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ABSTRACT Precision medicine (PM) is an emerging approach that appears with the impression of changing
the existing paradigm of medical practice. Recent advances in technological innovations and genetics and the
growing availability of health data have set a new pace of the research and impose a set of new requirements
on the different stakeholders. Some studies are available that discuss about the different aspects of PM.
Nevertheless, a holistic representation of those aspects deemed to confer with the technological perspective,
in relation to the applications and challenges, have been mostly ignored. In this context, this paper surveys
the advances in PM from the informatics viewpoint and reviews the enabling tools and techniques in a
categorized manner. In addition, the study discusses how other technological paradigms, which include big
data, artificial intelligence, and the internet of things, can be exploited to advance the potentials of PM.
Furthermore, the paper provides some guidelines for future research for a seamless implementation and a
wide-scale deployment of PM based on the identified open issues and the associated challenges. As a result,
the paper proposes an integrated holistic framework for PM motivating informatics researchers to design
their relevant research work in an appropriate context.

INDEX TERMS Precision medicine, bioinformatics, informatics, artificial intelligence, the Internet of
Things, big data, clinical decision support, deep learning, machine learning.

I. INTRODUCTION

Precision medicine (PM) is one of the fledging paradigms
that the next generation healthcare solutions are sprouting
towards. It helps us gain more knowledge about human
physiology by means of genomic insights and advances in
technology. PM is an attention-grabbing area of research
for the medicinal community with various multidimensional
prospects. At the same time, it is quite exciting for the infor-
matics community with enormous potential to research and
exploit the technological perspective for the common goals.
However, it is challenging for either community to absorb the
technicalities involved in drawing relationships among the
different prospects in this cross-disciplinary research field.
From an informatics viewpoint, PM introduces a new level
of challenges on the developing informatics solutions, which
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include -omic informatics and health informatics, for more
focused and precise patient care.

A. BRIEF OVERVIEW OF PRECISION MEDICINE

The concept of PM has emerged as a healthcare-aligned
mainstream discipline through its formal launching in 2015 as
the prevention and treatment that considers the individual
variability [1]. To put it simply, PM refers to serve the right
patients with the right drug at the right time by considering the
molecular events that are accountable for the disease [2]. The
term precision medicine is often muddled with personalized
medicine [3], [4] due to the inclusion of the word individual
in the definition of PM itself. However, PM provides a more
comprehensive and precise meaning to what individualized
and personalized medicine were representing over the years.
Unlike personalized medicine, the notion of PM is to com-
bine clinical data with population-based molecular profiling,
epidemiological data, and other data in order to make clinical
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FIGURE 1. Traditional and PM approaches with key differences on
classification factors and treatment outcomes.

decisions for the benefit of the individual patients [5]. The
personalized medicine terms are used dominantly in some
regions of the world. Also, in a commentary, the authors
termed PM as a part of personalized medicine [6]. The
other terms they mentioned include individualized medicine,
genomic medicine, stratified medicine, pharmacogenomics,
and P4 medicine. However, this study uses the term precision
medicine as a main subject in the search queries and focuses
on the same in the contents to avoid any confusion with other
competitive terminologies.

The paradigm shift to PM from the traditional medicine
approaches can be thought of as a movement from general-
ization to personalization. In other words, unlike the current
approaches that consider a general understanding based on
the average conditions and clinical outcomes for the patients
of interest, the PM approach works based on the individual
variability in the genes, the environment, and the lifestyle [4].
Consequently, whereas current approaches might be suc-
cessful for one group of patients and not for the other,
the PM-based approaches are more likely to be effective
for each group of patients. The abstract level comparison
of PM with current approaches is depicted in Figure 1. The
schematic shows the key differences between the traditional
and the PM approaches in terms of the classification of the
patient population, whereas PM classifies the patients based
on risk and identifies the surveillance for preclinical diseases.
The conventional approaches look for the signs or symptoms
and deal the patients equally if they share the same symp-
toms [7]. Because of this generalization, the benefits are not
realized by all the patients in the conventional approaches.
However, each group of patients receive equal level of ben-
efits in PM, because they are treated properly with the right
treatment.

The PM approach attracts multiple stakeholders in the
biomedical enterprise, which include care providers, payers,
researchers, and patients [8]. Also, it seeks for the integrated
expertise on the different but interrelated domains which
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at a minimum include physicians, biologists, and computer
scientists. It is clear that two aspects of participation in PM
are taken of utter importance, which include (i) the healthcare
system in order to deliver precise diagnosis and therapies
and (ii) the scientists to develop the infrastructure, principles,
and insights into PM [9].

