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a b s t r a c t 

Despite impressive achievements in image processing and artificial intelligence in the past 

decade, understanding video-based action remains a challenge. However, the intensive de- 

velopment of 3D computer vision in recent years has brought more potential research op- 

portunities in pose-based action detection and recognition. Thanks to the advantages of 

depth camera devices like the Microsoft Kinect sensor, we developed an effective approach 

to in-depth analysis of indoor actions using skeleton information, in which skeleton-based 

feature extraction and topic model-based learning are two major contributions. Geomet- 

ric features, i.e. joint distance, joint angle, and joint-plane distance are calculated in the 

spatio-temporal dimension. These features are merged into two types, called pose and 

transition features, and then are provided to codebook construction to convert sparse fea- 

tures into visual words by k -means clustering. An efficient hierarchical model is developed 

to describe the full correlation of feature - poselet - action based on Pachinko Allocation 

Model. This model has the potential to uncover more hidden poselets, which have been 

recognized as the valuable information and help to differentiate pose-sharing actions. The 

experimental results on several well-known datasets, such as MSR Action 3D, MSR Daily 

Activity 3D, Florence 3D Action, UTKinect-Action 3D, and NTU RGB + D Action Recognition, 

demonstrate the high recognition accuracy of the proposed method. Our method outper- 

forms state-of-the-art methods in the field in most dataset benchmarks. 
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1. Introduction 

Human action analysis and understanding have been developed for human-machine interaction, video-based surveillance

and monitoring, health and wellness assistance, sports coaching assistance, and robotic control systems [14] . Although

many remarkable outcomes have been reported, viewpoint variation, occlusion, and multi-object interference [18] are still

major challenges faced whenever proposing an efficient action recognition approach. The aspects of often considered for

action recognition are input sensory data and feature-based action modeling due to their significant influence on the overall

system performance in terms of recognition accuracy and processing speed. A depth camera with evident advantages

is considered in this study to overcome the natural limitations of a traditional color camera for the purpose of pose

assessment and action analysis [29] . Complementary information regarding depth and skeleton channels provided by the

Kinect sensor [6] has brought about a reasonable solution for the considered channels. Combining the two different modal

sensors of the depth camera and inertial body sensor was further studied to improve recognition accuracy. 

Fundamentally, human actions consist of two main classes: the single action class and the interaction class. Single

actions are usually performed by a person outdoors, such as walking, jogging, running, hand waving, jumping, and indoors,

such as hand clapping, hand catching, and high warm waving. Some indoor human-object interactions, such as using

a laptop, using a vacuum cleaner, making a phone call, and reading a book, were also investigated. Interactive actions,

generally performed by two people in a scene, such as hand shaking, kicking, punching, pushing, pointing, and hugging,

were prevalently discussed for both RGB and depth videos. The above approaches were mostly developed for assisted living

in private areas and secure surveillance in public areas. Although they had the ability to detect and recognize simple actions

under noise-free conditions, the recognition accuracy for complex actions in such complicated environments as multiple-

view and occlusion should be improved appreciably. Most approaches lack a powerful learning model that is capable of

precisely and robustly characterizing human actions using skeleton-based spatio-temporal features precisely and robustly.

Therefore, the combination of skeleton-based action recognition and topic learning models is clearly an open research

area. 

Commercialization of the low-cost Microsoft Kinect sensor, first developed for console gaming, has been applied to

more industrial and research opportunities. The advanced specifications of depth and visual information provided by Kinect

potentially address many of the remaining problems of video-based action recognition. Currently, Kinect is researched

and developed for widespread applications in which human-computer interactions are strongly emphasized. The fact that

thousands of scientific publications and technical demonstrations have been delivered during the more than four years

since the released date proves the huge benefits of the Kinect sensor. 

Based on the many noted benefits of the Kinect sensor, in this paper, we develop an efficient method, that exploits 3D

skeleton data for recognizing human actions. First, we extract the joint distance, joint angle, and joint-plane distance as

geometric features by joint location on the 3D coordinate axis in the currently considered frame and the previous frame.

These features are capable of describing the relationships between interactive body parts in space; however, the body

motions over time are missed, leading to the incapability of deeply understanding the whole action. The fact that two or

more different actions can share similar postures cause misclassification. For example, write on paper and use laptop are two

different actions; however, their appearance is mostly characterized by the sitting posture. To handle such issues, a flexible

hierarchical topic model developed on the Pachinko Allocation Model (PAM) is capable of representing the relationship of

feature-poselet-action in multi-frame observation [15] . Geometric features are fused into the pose and transition features

before being clustered and mapped to visual codewords. Unlike the existing approaches, which map individual features,

neither distance nor angle, to codewords, our method encodes merged features to strengthen the posture differentiation.

Utilizing Directed Acyclic Graph (DAG), PAM potentially graphs not only the correlations between features but also those

of poselets and actions to enrich the action categorization. Finally, the actions are recognized by an advanced Support

Vector Machine (SVM) classifier using a χ2 kernel. The proposed method is evaluated and compared to modern approaches

using five well-known datasets of 3D action recognition: MSR Action 3D, MSR Daily Activity 3D, Florence 3D Action,

UTKinect-Action 3D, and NTU RGB + D Action Recognition. 

The remainder of this paper is arranged as follows. Existing RGB- and depth-video action recognition approaches are

briefly reviewed in Section 2 . Section 3 introduces the proposed action recognition. The experimental evaluations and

results are discussed in Section 4 . Finally, the conclusion and research orientation for future work are given in Section 5 . 

2. Related work 

As remarkable benefits, the Kinect sensor is able to provide depth, RGB, and body map channels simultaneously.

