

LH 

k ∗
i 

≥ HL k 
∗

i 
→ 

{
LH 

k ∗
i 

= LH 

k ∗
i 

+ χ1 
i 
/ 2 

HL k 
∗

i 
= HL k 

∗
i 

− χ1 
i 
/ 2 

LH 

k ∗
i 

< HL k 
∗

i 
→ 

{
LH 

k ∗
i 

= LH 

k ∗
i 

− χ1 
i 
/ 2 

HL k 
∗

i 
= HL k 

∗
i 

+ χ1 
i 
/ 2 

(6) 

If �S 
i, k ∗ ≥ δ1 

LH 

k ∗
i 

= LH 

k ∗
i 

H L k 
∗

i 
= H L k 

∗
i 

(7) 

where χ0 
i 

= �S 
i, k ∗ − δ0 and χ1 

i 
= δ1 − �S 

i, k ∗ represent the modification quantities of original coefficients required to encode

0-bits and 1-bits, respectively. Compared to [10] where the modification is done on either LH or HL by χ0 
i 

or χ1 
i 
, we split

this adjustment quantity equally for two sub-bands to preserve the visual quality of the watermarked image. The image

quality improvement is analyzed by Peak Signal-to-Noise Ratio as follows: 

MSE [10] = 

1 

N 

N ∑ 

i =1 

( χi ) 
2 (8) 

MSE SMLE = 

1 

N 

N ∑ 

i =1 

(
χi 

2 

)2 

+ 

(
χi 

2 

)2 

= 

1 

2 N 

N ∑ 

i =1 

( χi ) 
2 

= 

1 

2 

MSE [ 10 ] 

(9) 

�PSNR = P SNR SMLE − P SNR [ 10 ] 

= 10 log 10 

(
255 

2 

MSE SMLE 

)
− 10 log 10 

(
255 

2 

MSE [10] 

)
= 10 log 10 2 

(10) 

Thanks to the improved embedding rule, the quality of watermarked image is increased approximately 10log 10 (2) ≈ 3 dB.

According to the embedding scheme represented in Fig. 3 (b), watermark bits are encoded following the ordering of signif-

icance, concretely, beginning with w B 8 and ending with w B 2 in group w k #1 for the first optimal channel embedment, and

beginning with w B 7 and ending with w B 1 in group w k #2 for the second optimal channel embedment. As soon as the em-

bedding process is done, the modified coefficient differences are either less than δ0 or greater than δ1 . Additionally, the

information of channel blocks is privately stored in an associated key, which is generated and maintained for original wa-

termark recovery throughout the extraction process. Once the embedding process is completed, we rebuild the LH and HL

sub-bands of all color channels by organizing the modified coefficients. As well as, the watermarked image is reconstructed

from color-component images which are re-transformed by Inverse Discrete Wavelet Transform (IDWT). The particular nota-

tions used in our proposed watermarking method are summarized in Table 1 . It is important to note that the security level

of the gray-scale watermark can be increased by scrambling the binary bits using Arnold transformation. For the proposed

method, this step can be done after the binary decomposition step in Fig. 1 . 
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Table 1 

Important notations used in the proposed watermarking method. 

Notation Description 

�i, k The coefficient difference of i th wavelet block in k th color channel 

�S 
i,k 

The coefficient difference �i, k after sorting 

k #1 The first optimal channel 

k #2 The second optimal channel 

w k #1 The MSB images assigned for embedding with k #1 

w k #2 The LSB images assigned for embedding with k #2 

δ0 The quantization threshold for 0-bit embedding 

δ1 The quantization threshold for 1-bit embedding 

v The value at which the total embedding error is minimized 

λ The robustness factor 

χ0 
i 

The modification quantity for 0-bit embedding 

χ1 
i 

The modification quantity for 1-bit embedding 

δ� The extraction threshold defined by 2D Otsu method 

Fig. 4. The workflow of extraction process. 

