
applied
sciences

Article

A Dynamic, Cost-Aware, Optimized Maintenance
Policy for Interactive Exploration of Linked Data

Usman Akhtar 1 , Anita Sant’ Anna 2 and Sungyoung Lee 1,*
1 Department of Computer Science and Engineering, Kyung Hee University, (Global Campus), 1732,

Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea; usman@oslab.khu.ac.kr
2 Viniam Consulting AB, Munkalyckevägen 9 A, 302 35 Halmstad, Sweden; anita@viniam.se
* Correspondence: sylee@oslab.khu.ac.kr; Tel.: +82-31-201-2514

Received: 16 September 2019; Accepted: 7 November 2019; Published: 11 November 2019 ����������
�������

Abstract: Vast amounts of data, especially in biomedical research, are being published as Linked
Data. Being able to analyze these data sets is essential for creating new knowledge and better decision
support solutions. Many of the current analytics solutions require continuous access to these data
sets. However, accessing Linked Data at query time is prohibitive due to high latency in searching the
content and the limited capacity of current tools to connect to these databases. To reduce this overhead
cost, modern database systems maintain a cache of previously searched content. The challenge with
Linked Data is that databases are constantly evolving and cached content quickly becomes outdated.
To overcome this challenge, we propose a Change-Aware Maintenance Policy (CAMP) for updating
cached content. We propose a Change Metric that quantifies the evolution of a Linked Dataset and
determines when to update cached content. We evaluate our approach on two datasets and show
that CAMP can reduce maintenance costs, improve maintenance quality and increase cache hit rates
compared to standard approaches.

Keywords: linked data analytic; query performance; maintenance policy; SPARQL

1. Introduction

In the recent past, massive amounts of data are available publicly and these data are produced at
an alarming rate in all domains of medical sciences, creating what we today call “Big Data”. The era
of big data generates new opportunities for the research community to build solutions to search and
integrate life sciences data effectively. Most of these datasets have varied format or lack any format
and are stored in disparate locations that are poorly linked, which hinders the operator from efficiently
searching and retrieving data. Recently, Linked Data has emerged as one of the best practices to
represent and connect these repositories, also allowing the exchange of information in an interoperable
manner. Linked Data ontologies not only support the integration of multiple data from diverse
sources but also provide an efficient way to query these datasets. Healthcare systems and recent
technologies have realized the importance of acquiring and preserving big data streams for decision
making. Therefore, with the evolution of big data in healthcare, the research trends have shifted from
massive storage to efficient analysis of data.

Nowadays, in various healthcare disciplines, the use of large datasets is becoming popular and the
data is shared on the cloud. Modern stream analytics applications [1,2] are exploiting the fusion of data
streams and Linked Data publicly available on the Web. Recent investigations [3–9] have shown that
the content of Linked Data is dynamic in nature and keeps on evolving. Linked Data content changes
over time and some of the data stored in the local cache becomes outdated. Therefore, knowledge about
what has changed in the database is important for analytics applications [10]. Analytics applications
need constant updates to guarantee the quality of service in maintaining the local cache. To the extent

Appl. Sci. 2019, 9, 4818; doi:10.3390/app9224818 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-4553-0550
http://www.mdpi.com/2076-3417/9/22/4818?type=check_update&version=1
http://dx.doi.org/10.3390/app9224818
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 4818 2 of 14

of our knowledge, there is limited work addressing the problem of maintaining local views (or caches)
up-to-date [6,10–16]. Normally a maintenance policy is needed to determine what to update and when.
In the literature, three kinds of conventional maintenance policy have been reported for data analytics
systems [17]: immediate (update immediately after data arrives), deferred (no execution is performed
on current query evaluation) and periodic (update the local views on a regular bases). However, these
conventional policies fail to effectively optimize local views for linking data due to slow response time.

In this paper, we propose a proactive maintenance policy called CAMP to update the local view by
issuing the maintenance jobs during system idle time. CAMP achieved the desired query performance
by doing the maintenance ahead of query evaluation time. The proposed approach works as an
optimizer to accelerate the overall query processing by pre-fetching the data and storing in the cache
for future queries. Therefore, instead of running repeated queries, results are provided from the local
views thus improving overall response time. In the case of stream processing, the warehouse must
load all the data in a real-time. Therefore, we ensure that each view reflects a consistent state even
these local caches are scheduled for updates at different times. In comparison, in state-of-the-art
approaches, the maintenance of local views is performed immediately whenever new data arrives.
However, the overhead of these approaches is significant and it seems unfair for the system to hold up
the computational resources as user have to wait until the maintenance jobs are completed. In contrast,
our maintenance policy postpones until the system has a freecycle. Typically, queries issued by the
Linked Data clients are repetitive and structurally similar. To deal with query similarity, we propose
a query similarity metric using a distance function. The results of these similar structure queries are
placed in cache to increase hit rates, while alleviating the burden on the querying endpoints.

The remainder of this paper is organized as follows—Section 2 explains the background and
related work. Section 3 explains the proposed approach. The evaluation of the proposed approach is
performed in Section 4 on the real datasets. This article is concluded in Section 5.

2. Background

In this section, we briefly discuss the background needed to understand Linked Data, which
includes data representations and querying of the Linked Data cloud. Moreover, we also discuss
an overview of related work and highlight the differences of the proposed approach with respect to
state-of-the-art.