Therefore, visual features extracted from depth cameras can be categorized into two major classes. The first class includes

skeleton-based features extracted from 3D coordinates of body parts for action recognition. The most popular and simple

feature is the 3D skeleton trajectory [1,4,13,26,35,46] to temporally explain body transitions. To determine body movement

and rotation challenges, Seidenari et al. [26] designed a volumetric-temporal feature descriptor to extract the overall dis-

criminative features from the depth map dataset. Each person in [13] was described by a set of 3D edge vectors connecting

joints within a frame and another set of 3D trajectory vectors connecting joints of several previous frames. Based on

recognizing 3D body motions as elements of an exceptional Euclidean group SE (3), Vemulapalli et al. [35] encoded actions
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to curves in a Lie group to classify using one-vs-all linear SVM. In addition to the skeleton trajectory, 3D efficient feature

descriptors were also developed for action recognition. Devanne et al. [4] addressed a problem of joint trajectory similarity

calculation in a Riemannian manifold by warping trained 3D points to query trajectories and extracting elastic metrics

between trajectory shapes. The skeleton trajectory was extensively studied for action presentation based on Kendall’s shape

manifold [1] , which aims to solve data corruption in many execution rates within and across subjects during the collection

progress. A parameterization-invariant metric formulated by combining a standard Euclidean norm and transported square-

root vector fields retrieved from trajectories is evaluated for the transformation of trajectories to obtain computational

efficiency. Zhao et al. [49] developed the structured streaming skeleton (SSS), an efficient feature extraction that facilities

modeling of a skeleton within a frame to a vector containing major attributes. EigenJoint [42] , depicted by principal

component analysis (PCA) on 3D skeleton data to construct a static pose, a gesture feature, and he entire dynamics, was

offered for action modeling. Chen and Guo [3] proposed TriViews, which allows for the projection of 3D depth maps to

the following three viewpoints: front, side, and top. The combination of the three views produces a full description of

an action for recognition. To reduce latency in action recognition systems, Cai et al. [2] advanced a skeleton-based action

representation that was capable of aggregating encoded features of individual limbs using a Markov random field. Recently,

Shahroudy et al. [28] proposed a joint sparse regression-based learning approach to encode each action as a combination

of multi-modal features which were constructed from a sparse set of body parts. These aforementioned approaches were

able to guarantee cheap complexity; however, recognition accuracy was obviously influenced by 3D skeleton data where

the joint localization accuracy is decided by estimation techniques. 

Another group consists of visual features that are directly extracted from depth sequences. In [25] , Oreifej and Liu

captured surface normal directions, which are distributed in the spatial, depth, and temporal dimension by a histogram.

For descriptiveness and discrimination increments, body surface context (BSC) [31] was introduced to express the locally

relative distribution of neighbors corresponding to a reference joint. Moreover, the skeleton-based, random-reference-point, 

and spatio-temporal schemes were developed based on BSC features for action representation. To deal with variations

in intra-class gestures by various manners and length of actions, hierarchical 3D kernel descriptors studied by Kong and

Fu [12] are efficient to calculate raw pixel-base traits, low-level patch-base features, and mid-level video-based features.

Shape and motion features [10] , extracted from object silhouette information in the depth images, were provided to hidden

Markov models (HMMs) for model training and recognition. Since only the depth channel is requested for visual feature

extraction, most approaches cannot report a competitive result in term of accuracy. 

Regarding the less valuable information obtained from only the depth channel, RGB-D hybrid features have been

recently considered to raise recognition accuracy. Ohn-Bar et al. [24] upgraded a histogram of oriented gradients (HOG) to

a dual-layer feature descriptor for the task of feature extraction in the spatio-temporal domain. Liu et al. [19] fused RGB

and depth material by conditional random fields under coupled hidden context. The collaboration between RGB and depth

modalities is exploited over a distinctive graph structure designed by potential functions. From RGB and depth videos, Song

et al. [30] studied trajectories of surface patches (ToSP) to depict the shape and position variations of human bodies. To

capture the complex correlations containing shared features from multi-modal data of color and depth channels, Kong and

Fu [11] proposed a discriminative relational representation learning (DRRL) approach. A hinge lost function was furthermore

introduced to enrich the discrimination of relational features by measuring classification loss. Recently, an efficient 4D

color-depth (CoDe4D) local spatio-temporal (LST) feature characterizing texture, shape, and pose variations was introduced 

by Zhang et al. [47] to incorporate intensity and depth information. High accuracy is the essential goal of RGB-D-based

approaches, but processing latency and big data storage have become practical challenges. 

Several researchers have approached the recognition problem via action modeling techniques. Luo et al. [22] developed a

sparse coding-based temporal pyramid matching approach (ScTPM) and a robust center-symmetric motion local ternary pat-

tern (CS-Mltp) descriptor to extract features of 3D-joints as well as CS-Mltp from depth maps and RGB videos, respectively. A

hidden layer was designed by Su et al. [32] for the latent attribute model to control the concurrence of part-wise and body-

wise attributes. Moreover, the overall system latency is potentially reduced by aggregating modeled attributes of individual

skeleton limbs. In order to suppress noise and overcome incorrect joint tracking issues with a depth camera, Wang et al.

[37] studied an efficient actionlet ensemble model that proficiently captured the correlations between subsets of human

joints. Moreover, this model was invariant to transitional and temporal misalignments when a person continuously moves or

interacts with an object. In [23] , activities were clustered using a k -means-based unsupervised approach and recognized by

HMMs. Liu et al. [20] formulated the task of action recognition in single- and multiple-view conditions to a part-regularized

multitask structural learning model. The approach has an ability to encounter feature subspaces of specific- and shared-

oriented actions to enhance the overall recognition accuracy through the extension of learning capacity. Du et al. [5] de-

signed a novel hierarchical recurrent neural network (RNN) that is capable of working with fused hierarchical local features.

Shahroudy et al. [27] and Liu et al. [21] introduced long short-term memory (LSTM) networks for modeling the correlations

of the features for each body part using 3D skeleton data. An impressive approach, proposed by Wang et al. [38] , combined

weighted hierarchical depth motion maps (WHDMM) and a three-channel deep convolutional neural network (3ConvNets), 

in which 2D spatial structures, encoded from the spatio-temporal motion patterns by WHDMMs at different temporal scales,

were independently supplied to 3ConvNets with ImageNet models. A drawback of most of the investigated approaches is the

unavailable or poor description of the correlation between features, postures, and actions in space and time. 

The topic model has been discussed in several recent works [7–9,33,40] . Wang et al. [40] developed an Image-Dominant

Topic Model (IDTM) for text-semantic mapping and incorporated the IDTM with Convolutional Neural Network (CNN)
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for text-image relationship establishment. For the large-scale image retrieval applications, Tu et al. [33] formalized the

spatial structure among the local features by a probabilistic topic model that efficiently allows extracting the object and

background regions from an image. Huynh-The et al. presented the methods for interactive action recognition, in which

they extract only the joint distance metric [7] and then complement the joint angle metric [9] from the skeleton coordinate

information in the spatio-temporal dimension. Due to utilizing one codebook to encode two separated types of codewords,

PAM is unable to capture the internal correlation of each codeword set, which contains a pair of joint distance and joint

angel metrics. Therefore, the fact that the induced discrimination among poselets in the upper layer is insignificant leads

to low recognition accuracy in the case of complex actions. Different from [7,9] , a merged feature of joint distance and

angle metrics [8] is encoded as a single codeword. In other words, the PAM-based topic model is built to fit only one kind

of codeword, which can potentially deliver high accuracy thanks to the highly distinctive merged feature consisting of the

spatio-temporal information of the joint distance and angle. In this work, the topic model is built to flexibly fit two new

types of codewords, i.e., pose and transition. These newly defined codeword pairs are clustered by two independent code-

books. Concretely, the pose codeword contains posture information, including the joint distance metric, joint angle metric,

and joint-plane distance metric of a complete skeleton in a frame, while the transition codeword contains the movement

information of a skeleton in time. Since these two types of codewords are modeled independently and simultaneously, the

model has the ability to entirely comprehend the correlation not only inside each codeword pair of pose and transition but

also among distinctive pairs of pose-transition. Consequently, the distinctiveness margin among action classes is enlarged

for improving recognition accuracy and some hidden peculiar actions are further discovered. 

