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a b s t r a c t 

Cyber Physical System(CPS) allows to collect different sensor and alarm data from large number of facil- 

ities in industrial plants. Failure and faulty diagnosis is one of the most complicated and dynamic prob- 

lems in the industrial plant management since most of failures are extremely ambiguous which needs 

to be solved based on an expert’s experience. This makes the solutions very subjective and requires too 

much time, efforts and monetary investment. In this paper, we are proposing new failure detection ap- 

proach with machine learning and human expertise by using alarm data. As the first step of developing 

this new method, we collected several types of alarm data that detected functional failure in Hyundai 

Steel factory. We analyzed and processed the alarm data with 35 domain experts. Based on the data, we 

propose a knowledge based system which is Ripple Down Rule-based. This system acquires knowledge 

by machine learning which is maintained by human experts. The evaluation results showed that the pro- 

posed failure detection framework can reduce the time of human expertise acquisition and the cost of 

solving over-generalization and over-fitting problems by using machine learning techniques. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

In the process and manufacturing industries, there has been

 large push to produce higher quality products, to reduce prod-

ct rejection rates, and to satisfy increasingly stringent safety and

nvironment regulations. To meet the highest standards, most of

odern industrial plants contain large number of facilities inter-

cting with thousands of sensors and control, and those detected

ensor data can be managed by Cyber Physical System(CPS) While

heses facilities can compensate for many types of disturbances,

here are changes in the process which the controllers cannot han-

le adequately. These changes are called as faults or failures. A sin-

le failure in a facility can produce inconsistent outcomes, which

an harm the core part of the industrial plant that may cause

 critical industrial disaster. Therefore, it is crucial to find and

pply the best solution for maintaining facilities and preventing
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ndustrial disasters [1] . Failure and fault diagnosis is a key appli-

ation that improves efficiency and productivity. 

The early-stage solution was the regular manual maintenance

y human workers but this approach cannot be a perfect solu-

ion to prevent most industrial disasters [2] . Firstly, because regular

aintenance is not effective for all facilities and secondly, because

t is very expensive and time consuming. 

The recent trend of industrial plant failure detection applica-

ions focuses on two main factors, alarms and human expertise.

he CPS collects the status of different types of facilities from the

ensors, which are attached, on each facility. For example, Fig. 1

hows the partial architecture of CPS in Hyundai Steel plant. If

here is any specific symptom detected by sensors the alarm will

e ringed. The collected alarm data is sent to human expert in

eal time. The human experts have experience of several types of

ndustrial disasters which gave them sufficient knowledge in di-

gnosing and treating failures. Applying facility sensor network,

larm data and human expertise seems to be a good combination

n handling failure but this approach also has two key issues. 

Firstly, poor facility alarm and sensor network management

ay produce alarm flooding, which is the phenomenon of pre-

enting more alarms in a given period of time than a human
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Fig. 1. A partial architecture of cyber physical system in Hyundai Steel plant. 
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operator can effectively respond. The amount of the collected

alarm is too enormous to be properly checked and handled by

human experts. Owing to this, some severe failures can be mis-

led or skipped, which may cause a critical industrial disaster.

Alarm flooding has been identified as the root cause of significant

plant incidents such, as Texaco Pembroke [3] and Three Mile Is-

land Nuclear plant [4] . Several machine learning-based(rule-based

or model-based) outlier detection algorithm [5] was proposed in

order to reduce human expert effort but it still requires further

maintenance with algorithm and human experts. 

Secondly, diagnostic and treatment activities are too depended

on human experts. There are only limited numbers of human

experts who have sufficient experiences in the certain industrial

plant. There are two major issues, including availability and lop-

sided experiential knowledge. Human experts are not always avail-

able with every single situation. It can not be always expected any

proper treatment if human experts are not available. Additionally,

human experts may have lopsided experiential knowledge. Differ-

ent human experts can diagnose and treat a failure differently.

Moreover, some failure cannot be diagnosed or treated since the

expert have never experienced before [6] . 

In order to solve those issues, knowledge based systems are in-

troduced [7] with data mining and human knowledge engineer-

ing. The aim of knowledge based system is reasoning and using

a knowledge base to solve a complex problems, such as prediction,

detection, or recommendation. Most knowledge based systems are

constructed by using two different approaches, machine learning

technique and human expertise. 

For the first solution, machine learning has been applied in or-

der to manage knowledge for detecting failures. Machine learning

techniques enable the system to acquire the knowledge from ex-

isting alarm data with no help of a domain expert. The techniques

are very fast in finding the important pattern and knowledge from

the provided data so it reduced the time and cost. However, ma-

chine learning has some drawbacks, such as over-generalization

and over-fitting [8] . Another solution for failure detection knowl-

edge based system was conducted with human experts. Human

domain experts have enough experience so they can save knowl-

edge in order to solve complex problems in a specific domain.

However, knowledge acquisition from a human expert is normally

in a slow pace. Even if the knowledge was acquired, the acquired

expertise tends to be lopsided and would not cover the whole con-

cept of knowledge in the domain since experts acquire domain

knowledge based on their past experience [9] . 
i  
To address this concern, the paper proposes a new industrial

lant failure detection approach that is able to leverage the ben-

fits of machine learning and human expertise by using alarm

ata. In order to achieve this, we firstly collected various types of

larm data that detects a functional failure in Hyundai Steel fac-

ory over a one-year period (from September, 2015 to July, 2016).

ased on this data, we recruit 35 domain experts in Hyundai Co.

nd ask them to select the feature and label the class for the train-

ng dataset. The training dataset acquires failure detection knowl-

dge from machine learning and human experts by using Ripple-

own Rules (RDR) based knowledge based system. The proposed

pproach generates knowledge through machine learning known

s InductRDR and enables the maintenance of knowledge to be as-

ertained through human experts. 

The contribution of this research can be summarised as follows:

• The paper proposes an innovative approach to data-aided in-

dustrial failure diagnosis by using machine learning for the

knowledge acquisition phase of a knowledge based system and

human expertise for the knowledge maintenance phase. 
• For failure detection in CPS applied large industrial plants,

many studies have been conducted with using simple outlier

detection, basic data-based machine-learning techniques, or hu-

man experts monitoring. The proposed approach produces the

following benefits: (1) machine-learning generated knowledge

base that removes the knowledge bottleneck and (2) the hu-

man expertise maintenance that enables for incremental learn-

ing and solves over-generalisation and over-fitting issue. 