2.1. Semantic Web Technologies

The Semantic Web technology defines the interconnection of data points as an expressive
representation of heterogeneous data sources [18]. As described by Tim Berners-Lee [19], the Semantic
Web enables the machine in such a way that data can be searched, interpreted and reused. Linked
Data is another important concept in the Semantic Web, enabling the machine to browse the Web
of data, such as DBpedia (https://wiki.dbpedia.org/). Linked Data is collaboratively built from
the Web corpus to represent knowledge in a structured format that greatly facilitates the sharing
of information around the world. Linked Data describes the inter-connection of Web pages’s URLs
(Uniform Resource Locator) therefore facilitating the linking of the data from diverse sources. The
Semantic Web is mainly composed of Knowledge Bases (KBs) such as Freebase [20], DBpedia [21]
and Yago [22]. These KBs represent data as Linked Data according to a predefined schema, known
as Resource Description Framework (RDF). The RDF is considered the standard representation for
Linked Data, where relationships are represented in the form of triples (subject, predicate and an object).
SPARQL (https://www.w3.org/TR/sparql11-overview/) is a widely used standard query language
to retrieve and manipulate data that are stored in RDF format. SPARQL is a structured query language
standardized by the W3C for querying RDF triplestores (http://www.w3.org/TR/rdf-sparql-query/).
A SPARQL query can be further decomposed into Basic Graph Patterns (BGPs) and the results are
represented as a hierarchical tree. The syntax of SPARQL query contains different and disjoint query
types such as SELECT, CONSTRUCT, ASK and DESCRIBE. The Linked Data cloud also provides

https://wiki.dbpedia.org/
https://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/rdf-sparql-query/

Appl. Sci. 2019, 9, 4818 3 of 14

a SPARQL endpoint for their datasets. However, querying SPARQL endpoints is cumbersome.
Due to network instability often the connection to these endpoints is temporarily lost, affecting
query performance. These endpoints do not provide any information about dataset modification.
Therefore, long-running data analytics applications must resubmit queries for keeping the local data
cache up-to-date.

2.2. Life Sciences Linked Data

Massive amounts of data are being produced and currently available in the life sciences. However,
these data are unstructured and difficult to integrate. Therefore, the Linked Data paradigm is currently
suitable for publishing and connecting life science datasets to improve access and use. The Linked Data
cloud contains almost 570 datasets [23] from different domains that are interlinked with each other as
shown in Figure 1. A considerable portion of Linked Data is comprised of life sciences data, significant
contributors include the MEDLINE (https://www.ncbi.nlm.nih.gov/pubmed), Bio2RDF [24] and
DrugBank (https://www.drugbank.ca/). MEDLINE is an American national medicine bibliographic
database that contains more than twenty-four million references to journals related to bio-medicine.
Bio2RDF is a built over the Semantic Web to provide biological databases interlinked with life science
data. DrugBank contains data related to Bioinformatics and cheminformatics with comprehensive target
information. These databases contain the protein sequences that are linked to the drug entries that
target the protein data.

2.3. Related Work

The issues related to the exploitation and maintenance of local views have received considerable
attention in the research community over recent years. Most of the maintenance algorithms proposed
in the literature are based on eager (or deferred) maintenance. Eager maintenance protocols update
the view periodically whenever a change occurs in the cloud. Colby et al. [25] proposed deferred
view maintenance to reduce the view downtime and perform incremental maintenance to keep the
local views up-to-date. However, all these algorithms divide the maintenance task into smaller
steps, which is not as effective as combining the small maintenance task to improve the efficiency
of the overall maintenance process. Data warehouses have also used a lazy maintenance [26] policy
that delays maintenance until downtime rather than the peak query time. Also worth mentioning
are the maintenance policies for stream monitoring that examine the problem to schedule multiple
continuous queries. They are able to manage incoming data streams using on deferred maintenance for
updating local data caches. However, their policies mainly focus on ETL (Extract, Transform and Load)
operations and they have difficulties in managing latency and accuracy when a large-scale fusion of
linked datasets is given.

Semantic caching was originally proposed for Database Management System (DBMS) [27] to
reduce the overhead when retrieving data over a network. The idea is to maintain has been extended to
previously issued queries to facilitate the future requests. Nowadays, the semantic caching technique
triplestores [28]. Godfrey et al. [29] proposed a notion of semantic overlap and introduced a caching
approach that utilized client-server systems. To extend this idea, Dar et al. [27] proposed a semantic
region-based caching and introduced a distance metric to update the cache where the far regions are
discarded from the cache. However, these approaches can only handle SELECT SPARQL queries.
Martin et al. [28] proposed an idea to apply cache on the SPARQL processor. The benefit of this work is
to cache both the triple query result and the application result. However, this work does not consider
identical and similar queries for cache replacement. To extend this work, Shu et al. [30] proposed
a content-aware approach that utilized query containment to estimate whether the queries can be
answered from the caches. The containment checking approach produces a lot of overhead, therefore
this approach is not widely utilized by the Semantic Web community. Yang et al. [31] proposed an
approach to decompose the query into basic graph patterns and cache intermediate results but they do
not consider cache replacement to maintain the freshness of the cache. In summary, only few works

https://www.ncbi.nlm.nih.gov/pubmed
https://www.drugbank.ca/

Appl. Sci. 2019, 9, 4818 4 of 14

have been reported that deal with the problems related to view maintenance. Moreover, the existing
solutions are unable to provide proactive maintenance policy therefore reducing query time.

Figure 1. Showing the life science Linked Data Web.

3. Proposed Methodology

Figure 2 illustrates the overall architecture of the proposed approach. The main core component
in our proposed system architecture is the maintenance manager. When a user query registers in
the system, the maintenance manager creates a view corresponding to the query and serves the
request previously issued. The aim of the maintenance manager is to determine when and what
to update based on the proposed Change Metric. By utilizing the change metric, our maintenance
policy effectively updates the local views. The aim of the change metric is to quantify the evolution
of the Linked Data and identifies the changes occurs in the cloud. This change metric utilized the
maintenance policy to establish the criteria when the maintenance jobs are executed. Moreover, queries
issued by the clients are structurally similar [32]. To quantify the structural similarity between queries,
we propose a bottom-up query matching approach to detect changes between triple patterns occurring

Appl. Sci. 2019, 9, 4818 5 of 14

in consecutive queries. The result of queries is placed in a cache (or view). When similarly structured
queries arrive, the request is immediately returned from the cache module.