B. STUDY OBJECTIVE AND CONTRIBUTIONS

In this study, we explore an informatics perspective of PM
that describe principles, issues, challenges and prospective
solutions. Moreover, we include different initiatives around
the world on the subject and a historical journey to create a
case for bridging the current evidence-based medicine (EBM)
with PM. The existing studies [8], [10] provide a big pic-
ture of informatic research, and they envision the need of
advanced tools and technologies to support PM. Also, we can
find a fair amount of literature [11], [12] that discuss about
the PM realization and implementation issues and challenges.
A larger set of existing studies is available on the molecular
and the omic information in terms of efficient algorithms
and methods for genome mapping, alignments, variant call-
ings, and annotations. Similarly, the clinical aspect has been
researched and implemented in the long run without aligning
the focus to consider the other aspects of PM, which include
the genome and the environmental data. Moreover, PM is rec-
ognized as tantamount to a technology-driven approach [13],
so it therefore embroils algorithms and technology in its
meaning.

This study provides an overview of the existing efforts
on PM informatics agenda, tools, and techniques in three
areas of informatics, which include bioinformatics, clinical
informatics, and participatory health informatics, security,
standardization, integration, implantation challenges, and the
design of holistic PM framework to enlighten the futuristic
endeavors in the area of informatic research and implementa-
tion. In this regard, the contributions of this paper are outlined
below.

« To encourage the principle of learn to exist rather
than to compete, this study compiles the state-of-the-
art views on PM to achieve a pragmatic balance among
the existing approaches. The study adds on the recon-
ciliation strategies between the existing evidence-based
medicine (EBM) and the emerging PM approaches.

« To cover an inclusive picture of PM from the tools and
technologies perspective, we elaborate and generate a
comprehensive summary of prominent programs, tools,
frameworks, and platforms in three aspects of informat-
ics, which include bioinformatics, clinical informatics,
and participatory informatics.

o The lifelines of PM, which include big data and artificial
intelligence (AI), are included and elaborated in the
study to draw a useful relationship model with PM.

o The Internet of Things (IoT), which has enabled health-
care, has the potential to be a part of PM. In this context,
we briefly discussed the advantages of loT-aided PM
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FIGURE 2. PRIMA flow diagram for the literature survey of the articles included in the study.

and presented a conceptual model that integrates both
the paradigms.

o The study analyzes the implementation challenges of
PM and highlights the design issues of the clinical
decision support systems. It considers the integration
and standardization challenges in terms of data privacy,
safety, security, and exchange standards for interoper-
ability as well as the issues of realization and design of
an ecosystem for PM.

« Based on the identified limitations on PM implementa-
tions, we propose a holistic integrated PM framework
that assists computer scientists, health- informaticists
and bio-informaticists to carry forward the challenges of
the successful realization of PM.

C. LITERATURE SURVEY METHODOLOGY

Objectively, we employed the PRISMA (Preferred Report-
ing Items for Systematic Reviews and Meta Analyses) [14]
method for the literature survey based on the process fol-
lowed in [15] with additional customizations in the inclu-
sion/exclusion criteria. We ran search queries on two search
engines viz. the Web of Science and PubMed, and we
linked all the search results into a local repository. The peer-
reviewed articles were checked for duplications, and the
abstracts were screened to exclude all the articles that focused
either on biology, molecular and/or clinical perspectives,
or the unavailability of full-text documents. The rest of the
articles were checked for the eligibility criteria to include
articles that focused on the topics noted earlier with PM as
a primary content. It should be noted that some of the articles
were cited just for general references on the topic even though
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the central content therein is not PM. For example, [16]
that talks about IoT in healthcare as a topic-oriented citation
rather than a PM-focused citation. Similarly, we also referred
to a few popular websites and blogs, where the contents
were of introductory nature, such as PM global initiatives.
Figure 2 explains the steps taken in the entire literature survey
process. The number of articles excluded at different stages
and the final set of articles included in the study are explicitly
mentioned.

The rest of the paper is structured as follows.
Section 2 describes the need of bridging the gap between
EBM and PM. Section 3 explains the enabling tools and
techniques of PM. Section 4 is dedicated to discussing big
data and AI in PM, which is followed by Section 5, and it
highlights the role of [oT in PM. Section 6 analyzes the imple-
mentation challenges, and Section 7 focuses on the global
initiatives regarding PM. In Section 8, we provide the future
direction and presented our proposed integrated framework
for PM. The final section concludes this systematic survey.