This paper is organized as follows: In the next section, we

rovide the related works and discussion, followed by failure de-

ection knowledge-based system in section “Data Collection”. In

ection “Failure Detection Framework”, we describe the experi-

ents of failure detection and proved the novelty of the proposed

ethodology. Finally, we conclude the paper in section “Evalua-

ion”. 

. Related works 

.1. Failure detection 

Sensor networks and alarm has been used in order to detect

nd predict functional failure in the large industrial plant. Tradi-

ional Alarm analysis system aim to find root causes of a failure

n the industrial process by analysing the real-time alarm [10] . The
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ost popular approach in failure detection is the simple outlier de-

ection from alarm and sensor data. The detected outliers, unusual

atterns in the alarm or sensor data, do not always end up with

he severe issue or failure, as well as to require human expertise

n order to define the type of failure. Hence, it is almost impossible

or human expert to diagnose the failure and provide the appropri-

te solution in a short period of time [1,8,11] . 

Foong et al. [2] aims to prioritize the alarms during alarm

oods which would ease the burden of operators with meaning-

ess or false alarms by using fuzzy logic and 125 fuzzy rules. To

acilitate in rule construction, five linguistic values are used to de-

ermine the ranges of the criticality for each parameter which are

owlow, low, normal, high and highhigh. These ranges of values

re gathered from oil refinery engineers or experts. For the out-

ut, four different categories of alarm prioritization are used which

re (1) normal, (2) low, (3) high and (4) emergency. Nan et al.

12] proposes a knowledge-based fault diagnosis method, which

ses the valuable knowledge from the experts and operators, as

ell as real time data from a variety of sensors. The Methods used

ere Fuzzy logic and five output functions. Abele et al. [13] de-

eloped an alarm system that performs Root Cause Analysis (RCA)

pon an alarm model constructed with Bayesian networks. In the

aper, methods are presented to construct Bayesian networks for

CA(Root Cause Analysis) with a knowledge-based and a machine

earning approach. 

Aizpurua et al. [14] aims to build a rule based expert system

sed to find the Alarm Root Cause. The system finds the root cause

f avalanches of alarms and their effects and reduce their num-

er through grouping or clustering techniques, complying with the

ngineering Equipment and Material Users’ Association (EEMUA)

91 standards. Zhao et al. [15] proposed a power system alarm

rocessing and fault diagnosis expert system (AFDES). In the pro-

osed expert system, Backus–Naur Form (BNF) is used to design

 kind of expert rule frame which operator can write and add

he rules with his own defining language to rule-base. Ebersbach

nd Peng [16] developed a first artificially intelligent system for

ault diagnosis and machine condition monitoring using integrated

nalysis of vibration, oil and wear debris analysis technique. It de-

igned and implemented an expert system for analyse vibration

ata with similar accuracy as an expert maintenance engineer in

n automated software package allowing high analysis throughput,

nd hence suitable for commercial condition monitoring laborato-

ies or on-site use. Safavian and Landgrebe [17] aims to reduce the

umber of alerts presented to the operator. It used a rule-based

ethod. 6 knowledge bases are built, and the rules describe typi-

al interrelations between alarm messages which have a common

ause. The concept has been implemented in a software prototype

hich manages the alarm log, plant model and interrelation rules

nd presents the grouped alarms in an interactive alarm display.

he alarms are not deleted from the alarm logs. Rather, it is the

ame alarm log but structured hierarchically. The result is a com-

act alarm display with fewer alarm messages visible on the top

evel but a higher information density. The application of the ap-

roach on two case studies resulted in a successful reduction of

larms. Folmer and Vogel-Heuser [18] presented an overview of an

lgorithm for the automatic alarm data analyzer (AADA). It is able

o find possible and significant reasons for alarm floods by identi-

ying the most frequent alarms and those causal alarms consolidat-

ng alarm-sequences. 12.0 0 0.0 0 0 alarms are used as a dataset. For

he experiment, the alarm logs have been available from four dif-

erent industrial process control and manufacturing plants as case

tudies, e.g. purification plant (continuous process), hydraulic fiber

ress (discrete and continuous (hybrid) process) and incineration

lant (continuous). They found that this data with AADA can re-

uce alarm floods and operator workload by improving and re-

esigning AMS (alarm management). 
Ahmed et al. [19] proposed an alarm system framework with

arious types of alarm data management system, including data fil-

ering system, alarm delay, and alarm deadline settings. Izadi et al.

20] described and evaluated the most efficient alarm filtering sys-

em. They presented the alarm filtering approach that calculates

he similarity in the alarm and sensor data sequence, and clusters

hem in each group. The research conducted by Zhu et al. [21] was

ocused on finding an alarm flooding management system. They

roposed a dynamic alarm management approach by applying the

ayesian Network technique. 

The above researches aimed at analysing the characteristics of

larm data, and managing the size of an alarm. This would limit

he participation of domain experts, and most of the researches

re not evaluated to check whether the detected alarm or sensor

ata pattern affects the real failure. 

.1.1. State-of-the-art on knowledge engineering techniques for failure 

iagnosis 

Several machine learning and data mining techniques were ap-

lied for industrial failure diagnosis. Yin et al. [22] introduced ma-

hine learning-based online fault diagnosis by using incremental

upport vector data description (ISVDD) and extreme learning ma-

hine with incremental output structure (IOELM). An online fault

iagnosis approach combining ISVDD and IOELM could detect new

ailure mode and recognise fault based on learning knowledge of

he diagnosis system. 

Extreme learning machine(ELM)-based real-time fault diagnos-

ic system for gas turbine generator systems was proposed [23] ,

nd compared with the most successful machine learning algo-

ithm, including support vector machine. The evaluation result is

8.22% accuracy in 2.7 ms. The proposed ELM fault diagnostic

ramework is generic, it could be applied to the other applications

f condition monitoring in which the fault identification time is

ritical. 