Query is cached?

Record
historical
queries

Local views

N Nquery

client

System

Y

Query Similarity

Change
metric

Query
Matching

query results

cache query results

offline process
continuous answer

Maintenance manager

Policies
Job

Scheduler

Query Recording

Y

Remote datasets

Figure 2. Overall architecture of the proposed method.

3.1. Change Metric

Due to the continuous evolution of Linked Data, the local views become outdated. We proposed a
change metric that quantifies the evolution of Linked Data. The main benefit of using the change metric
is to alleviate the expensive job of copying the whole data instead of only updating local views with the
changed items. We utilized the Dynamic Characteristic Set (DCS), which identifies the addition and
deletion of the items in the Linked Data cloud. Typically, queries issued by the end-user are repetitive
and follow similar patterns that only differ in a specific element. Therefore, we use a bottom-up
matching approach to find similar queries. For the structurally similar queries, we first compute the
distance between the patterns, then the results of these queries are placed in a cache for future access.
To improve the efficiency of our system, we schedule the view maintenance as a low priority job that
combines the multiple tasks into one larger job and executes it when the system is in idle state.

We propose a change metric to quantify the evolution of the Linked Data Cloud. The change
metric utilizes the Dynamic Characteristics Sets (DCS) [33], a scheme abstraction that classifies the
Linked Data on the basis of the properties of subjects and objects. Moreover, DCS captures the inherent
structure and relationships of the Linked Data cloud. The DCS is a combination of properties and types
that are used to describe the content in Linked Data. A change at any level of Linked Data implies a
change in the mapping of the properties and type.

Let Xt represent the Linked data set captured at time t, which consist of subject s, predicate p and
object o, where P is the set of the properties in Xt and T are its type set. We define the DCS as a schema
abstraction based on the s and p. Any change in the DCS shows new content in the Linked data has
been added or removed.

Example 1. To explain the changes in the Linked Open Data (LOD) cloud, consider the snapshots of LOD
captures at time t as shown in Table 1. The changes are illustrated by DCS1, DCS2 , DCS2a and DCS2b. DCS1

= {foaf:Person, foaf: knows} captured at Xt1 and DCS1 = {foaf:Person, foaf: knows} captured at Xt2 remain
unchanged across snapshots. From the later version of the snapshot DCS2 was deleted and new combinations of
DCS2a and DCS2b were observed. Thus, DCS2 is no longer used in the LOD.

Appl. Sci. 2019, 9, 4818 6 of 14

Table 1. Rate of change in snapshots using Dynamic Characteristic Set (DCS).

Snapshot Xt1 Snapshot Xt2 Status

DCS1 = {foaf:Person, foaf:knows} DCS1 = {foaf:Person, foaf:knows} Unchanged
DCS2 = {foaf:name, foaf:knows,
dbpedia:project/media} Deleted

DCS2a = {foaf:name, foaf:knows,
dbpedia:project/social} New

DCS2b = {foaf:name, foaf:knows,
dbpedia:internProject} New

3.2. Query Matching

We proposed an offline analysis to identify similar structure queries. The result of the previously
issued queries are extracted from the log. By using query matching, we pre-fetch the results of
the similar queries and place in a cache for future access. This approach lowers the burden on
SPARQL endpoints. To find a similar query, we compute the Levenshtein Distance between two queries,
normalized by the size of the query strings. We define the Distance Score as:

DistanceScore =
Levenshtein (Q1, Q2)

max (|Q1, Q2|)
. (1)

In Equation (1), we define the distance score to match the triple patterns. The overall distance of
the triple pattern is calculated by aggregating the individual score of the subject, predicate and an object.
The structure base similarity is not sufficient to return a search result, as it only relies on the ordering
of symbols. It is possible that two queries represent the same structure of ordering but share different
content. We utilize the distance function score to determine the query matching. The query distance
between the two graphs is the minimum number of edit operations, such as addition, deletion and
insertion, to transform one graph to another. However, the cost is determined by the distance between
triple patterns ∆ (T1, T2). Complete matching is only possible in the case of bipartite graphs, where
Basic Graph Patterns (BGP) occur with the same number as for the triple patterns. Maximum matching
is determine in polynomial time. We utilize the Hungarian method [34] to obtain the individual triple
patterns with the assignment of minimum cost. Therefore, the higher cost of triple matching is set
to ∆ (T1, T2) > 1 which is considered the infinite cost, where there is no matching between the BGP
elements. The score derived from the complete matching is defined as:

∆ (BGP1, BGP2) =
∑
(
Triplei, Triplej ∈ MT

)
∆
(
Triplei, Triplej

)
MT

. (2)

As shown in Equation (2), MT assigns the cost to triples. In the case that MT is finite, there
is a valid triple pattern matching scenario that exists, and if MT is infinite, no such scenario exists.
However, real-world queries are more complex than the basic graph patterns, therefore, we use a
bottom-up approach to derive the minimum cost between BGP. We continue to check the alignment
of query patterns, in the case of no alignment, then the matching has an infinite cost. In the case of
maximal matching, two BGPs can be matched if they are aligned and matching with finite cost can be
established between all the patterns.