Il. BRIDGING EBM AND PM

EBM has long been utilized in a healthcare environment to
serve different purposes, which include supporting clinical
decisions, medical education, and health awareness. Accord-
ing to the comprehended definition described in [17], EBM
is the use of evidence collected from well-conducted research
that is formulated in primary studies, such as meta-analyses,
systematic reviews, and randomized controlled trials that
are used for improved decision-making in medicine. In this
manner, EBM approximating the one size fits all implies the
scenario of applying to all, even though it may not be exact
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from the perspective of EBM proponents. As we learned in
the preceding section, PM focuses mainly on the individual-
istic behavior, which is a deviating scenario from the EBM.
As shown in Figure 3, there also exist differences between
EBM and PM in terms of the basic elements in the decision-
making process. However, both share similar characteristics
on multiple grounds. In an editorial, the authors opinion is
that EBM and PM can be more advantageous if they can adopt
the principle of learn to exist in a symbiotic relationship to
attain a pragmatic balance between them [18].

They further hinted to the important factor of bridging the
two paradigms. If we fail to do so it might turn out with
non-integrable outputs to address the health requirements,
which they originally set out to address. Similarly, the authors
concluded in their study [19] that EBM and PM complement
rather than oppose one another, even though these approaches
have their own merits and shortcomings. However, the efforts
to reconciling EBM and PM demand a clear understanding
of the fundamental differences between them. We investigate
the differences and similarities between EBM and PM and
presented the findings in Table 1.

The co-existence of EBM with PM amid the differences
mentioned in Table 1 raises several challenges in terms of
volume, format, and structure of the data. We turn out few
of the challenges that are certainly required to be sorted out
that make the amalgamation of EBM and PM a success.
In Table 2, some of the challenges are presented with tentative

solutions with the aim of bridging the two paradigms.

Ill. PM ENABLING TOOLS AND TECHNIQUES

Precision medicine introduces a new level of challenges for
developing informatics solutions including —omic informat-
ics and health informatics for a more focused and precise
patient care. The informatics solutions range from data cura-
tion to processing, interpretation, integration, presentation,
and visualization. The need for such enabling informatics
solutions have been realized and discussed in an array of
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FIGURE 4. Classification of enabling tools and techniques in three areas
of informatics: Clinical informatics, biomedical informatics, and
participatory health informatics.

studies [2], [25]-[29] with a central point of a requirement of
tools and techniques for voluminous, complex, and heteroge-
neous data processing, integration, and interpretation as well
as knowledge acquisition and sharing. In order to describe the
diverse set of PM enabling tools and techniques, we classify
the tools in Figure 4 based on three areas of informatics,
which include bioinformatics, clinical informatics, and par-
ticipatory health informatics.

A. BIOINFORMATICS TOOLS
Bioinformatics refers to the establishment of an infrastruc-
ture to provide means for storing, analyzing, integrating, and

VOLUME 8, 2020



M. Afzal et al.: PM Informatics: Principles, Prospects, and Challenges

TABLE 1. Similarities and differences between EBM and PM.

Similarities

Both EBM and PM have the objective of providing better decision about the patient health problem.

Both demand high quality and reliable evidence for the care of patients. However, the meaning of evidence
could be different in the two paradigms.

Respecting patient in terms of either preferences or lifestyle is a part of both EBM and PM decision-making
basic elements.

Differences

EBM projects one size fits all approach and does not provide adequate solution for outliers. In contrast, PM
deals with the outliers and projects the idea of one size doesn 't fit all scenario [20].

EBM is cognitive-biased on occasions where clinicians set the goal and question for the trials and may favor
the publication based on reputation and the product of manufacturer who funds the study to be conducted [21],
[22]. PM, on the other hand, relies on patient information that are existed rather than to rely on the hypothesis
only.

Since EBM relies on RCTs, the outcome of the RCTs are received in the form of either benefit, no effect, or
the adverse. In the case of PM, the outcomes shall always be beneficial, because they are target oriented, which
may leads to inventing a new drug for the treatment [7].

EBM over-emphasizes the clinical consultation and is mainly concerned about the people who seek care. It
underestimates the power of social networks where people can inform each other about their health problems
[23]. Since it focuses on individual preferences, PM thus encourages the emerging ways of data curation from
diverse sources.

TABLE 2. Challenges and potential solutions of reconciling EBM and PM.

Challenges Prospect solution

Analysis of voluminous data resided in different | o
databases

Bringing together data of various formats, such as
clinical and molecular.

Lack of standardization of data entry and storage
Understanding the paradigm shift from therapy to | ®
prevention, which ultimately leads to clinician-to-
patient communication and citizen-centered
healthcare [24]. .
Current published research has minimal patient input
[23], and it requires including larger patient input in
the future publishing.

The proponent experts from both EBM and PM
paradigms need to form a consortium/body to
construct a unified architecture on the common
grounds to revise the basic elements of clinical
decision making.

Revisions and update of the guidelines developed
for EBM. For instance, the criteria of RCTs
structure, conducting, and evaluations.