3. Methodology 

The proposed action recognition approach has five modules as follows: 3D skeleton acquisition from the Kinect sensor,

spatio-temporal feature extraction, codebook construction, topic modeling, and SVM classification. 

3.1. Skeleton acquisition 

In this work, 3D skeleton data containing the body joint coordinates of detected people in a scene is provided by

Kinect sensor. Besides the RGB and depth channels, Kinect sensor also supports the body frame channel with moderate

accuracy of pose estimation. Most of existing researches have studied on the datasets captured by Kinect v1, released in

2012, such as MSR Action 3D [16] , MSR Daily Activity 3D [36] , Florence 3D Action [26] , UTKinect-Action 3D [41] , and SBU

Kinect Interaction [45] . In 2014, Microsoft released the update version for Kinect sensor, called Kinect v2, with the valuable

upgrade in hardware and software specifications, especially the pose estimation algorithm. For instance, the resolutions

of the color and depth frames are improved from 640 × 480 to 1920 × 1080 and from 320 × 240 to 512 × 424, respectively.

Regarding pose estimation, the number of skeleton joints is upgraded from 20 to 25 with more accurate tracking and six

full skeletons in maximum are tracked simultaneously. However there is only one 3D action recognition dataset generated

by Kinect v2, NTU Action Recognition from Nanyang Technological University [27] , which has been published for free access.

High system requirement is now a practical challenge for researchers and developers who are interested in Kinect v2. 

3.2. Skeleton-based spatio-temporal feature extraction 

In this stage, skeleton-based features are extracted to describe human posture in the spatial dimension and to capture

pose movement in the temporal dimension. Concretely, we calculate three common metrics mostly used for action recog-

nition: the pair-wise joint distance, the joint-joint vectors versus three coordinate axes angle, and the joint-plane distance

where the plane here is constructed by three joints other than the mentioned one. Each joint belonging to a full skeleton

at t th frame is given as p t = 

(
x t , y t , z t 

)
in space � 

3 . 

Joint distance : is determined as the 3D Euclidean distance of an arbitrary pair of joints i and j . As mentioned before, we

calculate this metric for such joints within a frame, denoted d t 
ji 

as pose feature representation, and for such joints in two

consecutive frames, denoted d �t 
ji 

as transition feature representation 

d t ji = 

∥∥p t j − p t i 

∥∥
= 

√ (
x t 

j 
− x t 

i 

)2 + 

(
y t 

j 
− y t 

i 

)2 + 

(
z t 

j 
− z t 

i 

)2 

d �t 
ji = 

∥∥p t−1 
j 

− p t i 

∥∥
= 

√ (
x t−1 

j 
− x t 

i 

)2 + 

(
y t−1 

j 
− y t 

i 

)2 + 

(
z t−1 

j 
− z t 

i 

)2 
(1)

With a full detected skeleton consisting of m joints, there are m ( m − 1 ) / 2 values of d t 
ji 

( i � = j ), and m 

2 values of d �t 
ji 

. 
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Joint angle : is defined as the angle between a joint-joint vector 
−→ 

ji versus unit vectors of the horizontal axis 
−→ 

Ox = 〈 1 , 0 , 0 〉
(denoted θ jix ), the vertical axis 

−→ 

Oy = 〈 0 , 1 , 0 〉 (denoted θ jiy ), and the depth axis 
−→ 

Oz = 〈 0 , 0 , 1 〉 (denoted θ jiz ). Similar to joint

distance, we also extract pose feature θ t 
ji 

= ( θ t 
jix 

, θ t 
jiy 

, θ t 
jix 

) with 

−→ 

ji t = 〈 x t 
i 
− x t 

j 
, y t 

i 
− y t 

j 
, z t 

i 
− z t 

j 
〉 

θ t 
jix = ∠ 

(−→ 

j i t , 
−→ 

Ox 

)
= cos −1 

⎛ ⎝ 

−→ 

j i t · −→ 

Ox ∥∥∥−→ 

j i t 
∥∥∥∥∥∥−→ 

Ox 

∥∥∥
⎞ ⎠ 

θ t 
jiy = ∠ 

(−→ 

j i t , 
−→ 

Oy 

)
= cos −1 

⎛ ⎝ 

−→ 

j i t · −→ 

Oy ∥∥∥−→ 

j i t 
∥∥∥∥∥∥−→ 

Oy 

∥∥∥
⎞ ⎠ 

θ t 
jiz = ∠ 

(−→ 

j i t , 
−→ 

Oz 

)
= cos −1 

( −→ 

j i t · −→ 

Oz 

‖ 

−→ 

j i t ‖‖ 

−→ 

Oz ‖ 

) 

(2) 

and transition feature θ�t 
ji 

= ( θ�t 
jiz 

, θ�t 
jiy 

, θ�t 
jiz 

) with 

−−→ 

j i �t = 〈 x t 
i 
− x t−1 

j 
, y t 

i 
− y t−1 

j 
, z t 

i 
− z t−1 

j 
〉 

θ�t 
jix = ∠ 

(−−→ 

ji �t 
, 
−→ 

Ox 

)
= cos −1 

⎛ ⎜ ⎝ 

−−→ 

ji �t · −→ 

Ox ∥∥∥−−→ 

ji �t 
∥∥∥∥∥∥−→ 

Ox 

∥∥∥
⎞ ⎟ ⎠ 

θ�t 
jiy = ∠ 

(−−→ 

ji �t 
, 
−→ 

Oy 

)
= cos −1 

⎛ ⎜ ⎝ 

−−→ 

ji �t · −→ 

Oy ∥∥∥−−→ 

ji �t 
∥∥∥∥∥∥−→ 

Oy 

∥∥∥
⎞ ⎟ ⎠ 

θ�t 
jiz = ∠ 

(−−→ 

ji �t 
, 
−→ 

Oz 

)
= cos −1 

⎛ ⎜ ⎝ 

−−→ 

ji �t · −→ 

Oz ∥∥∥−−→ 

ji �t 
∥∥∥∥∥∥−→ 

Oz 

∥∥∥
⎞ ⎟ ⎠ 

(3) 