 

 

 

 

 

 

 

 

 

 

3.2. Watermark extraction process 

As shown in Fig. 4 , the first step of the extraction process is to calculate DWT coefficient differences of encoded blocks

with the key that was created in the embedding stage. With a classification threshold denoted δ� where δ0 < δ� < δ1 ,

watermark bits are basically recovered by the following comparison rule 

w i = 

{
1 ∀ �S 

i,k 
≥ δ�

0 otherwise 
(11)

It is important to note that δ� must be determined in case of the unknown quantization thresholds, i.e. δ0 and δ1 . Therefore,

an adaptive two-dimensional (2D) Otsu threshold [11] , regularly used in image segmentation, is computed for binary seg-

mentation of DWT blocks. By maximizing the trace of the between-class variance matrix S b , the threshold vector ( s = δ�, t )
is selected by the following equation: 

( s, t ) = arg max 

0 ≤ s ≤ L 
0 ≤ t ≤ L 

( T r ( S b ) ) (12)

where L = max 
(
�S 

i, k ∗
)

and the trace of discrete matrix is expressed as follows (more details in Appendix A ) 

T r ( S b ) = 

( μT i ω 0 − μi ) 
2 + 

(
μT j ω 1 − μ j 

)2 

ω 0 ( 1 − ω 0 ) 
(13)

In this paper, a fast recursive algorithm of 2D Otsu [41] is employed to obtain the optimal threshold s . Compared to 1D Otsu

[17] exploited for watermark extraction [10] , 2D Otsu algorithm adapts robustly to the noise issue in image segmentation
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Fig. 5. Test images used for evaluation include (a) eight host color images (left to right): Airplane, Girl, House, Lena, Mandrill, Peppers, Sailboat, and Splash; 

(b) Four watermark samples (top to bottom): Matlab, Burger King, Firefox, and Starbucks are decomposed to eight corresponding component binary images. 

 

 

 

 

 

 

 

due to its contents-independent characteristics. A gray-scale watermark image is finally reconstructed from eight binary

images after decoding. 

4. Simulation results and discussion 

In this section, we benchmark the perceptibility of embedded images and the robustness of watermarks under various

popular image transformations. Totally eight 512 × 512 color images served as host images [32] and four 64 × 64 gray-scale

images used as watermark images are shown in Fig. 5 . Color Peak Signal-To-Noise (CPSNR) and Structural Similarity In-

dex (SSIM) [35] used to measure watermarked image quality (or the imperceptibility of a watermark in a host image) are

calculated as follows: 

CP SNR = 10 log 10 

⎛ 

⎜ ⎜ ⎝ 

255 

2 

3 ∑ 

k =1 

p ∑ 

i =1 

q ∑ 

j=1 

( I ( i, j ) −J ( i, j ) ) 
2 

3 ×p×q 

⎞ 

⎟ ⎟ ⎠ 

(14) 

SSIM = 

1 

T 

T ∑ 

i =1 

ssim 

i 

(
x I , y J 

)
(15) 

where p × q is the resolution of the original I and watermarked J images, and T is the number of local windows which are

divided for similarity verification. The ssim index, which is defined as the product of three similarity terms of luminance,

contrast, and structural between two local windows x I and x J , is calculated as follows: 

ssim ( x, y ) = [ l ( x, y ) ] 
α · [ c ( x, y ) ] 

β · [ s ( x, y ) ] 
γ (16) 
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Table 2 

Average PSNR and SSIM of embedded host images. 

λ CPSNR (dB) 