Devising a method to include patient input in the
future research publishing.

IEEE Access

visualizing large amounts of biological data and related infor-
mation and providing access to it using advanced computing,
mathematics, and different technological platforms [30]. The
term big data resonates in the contents while talking about
bioinformatics, because big data technologies are required
to process and analyze large genomic data sets [31]-[33].
Several tools are designed to work on genomic data at
different levels. For instance, GMAP (genomic mapping
and alignment program) [34] is a tool for next generation
sequencing with a key functionality of sequence mapping,
and it is designed to work on genomic, transcriptomic, and
epigenomic data. Other similar tools used for —omic data
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processing, searching, and alignments that include BWA
(Burrows-Wheeler aligner) [35], STAR (spliced transcripts
alignment to a reference) [36], GATK (genome analysis
toolkit) [37], BLAST [38], DIAMOND [39], and others. The
OmniBiomarker is a web-based application developed for
biomarker identification that utilizes a curated knowledge
base of cancer-genomic for the analysis of high-throughput
data [40]. Similarly, a number of tools are available for —
omic data modeling, such as CODENSE (coherent dense
subgraphs) [41], MEMo (mutual exclusivity modules in can-
cer) [42], and WGCNA (weighted correlation network anal-
ysis) [43]. The leading tools available for the molecular
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and biological data analysis among others are Geneious
Prime [44], Cytoscape [45], [46], and Gephi [47]. There is a
cloud-based integrative bioinformatics platform for precision
medicine called G-Doc Plus for handling biomedical big data
using its cloud computing resources and other computational
tools [48]. On top of that, there exist a few other language-
specific tools, libraries, and software packages in bioinfor-
matics, such as BioJava [49], BioPHP, BioPerl [50], PioRuby
[51], and BioPython [52].

B. CLINICAL INFORMATICS TOOLS

Clinical informatics is a subfield of health informatics, which
focuses on the usage of information in support of patient
care [53]. Over the last two decades, clinical informatics has
progressed with an array of tools and techniques that include
computerized entry systems, analytical tools, decision sup-
port tools, and other clinical reporting techniques, which
have appeared to assist healthcare professionals in different
aspects. One of the related areas in clinical informatics is
clinical information extraction, which a significant volume of
research had been conducted over the years. A methodologi-
cal review [54] reported a wide range of information extrac-
tion frameworks, tools, and toolkits, which include cTAKES
[55], MetaMap [56], MedEx [57], and others. Another related
aspect of clinical informatics is healthcare data analytics. The
analytics area itself is huge, and we do not necessarily aim
to cover every aspect of it. However, the popular tools and
techniques that focused on clinical aspects of the medical
data are discussed. This is to emphasize that the healthcare
data analysis area is not limited to clinical data analysis,
but it encompasses the combined analysis of phenotypes and
genotypes. Data science tools in general have been used at
the same pace and importance as of clinical data analysis. For
instance, RapidMiner [58] and KNIME Analytics Platforms
[59] are the leading data science tools that are equally applied
for clinical data analysis.

C. PARTICIPATORY HEALTH INFORMATICS TOOLS

PM expands the scope of medical care, because most of the
population spends more time outside than in the physician’s
office. It demands a deeper consumer participation to collect
information about a person’s lifestyle and environment, such
as physical activity, dietary information, sleeping patterns,
and other environmental conditions [8]. A significant number
of systems and applications has been added to the portfo-
lio of quantified-self programs and digital health in recent
years due to the increasing trends in wearables and mobile
technologies [60]. The Mining Minds (MM) project is aimed
at developing a novel framework for mining individual’s
daily life data produced from diverse resources [61]. The
objective of the MM project is in line with other endeav-
ors, such as Google Fit [62], Samsung Health [63], Fitbit
[64], and Noom [65]. However, it is more comprehensive
and novel in terms of knowledge acquisition and context-
aware personalized knowledge-based service support. Cur-
rently, these tools and services are geared towards nursing
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user health status for physical activities, diet, sleep patterns,
and environmental factors. In the era of PM, it is required to
channelize such efforts in a way to supply consumers’ health
monitoring and environmental information to their respective
health providers to assist in decision making. The genomic
information could better be interpreted with this information,
and it will thus assist the physicians to precisely diagnose a
disease and the treatment. There is a lot of other platforms
and frameworks, which cannot be put in a specific category,
and they are enablers for data analysis, such as platforms for
big data analytics that include Apache Hadoop (MapReduce)
[66] and IBM Infosphere Platform [67]. A selected list of
tools for —omic data processing and biomarker identification
is provided in a study on -Omic and EHR Big Data Analytics
for Precision Medicine [28].