3.3. Maintenance Manager

In this section, we describe the maintenance manager in detail and also explain the prerequisite
to efficiently update the local views. When a query is registered with the system the maintenance
manager creates a view and selects the appropriate policy to keep the view up-to-date. These policies
invoke the job scheduler to select the relevant stream data and store the appropriate results in the view.
A maintenance policy P consists of the sequence of job needed to update the local views. To be able to
keep track of all the views this module maintains hash tables of each view along with the maintenance

Appl. Sci. 2019, 9, 4818 7 of 14

tasks. To keep track of which version of the data is needed by the views, this module keeps track of the
status of the maintenance task. The maintenance of each job is scheduled as a low priority background
job and the maintenance manager combines multiple tasks to schedule as a larger job to be executed
when the system is in idle state. When a maintenance job is completed, the manager removes the
job from the list and releases the remaining pending tasks. Similarly, in the query execution phase,
we first check whether the views used by the query contain any pending maintenance jobs. In the case
of a pending task, the query requests the manager to perform the task in order to update the local
views. This process is similar to on-demand maintenance, where the query waits until the maintenance
process is completed.

3.4. Scheduling Updates of Linked Data

To update the view, for each transaction a maintenance task is created and accumulated in
the task queue. The traditional policy is to update each job one by one regardless of the time
consumption. However, in our approach we combine each small tasks into a larger maintenance job.
The maintenance job will be executed only once. Our maintenance manager eliminates redundant
update tasks. Therefore, reducing the size of the update stream. The maintenance job begins when
the system has a freecycle. We hide the maintenance process from incoming queries to improve the
performance of response time. We use CAMP [12,33] to determine when a local view needs to be
updated. CAMP identifies the highly dynamic sources in the Linked Data that are frequently updated
and captures these changes to updates the local views. CAMP visits the data sources based on a
preference score. Highly dynamic sources should be fetched at a high priority. The preference score is
based on the history of the sources. The preference score is computed as shown in Equation (3):

fPASU(X) = ∑
i=0

∆(Xtlastupdate−1 , Xtlastupdate)

tlastupdate(X) − tlastupdate(X)−1
. (3)

In Equation (3), tlastupdate is a function that returns the time when Linked Data was last updated.
This function is recursive, as tlastupdate−1 returns the time before the last update and ∆ quantifies the
amount of the changes such as addition and deletion of items. The maintenance policy indicates when
the Linked Data source should be fetched. However, it is possible to retrieve the sources in the order
of their assigned preference. The overall flow of the proposed algorithm is shown in Algorithm 1.
The CAMP algorithm first generates the view for the incoming queries as shown in Line 1. As an input
parameter, CAMP takes a query model Q and job scheduler, which indicates the time to schedule the
resources. CAMP also chooses the appropriate policy to facilitate the performance of the maintenance
policy P. The maintenance manager releases a policy Jr to update the local views before the query
evaluation in Line 6 and 7 in a maximum execution time Kmax.

Appl. Sci. 2019, 9, 4818 8 of 14

Algorithm 1: Change-Aware Maintenance Policy (CAMP).
Input : Query Q, Job Scheduler H
Output : The entire maintenance process P
// Creation of the maintenance process

1 Vq = createView (Q)

2 for (i = 0; i ≤ Maintenance; i ++) do
3 P = MaintenancePolicy (Q, Views(Vq))

// Update from the most dynamic sources
4 updatecache← Jr;
5 Jr = P.release (JobScheduler)

// Check that the recent changes occur in the LOD sources
6 if f (Xi, ti) recent changes then
7 updatecache← ti+1 ;
8 else
9 return f (Xi, Kmax) = update(Xi);

4. Experimental Study

This section describes the evaluation of our approach and comparison with other approaches.
We first describe the setup of our experimentation and dataset used. For performance evaluation we
measure the response time, maintenance cost and cache hit rates. We conducted the experiments on
OpenLink Virtuoso Server 07.10 with 4xAMD A8-7650K Radeon R7 and 64bit Ubuntu 16.04.2 LTS and
32 GB of RAM with 7200 RPM. There are numerous datasets available in Biomedicine that originate from
different sources. In our experimentation, we utilized two datasets—LinkedCT (https://www.w3.org/
wiki/HCLSIG/LODD/Data) and DYLDO (http://swse.deri.org/dyldo/data/). Both of these datasets
are serialized in triple format, we use NxParser (https://www.w3.org/2001/sw/wiki/NxParser) to
parse these datasets. For query evaluation, we utilized the queries extracted from the logs of LinkedCT
and DYLDO [35]. In our evaluation, we have utilized the queries extracted from the public available
SPARQL endpoints provided by the Linked SPARQL Queries (LSQ) (https://aksw.github.io/LSQ/)
datasets.

The Linked Clinical Trials (LinkedCT) dataset [36] is a Linked Data representation of the open
dataset ClinicalTrials.gov. The original dataset is published in XML format and the main benefit of its
linked representation is that it facilitates SPARQL queries. This dataset contains information about
governmental and privately funded clinical trials in approximately 9.8 million triples. This dataset
also contains links to external datasets such as DBpedia and Bio2RDF.org via SPARQL endpoints..

The Dynamic Linked Data Observatory DYLDO [10,37] monitors the evolution of Linked Data
over time. It collects snapshots of the Web of Data using 149 weekly crawls of the Linked Data Cloud.
The average size of a snapshot is about 1.35 GB. The data collected during three years adds up to
approximately 36 GB. DYLDO includes various well known sources such as DBpedia.org, identi.ca and
DBtropes.org.

4.1. Baseline Approaches

We have evaluated our approach against Eager Maintenance, Time To Live (TTL), PageRank, Size,
ChangeRatio and ChangeRate.