Wind turbine failure diagnosis system applied a binary tree

VM and a self-organising feature map neural network [24] . Fuzzy

ogic, support vector machine (SVM) and artificial neural net-

orks were employed for continuous monitoring and fault diagno-

is for monoblock centrifugal pump [25] . Feature extraction using

avelets and SVM algorithm for classification are successful ap-

roaches for practical applications in industrial fault diagnosis. 

Li and Zhao [26] proposed gravitational search algorithm (GSA)

o identify and diagnose new fault samples by calculating the

eighted kernel distance between them and the fault cluster cen-

ers. The proposed method has been applied in unknown fault

iagnosis, and evaluation results have shown the effectiveness of

he proposed method in achieving expected diagnosis accuracy for

oth known and unknown faults of rotatory bearing. The applica-

ion of evolving fuzzy modeling to fault-tolerant control was pro-

osed in two steps: fault detection by applying model-based ap-

roaches and fault accommodation by using fuzzy models [27] . 

Despite machine-learning based framework studies in failure

iagnosis, it was not successfully adopted in the real industrial ap-

lication. This is because machine learning is too dependent on the

uality of the training data. If the size or range of the training data

as insufficient and unrepresentative of the industrial domain. 

The following sections will describe two major approaches, hu-

an expert and machine learning techniques, in acquiring and

anaging knowledge. 

.1.2. Single classification ripple down rules (SCRDR) 

In the knowledge engineering field, Ripple Down

ules(RDR) [9] is regarded as one of the best knowledge ac-

uisition method for expert systems. RDR is able to reduce the

nowledge acquisition bottleneck issue [28] and also enables
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Fig. 2. An example of SCRDR knowledge tree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. An example of MCRDR knowledge tree. 
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resolving the verification process when domain users handle the

validation themselves. 

SCRDR stands for Single Classification RDR. The example of

SCRDR knowledge tree can be found in the Fig. 2 . According

to [29] , the SCRDR structure is a finite binary tree where each node

can have two distinct branches, which are called except and if not.

Examples are measured from the root node of the SCRDR tree. Each

node in the tree is a rule with the form of if α then β ( α is the

condition and β is the conclusion). If an example satisfies the con-

dition α it is passed to the next node of the except branch. Other-

wise, the example is passed to the next node following the if not

branch. If an example satisfies α but the node does not have the

except branch, β of this node is the conclusion for the example.

If an example does not satisfy α but the node does not have the

if not branch, β of the last node on the path where the example

satisfies its α is the conclusion for the example. In order to ensure

that a conclusion is always returned, examples always satisfies the

condition of the root node. This node is called the default node and

the conclusion is called the default class. For instance, as in Fig. 2 ,

Node 1 is the default node and class ‘0’ is the default class. An

example which only satisfies condition A should be passed down

through Node 1 and stops at Node 2. Since Node 2 does not have

the if not branch, the example is classified as ‘0’ by Node 1. If an

example satisfies A, B, C and D, it should be passed down through

Node 1, Node 2, Node 3 and stops at Node 4. Since it satisfies the

condition of Node 4, it is classified as ‘1’ [30] . 

When the measure process returns the wrong conclusion for an

example, a new node is attached to the last node in the SCRDR

tree. If the last node has no except branch, the new node is at-

tached as the except branch, otherwise it is attached as the if not

branch. The example which is associated with the new node is

called the cornerstone example for that node. The rule generated

for the new node entails the features of the cornerstone of the

new node but not that of the cornerstone of the last node where

the new node is attached. When the measure process returns the

wrong conclusion for an example, a new node is attached to the

last node in the SCRDR tree. If the last node has no except branch,

the new node is attached as the EXCEPT branch, otherwise it is at-

tached as the IF not branch. The example, which is associated with

the new node, is called the cornerstone example for that node. The

rule generated for the new node entails the features of the corner-

stone of the new node but not that of the cornerstone of the last

node where the new node is attached [31] . 
In SCRDR, all rules are constructed in a binary tree. When the

ystem encounters an incorrect classification, a new exception rule

s added based on expert judgement. Therefore, SCRDR can incre-

entally develop a relatively accurate knowledge base, provided

he domain is fixed and the experts provide the correct judge-

ents. Since RDR based knowledge base depends on expert judge-

ent, the correctness of the used language expressed by the ex-

ert is the key of developing a good knowledge base. According

o Pham and Hoffmann [32] , it may cost a long time to classify

ost of the relevant cases correctly, if the target is linear thresh-

ld in the numerical input space and an expert is only allowed to

se axis-parallel cuts, since it is unsuitable for him to express ac-

urately. 

.1.3. Multiple classification ripple down rules (MCRDR) 

Kang el al. [33] introduced Multiple Classification RDR (MCRDR)

s an extension of RDR (SCRDR) to improve the limitations of RDR

SCRDR) including reducing the burden of the knowledge acquisi-

ion task and preventing knowledge base being ill structured which

ay result in considerable repetition of knowledge. 

Unlike SCRDR, MCRDR evaluates all the rules in the first level

f the knowledge base. The rules of the second level are evalu-

ted to refine the rules which are satisfied at the first level. It

eeps evaluating the next level in a recursive way until there is no

ore level to evaluate or none of the rules can be satisfied [34,35] .

CRDR is able to provide multiple conclusions since it constructs

ules with multiple paths. Each path is a particular refinement se-

uence. Knowledge is acquired from the experts when an example

s classified incorrectly or needs to be given a new classification.

he process can be described in the following three steps. (1) The

xpert provides correct classifications for the examples of the sys-

em, (2) The system decides on the location for the new rules, and

3) New rules are provided to the system by the expert and added

o the knowledge base for correction. 