D. SUMMARY OF PM ENABLING TOOLS AND
TECHNIQUES

The prominent tools and platforms to support PM in data
processing, analysis, interpretations, sharing, and visualiza-
tion reported in various studies are available under public
and commercial licenses. It is important to note that some
of the available platforms and tools are domain independent
and are used for data analysis of any domain. For instance,
the RapidMiner Studio [58] is a cross-platform data science
tool, and clinical informaticians use it for clinical data analy-
sis. Also, very recently, bioinformatics tools start integrating
it in their workflows for enhanced data mining, analysis, and
visualization.

IV. BIG DATA AND ARTIFICIAL INTELLIGENCE

In medicine, the application of Al has two divisions, which
include virtual and physical. The former is characterized
by machine learning (ML) and/or deep learning (DL), and
the latter comprises physical objects, medical devices, and
sophisticated robots [68]. In fact, the use of big data and
Al is a central aspect of PM initiatives [69], and some even
phrased it there is no PM without Al because of its fundamen-
tal requirement of computing power, algorithms (machine
learning and deep learning), and intelligent approaches uses
the cognitive capabilities of physicians on a new scale [70].
Deep learning has been widely used for clinical information
extraction, phenotype discovery, image analysis, and next
generation sequencing [71], [72]. Al upsurges learning abil-
ities and offers decision-making capabilities at a scale to
transform the healthcare future [73]. Therefore, physicians
in everyday practice get pressure to look around innovations,
which spreads over faster than ever through the use of dis-
ruptive technologies and the exponential growth of healthcare
data, the big data [74]. Big data has gained growing attention
from data-oriented enterprises in private and governmental
sectors [75]. Despite the fact that we are living the in the
age of big data, big data by itself is of no use without the
processing using Al techniques, which make it useful and
thus brings the potential to transform the current clinical
practice [76]. Al techniques, such as applications of machine
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learning on big data are changing the way physicians make
clinical decisions and diagnosis. Big data analytics that use
PM platforms has therefore the potential to include the data
of millions of patients for exploration and validation [76].
It is of more importance to understand the interrelationships
among big data, AI (ML and DL), and the PM. Developing a
PM platform or relevant tools and services requires access
to big data and processing. Big data needs Al approaches
that include ML and DL variants. Figure 5 illustrates the
relationship between big data and Al in PM derived from the
illustrations presented in [69], [76].

Many technology companies including IBM, which has a
flagship platform called IBM Watson, Google with Deep-
Mind, and others, such as Apple and Amazon are invest-
ing heavily in health care analytics to facilitate PM [69],
[70], [76]. Despite the facilitation and improvements pow-
ered by Al for genomic and other omic data processing and
analyzing, there still exist various challenges. In a review
[77], the authors focus on Al applications of next generation
sequencing and cancer genomics testing required for PM.
In Table 3, we gathered a set of key benefits of Al in the era
of PM and the associated challenges.

V. ROLE OF loT IN PRECISION MEDICINE
The Internet of Things (IoT) enables us to introduce automa-
tion in nearly every field, and healthcare is one of the most
important and attractive application areas of this auspicious
technology. The IoT uprising is reshaping modern health-
care with propitious technological, economic, and social
prospects. The role PM plays can be further enhanced by
integrating the IoT.

As noted in the early part of this paper, PM primarily
involves three categories of data, which include clinical data,
genome data, and environmental data. On the other hand,
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a simple and brief description of how an IoT-based healthcare
system works can be presented as follows. First, the IoT medi-
cal sensors and devices are directly connected to the patient’s
body of interest. Sensors collect various physiological con-
ditions and vitals. The accumulated data is preprocessed,
organized, and subsequently analyzed. The data is stored in
the associated medical service provider’s cloud storages for
aggregation. Depending upon the analytics and aggregation
results, the patients can be monitored from distant places,
and the necessary actions are taken following predefined
standard rules and guidelines. Interested readers are referred
to the compressive study reported in [122] to obtain more
knowledge about the IoT-based healthcare. Clearly, the IoT
can prominently assist PM by arranging the environmental
data in an automated fashion, because the participating health
data is mostly collected by physical sensors and actuators.
In addition, a dedicated intelligent coordinator can exploit
the cross-sectional data that consists of loT-provided data and
clinical/genome data. We present here an overview of several
possible avenues of integrating the IoT with PM.

A. RISK MINIMIZATION IN ADR

The IoT can play a significant role to mitigate the risk asso-
ciated with adverse drug reactions (ADR) [122]. In layman’s
terms, an ADR is an undesirable or injurious response experi-
enced following the administration of a drug or combination
of drugs used under natural conditions, and the suspicion
of the unwanted response is held accountable mostly to the
drug/s administrated [39]. A substantial number of admis-
sions to hospital are caused by ADRs, and the hospitalized
patients often experience ADRs that muddle and extend their
stay. Many of the ADRs can be avoided if the appropriate
care is taken. An ADR will usually require the drug to be
discontinued or the dose reduced. For example, a simple
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TABLE 3. Key topics with benefits on the left (green icons) and challenges on the right (red icons).