Eager Maintenance: In eager maintenance, all the updating jobs are performed immediately after
the new data arrives. Eager maintenance updates all the materialized views immediately after the
query evaluation and each update query has to wait until view maintenance is done. The cost of the
view maintenance is normally high [38].

https://www.w3.org/wiki/HCLSIG/LODD/Data
https://www.w3.org/wiki/HCLSIG/LODD/Data
http://swse.deri.org/dyldo/data/
https://www.w3.org/2001/sw/wiki/NxParser
https://aksw.github.io/LSQ/

Appl. Sci. 2019, 9, 4818 9 of 14

Time To Live (TTL): TTL is a fixed threshold—the age at which the view must be refreshed. Most of
the maintenance manager use TTL to captures how old the views from the last query evaluation are.
TTL is an important feature that illustrates when the data source was last visited and updated [39].

PTTL(Xt,c) = ti − tlast(Xt,c) (4)

As shown in Equation (4), TTL is used by the scheduling strategies to fetch the data source c in
time ti, whereas, tlast is the last update time.

PageRank (PR): Updates the local views based on the ranking of the Linked Data sources.
The ranking is calculated based on the number of incoming links and the sources are pre-fetched from
the highest PageRank [40]. It is represented as:

PPR(Xt,c) = PR(Xchighest ,tupdate) (5)

Size: In this policy, Size is determined by checking the Linked Data sources. The priority is given
to the largest data source [41]. The formula for size is as follows:

Psize(Xt,c) = |Xcmax ,tupdate | (6)

ChangeRatio: In this policy, ChangeRatio counts how many items were updated based on the last
known time period [42]. This metric is useful for storing the change history and number of detected
changes of the Linked Data as shown in Equation (7).

PChangeRatio = ∑
i=no.o f changes

|Xc,tlastupdate | (7)

ChangeRate: In this maintenance policy, the local views are updated from the sources with the
most to the least changes [15] observed at last known points. It is represented as follows:

PChangeRatio = ∆
(

Xc,tlastupdate , Xc,tlastupdate−1

)
(8)

4.2. Performance Evaluation

To evaluate the effectiveness of CAMP, we compared our proposed approach with the
state-of-the-art approaches to find out the quality of the maintenance performed by existing strategies.
We evaluated on the basis of the maintenance cost, quality and cache hit rates.

4.2.1. Maintenance Cost

We define the maintenance cost as the time taken to perform maintenance operations. Figure 3
shows the maintenance cost for each policy on each dataset. Our proposed approach, CAMP, performed
the maintenance job in the background when the system was idle and enough resources were available.
Therefore, the overhead of our proposed approach was completely hidden from the user and measured
the required system time in order to perform the offline maintenance task. The maintenance cost was
measured as a sum of the response time and total time. Our approach produced a lower elapsed time
of 5 s as the query does not pay for the cost of maintaining the view. Compared with Eager Maintenance
where the query has to wait until the maintenance job is completed, the average response time was
15 s. However, PageRank, Size and TTL did not consider maintenance cost while updating the local
views and these strategies performed worst as the query had to wait until the maintenance jobs were
completed. Similarly, in the case of the ChangeRatio and ChangeRate, these policies use the periodic
update function that keeps on tracking the changed occurred in the Linked Data cloud. As these
policies often run in the background, they produced high latency.

Appl. Sci. 2019, 9, 4818 10 of 14

0 10 20 30 40 50

CAMP

ChangeRate

ChangeRatio

Size

PageRank

TTL

Eager

Elapsed Time (Seconds)

M
ai

nt
en

an
ce

C
os

t

Response Time
Maintenance Time

(a) LinkedCT Dataset

0 10 20 30 40 50 60

CAMP

ChangeRate

ChangeRatio

Size

PageRank

TTL

Eager

Elapsed Time (Seconds)

M
ai

nt
en

an
ce

C
os

t

Response Time
Maintenance Time

(b) DYLDO Dataset

Figure 3. Maintenance cost: Showing the comparison with other state-of-the-art approaches on (a)
LinkedCT and (b) DYLDO datasets.

4.2.2. Maintenance Quality

In this evaluation, we utilized the quality of the updates performed by the maintenance policies
under consideration. We started with the perfect cache and assumed that a change occurs in the cloud.
Due to this change the local views become outdated. Therefore, our main goal was to check the quality
of the updates performed by the state-of-the-art strategies as shown in Figure 4. And we evaluated
how the existing strategies perform to update the local views. We used the precision and recall as an
evaluation metric to measure the quality of the updates results are shown in Figure 4. In this setup,
all the existing strategies showed a uniform loss in the quality of update. CAMP outperformed all
other strategies, achieving 91% (precision) and 89% (recall) accuracy in the datasets. We observed that
our proposed strategy only updates the relevant data sources with less overhead and delay. Strategies
like Pagerank, Size and TTL performed worst because these strategies were executing irrelevant queries.
ChangeRatio and ChangeRate only captured changed items and their efficiency degraded with each
iteration over time.

1 2 3 4 5

65.0

70.0

75.0

80.0

85.0

90.0

Iterations

Pr
ec

is
io

n
[%

]

Eager TTL PageRank Size ChangeRatio ChangeRate CAMP

(a) Precision on LinkedCT Dataset

1 2 3 4 5
65.0

70.0

75.0

80.0

85.0

90.0

Iterations

R
ec

al
l[

%
]

Eager TTL PageRank Size ChangeRatio ChangeRate CAMP

(b) Recall on LinkedCT Dataset

Figure 4. Cont.