Joint-plane distance : is termed as the distance from a joint i to a plane formed by three joints j, k , and l . At first, the

normal vector to plane f jkl is given 

−→ 

n jkl = 

−→ 

u × −→ v 

= 

〈∣∣∣∣u 2 u 3 

v 2 v 3 

∣∣∣∣, ∣∣∣∣u 1 u 3 

v 1 v 3 

∣∣∣∣, ∣∣∣∣u 1 u 2 

v 1 v 2 

∣∣∣∣〉
= 〈 a, b, c 〉 (4) 

where 
−→ 

u = 

−→ 

jk and 

−→ v = 

−→ 

jl are defined as 

−→ 

u = 〈 x k − x j , y k − y j , z k − z j 〉 
= 〈 u 1 , u 2 , u 3 〉 −→ v = 〈 x l − x j , y l − y j , z l − z j 〉 
= 〈 v 1 , v 2 , v 3 〉 (5) 

The scalar equation of plane f is outlined as ax + by + cz + d = 0 . Then vector from point i to plane f is addressed as: 

�
 w = −〈 x − x i , y − y i , z − z i 〉 (6) 

The joint-plane distance is calculated for the case of pose feature 

∂ t i jkl = 

∣∣n 

t 
jkl 

· w 

∣∣∥∥n 

t 
jkl 

∥∥ = 

∣∣ax t 
i 
+ by t 

i 
+ cz t 

i 
+ d 

∣∣
√ 

a 2 + b 2 + c 2 
(7) 

and for the case of transition feature where joint i belongs to t th frame and three joints j, k, l for plane construction belong

to ( t − 1 ) th frame 

∂ �t 
i jkl = 

∣∣n 

t−1 
jkl 

· w 

∣∣∥∥n 

t−1 
jkl 

∥∥ (8) 
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Fig. 1. Example of two distinctive actions having the same sitting posture: (a) Write on paper, (b) Use laptop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given an arbitrary joint, two merged features, pose feature denoted c � and transition feature denoted c ∇ 

, consisting of

normalized distance, angle, and joint-plane distance metrics are organized as follows 

c � = 

{̂ d t , ̂  θ t , ̂  ∂ t 
}

c ∇ 

= 

{̂ d �t , ̂  θ�t , ̂  ∂ �t 
}

(9)

where the normalized metrics are generally defined as 

̂ d = 

d − min ( d ) 

max ( d ) − min ( d ) ̂ θ = 

θ

2 π̂ ∂ = 

∂ − min ( ∂ ) 

max ( ∂ ) − min ( ∂ ) 
(10)

At this point, m pose feature vectors c � and m transition feature vectors c ∇ 

are totally extracted for a captured skeleton at

each frame. It is noted that the dimensions of c � and c ∇ 

are not equal due to different number of joint distance values. 

3.3. Codebook construction 

Encoding skeleton-based features to visual codewords is a preprocessing step of several topic modeling techniques.

In this research, for visual codebook construction, we exploit k -means clustering technique which utilizes the metric of

Euclidean distance for partitioning features into k clusters. As mentioned before, the dimensions of pose feature and

transition feature vectors are different; therefore we cluster them separately, i.e., there are two codebooks built. To be more

specific, two types of codeword corresponding to c � and c ∇ 

, called pose codeword and transition codeword, are produced.

The number of clusters, a.k.a. the codebook size, is given in advance, however, appropriate selection of this parameter is

sometimes ambiguous so that an acceptable trade-off between classification error and computational cost is approached.

Additionally, the risk of over-fitting issue may occurs unexpectedly. 

3.4. Topic modeling 

The merged features containing the information of pose state and movement used for action presentation are converted

to codewords. Instead of simply pushing such the codeword histogram to common classifiers to recognize actions in

a short duration, a longstanding observation is studied and analyzed for complicated activities, such as write on paper

with the sitting pose as shown in Fig. 1 . Although the topic model techniques are fundamentally proposed to solve many

high-challenging tasks relating to the natural language processing field, they can also be exploited for such image processing

and computer vision issues as semantic-based image retrieval [33] , cross-media topic detection and analysis [40] , image

understanding [17] , and interactive activity recognition [9] . In this work, we construct a hierarchical model by adapting

the idea of Pachinko Allocation Model, which has an ability to ascertain the feature-poselet-action correlation. Originally,

PAM depicts one distribution mixture for only one corresponding single set of topics in which topic co-occurrences are

described entirely. Each interior node inside the model graph is presented by a Dirichlet distribution over lower level nodes.

The simplest version contains only one single layer of Dirichlet distributions between the root at the top level with many

codeword distributions at the bottom level considerately. 

PAM is able to efficiently expose and learn arbitrary, hidden, and sparse correlations of complicated relations between

codewords and mined topics thanks to its essential specifications inherited from Direct Acyclic Graphs. Although PAM is

firstly promoted with an arbitrary number of middle levels which have responsibility for capturing top-bottom relations, the

four-level structure presented a pleasant trade-off between structural complexity and modeling efficiency [15] . PAM-based

hierarchical topic model developed for action recognition is progressed with the top level representing a root action r , the

second level AC characterizing n a actions such that AC = { ac 1 , ac 2 , . . . , ac n a } , the third level PO characterizing n p poselets
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Fig. 2. The proposed PAM-based hierarchical topic model used for action modeling: (a) 4-level model structure (b) graphical illustration. For each video, 

the model depicts multinomials ϑr and ϑac from Dirichlet distributions at the root and the actions. For each codeword w , our model depicts an action z 

from ϑr , a poselet z ′ from ϑac and then the codeword, including the pose codeword from multinomial distribution ϑ � and the transition codeword from 

multinomial distribution ϑ∇ , is associated with z ′ . Compared with original PAM, the proposed topic model that is developed to flexibly and simultaneously 

learn two types of codewords is capable of portraying actions more discriminatively. 

 

 

 

 

 

 

 

 

 

 

 

 

such that P O = { po 1 , po 2 , . . . , po n p } , and the bottom level CW signifying 2 k unique pose and transition codewords such that

CW = { cw 1 , cw 2 , . . . , cw 2 k } . According to the 4-level hierarchy structure as shown in Fig. 2 (a), the associations are directly

built between the root and n a actions, between n a actions and n p poselets, and between n p poselets and 2 k codewords. With

a single Dirichlet distribution Dir r ( δr ) assigned to the root r , we firstly depict the multinomial distribution ϑ 

( t ) 
r , where t is

the considered body frame and δr is the parameter of the Dirichlet prior on per-image action distributions. Similarly, we also

write the multinomial distributions ϑ 

(t) 

ac i | n a i =1 

over poselets from Dirichlet distributions Dir ac ( δac i ) | n a i =1 
assigned to n a actions.