Key benefits of Al in PM

Challenges

Al algorithms leveraged to
enable variant calling from
NGS data.

Al algorithms are utilized
for entity and relation
extraction from published

@xéS literature.

Al algorithms are used to facilitate

the process of variant classification
and to ease manual curation.

Ground truth scarcity for validation of benefit

Obtaining statistically significant patient g
outcome data is challenging. [+ |

Transparency and reproducibility

Companies, platforms, and publications offer

limited information for public consumption.

Patient / physician education

Both patient and physicians should get
precision medicine related education to

enjoy the outcomes brought by Al and big ™
data.

sensing system can detect whether the dose or the plasma
concentration has risen above the therapeutic range. This
type of concept of an IoT-based ADR is found in [73]. The
work makes use of a barcode or NFC-enabled devices, so the
patient recognizes the drugs. Then an Al-based pharmaceuti-
cal system senses and analyzes the patient’s health and molec-
ular profiles. Eventually, the system performances matching
comparison to conclude whether the suggested drug is well-
suited. In a normal clinical viewpoint, the nature of an ADR
is characteristically generic. For example, not medication-
specific for a particular disease. Therefore, a generic software
package termed ADR services is required. The ADR services
is supposed to cover certain mutual technical issues and their
generic solutions [122]. However, the ADR services to be
used in PM should be further customized and fine-tuned to
cover the respective PM cohort.

B. SAFE AND SECURE MEDICATION

The safety of the medicine in PM is one of the unique chal-
lenges that must be addressed by the pharmacists [78]. Also,
the need for an entirely connected and transparent global
healthcare supply chain will continue to grow, and this is
where the IoT can be useful. The IoT devices can monitor
a bunch of parameters, which include location, temperature,
light exposure, humidity, and security to guard against theft
and forging. Even though this sort of supply chain control
and monitoring is important for all industries, it is more vital
for the healthcare industry in general and PM in particular.
For example, it will not be possible to have a quick substitute
when a shipment of medicine that is personalized for the
DNA of a patient with a life-threatening illness is spoiled
or stolen.
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C. MEDICAL ERROR MINIMIZATION

The main objective of PM is to deliver the optimized targeted
stimulation. This is optimized in the sense that the therapy
is tailored to individual patients. The targeted stimulation
does not allow a medication, for example, taking a pill, to be
metabolized throughout the patient’s body. Instead, it stimu-
lates the intended target in a controlled manner, and it thereby
reduces any side-effects. With the use of medical IoT devices,
it is possible to steer the stimulation to a particular target with
a much higher degree of precision [79]. As experienced in
any system, the occurrence of medical error in healthcare in
general is also affected by a several factors. With the introduc-
tion of PM, this error margin increases exponentially because
of the modular clinical treatment approaches. For example,
caregivers, such as hospitals are usually at over-capacity,
and they face scalability issue to increase access to care.
Co-morbidity supervision becomes even more difficult than
before. To address this issue, we can establish an IoT-based
health network for an automatic patient caring process [80].

D. AUTOMATION IN GENE EXPRESSION MEASUREMENT

Gene expression profiles have widely been used to uncover
the association of environmentally-swayed or disease phe-
notypes with the mRNA expression patterns [81]. Due to
its incredible application in computable genotyping, genetic
variation of inter and intra organisms, early finding of disease,
polymerase chain reaction (PCR) [82], its subsequent deriva-
tives are widely used to obtain real-time gene expression
profiling. Also, because of rapid progress in miniaturized
electrochemical DNA biosensors, it is possible to generate
transformed electronic signal from the sensitive bio-receptor
through a transducer, such as a photo counter in an automatic
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process, which calls for the need of an IoT-based health
network with a minimum involvement of technical person-
als in the close loop system. The system as a whole can
eventually assist PM to predict disease risks and even what
foods to consume based on patients’ genome and extracted
physiological sensors data [83].

The PM basically provides customized healthcare solu-
tions to the individual cohort of patients. With the help of
IoT, this customization itself can be improved by learning the
individual’s concerned physiological functions. For example,
one can consider a possible way to improve the symptoms
of a Parkinson’s disease patient through a better deep brain
stimulation (DBS) therapy using IoT, which is illustrated in
Figure 6.