Matlab Burger King Firefox Starbucks 

20 46.86 ± 2.91 48.44 ± 2.49 49.28 ± 1.78 48.33 ± 2.31 

25 43.95 ± 2.67 45.62 ± 2.88 46.53 ± 1.96 45.55 ± 2.73 

30 41.63 ± 2.43 43.29 ± 2.91 44.31 ± 2.31 43.25 ± 2.81 

35 39.76 ± 2.19 41.32 ± 2.75 42.44 ± 2.52 41.30 ± 2.69 

40 38.19 ± 1.98 39.64 ± 2.52 40.79 ± 2.58 39.63 ± 2.50 

45 36.82 ± 1.83 38.19 ± 2.32 39.34 ± 2.51 38.19 ± 2.30 

50 35.60 ± 1.71 36.92 ± 2.15 38.04 ± 2.40 36.92 ± 2.14 

55 34.54 ± 1.59 35.80 ± 2.00 36.89 ± 2.27 35.79 ± 1.99 

60 33.58 ± 1.48 34.78 ± 1.86 35.84 ± 2.13 34.78 ± 1.85 

λ SSIM 

Matlab Burger King Firefox Starbucks 

20 0.997 ± 0.005 0.998 ± 0.003 0.999 ± 0.002 0.998 ± 0.003 

25 0.994 ± 0.009 0.996 ± 0.006 0.997 ± 0.004 0.996 ± 0.006 

30 0.991 ± 0.014 0.994 ± 0.009 0.996 ± 0.007 0.994 ± 0.009 

35 0.987 ± 0.019 0.991 ± 0.013 0.994 ± 0.010 0.991 ± 0.013 

40 0.983 ± 0.024 0.988 ± 0.017 0.991 ± 0.013 0.988 ± 0.017 

45 0.978 ± 0.031 0.984 ± 0.022 0.988 ± 0.017 0.984 ± 0.022 

50 0.972 ± 0.037 0.980 ± 0.026 0.985 ± 0.021 0.980 ± 0.027 

55 0.966 ± 0.043 0.976 ± 0.032 0.981 ± 0.025 0.976 ± 0.032 

60 0.960 ± 0.049 0.971 ± 0.037 0.977 ± 0.029 0.971 ± 0.037 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where α, β , and γ are parameters used to adjust the relative importance of the three terms. The detail formulation and pa-

rameter set up are explained in [35] . Fundamentally, the higher the CPSNR and SSIM values are, the greater the impercepti-

bility of watermark in the host image is. The extraction performance is quantitatively rated by Normalized Cross-Correlation

coefficient (NCC) and BER (Bit Error Rate) as follows: 

NCC = 

p ′ ∑ 

i =1 

q ′ ∑ 

j=1 

( w ( i, j ) − μw 

) 
(
w 

′ ( i, j ) − μw 

′ 
)

( p ′ × q ′ − 1 ) ( σw 

× σw 

′ ) 
(17)

BER = 

B 

p ′ × q ′ × 100 (18)

where p ′ and q ′ are the height and width of the original w and extracted w 

′ watermarks; μ and σ are the mean and

standard deviation of gray values, respectively; and B is the number of erroneously detected bits. The value of NCC should

converge to one for completely accurate watermark recovery. The method performance is benchmarked using Matlab R2014b

on a notebook operating Windows 10 with 2.70 GHz i7-5700HQ processor and 16-GB RAM. 

4.1. Watermark perceptibility 

This sub-section examines the perceptibility of the watermark after being embedded into the host image by evaluating

the quality of watermarked images. The effect of the robustness factor λ utilized to calculate quantization thresholds is

further investigated. In particular, Table 2 reports the average CPSNR and SSIM with standard deviation of eight host images

on various values of λ, and Fig. 6 shows the watermarked images of Lena sample using Starbucks as watermark. Obviously,

the lower the λ is, the higher the CPSNR and SSIM are due to small modification of wavelet coefficients resulted by our

improved embedding rule. However, the watermark is more fragile because the small distance between δ0 and δ1 does not

guarantee a high-quality extraction, especially under intensive image transformations. As mentioned before, λ should be

flexibly selected for a pleasant trade-off between watermark robustness and host image imperceptibility. 

Compared to [10] , the embedding rule in this paper is significantly improved to boost the quality of watermarked images.

Based on the quantitative results plotted in Fig. 7 , our improved rule is entirely better, approximately 0.002 of SSIM and 3 dB

of CPSNR as formulated in (10) . This proves the efficiency of equally splitting coefficient adjustment to two middle sub-bands

instead of either one [10] . 

4.2. Watermark robustness 

In this part, the proposed method is evaluated in aspect of hidden information recovery against attacks, i.e. digital image

processing manipulations. For the latter, several popular transformations in the field are considered for robustness bench-

mark, such as median filtering, average filtering, linear motion blurring, size scaling, rotation, cropping, additional noise



10 T. Huynh-The et al. / Information Sciences 426 (2018) 1–18 

Fig. 6. Embedded images of Lena sample after embedding Starbucks watermark with various robustness values: (a) λ = 20 , PSNR = 47.50 dB, (b) λ = 25 , 

PSNR = 44.45 dB, (c) λ = 30 , PSNR = 42.13 dB, (d) λ = 35 , PSNR = 40.18 dB, (e) λ = 40 , PSNR = 38.52 dB, (f) λ = 45 , PSNR = 37.15 dB, (g) λ = 50 , PSNR = 

35.96 dB, (h) λ = 55 , PSNR = 34.87 dB, (i) λ = 60 , PSNR = 33.89 dB. 