The expert selects valid conditions from the current example to

cquire the new rule for a given classification. The rule that has

een created is then compared with the cornerstone cases of each

ode. If any cornerstone cases of a node satisfy this new rule the

xpert needs to select extra conditions for differentiating the cur-

ent case and the cornerstone cases. For example, in Fig. 3 when

 case only satisfies conditions a and c but its correct class should

e W, the system may decide the new rule location is on either

ule 3 or Rule 8. 
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Since cornerstone cases of Rule 3 and Rule 8 are found to sat-

sfy the conditions, experts are required to provide extra rules to

ause those cornerstone cases no longer to satisfy the set of con-

itions. The system then repeats this process until no remaining

ornerstone cases satisfy the rule and it may simply add a new

lassification which is not in the tree. There are three ways of cor-

ecting the knowledge base [33] : 

1. Add a stopping rule at the end of a path to prevent the wrong

classification 

2. Add a rule at the end of a path to give the new classification. 

3. Add a rule at a higher level to give the new classification. 

As can be seen in Fig. 3 , the system should add a new rule at

he end of the path (Rule 3 or Rule 8) to give a new classification. 

MCRDR concerns multiple independent classifications, whereas

t maintains the advantages and principles of SCRDR. Like SCRDR,

CRDR is also based on the premise that a justification experts

rovide is necessary for a correction of knowledge in a particular

ontext. However, the context in MCRDR is maintained in a differ-

nt way and only consists of rules that have been satisfied by the

ata. Besides the validation of MCRDR includes differentiating the

ew example from a range of different examples. 

A class in a MCRDR tree is the set of separated rule paths

hich provides the same conclusion. For example, in Fig. 3 , Class

 has three rule paths: Rule (0, 1, 7), Rule (0, 2) and Rule (0, 4,

). Therefore, a rule path consists of all conditions of all previ-

us rule nodes and conditions of the last node which concludes

he class. Han et al. [36] mentions during the process of building

CRDR structures, the relationship between different classes are

ntouched and invisible from users. However, this information is

ble to provide inspiration for users to capture the point of rule

reation and help users to realise how relationship may change the

eaning or importance in the domain. Although MCRDR can work

ery effectively in many domains, similar implicit information con-

ained within the structure itself is still not being extracted or ex-

loited simply. 

.2. Knowledge management by machine learning 

As mentioned in the previous section, knowledge acquisition is

raditionally conducted with human domain expert and knowledge

ngineers. However, there are two major issues in acquiring knowl-

dge from domain experts: first, knowledge acquisition from hu-

an experts is normally in a slow pace; secondly, an expert cannot

over whole concept of knowledge in a specific domain. Because of

hose issues, it is almost impossible to manage the demand of ex-

anding knowledge since a successful knowledge base may require

n extremely large number of concepts and rules. 

Machine learning techniques received lots of attention since

hose can learn and acquire concept and knowledge from the exist-

ng data with no domain experts help in a short period time [37] .

he most common machine learning techniques for knowledge dis-

overy are neural network and decision tree. 

Neural network models the human brain and consists of a num-

er of artificial neurons and connections. Cascading chains of deci-

ion units with neurons used to recognize non-linear and complex

unctions. Knowledge can be acquired based on the input data in-

rementally so it does not need to be re-programmed. Only train-

ng phase is required in order to maintain the knowledge base.

ime-series alarm data for failure detection was applied with neu-

al network learning model so the model achieved a highly suc-

essful rate even though it has some noisy and outlier data. Tjhai

t al. [38] focused on filtering alarms using the combination of

eural network and k-means clustering. 

Decision Tree algorithm is the typical machine learning ap-

roach that builds the knowledge base with the interpretable tree-
tructured rules. The Nearest Neighbor model is assigned to the

ost common class among the data samples that are most simi-

ar to the newly presented data. The approach has been used with

mall size of alarm data because of its extremely large distance cal-

ulation time. Both decision tree and nearest neighbor algorithm

ave been used a lot in the sensor failure detection and prediction

ince it is easy to understand the consequences, which can trace

he result. Anuar et al. [39] designed and implemented a failure

etection system using a decision tree learning approach, which is

ast and easy to interpret. 

However, those machine-learning techniques have over- 

eneralization and over-fitting issues if the size or range of data is

ot sufficient to cover the knowledge in the specific domain. 

In order to solve this issue, Gains [31] introduced Ripple Down

ule (RDR) based machine-learning technique, called InductRDR.

he purpose of InductRDR is combining the concept of knowl-

dge creation through machine-learning technique and knowledge

cquisition from human domain experts. Gains described a se-

uence of dispersing knowledge partially from the view of a hu-

an expert, which consists of the following seven stages: Minimal

ules, Adequate Rules, Critical Cases, Source of Cases, Irrelevant At-

ributes, Incorrect Decisions, and Irrelevant Attributes & Incorrect

ecisions [40] . 

The first stage is a complete, minimal set of correct decision

ules so no data is required for knowledge acquisition since the

orrect answer is available from the expert. On the contrary, the

ast stage is a source of data from which the correct answer might

e derived with the greatest probability of correct decisions so

he expert has provided little. The stages in the middle from top

o bottom show a decrease in existing knowledge though human

ntervention but an increase in new expertise through machine

earning [31] . 

The main use of existing RDR is close to the top stage. There-

ore, Induct RDR that derives rules directly from an extension of

endrowskas Prism algorithm was made to be close to the bot-

om [41] . This Induct RDR sums standard binomial distribution as

he possibility of selecting the correct data at random to measure

he correctness of a rule. 

In Fig. 4 , given a universe of entities E, a target predicate Q and

 set of possible test predicates of the form S on entities in E, use

hem to construct a set of rules from which the target predicate

ay be inferred given the values of the test predicates. The proba-

ility of selecting s and getting c or more correct at random is the

um of the standard binomial distribution. 

In supervised learning, there is a risk of over-fitting the noise

y memorizing the peculiarities of the training data [42] . Pruning

pproaches are commonly applied to solve the problem. Although

nduct RDR recognizes the importance of pruning, it only removes

edundant clauses and compresses the structure to some extent.

educing over-fitting and improving generalization prediction ca-

ability has not been considered [31] . Ripple-Down Rules classifier

Ridor) is an implementation of Induct RDR in Weka. It first cre-

tes the default rule. The exceptions are created for the default rule

ith the lowest (weighted) error rate [43] . Different from the orig-

nal Induct RDR, Ridor applies information gain to evaluate each

ule and it prunes a rule by reducing error pruning. 