DBS is a neurosurgical procedure, which uses a neurostim-
ulator that delivers electrical stimulation through implanted
electrodes to specific targets in the brain for the treatment of
neuropsychiatric disorders [84]. To advance the DBS therapy,
we need to understand how an individual’s brain works.
By sensing the signals from the brain, we can learn more
about how the brain responds to the therapy. A low field
potential (LFP) recording is promising to enable detection,
measurement, and collection of brain signals [85]. The col-
lected LFP signals along with other medical sensors data can
then constantly be analyzed to improve the targeted DBS ther-
apy [79]. This technology would eventually enable a precise
adjustable algorithm, which could lead to a better understand-
ing about various overwhelming neurological problems.

E. SUMMARY AND INSIGHT

Digital innovations collectively appear as a paradigm changer
of how healthcare organizations provide quality patient ser-
vices with enhanced clinical satisfaction while maintaining
a safe and secure environment at each stage associated with
the ecosystem. In line with this, IoT can potentially be inte-
grated with PM to achieve improved automation in general.
In particular, the IoT-enabled PM has the potential to offer
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several benefits, such as the real-time monitoring of adverse
drug reactions and a secured healthcare supply chain. IoT can
even be utilized to design innovative personalized therapies,
such as IoT-aided personalized DBS therapy, which is con-
ceptualized in the early part of this section.

VI. IMPLEMENTATION CHALLENGES

In this section, we discuss more of the design challenges
of the futuristic PM system and services, such as clinical
decision support systems, ecosystems, and the challenges that
exist in in the integration and standardization of data elements
and processes.

A. REDESIGN OF CLINICAL DESIGN SUPPORT

Computer-based clinical decision support (CDS) is meant
to enhance the decision-making capabilities by utilizing
the individual-specific information and the clinical knowl-
edge [86]. It serves to facilitate different stakeholders, which
include physicians, nurses, patients, to make effective clinical
decisions. Formally, a CDS is referred to ‘“‘a process for
enhancing health-related decisions and actions with perti-
nent, organized clinical knowledge and patient information
to improve health and healthcare delivery” [87]. Historically,
the CDSs delivered promising results in diverse systems
and services, such as the reminder systems, the drug dosing
and drug-drug interactions, the diagnoses and treatment, and
the pharma-related fields [88]-[90]. Despite its potentials to
improve health and healthcare, CDS has several challenges to
accomplish its full promise [91]. Moreover, the fresh develop-
ments in the medicine domain and the presence of disruptive
technologies pose a new set of challenges to develop models
for CDS. This leads us to ask the question, do we need to
rethink the CDS’s design in order to build a practical model
for the PM era? The answer is certainly positive based on
the realization of the researchers in their research work [8],
[90], [92], where they pointed out the need of a CDS design
that encompass a more comprehensive knowledge base (KB)
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Current CDSs Limitations

The knowledge bases of
contemporary CDSs are isolated
from one another, and they are
unable to support the federated

querying [8].

Challenges

How to design a comprehensive
KBs to integrate information about
various features, such as disease
subtypes, disease risk, diagnosis,
therapy, and prognosis.

TABLE 4. Limitations of THE current CDSs with THE challenges and prospect solutions.

\ Prospect Solutions

e  Allowing data sharing and consensus on clinical
interpretations and multiscale data.
e  Enabling effective ontological modeling, knowledge

provenance, and maintaining the integrated KB.
e  Utilizing a set of novel computational reasoning approaches
to allow efficient federated queries.

Isolation between scientific and
clinical data [90].

How to establish a meaningful
connection between patient data
and primary literature when the
EHR databases are considered as

information silo themselves?

e  Applying standard vocabularies and data formats to
integrate disparate data sources.

e  Developing new research platform with a set of methods and
tools to enable analysis and visualization of not only a
massive amount of raw data generated in clinical set ups, but
also the data resides in different databases of the biomedical
literature.

to fulfill the key requirements of PM. Contemporary CDSs
serve a fraction of the clinical care, whereas a common
decision in PM shall require accumulating data from different
components that are not integrated at one place. Researchers
working in the area of informatics to advance PM [8] stressed
upon the designing of an all-inclusive KB that is comprised
of information about disease subtypes and risks, diagnosis,
treatment, and prognosis. Nevertheless, the available KBs
are isolated from each other, and they are thus unable to
provide support for executing the federated queries. In addi-
tion to the flexibility and scalability, the KBs need to be
revamped to support not only the federated queries but also an
extended reasoning capability. In a study by [90], the authors
pointed-out the data isolation issue by highlighting the fact
that the two sets of data, which are clinical and scientific,
are typically placed in different repositories as information
silos. They need to be linked and presented in a way that
clinicians and other researchers can easily interact and review
them. This raises the requirement for a standard language
and algorithm for executing a federated query. The Clin-
ical Pharmacogenetics Implementation Consortium (CPIC)
Informatics Working Group is developing a standard guide-
lines for the effective implementation of Pharmacogenetics
in the day-to-day medical care [93]. This group also uncov-
ered the limitation of present-day CDS issue of addressing
single gene by relying on local versions of national guide-
lines. The group emphasized to step-forward with a national
implementation by designing and implementing futuristic
resources.