Appl. Sci. 2019, 9, 4818 11 of 14

1 2 3 4 5

70.0

75.0

80.0

85.0

90.0

Iterations

Pr
ec

is
io

n
[%

]
Eager TTL PageRank Size ChangeRatio ChangeRate CAMP

(c) Precision on DYLDO Dataset

1 2 3 4 5

70.0

75.0

80.0

85.0

90.0

Iterations

R
ec

al
l[

%
]

Eager TTL PageRank Size ChangeRatio ChangeRate CAMP

(d) Recall on DYLDO Dataset

Figure 4. Quality of updates performed by the proposed approach as compared to the existing approaches.

4.2.3. Cache Hit Rates

As the cache had limited space; it was advantageous to replace the cache with more valuable
content to improve query performance (i.e., cache hit rate). In this evaluation, we measured the
performance of query times in terms of better hit rates. We evaluated both of the datasets, LinkedCT
and DYLDO. Figure 5 shows the hit rates achieved by the existing approaches. We utilized the access
logs and based on the maintenance policy, each approach replaced the cache to keep it up-to-date.
CAMP replaced the cache based on the access frequency and more frequent access queries were placed
in a cache for future access. On average, CAMP achieved 82% hit rates as compared to the Eager (77%)
and ChangeRate (70%). PageRank, Eager, TTL and Size performed worst in term of cache hit rates.

100K 500K 800K 1.0M 1.5M 2.0M 2.5M 3.0M

20

40

60

80

Triple Processed

H
it

R
at

es
[%

]

Eager
TTL

PageRank
Size

Changeratio
Changerate

CAMP

(a) Hit Rate on LinkedCT Dataset

100K 500K 800K 1.0M 1.5M 2.0M 2.5M 3.0M

20

40

60

80

Triple Processed

H
it

R
at

es
[%

]

Eager
TTL

PageRank
Size

Changeratio
Changerate

CAMP

(b) Hit Rate on DYLDO Dataset

Figure 5. Hit Rate achieved by CAMP as compared to existing approaches.

5. Conclusions

Often, Linked Data applications pre-fetch data and place it in a cache for future access. Due to
the continuous evolution of the Linked Data Cloud, the local cache becomes outdated. In this paper,
we proposed a maintenance policy that performs the local cache update jobs before query evaluation.
The proposed maintenance policy utilizes a change metric together with a query similarity measure
to identify and update changed items. Most of the queries issued by the Linked Data client are

Appl. Sci. 2019, 9, 4818 12 of 14

similar in structure. Therefore, instead of running the queries repeatedly, we pre-fetched the results
of these queries to improve cache hit rates. For the maintenance jobs, we combined the smaller
task into one job to reduce resource utilization. We compared the effectiveness of our proposed
approach to state-of-the-art approaches, namely Eager, TTL, PageRank, Size, ChangeRatio and ChangeRate.
The proposed approach outperformed the existing policies in terms of lower maintenance cost, higher
maintenance quality and better cache hit rates. In the future, we will investigate the benefit of our
proposed approach to accelerate the query time in real-world data analytics application.

Author Contributions: U.A. was the principal researcher of this study. He proposed and formulated the idea,
designed and performed the experiments and wrote the paper; A.S.A. edited the manuscript for language and
clarity; S.L. provided advisory comments, remarks, and financial aid for the paper.

Funding: This research was supported by the Ministry of Science and ICT (MSIT), Korea, under the Information
Technology Research Center (ITRC) support programme (IITP-2017-0-01629) supervised by the Institute of
Information & Communications Technology Planning & Evaluation (IITP). This work was supported by an IITP
grant funded by the Korean government (MSIT) (no.2017-0-00655) and NRF-2016K1A3A7A03951968.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CAMP Change-Aware Maintenance Policy
KBs Knowledge Bases
LOD Linked Open Data
DCS Dynamic Characteristics Set
SPARQL SPARQL Protocol and RDF Query Language
TTL Time To Live
PR Page Rank
DYLDO Dynamic Linked Data Observatory

References

1. Saggi, M.K.; Jain, S. A survey towards an integration of big data analytics to big insights for value-creation.
Inf. Process. Manag. 2018, 54, 758–790. [CrossRef]

2. Khan, S.; Liu, X.; Shakil, K.A.; Alam, M. A survey on scholarly data: From big data perspective. Inf. Process.
Manag. 2017, 53, 923–944. [CrossRef]

3. Fernández, J.D.; Umbrich, J.; Polleres, A.; Knuth, M. Evaluating query and storage strategies for RDF
archives. In Proceedings of the 12th International Conference on Semantic Systems, Leipzig, Germany, 12–15
September 2016; ACM: New York, NY, USA, 2016; pp. 41–48.

4. Gottron, T.; Knauf, M.; Scherp, A. Analysis of schema structures in the Linked Open Data graph based on
unique subject URIs, pay-level domains, and vocabulary usage. Distrib. Parallel Databases 2015, 33, 515–553.
[CrossRef]

5. Cho, J.; Garcia-Molina, H. Estimating frequency of change. ACM Trans. Internet Technol. (TOIT) 2003,
3, 256–290. [CrossRef]

6. Akhtar, U.; Amin, M.B.; Lee, S. Evaluating scheduling strategies in LOD based application. In Proceedings
of the 2017 19th Asia-Pacific Network Operations and Management Symposium (APNOMS), Seoul, Korea,
27–29 September 2017; pp. 255–258.

7. Bizer, C.; Heath, T.; Berners-Lee, T. Linked data-the story so far. Int. J. Semant. Web Inf. Syst. 2009, 5, 1–22.
[CrossRef]

8. Konrath, M.; Gottron, T.; Staab, S.; Scherp, A. Schemex—Efficient construction of a data catalogue by
stream-based indexing of linked data. Web Semant. Sci. Serv. Agents World Wide Web 2012, 16, 52–58.
[CrossRef]

9. Gottron, T. Measuring the Accuracy of Linked Data Indices. arXiv 2016, arXiv:1603.06068.
10. Käfer, T.; Abdelrahman, A.; Umbrich, J.; O’Byrne, P.; Hogan, A. Observing linked data dynamics.