The original InductRDR [40] has a serious problem in handling

he big data since it checks all the rules from all the combinations

f conditions. In terms of big data, it would be almost impossi-

le to check all million or billion data record one by one. Hence,

he proposed model should consider time-efficiency. Moreover, the

riginal InductRDR has an issue in analysing and handling the nu-

eric data so it tends to produce higher performance with only

ominal data type. Therefore, the method we are proposing in this

aper should consider the improvement in running time efficiency

nd numeric data type handling. 
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Fig. 4. Problem of empirical induction [31] . 

Fig. 5. Alarm data collection interface. 
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3. Alarm data collection and processing 

As mentioned in the introduction section, the paper focuses on

detecting failure status by using alarm data particularly on large

industrial plants. This section describes how we collected and an-

alyzed a set of alarm data, and classified the facility status based

on the data. 

3.1. Alarm data collection 

We use the alarm data that was collected in the industrial plant

from the Hyundai Steel Co., Ltd for a 1-year period (from Septem-

ber, 2015 to July, 2016). In the plant, most alarms are connected

with one or more sensors to indicate the facility activities, and an

alerting device to detect any failure. We collected over a round half

million, 567,748, alarm data from an industrial plant. Fig. 5 shows

the alarm data collection interface with the detailed information of

some example alarm data that was collected on 25th of July 2016. 

As can be seen on the right side of Fig. 5 , the alarm data are

produced from the two difference sources, HMI (Human Machine

Interface) and CMS (Central Management System). We merged

alarm data from those two sources and visualized this to the inter-

face as can be seen in the upper-right corner of the Fig. 5 . When

new alarm is occurred, the alarm integration system collects all

detailed information of the specific alarm, including starting time,

ending time, facility id, alarm message, and ratio(%). The ratio(%)

describes how much capacity that alarm took so it uses 100% of

working memory at that period. For example, the first alarm data

in the gure indicates the ‘forward press entrance inhibits’ issue in

the Slab Sizing Press (SSP) Area, which occurred from 01:07am to

03:13am. The last column ‘Ratio(%)’ describes how much capacity

that alarm took so it uses 100% of working memory at that period.

3.2. Facility failure status assessment 

Next, we focus on assessing the facility status. The collected

alarm data is traditionally sent to the human experts, and experts

diagnose and treat the failures. However, the aim of this research is

proposing an automatic failure detection framework by using ma-
hine learning and human expertise. Therefore, it is crucial to have

lasses/labels for defining the status of facilities based on alarm

ata. For this task, we asked 35 human experts, who have ex-

erienced various types of industrial disasters from the industrial

lant of Hyundai steel Co., Ltd since they have sufficient knowledge

n diagnosing and treating failures by reading and analyzing the

larm data. Based on the focus group with 35 domain experts, we

dentified 48 different facility statuses that would be used as class

abels. The following are 48 facility statuses identified by domain

xperts: normal, apc, breakaway, bur, bwd, carbonization, close,

ollision, corrosion, cradle, cut, damage, defective, division, down,

ame, gap, hunting, impact, intrude, leak, nocooling, noenter, no-

ink, nooff, nooperation, noreversefwd, norupture, nosense, nos-

op, obstacle, on, open, permeate, plateloadon, position, relaxation,

lip, slowincome, speed, stop, transform, trip, up, vibration, wrong-

nputpower, wrongoperation, wrongsense. Based on the given 48

lass attributes, we asked 35 experts to classify and label the sta-

us of facility by reading and analyzing the provided alarm data.

he labelling procedure is as follows. A class label for an alarm

ata was assigned if 21 out of 35 experts (60% of experts) agreed

ith the label. In another case, we selected the first and second-

ated label, and asked experts to choose one of the labels. For ex-

mple, let’s label the first alarm data with 35 experts. 40% of 35

xperts labelled it with ‘noenter’ class and 35% of experts classified

t into ‘obstacle’ class. In this case, we asked experts to classify the

ata by picking ‘noenter’ or ‘obstacle’ class. With this procedure,

he alarm data is labeled into ‘noenter’ class. 

.3. Feature analysis for failure status detection 

We propose a set of features to characterize alarm data in our

ollections. 35 domain experts de-fined the features. These include

ome hardware features specific to the Hyundai Co. Ltd indus-

rial plant but most are quite generic so can be applied to other

lant environments. We identify three types of features depending

n their scope: hardware-based features, time-based features, and

ize-based features. 

1. Hardware-based features consider the individual hardware

type in the industrial plant. It includes each alarm id and facil-
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Table 1 

Examples of alarm training data. 

Alarm ID Time Facility ID Count Lifetime Ratio Status 

DRV_183 17 H1103364 1 3228 896.67 INTRUDE 

ES_041 16 H1101349 10 112 31.11 HUNTING 

MCC_323 23 H1103364 1 3600 10 0 0 IMPACT 

APC_014 8 H1101349 4 22 6.11 BUR 

PAG_004 1 H1101613 13 43 11.94 LEAK 

PRC_090 9 H1101349 4 21 5.83 CARBONIZATION 

PRC_058 7 H1105709 1 30 8.33 NORMAL 

PRC_071 22 H1102579 1 82 22.78 NO LINK 

GRS_008 10 H1105709 1 20 5.56 NO REVERSE 

PRC_020 7 H1101613 1 4 1.11 CUT 

... ... ... ... ... ... ... 
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ity id. Alarm id represents the message type that was produced

in the alarm data. The facility id shows the identifier for each

facility in the industrial plant. 

2. Time-based features consider the characteristics of time factor

for each alarm data. It contains time and lifetime of alarm data.

Time feature represents the starting time (e.g. 17 means 5pm)

of the specific alarm. The lifetime describes the length of time

that the specific alarm is alive in one hour. The length would

be described as millisecond. 

3. Size-based features consider the size of each alarm data. It in-

cludes occurrence and the capacity of the specific alarm. Count

feature shows the occurrence of the alarm data in one hour. Ra-

tio feature represents the percentage of resources taken by the

specific alarm. 

Based on those three features, we produced 6 individual fea-

ures (alarm_id, facility_id, time, lifetime, count, ratio) into the

raining dataset for knowledge acquisition through machine learn-

ng technique. Some examples of alarm training data are shown

n Table 1 . In the table, we demonstrated first 10 alarm data in

he training dataset. Each row represents 6 different conditions at-

ributes and its failure status of a specific alarm. 