The poselets are encoded by ϑ 

�

po i | n p i =1 

and ϑ 

∇ 

po i | n p i =1 

which are fixed multinomial distributions correspondingly depicted from

Dirichlet distributions Dir ( β) and Dir ( γ ) of pose and transition codewords for the whole video, respectively, where β and

γ are the parameters of Dirichlet prior on per-poselet codeword distributions. For each codeword w captured in the body

frame t , we finally depict an action z w 

from ϑ 

(t) 
r , a poselet z ′ w 

from ϑ 

(t) 
z w , and codeword w from ϑ 

�
z ′ w 

and ϑ 

∇ 

z ′ w 
. The graphical

illustration of our proposed hierarchical topic model for processing with two types of codeword is drawn in Fig. 2 (b). 

According to the above processing steps, the joint probability of the generation of a frame t , the action assignments z ( t ) ,

the poselet assignments z ′ ( t ) , and the multinomial distribution ϑ( t ) conditioned on Dirichlet distributions is expressed as

follows 
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P 

(
t, z ( t ) , z ′ ( t ) , ϑ 

( t ) 

∣∣∣δ, β, γ
)

= P 
(
ϑ 

( t ) 
r 

∣∣δr 

)
×

n a ∏ 

i =1 

P 
(
ϑ 

( t ) 
a c i 

∣∣δa c i 

)
×

∏ 

w 

{
P 
(

z w 

| ϑ 

( t ) 
r 

)
P 
(

z ′ w 

∣∣ϑ 

( t ) 
z w 

)
P 
(

w | ϑ 

�
z ′ w , ϑ 

∇ 

z ′ w 

)}
(11)

where P ( w | ϑ 

�
p o w 

, ϑ 

∇ 

p o w 
) = P ( w | ϑ 

�
p o w 

) P ( w | ϑ 

∇ 

p o w 
) . The likelihood of body frame t is delivered by integrating out ϑ( t ) and

summing over ac ( t ) and po ( t ) as follows 

P ( t| δ, β, γ ) = 

∫ 
P 
(
ϑ 

( t ) 
r 

∣∣δr 

) n a ∏ 

i =1 

P 
(
ϑ 

( t ) 
a c i 

∣∣δa c i 

)
∏ 

w 

∑ 

z w , z ′ w 

{
P 
(

z w 

| ϑ 

( t ) 
r 

)
P 
(

z ′ w 

∣∣ϑ 

( t ) 
z w 

)
P 
(

w | ϑ 

�
z ′ w , ϑ 

∇ 

z ′ w 

)}
d ϑ 

( t ) (12)

According to the reflection of several frames, we write the probability of generating a video V = { t 1 , t 2 . . . . , t N } , where N is

the number of frames in V as follows 

P ( V | δ, β, γ ) = 

∫ n p ∏ 

i =1 

{
P 
(
ϑ 

�
p o i 

| β )
P 
(
ϑ 

∇ 

p o i 
| γ )}∏ 

t 

P ( t | δ, β, γ ) (13)

The joint probability P ( V, AC, PO | δ, β , γ .) of the video V and the action and poselet assignments is formulated as 

P ( V, z , z ′ | δ, β, γ ) = P ( z | δ ) × P ( z ′ | z , δ ) × P ( V | z ′ , β ) × P ( V | z ′ , γ ) (14)

where the above terms are defined by integrating out the sampled multinomials 

P ( z | δ ) = 

∫ ∏ 

t 

P 
(
ϑ 

( t ) 
r | δr 

)∏ 

w 

P 
(
z w 

∣∣ϑ 

( t ) 
r 

)
dϑ 

P ( z ′ | z, δ ) = 

∫ ∏ 

t 

( 

n a ∏ 

i =1 

P 
(
ϑ 

( t ) 
a c i | δa c i 

)∏ 

w 

P 
(
z ′ w 

∣∣ϑ 

( t ) 
z w 

)) 

dϑ 

P ( V | z ′ , β ) = 

∫ n p ∏ 

i =1 

P 
(
ϑ 

�
p o i 

| β )∏ 

t 

(∏ 

w 

P 
(
w 

∣∣ϑ 

�
z ′ w 

))
dϑ 

P ( V | z ′ , γ ) = 

∫ n p ∏ 

i =1 

P 
(
ϑ 

∇ 

p o i 
| γ )∏ 

t 

(∏ 

w 

P 
(
w 

∣∣ϑ 

∇ 

z ′ w 

))
dϑ (15)

It should be noted that we have to sample the subtopic assignments for each pose P ( V | z ′ , β .) and transition codeword

P ( V | z ′ , γ .). The conditional distribution for action and poselet assignments is delivered as follows (16) , 

P 
(

z w 

= a c i , z 
′ 
w 

= p o j 
∣∣V, z −w 

, z ′ −w 

, δ, β, γ
)

∝ P 
(

w, z w 

, z ′ w 

∣∣V −w 

, z −w 

, z ′ −w 

, δ, β, γ
)

= 

P 
(

V, z, z ′ | δ, β, γ
)

P ( V, z −w 

, z ′ −w 

| δ, β, γ ) 

= 

n 

( t ) 
i 

+ δri 

n 

( t ) 
r + 

∑ n a 
ia =1 

δri 

×
n 

( t ) 
i j 

+ δi j 

n 

( t ) 
i 

+ 

∑ n p 
j=1 

δi j 

× n jk + βk 

n 

( t ) 
j 

+ 

∑ K 
k =1 βk 

× n jl + γl 

n 

( t ) 
j 

+ 

∑ K 
l=1 γl 

(16)

where n ( 
t ) 

r is the number of occurrences of the root r in frame t ; n ( 
t ) 

i 
is the number of occurrences of action ac i in frame

t ; n ( 
t ) 

j 
is the number of occurrences of poselet po j in frame t ; n ( 

t ) 
i j 

is the number of times that poselet po j is sampled from

action ac i , and n jk is the number of occurrences of pose codeword w 

�
k 

in poselet po j , and n jl are the numbers of occurrences

of transition codeword w 

∇ 

l 
in poselet po j . The notation −w indicates all action assignments except codeword w , hence the

numbers of occurrences do not cover w and their assignments. The hyper-parameters δ and β are estimated via the Gibbs

sampling algorithm which is formulated in details as in [15] . The new data tagged by the pose and transition features,

known as codewords, is produced as the output of PAM. 