In Proceedings of the Extended Semantic Web Conference, Montpellier, France, 26–30 May 2013; Springer:
Berlin/Heidelberg, Germnay, 2013; pp. 213–227.

http://dx.doi.org/10.1016/j.ipm.2018.01.010
http://dx.doi.org/10.1016/j.ipm.2017.03.006
http://dx.doi.org/10.1007/s10619-014-7143-0
http://dx.doi.org/10.1145/857166.857170
http://dx.doi.org/10.4018/jswis.2009081901
http://dx.doi.org/10.1016/j.websem.2012.06.002

Appl. Sci. 2019, 9, 4818 13 of 14

11. Umbrich, J.; Karnstedt, M.; Hogan, A.; Parreira, J.X. Hybrid SPARQL queries: Fresh vs. fast results.
In Proceedings of the International Semantic Web Conference, Boston, MA, USA, 11–15 November 2012;
Springer: Berlin/Heidelberg, Germnay, 2012; pp. 608–624.

12. Nishioka, C.; Scherp, A. Keeping linked open data caches up-to-date by predicting the life-time of RDF
triples. In Proceedings of the International Conference on Web Intelligence, Leipzig, Germany, 23–26 August
2017; ACM: New York, NY, USA, 2017; pp. 73–80.

13. Dividino, R.; Gottron, T.; Scherp, A. Strategies for efficiently keeping local linked open data caches up-to-date.
In Proceedings of the International Semantic Web Conference, Bethlehem, PA, USA, 11–15 October 2015;
Springer: Berlin/Heidelberg, Germnay, 2015; pp. 356–373.

14. Dividino, R.; Scherp, A.; Gröner, G.; Grotton, T. Change-a-LOD: Does the schema on the linked data cloud
change or not? In Proceedings of the Fourth International Conference on Consuming Linked Data-Volume
1034, Sydney, Australia, 22 October 2013; pp. 87–98.

15. Knuth, M.; Hartig, O.; Sack, H. Scheduling Refresh Queries for Keeping Results from a SPARQL Endpoint
Up-to-Date (Extended Version). arXiv 2016, arXiv:1608.08130.

16. Nishioka, C.; Scherp, A. Temporal patterns and periodicity of entity dynamics in the Linked Open Data
cloud. In Proceedings of the 8th International Conference on Knowledge Capture, Palisades, NY, USA, 7–10
October 2015; ACM: New York, NY, USA, 2015; p. 22.

17. Fotopoulou, E.; Zafeiropoulos, A.; Papaspyros, D.; Hasapis, P.; Tsiolis, G.; Bouras, T.; Mouzakitis, S.; Zanetti,
N. Linked data analytics in interdisciplinary studies: The health impact of air pollution in urban areas. IEEE
Access 2015, 4, 149–164. [CrossRef]

18. Berners-Lee, T.J. Information Management: A Proposal; Technical Report; 1989. Available online: http:
//cds.cern.ch/record/369245/files/dd-89-001.pdf (accessed on 11 November 2019).

19. Berners-Lee, T.; Hendler, J.; Lassila, O. The semantic web. Sci. Am. 2001, 284, 34–43. [CrossRef]
20. Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; Taylor, J. Freebase: A collaboratively created graph

database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, Vancouver, BC, Canada, 9–12 June 2008; ACM: New York, NY, USA,
2008; pp. 1247–1250.

21. Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas, D.; Mendes, P.N.; Hellmann, S.; Morsey, M.;
Van Kleef, P.; Auer, S.; et al. DBpedia—A large-scale, multilingual knowledge base extracted from Wikipedia.
Semant. Web 2015, 6, 167–195.

22. Suchanek, F.M.; Kasneci, G.; Weikum, G. Yago: A core of semantic knowledge. In Proceedings of the 16th
International Conference on World Wide Web, Banff, AB, Canada, 8–12 May 2007; ACM: New York, NY,
USA, 2007; pp. 697–706.

23. Bizer, C.; Heath, T.; Berners-Lee, T. Linked data: The story so far. In Semantic Services, Interoperability and Web
Applications: Emerging Concepts; IGI Global: Hershey, PA, USA, 2011; pp. 205–227.

24. Belleau, F.; Nolin, M.A.; Tourigny, N.; Rigault, P.; Morissette, J. Bio2RDF: Towards a mashup to build
bioinformatics knowledge systems. J. Biomed. Inform. 2008, 41, 706–716. [CrossRef] [PubMed]

25. Colby, L.S.; Griffin, T.; Libkin, L.; Mumick, I.S.; Trickey, H. Algorithms for deferred view maintenance.
In Proceedings of the ACM SIGMOD Record, Montreal, QC, Canada, 4–6 June 1996; ACM: New York, NY,
USA, 1996; Volume 25, pp. 469–480.

26. Zhou, J.; Larson, P.A.; Elmongui, H.G. Lazy maintenance of materialized views. In Proceedings of the
33rd International Conference on Very Large Data Bases, Vienna, Austria, 23–27 September 2007; VLDB
Endowment: New York, NY, USA, 2007; pp. 231–242.

27. Dar, S.; Franklin, M.J.; Jonsson, B.T.; Srivastava, D.; Tan, M. Semantic data caching and replacement.
In Proceedings of the VLDB, Mumbai (Bombay), India, 3–6 September 1996; Volume 96, pp. 330–341.