. Failure detection framework 

The goal of this research is to propose new failure detec-

ion framework for industrial plant by using alarm data and RDR

nowledge based system. The proposed RDR knowledge-based sys-

em for detecting failure allows acquiring knowledge by applying

achine learning technique and maintaining them by domain ex-

erts who have experience in detecting failure from large indus-

rial plants. The proposed framework can be described in the dia-

ram. We would like to briefly introduce the proposed failure de-

ection framework before describing the detailed process. The pro-

osed framework can be seen in Fig. 6 . 

We would like to briefly introduce the proposed failure detec-

ion framework before describing the detailed process. First, we

uilt a training dataset with 6 features/attributes and a ‘status’

lass as described in the previous section. Then, using the train-

ng dataset, we built a supervised classifier by using RDR-based

achine learning, Induct RDR. InductRDR adopts knowledge ac-

uisition approach of the traditional machine learning techniques,

hich allows creating a knowledge base from the structured train-

ng dataset, but produces the rule-based knowledge base in Rip-

le Down Rule format. Therefore, InductRDR would enable human

omain experts to modify the existing knowledge base, which is

eveloped by machine learning technique. For example, if there is

ny incorrect classified data based on the testing dataset, human

xperts can add exception rules (either additional or refine rule)

here data are incorrectly classified. 

Then, it finds out incorrectly classified data based on the given

esting dataset. The knowledge based system acquired rules from
uman experts to add exception rules (additional rule) where data

re incorrectly classified. 

The following sections, “Knowledge Acquisition by RDR-based

achine Learning” and “Human Knowledge Acquisition using RDR

ramework”, include the detailed process of knowledge acquisition

ith InductRDR and knowledge maintenance with human experts.

ote that we have updated several functionalities of original In-

uctRDR [31] in order to achieve better performance with the large

ize of real-time alarm data. 

.1. Knowledge acquisition by RDR-based machine learning 

First, we would like to discuss how it became possible to build

he rule-based knowledge system with alarm training dataset by

sing the updated InductRDR. The basic idea of InductRDR is gen-

rating rules in a RDR structure with a rule induction algorithm. A

ule at a single node in RDR structure is called as a clause, and it

ncludes one or more terms in a form of attribute-relation-value. 

Rule generation process of InductRDR can be described in the

ollowing three steps: First, the most frequently occurring class

n the training data is selected as the default class value for the

oot-level rule. Then, it applies standard binomial distribution and

earches a class that has the smallest m-value. The selected class is

sed for splitting the dataset into two subsets: true and false cases.

f either of these two subsets has more than one class, the rule will

e generated recursively. However, the original InductRDR does not

t into the alarm training data because of its size and complexity. 

We propose three core updates in the original InductRDR. First,

e updated the clause selection mechanism. The original Induc-

RDR searches all possible combinations of terms in order to find

he best class. In this process, m-value is an indicator that shows

he quality of a term. Only appropriate terms are added to the

lause until it only selects true positive data. Unfortunately, this

rocess would produce severe computational issue if the domain

as a large training dataset. In order to solve this issue, the up-

ated InductRDR ordered terms first. Since m-value is used as a

uality assessment function for each term and only terms with

mallest m-value can be added to the clause, terms can be sorted

y m-value in ascending order. The possible best terms will be al-

ays combined and assessed at the early stage, and that allows

nding the best clause in a short period of time. 

Secondly, we modified the approach to evaluate the best clause.

he original InductRDR applied m-function, the sum of the stan-

ard binomial distribution, for assessing the credibility of the

lause [31] . Gains mentioned that m-value would produce the

robability that the rule could be good at random, and that it de-

ives no assumptions about sampling distributions. However, the

roblem would be occurred if the size of the dataset were too

arge. The m-values for all rules become to 0 with the big size of

ataset so it is almost impossible for distinguishing the importance

f the rules. This is because the original InductRDR just chose the

ttribute randomly in this case. In order to remove this random

election, we borrowed the attribute selection approach, informa-

ion gain, from decision tree learning algorithms since it is the key

o improving prediction accuracy in decision tree algorithm [44] .

he updated Induct RDR would use information gain for the best

lause evaluation when m-value becomes 0. Finally, we adopt the

umeric data handling approach in the updated InductRDR. While

ominal data has fixed values with specific meaning, numerical

ata is usually continuous and the meaning is not clear. Nomi-

al data can be divided into groups by their values but it is al-

ost impossible to do the same thing for numeric data. InductRDR

ses only inequality signs for best clause selection but it is ex-

remely clumsy with large and complied dataset. Due to the nature

f InductRDR, we applied information gain for numeric value han-

ling. With the above updates, we built the system that includes
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Fig. 6. Failure Detection Framework. 
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the updated InductRDR for knowledge acquisition, and the inter-

face for knowledge maintenance with human expert. We put the

alarm data, which is collected and processed in the section “Data

Collection”, into the updated InductRDR, and it produces the RDR-

structure rule (knowledge) base. This knowledge base can be seen

on the left side of the Fig. 7 . It took 3 seconds to build the knowl-

edge base, and has 177 rules in total. The prediction/classification

performance of the updated InductRDR would be discussed in the

section “Evaluation”. 

The right side of Fig. 7 represents the list of conclusion and the

case browser. The case browser shows the training dataset; each

case is a row of the alarm dataset that we trained with InductRDR.

The first row contains the value of 6 attributes (alarm_id, count, fa-

cility_id, lifetime, ratio, and time) and a value ’INTRUDE’ as a class

‘status’. 

Fig. 8 shows the correctly classified instance in the knowledge

base. The value of a class for the second case (CaseID = 2) in the

case browser is ‘INTRUDE’ which is predefined. From the knowl-

edge base, the rules contain the condition, which is matched with

any value of 6 attributes, would be fired. As seen at the left side

p  
f Fig. 8 , the rule 1 and 132 are fired by the selected case, case

. The rule no. 1 should be fired if the time is later than 6am,

nd the value of time attribute for the case is 17(5pm). The fa-

ility status should be classified as ‘TRANSFORM’. However, before

oncluding this classification, the system checks the current case

ith the child rule no.132. The rule no.132 contains a condition to

heck whether the lifetime is over 3519 ms, and the value of life-

ime for the case is 3600 ms, which has satisfied the condition. The

nal conclusion would be ‘INTRUDE’ as there is no more child rule

o check. Therefore, the final inference conclusion and the original

onclusion are equal, which means ‘correctly classified’. 