4. Experiment results and discussion 

This section benchmarks our developed approach on five well-known 3D action recognition datasets which are collected

by the Kinect sensor: MSR Action 3D [16] , MSR Daily Activity 3D [36] , Florence 3D Action [26] , UTKinect-Action 3D [41] ,

and NTU RGB + D Action Recognition [27] . The sensitivity is thoughtfully investigated with various parameter settings and

further compared to various impressive methods in the field. 
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Table 1 

Method sensitivity evaluation on the feature type impact. 

Dataset Feature type 

Pose ( c �) Transition ( c ∇ ) 

MSR Action 3D 90.48 93.04 

MSR Daily Activity 3D 86.25 89.38 

UTKinect-Action 3D 94.00 96.00 

Florence 3D Action 90.70 92.09 

NTU RGB + D (Cross-View) 72.58 76.28 

NTU RGB + D (Cross-Subject) 65.95 68.17 

Average 83.33 85.83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Dataset 

MSR Action 3D : 557 videos presenting 20 different actions in which each subject is requested to play 2–3 times/action.

Some sport-oriented actions contain a wide varying of body movements. Additionally, unstable motion speed in action

execution should be addressed. Evaluating the dataset follows the cross-subject testing procedure [16] , where the samples

of odd-numbered subjects are applied for training and the rest for performance testing. 

MSR Daily Activity 3D : Presents 16 indoor activities including single actions and human-object interactions that are

classified into 10 subjects in which each subject contains actions in standing and sitting poses. Performing in widely

spatial and temporal dimension make it a difficult challenge to precisely recognize the activities. Furthermore, the 3D joint

coordinates estimated by the tracker are very noisy due to unguaranteed minimum depth. The cross-subject protocol in

[36] is followed to benchmark this dataset. 

UTKinect-Action 3D : Includes 200 videos of 10 actions which are recorded by 10 actors. Some body components are not

located correctly in human-object interactions due to the occlusion that occurs the in case of hidden tracking. As with [41] ,

we implement leave-one-out cross-validation for performance evaluation. 

Florence 3D Action : Gathered at the University of Florence by the Kinect sensor and presents 9 activities in 215 sequences.

In this dataset, the variation of object direction and motion velocity in human-object interactions needs to be considered

to recognize them accurately. Using the same protocol in [26] , the dataset is benchmarked by leave-one-subject-out

cross-validation. 

NTU RGB + D Action Recognition : Newly recorded by Kinect v2 with remarkable improvements in the hardware and

software and consists of 56,880 samples covering 60 action classes including daily actions, health-related actions, and

mutual actions. The variation of camera configurations in space aims to challenge the accuracy of action recognition.

Following [27] , cross-subject and cross-view protocols are appointed to assess our approach on this dataset. 

4.2. Experimental setup 

For each n -joint skeleton in a frame, we extract n pose feature vectors c � and n transition feature vectors c ∇ 

. They are

correspondingly encoded to pose and transition codewords by two codebooks having the same cluster amount, i.e., k = 500 .

The number of poselets of our hierarchical model is configured with n p = 200 . We set the parameter of the root of the

fixed Dirichlet distribution at 0.01. The parameter of multinomial distributions over actions and poselets sampled from the

Dirichlet distribution is fixed at 0.01. The N-class pattern recognition problem is handled by the SVM classifier using a χ2 

kernel [34] . The number of burn-in iterations for the Gibbs sampling is set at 10 0 0. Additionally, for every 250 iterations,

50 samples are produced. Two experiments, simulated using MATLAB 2014b on a notebook computer with a 2.70-GHz Intel

Core i7 CPU and 8GB RAM, are described as follows: 

• The first experiment evaluates our approach under various parameter configurations to analyze its sensitivity. 
• The second experiment aims to compare our proposed hierarchical topic model with state-of-the-art approaches in terms

of recognition accuracy. 

4.3. Results and discussion 

4.3.1. Sensitivity analysis 

The sensitivity of the proposed method is studied under various parameter configurations in which three parameters are

considered: the feature type, the codebook size, and the number of poselets. 

Feature type : Two feature types, c �, representing the posture information, and c ∇ 

, describing the transition information,

correspond to two types of the codewords and are used separately in the method. They are constructed from one distance

and three angle values for each pair of joints. Based on the quantitative results of recognition accuracy reported in Table 1 ,

the transition feature is obviously better than the pose feature in all dataset tests, with an average accuracy that is 2.5%

higher. An action essentially includes many postures during its performance; therefore, a posture belonging to an action

might be seen in some frames comprising other actions. For instance, the standing posture is sometimes captured at the
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Fig. 3. Evaluation of method sensitivity over the codebook size impact. 

 

 

 

 

 

 

 

 

 

 

 

beginning of various actions in MSR Action 3D and Florence 3D Action. This creates some confusion in action recognition.

However, according to the pose movement explanation between two consecutive frames, the transition feature is more

valuable and guaranteed for better action distinction. Moreover, it is recognized that the transition feature is extra efficient

with complex datasets, such as MSR Daily Activity 3D and NTU RGB + D Action Recognition. 

Codebook size : Besides the type of feature we use, codebook size also has an influence on the overall recognition

accuracy, where the recognition results are graphically reported in Fig. 3 with k = { 250 , 500 , 750 , 1000 } . It is clear that the

accuracy rises on most of the testing datasets following the incremental increase in the codebook size. In particular, the

accuracy is significantly improved by 2.41%, 4.03%, and 3.00% on NTU RGB + D Action Recognition (Cross-View), MSR Action

3D, and UTKinect-Action 3D, respectively, when the number of unique codewords is extended from 250 to 500. However,

the results are slightly enhanced and even degraded by approximately 4.00% on UTKinect-Action 3D when tuning 750

clusters. As mentioned before, if the size of the codebook is too large, the overall recognition accuracy is not guaranteed to

be high due to an overfitting issue. Using k = 10 0 0 for such small and simple datasets as MSR Action 3D, UTKinect-Action
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Fig. 4. Evaluation of method sensitivity over the number of poselets. 

 

 

 

 

 

 

 

 

 

 

 

3D, and Florence 3D Action potentially diverges encoding results that lead to recognition confusion. Additionally, the

computational cost rapidly grows up following the incremental increase of the number of clusters. 