28. Martin, M.; Unbehauen, J.; Auer, S. Improving the performance of semantic web applications with SPARQL
query caching. In Proceedings of the Extended Semantic Web Conference, Crete, Greece, 30 May–2 June
2010; Springer: Berlin/Heidelberg, Germnay, 2010; pp. 304–318.

29. Godfrey, P.; Gryz, J. Answering queries by semantic caches. In Proceedings of the International Conference
on Database and Expert Systems Applications, Florence, Italy, 30 August–3 September 1999; Springer:
Berlin/Heidelberg, Germnay, 1999; pp. 485–498.

http://dx.doi.org/10.1109/ACCESS.2015.2513439
http://cds.cern.ch/record/369245/files/dd-89-001.pdf
http://cds.cern.ch/record/369245/files/dd-89-001.pdf
http://dx.doi.org/10.1038/scientificamerican0501-34
http://dx.doi.org/10.1016/j.jbi.2008.03.004
http://www.ncbi.nlm.nih.gov/pubmed/18472304

Appl. Sci. 2019, 9, 4818 14 of 14

30. Shu, Y.; Compton, M.; Müller, H.; Taylor, K. Towards content-aware SPARQL query caching for semantic
web applications. In Proceedings of the International Conference on Web Information Systems Engineering,
Nanjing, China, 13–15 October 2013; Springer: Berlin/Heidelberg, Germnay, 2013; pp. 320–329.

31. Yang, M.; Wu, G. Caching intermediate result of SPARQL queries. In Proceedings of the 20th International
Conference Companion on World Wide Web, Hyderabad, India, 28 March–1 April 2011; ACM: New York,
NY, USA, 2011; pp. 159–160.

32. Dividino, R.Q.; Gröner, G. Which of the following SPARQL Queries are Similar? Why? In Proceedings
of the LD4IE@ ISWC, Sydney, Australia, 2013. Available online: https://pdfs.semanticscholar.org/b200/
a1c95c53f66090d900eb203b8dd277469004.pdf (accessed on 11 November 2019)

33. Akhtar, U.; Razzaq, M.A.; Rehman, U.U.; Amin, M.B.; Khan, W.A.; Huh, E.N.; Lee, S. Change-Aware
Scheduling for Effectively Updating Linked Open Data Caches. IEEE Access 2018, 6, 65862–65873. [CrossRef]

34. Lorey, J.; Naumann, F. Caching and prefetching strategies for SPARQL queries. In Proceedings of the
Extended Semantic Web Conference, Montpellier, France, 26–30 May 2013; Springer: Berlin/Heidelberg,
Germnay, 2013; pp. 46–65.

35. Saleem, M.; Ali, M.I.; Hogan, A.; Mehmood, Q.; Ngomo, A.C.N. LSQ: The linked SPARQL queries dataset.
In Proceedings of the International Semantic Web Conference, Bethlehem, PA, USA, 11–15 October 2015;
Springer: Berlin/Heidelberg, Germnay, 2015; pp. 261–269.

36. Hassanzadeh, O.; Miller, R.J. Automatic curation of clinical trials data in LinkedCT. In Proceedings
of the International Semantic Web Conference, Bethlehem, PA, USA, 11–15 October 2015; Springer:
Berlin/Heidelberg, Germnay, 2015; pp. 270–278.

37. Käfer, T.; Umbrich, J.; Hogan, A.; Polleres, A. Towards a Dynamic Linked Data Observatory. LDOW at WWW.
2012. Available online: https://ai.wu.ac.at/~polleres/publications/kaef-etal-2012LDOW.pdf (accessed on
25 October 2019).

38. Zhuge, Y.; Garcia-Molina, H.; Hammer, J.; Widom, J. View maintenance in a warehousing environment. In
Proceedings of the ACM SIGMOD Record, San Jose, CA, USA, 22–25 May 1995; ACM: New York, NY, USA,
1995; Volume 24, pp. 316–327.

39. Cho, J.; Garcia-Molina, H. Synchronizing a database to improve freshness. In Proceedings of the ACM
Sigmod Record, Dallas, TX, USA, 15–18 May 2000; ACM: New York, NY, USA, 2000; Volume 29, pp. 117–128.

40. Page, L.; Brin, S.; Motwani, R.; Winograd, T. The PageRank Citation Ranking: Bringing Order to the Web;
Technical report; Stanford InfoLab: Standford, CA, USA 1999.

41. Harchol-Balter, M.; Schroeder, B.; Bansal, N.; Agrawal, M. Size-based scheduling to improve web
performance. ACM Trans. Comput. Syst. (TOCS) 2003, 21, 207–233. [CrossRef]

42. Cho, J.; Ntoulas, A. Effective change detection using sampling. In Proceedings of the 28th International
Conference on Very Large Data Bases, Hong Kong, China, 20–23 August 2002; VLDB Endowment: New
York, USA 2002; pp. 514–525.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://pdfs.semanticscholar.org/b200/a1c95c53f66090d900eb203b8dd277469004.pdf
https://pdfs.semanticscholar.org/b200/a1c95c53f66090d900eb203b8dd277469004.pdf
http://dx.doi.org/10.1109/ACCESS.2018.2871511
https://ai.wu.ac.at/~polleres/publications/kaef-etal-2012LDOW.pdf
http://dx.doi.org/10.1145/762483.762486
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Semantic Web Technologies
	Life Sciences Linked Data
	Related Work

	Proposed Methodology
	Change Metric
	Query Matching
	Maintenance Manager
	Scheduling Updates of Linked Data

	Experimental Study
	Baseline Approaches
	Performance Evaluation
	Maintenance Cost
	Maintenance Quality
	Cache Hit Rates

	Conclusions
	References