.2. Human knowledge acquisition using RDR framework 

However, not all cases are correctly classified. As has been men-

ioned repeatedly in this paper, one of the challenges in machine

earning is the fact that not all instances will be classified correctly,

 byproduct of issues such as over-fitting and over-generalization.

ig. 9 shows an example, which is incorrectly classified. The pro-

osed RDR framework system supports the function, which enables
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Fig. 7. An example of the generated knowledge base with InductRDR. 

Fig. 8. An example of correctly classified instances. 

Fig. 9. An example of Incorrectly Classified Instances. 
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cquiring the human expert’s knowledge based on the current con-

ext and adding that knowledge incrementally. As can be seen the

ig. 9 , the case id 121 produced the ‘NOSTOP’ status as a conclu-

ion since the rule no.1, 128, and 131 were fired. The last child rule

ncludes the condition to check whether the alarm occurred more

han 3 times and the lifetime is equal or shorter than 168 ms. The

alues of case id 121 are matched to the conditions but the class

alue ‘IMPACT’ does not match with the inference conclusion ‘NOS-

OP’. 

In this case, the RDR framework will acquire the rules from hu-

an experts for refining the knowledge base where the data is in-

orrectly classified by adding new rules. Fig. 10 shows the output

fter the refine rule addition. 

The new rule no.178 is added so it is now correctly classified as

IMPACT’. However, not all of the human knowledge can be applied.

here are two reasons summarized as follows. First, there are data,

hich have the same vector of attributes but belong to different
lasses. 
m  
This is because the existing attributes are not enough to tell

he difference. Therefore, the class which the majority belong to

ill be decided at the conclusion and it is less possible to cor-

ectly classify the minority. Secondly, some rules applied might af-

ect other correctly classified data. The knowledge created by the

xpert gives a hint about how these rules affect the whole dataset.

f a rule has more incorrectly classified data than correctly classi-

ed data, it should not be applied. 

The performance analysis of human rules addition will be con-

ucted in the section “Evaluation”. 

. Evaluation 

In order to evaluate the performance of the proposed failure de-

ection framework, we use 567,748 alarm data that was collected

rom a factory of Hyundai Steel Company, and processed by 35 hu-

an domain experts, employees in Hyundai Steel Co. The detailed



10 D. Kim et al. / Knowledge-Based Systems 150 (2018) 1–13 

Fig. 10. An example of modified rule. 

Table 2 

Applied machine learning techniques. 

No Evaluation technique Base algorithm 

1 NaïveBayesSimple [45] Naïve Bayes 

2 MultilayerPerceptron [46] Neural network 

3 LIBSVM [47] Support vector machine 

4 C4.5 Decision tree [48] Decision tree 

5 The modified InductRDR InductRDR 

6 The modified 

InductRDR + Human RDR rule 

InductRDR and human expertise 

Table 3 

The performance comparison with machine learning techniques and proposed In- 

ductRDR with human rules. 

Evaluation techniques Detection accuracy 

Neural network 92.31% 

The updated Induct RDR 92.05% 

The updated Induct RDR with human rules 100% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1  

t  

t  

t  

b  

a  

c  

t  

a  

c  

d  

a  

s  

w

 

(  

t  

c  

b  

c  

i  

p  

g  

e

 

p  

m  

o

5

 

f  

w  

s  

f  

T  

t

 

t

 

v  

r  

a  

d  

b  

s  

b  

i

collection and processing procedures are described in the section

“Data Collection”. 

5.1. Failure detection performance evaluation 

To conduct the evaluation of our proposed failure detection

framework, we compared the performance of the modified Induc-

tRDR on the alarm dataset against four common machine learning

classifiers, including Naïve Bayes, neural network, decision tree and

support vector machine. The algorithmic approach and underlying

philosophy of each algorithms are fundamentally different, how-

ever, all of them are considered as highly successful techniques in

predictive modelling. 

We tested the performance with six machine learning tech-

niques by using 10-fold cross validation. The Table 2 describes the

algorithms that are applied for the evaluations. 

The performance of failure detection with machine learning

techniques can be found in the following Fig. 11 . In this domain,

it shows that Neural Network and InductRDR achieved over 92%

detection accuracy. The applied techniques (no.6) builds the ini-

tial knowledge base with the modified InductRDR, and then adopts

human knowledge. The test dataset is used to examine this knowl-

edge base to find incorrectly classified data. A simulated expert is

used to find correct rules for those incorrectly classified data. In

the case of InductRDR (machine learning only) and C4.5 Decision

Tree, they are based on machine learning only, so their prediction

accuracy is based on predicting the test dataset using the knowl-

edge base acquired from the training dataset. 

As can be seen in Table 3 , it has been found that the up-

dated InductRDR only can achieve 92.05% of prediction accuracy.

After adding human rules, the result can be improved up to
00%. However, upon updating the classifier with domain exper-

ise, the prediction accuracy markedly improved, classifying all

raining instances with 100% accuracy. Therefore, one can surmise

hat adding human knowledge to the knowledge base generated

y the machine learning classifier does improve the classification

ccuracy and can mitigate some of the pressing concerns of ma-

hine learning as we can handle issues of noise or anomalous data

o some extent. It is important to note that the 100% accuracy

chieved with the incorporation of the human rules applies to the

urrent fixed dataset and we would expect the accuracy to be re-

uced in a real-world clinical setting. However, the benefit of this

pproach is the ability to adapt through incremental learning and

o the system is able to improve in the real-world settings, even

hen the performance reduces. 

Although Neural Network had the best prediction accuracy

92.31%) among machine learning techniques, the updated Induc-

RDR with human rules outperforms it eventually. Therefore, it

an be concluded that adding human knowledge to the knowledge

ase created by machine learning does improve the prediction ac-

uracy. The prediction accuracy becomes low if there are signif-

cantly over-generalization and over-fitting problems. In this case,

rediction accuracy has been improved so that it implied that over-

eneralization and over-fitting problems have been solved to some

xtent. 