Number of poselets : Playing an important role, the numbers of topics m and subtopics n in PAM have to be initially

and suitably chosen. Since the number of topics is characterized to be the number of action classes for each particular

dataset, only the number of subtopics corresponding to the number of poselets is determined and evaluated for the

overall recognition accuracy. The experimental results on various numbers of poselets are graphically plotted in Fig. 4 .

When increasing n from 100 to 200, the accuracy is mostly improved for the testing datasets, except Florence 3D Action

Recognition; the average improvements reach 2.86% at k = 150 and 0.87% at k = 200 . While the recognition performance

continues to increase on MSR Daily Activity 3D and NTU RGB + D Action Recognition (Cross-Subject), the accuracy rate of

the remaining datasets slightly decreases when enlarging the number of poselets from 20 0 to 30 0. If n = 500 is used, all

of the evaluations present the same behavior of accuracy reduction. Additionally, the dataset specification has an influence

on selecting a proper value of n , e.g., smaller values for relatively simple datasets and larger values for plentiful datasets.
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UTKinect-Action 3D Dataset
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Fig. 5. Confusion matrix: (a) MSR Action 3D, (b) MSR Daily Activity 3D, (c) UT Kinect-Action 3D, and (d) Florence 3D Action. 

Table 2 

Comparison of performance on MSR Action 3D dataset. 

Approach Input data Acc. (%) 

Structure Streaming Skeleton [49] Skeleton 81.70 

Shape and Motion [10] Depth 82.10 

EigenJoints [42] Skeleton 83.30 

Actionlet Ensemble [37] Skeleton 88.20 

HON4D [25] Depth 88.89 

Rate-Invariant Analysis [1] Skeleton 89.00 

Lie Group [35] Skeleton 89.48 

Latent Attribute [32] Depth 89.80 

Dynamic Time Warping + MRF [13] Skeleton 90.11 

Body Surface Context [31] Depth 90.36 

LM 

3 TL [43] Skeleton 90.53 

Markov Random Field [2] Skeleton 91.01 

Riemannian Manifold [4] Skeleton 92.10 

Hierarchical 3D Kernel [12] Depth 92.73 

Multimodal Multipart Learning [28] Skeleton 93.10 

ScTPM + CS-Mltp [22] Color + Depth 93.83 

Joint Angles Similarity + HOG 2 [24] Color + Depth 94.84 

TriViews [3] Skeleton + Depth 98.20 

Deep CNN [38] Depth 10 0.0 0 

PAM + Pose-Transition Feature Skeleton 97.07 

 

 

 

 

 

 

 

It is further recognized that using a large number of poselets is not a good idea because of the decrease in of recognition

accuracy and the growth of system complexity. To achieve a reasonable tradeoff between the accuracy and complexity,

n = 200 is tuned as a recommendation for all testing datasets. 

4.3.2. Method comparison 

The second experiment compares the performance between our proposed approach and state-of-the-art methods on the

five datasets following the predefined benchmark protocols corresponding to each particular dataset (i.e., the cross-subject

setting for MSR Action 3D and MSR Daily Activity 3D; the leave-one-out cross-validation for UTKinect-Action 3D and

Florence 3D Action; the cross-subject and cross-view settings for NTU RGB + D Action Recognition). The confusion matrices

are further reported in Fig. 5 , except the NTU RGB + D Action Recognition dataset (poor visualization with 60 action classes).
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Table 3 

Comparison of performance on MSR Daily Activity 3D dataset. 

Approach Input data Acc. (%) 

Rate-Invariant Analysis [1] Skeleton 70.00 

NBNN Bag-of-Poses [26] Skeleton 70.00 

Body Surface Context [31] Depth 77.80 

Mining Mid-level Feature [39] Skeleton 78.80 

Markov Random Field [2] Skeleton 78.52 

Multimodel Multipart Learning [28] Skeleton 79.38 

BIPOD [46] Skeleton 79.70 

Feature of ToSP [30] Color + Depth 84.40 

Deep CNN [38] Depth 85.00 

CoDe4D [47] Depth 86.00 

Actionlet Ensemble [37] Skeleton 86.00 

TriViews [3] Skeleton + Depth 88.80 

Latent Attribute [32] Depth 88.80 

Structure Preserving Projection [44] Color + Depth 89.80 

ScTPM + CS-Mltp [22] Color + Depth 90.63 

PAM + Pose-Transition Feature Skeleton 90.63 

Table 4 

Comparison of performance on UTKinect-Action 3D dataset 

Approach Input data Acc. (%) 

Deep CNN [38] Depth 90.91 

HOJ3D + LDA [41] Skeleton 90.92 

Riemannian Manifold [4] Depth 91.50 

Hidden CRF [19] Color + Depth 92.00 

Multilayer LSTM [48] Skeleton 95.96 

ST-LSTM (Tree) + Trust Gate [21] Skeleton 97.00 

Lie Group [35] Skeleton 97.08 

TriViews [3] Skeleton + Depth 98.00 

LM 

3 TL [43] Skeleton 98.80 

PAM + Pose-Transition Feature Skeleton 97.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MSR Action 3D : The comparison outcomes are reported in Table 2 . We achieve 97.07% recognition accuracy, which is

lower than TriViews [3] and Deep CNN [38] . TriViews exploits the depth sequences and 3D skeleton data according to the

front, side, and top view to boost the recognition accuracy. Concretely, five point- and trajectory-based features extracted

from depth sequences and 3D skeleton data are jointly used in the TriViews framework. Deep CNN yields a remarkable

outcome, but nevertheless, the complexity of three independent CNNs should be efficiently handled in the case of practical

development. Compared to others using only 3D skeleton information, PAM outperforms with 3.97-15.37% higher accuracy

on the MSR Action 3D dataset. 

MSR Daily Activity 3D : The comparison results of MSR Daily Activity 3D dataset are reported in Table 3 in which the

accuracy rate of the proposed approach reaches 90.63%, the top place in the accuracy competition with ScTPM + CS-Mltp

[22] . Obviously, the combinations of color and depth information in [22,44] are really good to recognize complex activities

containing both single actions and human-object interactions; however, they are much heavier than skeleton data for stor-

age and computation. Deep CNN [38] and TriViews [3] , two efficient approaches in the MSR Action 3D dataset evaluation,

deliver poorly competitive results with 85.00% and 88.80%, respectively. To be better than other skeleton-based approaches,

PAM captures a full correlation between features, poselets, and actions to capably recognize the complex activities ( play gui-

tar, play game , and write on paper ), and the activities similar in posture, ( drink - call cellphone, use laptop - write on paper ). 