 

 

 

 

 

 

 

 

 

(Gaussian and Salt & Pepper), histogram equalization, and lossy JPEG compression. Fig. 8 illustrates the listed transformations

and the corresponding watermarks extracted from attacked images, where Lena and Starbucks play the host and watermark

role, respectively. The extraction accuracy under aforementioned attacks are presented in Table 3 with various values of λ.

The quantitative results are presented as the average of eight host images associated with four watermarks. It is observed

that the improvement of watermark robustness is proportional to the increment of embedding strength. However, the pro-

posed watermarking model yields quite poor results in rotation and down-scaling attacks due to subsequent reasons: (i)

DWT decomposes an image in the horizontal and vertical dimensions while rotation operates in the diagonal, (ii) scaling

operation makes the loss of detail information by bi-cubic interpolation. 

The robustness is further investigated under various attacking intensities of median filtering, average filtering, linear mo-

tion blurring, size scaling, rotation, Gaussian noise, Salt & Pepper noise, and lossy JPEG compression as graphically shown
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Fig. 7. Watermark perceptibility comparison between the proposed embedding rule and Huynh-The et al. [10] scheme: (a) CPSNR, (b) SSIM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in Fig. 9 . As a result, the stronger the attack damages, the lower accuracy the watermark is generally extracted. We com-

pare the watermark extraction accuracy between 2D Otsu and 1D Otsu thresholding. Based on the results in Fig. 9 , 2D

Otsu mostly extracts more precisely than 1D Otsu does, except Gaussian noise and lossy JPEG compression. To describe

the relationship between imperceptibility and robustness in our proposed watermarking model when varying λ, we draw

a performance trade-off graph as shown in Fig. 10 . Our proposed SMLE method produces better imperceptibility but worse

robustness when the robustness factor λ gets smaller and vice versa. 

4.3. Complexity analysis 

The complexity of digital image watermarking approaches is usually assessed in term of computation cost. This assess-

ment is fundamentally important besides the performance evaluation of watermark embedding and extraction processes

when developing a watermarking algorithm as an application for realistic systems. In this part, we analyze the processing

time required for the embedding and extraction processes particularly. The results of processing time without optimization

are plotted in Fig. 11 where the durations of major steps are indicated in details. Concretely, we measure the average pro-

cessing time of embedding four gray-scale watermark images into eight host color images and also the average processing

time of extracting watermarks from cover images under various attacks as digital image processing operations. It is observed

that the steps of gray-scale to binary watermark conversion, DWT decomposition and IDWT construction of the host im-

age take nearly 65% of the whole embedding processing time. Compared to 677 ms taken wholly during embedding stage,

much more time is required for recovering in the extraction process, i.e. 1865 ms, in which most of duration is spent for

calculating the 2D Otsu threshold. Therefore, reducing the processing time of this step needs to be done in future work. 
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Fig. 8. Digital image processing operations on the Lena sample and corresponding extracted watermarks: (a) non-Attack, (b) median filtering 5 × 5, (c) aver- 

age filtering 5 × 5, (d) Gaussian filtering 5 × 5, (e) motion blurring 5 pixels, (f) histogram equalization, (g) down-scaling 128 × 128, (h) rotation 0.5 0 , (i) crop- 

ping 128 × 128 at the central, (j) Gaussian noise ( μ = 0 , σ = 0 . 05 ) , (k) Salt & Pepper noise ( density = 5% ) , and (l) lossy JPEG compression ( Quality = 50% ) . 
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Fig. 9. Average watermark extraction accuracy measured by NCC using λ = 40 with four watermarks under various image transformations: (a) Average 

Filtering, (b) Median Filtering, (c) Motion Blurring, (d) Rotation, (e) Cropping, (f) Gaussian Noise, (g) Salt & Pepper Noise, and (h) Lossy JPEG Compression. 
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Table 3 

NCC of extracted watermarks under different image transformations. 