In addition to the high performance of failure detection, the

roposed approach allows human experts to incrementally add and

aintain the knowledge in the knowledge base with no rebuilding

r initialization process. 

.2. Failure detection performance at feature level 

In this section, we study how specific subsets of features per-

orm in the task of automatic assessment of credibility. To do this,

e train the InductRDR (machine-learning) algorithms considering

ubsets of features. We consider 3 subsets of features grouped as

ollows: (1) Time-based, (2) Size-based, and (3) Hardware-based.

he detailed information of those feature levels can be found from

he Section 3.3 . 

We train the updated InductRDR with each subset feature a

raining set. 

The instances in each group were split using a 10-fold cross

alidation strategy. In this evaluation, we aggregate all 47 faulty

elated classes as a “FAULTY” class while labelling ‘normal’ class

s just “NORMAL” class as can be seen in Table 4 . The results in-

icate that among the features, the time-based features and size-

ased features are very relevant for diagnosing the failure/faulty

tatus. We observe that hardware-based features are not enough

y themselves for this task. On the other hand, “NORMAL” class is

n general more difficult to detect. 
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Fig. 11. The accuracy of failure detection with machine learning techniques. 

Table 4 

Experimental results obtained for the classification of failure detection. 

Time-based 

Class TP Rate FP Rate Prec. Recall F1 

NORMAL 0.623 0.082 0.610 0.623 0.616 

FAULTY 0.918 0.377 0.923 0.918 0.921 

W.Avg. 0.868 0.327 0.869 0.868 0.869 

Size-based 

Class TP Rate FP Rate Prec. Recall F1 

NORMAL 0.147 0.033 0.478 0.147 0.225 

FAULTY 0.967 0.853 0.847 0.967 0.903 

W.Avg. 0.828 0.714 0.785 0.828 0.788 

Hardware-based 

Class TP Rate FP Rate Prec. Recall F1 

NORMAL 0.749 0.454 0.643 0.749 0.692 

FAULTY 0.546 0.251 0.666 0.546 0.600 

W.Avg. 0.652 0.357 0.654 0.652 0.648 

5

 

g  

i  

t  

a  

e  

k  

t  

t  

e  

o

 

o  

a  

c  

m  

c  

m  

t  

c  

e  

b

 

c  

h  

b

6

 

a  

s  

m  

h  

u  

c  

H  

d  

w  

o  

w  

r  
.3. Cost evaluation 

In order to solve the core issue of machine learning, over-

eneralization and over-fitting is traditionally accompanied with

nserting new data to the existing dataset to enrich the patterns. In

his case, the previously created knowledge base will be removed,

nd a new knowledge base is constructed. The amount of knowl-

dge can be quantified as the number of nodes and conditions in a

nowledge base, so the cost of solving the problems can be quan-

ified as how many nodes and conditions are reconstructed. This is

he case of machine learning. In the case of adding human knowl-

dge, the cost is how many nodes and conditions are added to the

riginal knowledge base. 
Table 5 

Cost evaluation result of knowledge increased. 

Models Upda

Increased ratio of nodes 261.5

Increased ratio of conditions 222.5

Increased ratio of nodes per 1% of accuracy improvement 109.7

Increased ratio of conditions per 1% of accuracy improvement 99.66
The following Table 5 summarises the result of reconstructed

r increased nodes and conditions after solving over-generalization

nd over-fitting problems. By applying human knowledge, the in-

reased ratio of nodes for improving 1% of accuracy is 28.57%,

uch smaller than InductRDR only (109.78%). Similarly, the in-

reased ratio of conditions for improving 1% of accuracy is 60.15%,

uch smaller than InductRDR only (99.66%). As mentioned above,

he reason that pure machine learning models cost much is be-

ause they remove previous knowledge base and create a new one

very single time that it encounters a new data case which cannot

e explained by the existing knowledge base. 

Therefore, it can be concluded that the reconstructed or in-

reased ratio of the knowledge base is much smaller by combining

uman knowledge and machine learning than those approaches

ased on machine learning only. 

. Discussion 

Detecting failure status in large industrial plants has been noted

s complex and dynamic problem area because of its enormous

ize of alarm and sensor data, and experiential knowledge require-

ents. Either machine learning technique or human expert system

as been applied to acquire and maintain the knowledge for fail-

re detection but neither did work successfully. In this project, we

ollected and analyzed the alarm data with 35 domain experts in

yundai Steel Co., and propose a novel approach that uses Ripple-

own Rule (RDR) to maintain the knowledge from human experts

ith knowledge base generated by the updated Induct RDR. Based

n the experiment, we found that it improves accuracy to 100%

ith the fixed dataset. It is important to note that the 100% accu-

acy achieved with the incorporation of the human rules applies
ted InductRDR (%) Updated InductRDR with human rules (%) 

4 58.25 

8 124.20 

8 28.57 

 60.15 
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to the current fixed dataset and we would expect the accuracy to

be reduced in a real-world clinical setting. However, the benefit of

this approach is the ability to adapt through incremental learning

and so the system is able to improve in the real-world settings,

even when the performance reduces. 

7. Conclusion 

The proposed approach in this paper allows human experts

to incrementally add and maintain the knowledge in the knowl-

edge base without having to rebuild or re-initialise the knowledge

base, unlike pure machine learning approaches which rebuild the

knowledge base from scratch each time. Moreover, the proposed

failure detection framework can reduce the time of human ex-

pertise acquisition and the cost of solving over-generalization and

over-fitting problems in machine learning technique. The proposed

failure detection framework has never been reported previously.

Moreover, this framework can be successful detection approach in

the domain if it requires handling big size of the dataset and hu-

man expertise. The contribution can be summarised as follows: (1)

machine learning to generate knowledge base that alleviates the

knowledge acquisition bottleneck, (2) the human expertise mainte-

nance that enables for incremental learning and (3) the mitigation

of the failure detection problems reflected in previous research.

Through this contribution, we have confidence in this adoption of

this framework across multiple modalities. 
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