UTKinect-Action 3D : Table 4 reports the recognition results in which three approaches including the Lie Group [35] ,

TriViews [3] , ST-LSTM (Tree) + Trust Gate [21] , and our proposed approach produce the highest accuracy rates which are

over 97.00%. The accuracy is higher by 5.00–6.09% than that of the remaining approaches. The information from depth

sequences is useful to boost the accuracy of the TriViews approach to 98.00% because some body joints are incorrectly

located in human-object interactions. LM 

3 TL [43] , a latent max-margin multitask learning model for maximizing the margin

partition between action classes, reaches the greatest accuracy at 98.80% with mid-level latent skelets. The Lie Group

approach models human actions as curves and maps them to Lie algebra to strengthen the discrimination between different

action classes. Although Deep CNN [38] expends a significant amount of computational resources for three neural networks

working on depth sequences, its accuracy is disappointingly the worst at 90.91%. 

Florence 3D Action : Based on the comparison results reported in Table 5 , our proposed approach reaches the runner-up

accuracy among the skeleton-based methods. LM 

3 TL [43] yields the highest recognition rate of approximately 93.43%;

however, it lacks a scheme for maintaining margin discrimination for multiple “dropped” frames video. We improve the

accuracy of the previous work, denoted PAM + Pose Feature [8] , from 90.23% to 92.09% thanks to the valuable information
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Table 5 

Comparison of performance on Florence 3D Action dataset. 

Approach Input data Acc. (%) 

NBNN Bag-of-Poses [26] Skeleton 82.00 

Riemannian Manifold [4] Skeleton 87.04 

PAM + Pose Feature [8] Skeleton 90.23 

Lie Group [35] Skeleton 90.88 

LM 

3 TL [43] Skeleton 93.42 

PAM + Pose-Transition Feature Skeleton 92.09 

Table 6 

Comparison of performance on NTU RGB + D Action Recognition dataset. 

Approach Input data Acc. (%) 

C-S C-V 

Part-aware LSTM [27] Skeleton 62.93 70.27 

ST-LSTM (Tree) + Trust Gate [21] Skeleton 69.20 77.70 

Multilayer LSTM [48] Skeleton 70.26 82.39 

PAM + Pose-Transition Feature Skeleton 72.77 77.42 

0 10 20 30 40
Processing time (ms)

Classification

Topic Modeling

Codeword Mapping

Feature Extraction

Fig. 6. Average processing time for each testing frame in NTU RGB + D Action Recognition dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

coming from the transition feature. Furthermore, the proposed approach performs better than NBNN Bag-of-Poses [26] ,

Riemannian Manifold [4] , and Lie Group [35] with 10.09%, 5.05%, and 1.21% higher accuracy, respectively. 

NTU RGB + D Action Recognition : As shown in Table 6 , the proposed approach defeats Part-aware LSTM [27] in both

evaluation protocols, i.e., cross-subject and cross-view with 9.84% and 7.15% greater accuracy, respectively. Compared to

Part-aware LSTM [27] , ST-LSTM + Trust Gate [21] provides the notable accuracy of 69.20% and 77.70% through the im-

provements of the gating function and two concurrent domains learning. Based on investigating several geometric features,

Zhang et al. [48] achieved the competitive accuracy of 82.39% for the cross-view testing by learning joint-line distances

on a three-layer LSTM framework. Due to the challenges of the large numbers of action classes (including single actions,

human-object interactions, and human-human interactions) and camera setting configurations (height and distance), the

recognition accuracy seems unremarkable with the accuracy of 77.42% in the cross-view protocol. The cross-subject provides

less recognition accuracy than the cross-view due to the diversity of the recorded subjects (age, gender, and height). 

Based on the experimental results, the proposed method mostly outperforms the state-of-the-art approaches on several

testing datasets using only the 3D skeleton data instead of the color and depth information. This specification brings

practical benefits, such as storage capacity and computational saving. Another useful specification is the flexibility with

varying numbers of joints of each complete skeleton provided by different sources, for instance, 20-joints of Kinect v1 and

25-joints of Kinect v2. Furthermore, the proposed method is capable of processing not only the frame-by-frame but also

the frame accumulation schemes by using the window sliding technique. 

4.3.3. Computational latency analysis 

In most video-based human action recognition systems, low latency is an important impact in addition to high accuracy.

This section discusses the computational latency through analyzing the computational complexity. Compared to other

datasets, NTU RGB + D Action Recognition is impressive thanks to its diversity of action classes and recording scenario,

hence it is reasonable to thoroughly evaluate and analyze the complexity. The performance in terms of processing speed

is presented in Fig. 6 , where the average timing for each step of our proposed approach is measured by a profiling tool

in MATLAB. Considerable time is spent for feature calculation, where the total number of joint distance, joint angle,

and joint-plane distance values rapidly increases along with the number of skeleton joints. Therefore, this timing can be

reduced by eliminating some minor joints while still retaining recognition accuracy. The timing for mapping codewords

from codebook and classification is negligible; however, it can be realized that the mapping time is directly influenced by

the dimension of a feature vector. Additionally, it should be noted that the processing time for the NTU RGB + D Action
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Recognition dataset is longer than other Kinect v1 based datasets in the feature extraction and codeword mapping steps

because more joints have been used. From Fig. 6 , topic modeling takes approximately half of the overall processing time for

hyper-parameter estimation and probability calculation. With the i7-5700HQ CPU of the notebook computer used for the

experiment, the system processes ∼ 14 frames per second. 

5. Conclusion 

In this article, we explore spatio-temporal feature-poselet-action relationships by topic modeling video-based action 

recognition. We merge joint distance, joint angle, and joint-plane distance extracted in a frame and two consecutive frames

to be capable of presenting pose and transition before they are converted to codewords by k -means clustering. A set

of codewords collected from an action sequence is modeled by our proposed hierarchical model motivated by Pachinko

Allocation Model to automatically generate poselet and action assignments. Based on summarizing the correlations among

the pose-transition feature as well as the entire associations of feature-poselet-action, our model has the ability to support

complicated structures by adopting more realistic assumptions. The proposed approach is evaluated on several well-known

3D datasets under various parameter configurations of the feature type, the codebook size, and the number of poselets to

analyze our method sensitivity. Compared to other existing action recognition approaches, we achieve greater recognition

accuracy in most of the evaluations, while only using the 3D skeleton information as the input data. We reach remarkable

accuracy of 97.07% on MSR Action 3D, 90.63% on MSR Daily Activity 3D, 97.00% on UTKinect-Action 3D, 92.09% on Florence

3D Action, and 77.42% on NTU RGB + D Action Recognition. Our future work will exploit more effective features to robustly

handle the cases of human-object and human-human interactions. 
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