Image transformation λ

20 30 40 50 60 

Non-Attack 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

Histogram equalization 0.755 ± 0.169 0.722 ± 0.180 0.699 ± 0.187 0.669 ± 0.199 0.670 ± 0.200 

Median filter 3 × 3 0.924 ± 0.044 0.938 ± 0.044 0.948 ± 0.044 0.955 ± 0.043 0.960 ± 0.043 

Median filter 5 × 5 0.783 ± 0.096 0.800 ± 0.097 0.810 ± 0.099 0.817 ± 0.100 0.819 ± 0.099 

Median filter 7 × 7 0.716 ± 0.109 0.730 ± 0.113 0.741 ± 0.115 0.746 ± 0.115 0.751 ± 0.115 

Average filter 3 × 3 0.938 ± 0.038 0.950 ± 0.038 0.958 ± 0.039 0.964 ± 0.038 0.969 ± 0.037 

Average filter 5 × 5 0.757 ± 0.102 0.771 ± 0.102 0.772 ± 0.103 0.773 ± 0.103 0.771 ± 0.101 

Average filter 7 × 7 0.652 ± 0.119 0.665 ± 0.120 0.671 ± 0.122 0.673 ± 0.124 0.671 ± 0.125 

Gaussian filter 3 × 3 0.997 ± 0.002 0.998 ± 0.002 0.999 ± 0.001 1.0 0 0 ± 0.001 1.0 0 0 ± 0.0 0 0 

Gaussian filter 5 × 5 0.997 ± 0.002 0.998 ± 0.002 0.999 ± 0.001 1.0 0 0 ± 0.001 1.0 0 0 ± 0.0 0 0 

Gaussian filter 7 × 7 0.997 ± 0.002 0.998 ± 0.002 0.999 ± 0.001 1.0 0 0 ± 0.001 1.0 0 0 ± 0.0 0 0 

Blurring 3 pixels 0.965 ± 0.019 0.971 ± 0.018 0.976 ± 0.016 0.980 ± 0.014 0.983 ± 0.012 

Blurring 5 pixels 0.873 ± 0.048 0.892 ± 0.048 0.904 ± 0.048 0.913 ± 0.047 0.921 ± 0.045 

Blurring 7 pixels 0.790 ± 0.057 0.804 ± 0.055 0.814 ± 0.053 0.821 ± 0.053 0.829 ± 0.051 

Scaling up 200% 0.999 ± 0.001 0.999 ± 0.001 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 1.0 0 0 ± 0.0 0 0 

Scaling down 50% 0.965 ± 0.023 0.973 ± 0.022 0.979 ± 0.021 0.984 ± 0.018 0.987 ± 0.015 

Scaling down 25% 0.645 ± 0.121 0.658 ± 0.122 0.667 ± 0.125 0.673 ± 0.125 0.678 ± 0.125 

Rotation 0.25 ° 0.812 ± 0.079 0.829 ± 0.082 0.838 ± 0.085 0.846 ± 0.087 0.850 ± 0.089 

Rotation 0.5 ° 0.688 ± 0.095 0.700 ± 0.091 0.706 ± 0.090 0.705 ± 0.091 0.705 ± 0.089 

Rotation 1 ° 0.567 ± 0.104 0.579 ± 0.099 0.589 ± 0.096 0.590 ± 0.097 0.593 ± 0.099 

Rotation 2 ° 0.454 ± 0.105 0.462 ± 0.106 0.467 ± 0.105 0.471 ± 0.107 0.473 ± 0.107 

Cropping 64 × 64 0.969 ± 0.017 0.969 ± 0.017 0.969 ± 0.018 0.969 ± 0.017 0.970 ± 0.017 

Cropping 128 × 64 0.943 ± 0.025 0.944 ± 0.025 0.943 ± 0.026 0.943 ± 0.025 0.944 ± 0.024 

Cropping 128 × 128 0.894 ± 0.040 0.895 ± 0.038 0.895 ± 0.039 0.896 ± 0.038 0.897 ± 0.037 

Cropping 256 × 128 0.838 ± 0.053 0.837 ± 0.050 0.838 ± 0.050 0.838 ± 0.049 0.839 ± 0.049 

Croping 256 × 256 0.702 ± 0.081 0.700 ± 0.078 0.702 ± 0.078 0.701 ± 0.076 0.699 ± 0.077 

Gaussian noise ( σ = 0 . 02 ) 0.915 ± 0.036 0.968 ± 0.015 0.988 ± 0.009 0.995 ± 0.004 0.998 ± 0.002 

Gaussian noise ( σ = 0 . 03 ) 0.782 ± 0.080 0.876 ± 0.043 0.936 ± 0.025 0.967 ± 0.017 0.981 ± 0.012 

Gaussian noise ( σ = 0 . 04 ) 0.657 ± 0.114 0.760 ± 0.068 0.852 ± 0.044 0.910 ± 0.029 0.946 ± 0.021 

Gaussian noise ( σ = 0 . 05 ) 0.560 ± 0.128 0.656 ± 0.091 0.753 ± 0.062 0.833 ± 0.041 0.890 ± 0.030 

S & P noise ( den = 0 . 1% ) 0.996 ± 0.002 0.995 ± 0.001 0.995 ± 0.002 0.995 ± 0.002 0.994 ± 0.002 

S & P noise ( den = 0 . 2% ) 0.991 ± 0.003 0.990 ± 0.002 0.990 ± 0.003 0.990 ± 0.003 0.990 ± 0.003 

S & P noise ( den = 0 . 5% ) 0.977 ± 0.005 0.976 ± 0.005 0.973 ± 0.005 0.974 ± 0.006 0.974 ± 0.005 

S & P noise ( den = 1% ) 0.954 ± 0.012 0.951 ± 0.009 0.949 ± 0.010 0.948 ± 0.011 0.948 ± 0.012 

S & P noise ( den = 2% ) 0.911 ± 0.019 0.904 ± 0.017 0.900 ± 0.017 0.898 ± 0.019 0.897 ± 0.022 

Lossy JPEG ( QF = 10% ) 0.626 ± 0.155 0.645 ± 0.152 0.660 ± 0.146 0.676 ± 0.125 0.683 ± 0.098 

Lossy JPEG ( QF = 20% ) 0.705 ± 0.104 0.721 ± 0.077 0.728 ± 0.064 0.740 ± 0.061 0.753 ± 0.060 

Lossy JPEG ( QF = 30% ) 0.729 ± 0.086 0.755 ± 0.069 0.768 ± 0.059 0.778 ± 0.060 0.785 ± 0.060 

Lossy JPEG ( QF = 50% ) 0.772 ± 0.075 0.793 ± 0.061 0.806 ± 0.058 0.812 ± 0.061 0.810 ± 0.064 

Lossy JPEG ( QF = 70% ) 0.803 ± 0.067 0.822 ± 0.060 0.828 ± 0.062 0.826 ± 0.064 0.823 ± 0.067 

Lossy JPEG ( QF = 90% ) 0.852 ± 0.061 0.858 ± 0.061 0.864 ± 0.057 0.871 ± 0.052 0.880 ± 0.049 

Fig. 10. The trade-off of watermarking performance between watermark robustness (NCC) and image imperceptibility (CPSNR). 
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Fig. 11. Average computation time (in ms) of the proposed image watermarking method including the embedding process and the extraction process. 

Table 4 

Method comparison in the term of robustness for Lena sample. 

Image transformation Saboori et al. [25] Proposed ( λ = 35 ) 

RGB-B YUV-Y 

Median filter 3 × 3 0.8510 0.8876 0.9560 

Average filter 3 × 3 0.8454 0.8512 0.9593 

Gaussian filter 3 × 3 0.9717 0.9788 0.9997 

Rotation 0.25 ° 0.6234 0.6566 0.8534 

Gaussian noise 
(
σ 2 = 0 . 001 

)
0.8101 0.8838 0.8913 

Salt & Pepper noise ( den = 0 . 1% ) 0.9126 0.9488 0.9952 

Lossy JPEG ( QF = 20% ) 0.5543 0.6778 0.6890 

Lossy JPEG ( QF = 30% ) 0.5988 0.8123 0.7116 

Lossy JPEG ( QF = 50% ) 0.6356 0.9060 0.7409 

Lossy JPEG ( QF = 70% ) 0.7456 0.9820 0.7445 

Lossy JPEG ( QF = 90% ) 0.9188 0.9836 0.7521 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. Method comparison 

For the last experiments, we compare the proposed watermarking method to Saboori’s approach in the term of robust-

ness. At the same embedding rate of 1/64 byte/pixel (or 1/8 bit/pixel), the quantitative results are listed in Table 4 . Saboori

et al. [25] embedded gray-scale watermark into color images in the spatial domain. The watermarking method, which is

developed for two color-mode strategies, i.e., the blue channel of RGB and the luminance channel of YUV, encodes gray

values into the first component of PCA. Although our proposed SMLE method is insignificantly worse in terms of watermark

perceptibility, i.e., 40.12 dB vs 40.88 dB and 40.26 dB of RGB-B and YUV-Y, respectively, it remarkably outperforms Saboori’s

approach in the most of attacks in the watermark robustness benchmark, except the lossy JPEG compression. Two draw-

backs of Saboori’s approach are discussed: (i) the watermarking model is designed following the non-blind manner, that

means, it requires the original host image in the extraction process, and (ii) the watermark is so sensitive to additional

noise and geometric operations due to its spatial watermarking scheme. The results of our method in Table 4 are reported

as the average NCC of Lena sample with various watermarks given λ = 35 . 

Although the color image watermarking method proposed in this paper is optimized for embedding a gray-scale wa-

termark image, it is able to encode binary watermark with a minor change in the input setting. It is important to remind

that our proposed SMLE method encodes binary bits which are decomposed from a gray-scale in the optimal manner with

the partition of MSB and LSB binary component images. In this experiment, we do the comparisons in term of robustness,

benchmarked by BER, at the same embedding rate (ER) for fairness. In particular, we compare the proposed watermarking

method with other state-of-the-art approaches including Tsai and Sun [30] , Peng et al. [19] , Wang et al. [37] , and Wang

et al. [34] at ER = 1 / 64 bit per pixel (bpp); and with Chou and Liu [5] and Wang et al. [39] at ER = 1 / 16 bpp. The ro-

bustness results on several common image transformations are reported in Table 5 where one component binary image is

randomly selected for encoding and Table 6 where four binary component images are randomly picked for encoding. In

Table 5 , our method significantly improves the watermark imperceptibility with 50.175 dB, higher than others 8.0–10.4 dB

approximately, while outperforming in most of robustness tests such as lossy JPEG compression, filtering, scaling, and Salt &

Pepper noise. Compared to the method [34] which is developed using the quaternion discrete Fourier transform (QDFT) and
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Table 5 

Method comparison in term of robustness (BER) at the same embedding rate 1 
64 

bpp with Lena sample. 

Method Tsai and Sun [30] Peng et al. [19] Wang et al. [37] Wang et al. [34] Proposed 

PSNR (dB) 41.527 42.179 39.783 40.546 50.175 

Median filter 3 × 3 0.0300 0.4692 0.3892 0.0205 0.0071 

Gaussian filter 3 × 3 0.0122 0.0640 0.1392 0.0027 0.0 0 0 0 

Average filter 3 × 3 0.0393 0.1084 0.1481 0.0296 0.0098 

Gaussian noise 
(
σ 2 = 0 . 005 

)
0.0109 0.0987 0.2166 0.0078 0.1011 

Salt & Pepper noise ( den = 0 . 1% ) 0.0075 0.0406 0.0849 0.0037 0.0054 

Lossy JPEG ( QF = 90% ) 0.0065 0.2066 0.0781 0.0061 0.0017 

Lossy JPEG ( QF = 70% ) 0.0149 0.2388 0.1485 0.0146 0.0027 

Lossy JPEG ( QF = 50% ) 0.0380 0.3399 0.2858 0.0276 0.0042 

Lossy JPEG ( QF = 30% ) 0.0927 0.4014 0.3931 0.0754 0.0146 

Rotation 10 ° 0.0204 0.5068 0.5005 0.0066 0.3933 

Scaling down 50% 0.0847 0.5114 0.5035 0.4370 0.0015 

Table 6 

Method comparison in term of robustness (BER) at the same embedding rate 1 
16 

bpp with 

Lena sample. 

Method Chou and Liu [5] Wang et al. [39] Proposed 

PSNR (dB) 39.92 36.10 40.89 

Median filter 3 × 3 0.0514 0.0100 0.0270 

Gaussian filter 3 × 3 0.0432 0.0 0 0 0 0.0 0 0 0 

Average filter 3 × 3 0.0477 0.0237 0.0159 

Gaussian noise 
(
σ 2 = 0 . 005 

)
0.2122 0.0522 0.1738 

Salt & Pepper noise ( den = 0 . 1% ) 0.0758 0.0154 0.0029 

Lossy JPEG ( QF = 90% ) 0.0381 0.0 0 0 0 0.0922 

Lossy JPEG ( QF = 70% ) 0.0555 0.0 0 04 0.1106 

Lossy JPEG ( QF = 50% ) 0.0766 0.0208 0.1182 

Lossy JPEG ( QF = 30% ) 0.1011 0.0400 0.1367 

Rotation 5 ° N/A 0.0029 0.4056 

Scaling down 50% 0.0402 0.0745 0.0043 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fuzzy least squares support vector machine (FLS-SVM) to fight against to geometric attacks, our method is fragile under rota-

tion. However, it should be noted that Wang’s method [34] is time-consuming for training the FLS-SVM model. As a typical

constraint in the field of image watermarking, either the watermark imperceptibility or the robustness will be downgraded

if increasing the payload capacity. This explains for worse results of our method presented in Table 6 where the watermark-

ing methods are compared at ER = 1 / 16 bpp. Although our method yields high quality of embedded images in PSNR metric

and watermark robustness under filtering and scaling operations, it continuously gets a trouble with rotation. It shows the

essential drawback of the wavelet transform compared with the real quaternion Fourier transform used in [39] for the task

of domain transformation. The spatial shift, rotation, and scaling properties of quaternion Fourier transform (QFT) used in

the image decomposition allow the embedded watermark to be robust against various geometric operations such as scaling

and rotation. 

5. Conclusions 

This work proposes a robust blind digital color image watermarking method. By decomposing a gray-scale image to bi-

nary images from LSB to MSB for the embedment, a gray-scale watermark is completely encoded into a color host image

using a quantization technique in the wavelet domain. Beside a color channel selection, the quality of watermarked images

is significantly improved with an optimal embedding rule which minimizes the total wavelet coefficient modification. This

improvement boosts approximately 3 dB of watermarked image quality. Moreover, 2D Otsu algorithm is exploited to define

the classification threshold for accurate watermark extraction. The watermarking model is benchmarked on several standard

color images and gray-scale images with various embedding strengths under different image processing operations. The ex-

perimental results prove that the proposed method reaches a high performance in imperceptibility of embedded host images

and robustness of extracted watermarks. Compared to other similar watermarking approaches at same payload capacity, our

proposed SMLE watermarking model outperforms in most of robustness tests, except lossy JPEG compression and rotation

operation. For the future work, we will focus on handling the geometric attacks by exploiting quaternion discrete wavelet

transform for image decomposition and will extend the proposed method for embedding color watermark image. 

Appendix A. 2D Otsu algorithm 

Suppose a gray-scale image with the size of M × N is presented by a gray level intensity f ( x, y ) and its corresponding

local average g ( x, y ), ranging from 0 to L − 1 , where L is the number of gray levels. Let q ij is the total number of occurrence
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(or frequency) of the pair ( i, j ) which is formed by f ( x, y ) = i and g ( x, y ) = j. The joint probability mass function in 2-

dimensional histogram is defined: 

p i j = 

q i j 

M × N 

(A.1)

The probability of two classes are given as 

ω 0 = 

s −1 ∑ 

i =0 

t−1 ∑ 

j=0 

p i j ; ω 1 = 

L −1 ∑ 

i = s 

L −1 ∑ 

j= t 
p i j (A.2)

The intensity means of two classes and the total mean of 2D histogram are expressed as follows: 

μ0 = 

[
μ0 i , μ0 j 

]T = 

⎡ 

⎢ ⎢ ⎣ 

s −1 ∑ 

i =0 

t−1 ∑ 

j=0 

i p i j 

ω 0 

, 

s −1 ∑ 

i =0 

t−1 ∑ 

j=0 

j p i j 

ω 0 

⎤ 

⎥ ⎥ ⎦ 

T 

μ1 = 

[
μ1 i , μ1 j 

]T = 

⎡ 

⎢ ⎢ ⎣ 

L −1 ∑ 

i = s 

L −1 ∑ 

j= t 
i p i j 

ω 1 

, 

L −1 ∑ 

i = s 

L −1 ∑ 

j= t 
j p i j 

ω 1 

⎤ 

⎥ ⎥ ⎦ 

T 

μT = 

[
μT i , μT j 

]T = 

[ 

L −1 ∑ 

i =0 

L −1 ∑ 

j=0 

i p i j , 

L −1 ∑ 

i =0 

L −1 ∑ 

j=0 

j p i j 

] T 

(A.3)

The between-class variance matrix S b is defined as 

S b = 

1 ∑ 

k =0 

ω k 

[
( μk − μT ) ( μk − μT ) 

T 
]

(A.4)

By taking the trace of S b following (13) , where 

μi = 

s ∑ 

i =0 

t ∑ 

j=0 

i p i j ; μ j = 

s ∑ 

i =0 

t ∑ 

j=0 

j p i j (A.5)
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