We summarized the core limitations of the contempo-
rary CDSs in Table 4. Addressing these limitations while
redesigning the CDSs in the era of PM raises a few chal-
lenges to consider for their resolution. In a study by [88],
we envisioned the conceptual architecture of the futuristic
CDS eligible to support the functional requirements of the
PM services. In contrast to the contemporary architectures of
CDSs, the futuristic CDS model incorporates the modules of
supporting the federated queries, and a supervisor KB holds
the information of the disease subtypes and risks, diagnosis,
treatment, and prognosis.
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B. Design of PM Ecosystem

As noted above, we briefly mentioned about the three core
aspects of informatics, which included the bioinformatics,
participatory health informatics, and clinical informatics,
with their basics and provided information on selected set
of tools and techniques. Nevertheless, it is also important to
discuss the informatics solutions for PM, which requires a
holistic overview of working together that is outlined below.

o The curation of data generated via participatory health
using mobile devices, sensors, social media, and other
IoT devices as well as environmental factors’ data at a
point of care for the assistance of genomic data interpre-
tation, which could help with precise patient care.

o Creating a synergy between bioinformatics and clin-
ical informatics by developing infrastructure, tools,
techniques, and applications that bridge the two areas
and allow the sharing of data to offer the integra-
tion of individual patient data into the clinical research
environment [94].

o The development of a comprehensive framework that
facilitates tools and techniques to integrate, process, and
analyze data curated from diverse sources in all three
areas, which include clinical, genomic, and lifestyle &
environmental factors to enable one-point decision in a
precise manner.

o The development of a coherent framework for deal-
ing with multi-scale population data, which include
the phenome, the genome, the exposome, and their
interconnections [95].

A series of efforts have been made to provide an informat-
ics solution to support PM in a comprehensive manner. For
instance, the network ENIGMA (Evidence-based network for
the interpretation of germline mutant alleles) [96] is an inter-
national consortium for assessing the clinical significance
and the risk related to sequence variation in genes, BRCAI,
and BRCA2, which currently include over 100 research sci-
entists and clinicians from 19 different countries. Similarly,
ClinVar [97], which is an archive partner of the ClinGen
project, is an archive (freely available) for variants’ clin-
ical significance interpretations. The National Center for
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Biotechnology Information (NCBI) has provided an explorer
tool to facilitate the identification of clinical significance dis-
crepancies in ClinVar [98]. In one of the reports [11], there is
given a set of fundamental aspects of PM, and it describes the
key aspects of a computational infrastructure built on clinical-
grade genomic sequencing. The authors therein emphasized
about the integration of a PM program into a medical insti-
tution’s clinical system to facilitate the billing and the reim-
bursement. The proposed PM infrastructure integration with
an existing electronic health record infrastructure is shown
in Figure 7. The existing EHR infrastructure depicted on the
left is integrated with the PM infrastructure on the right by
passing the patient specimen information to the laboratory
information management system (LIMS) in order to process,
sequence, and analyze the specimen data. The LIMS compo-
nent of the PM infrastructure sends back the report formed
over the specimen data to the pathology system of the EHR
infrastructure.

C. INTEGRATION AND STANDARDIZATION

For successful data integration and exchange, data and meta-
data standards are required. However, there are several issues
to achieve this goal in terms of either lacking the standards
or the inconsistent use of the existing standards particularly
in the omics domain [8]. Prior to framing these issues for
discussion, we first described the meanings of what consti-
tutes a data standard in order to avoid confusion, because
different groups and individuals have different definitions
for standards. According to the International Organization
for Standardization, a standard is, *“. .. a document that pro-
vides requirements, specifications, guidelines or character-
istics that can be used consistently to ensure that materials,
products, processes and services are fit for their purpose”
[98]. There is further division in the standards, because the
data standards for integration and exchange and the data
standards for security, privacy, and integrity are covered as
one of seven key areas in the research work [8]. The research
emphasized the need of extending the scope of the existing
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standards rather than inventing a new one. To extend the
existing standards, the individuals or organizations seek-
ing to adopt an existing standard should work closely with
the owner of that standards to extend the scope. Not only
co-working, but relevant stakeholders should focus on out-
reach and education/training to educate the potential adopters
of understanding and using the existing data standards. Data
standardization for integration and exchange is required for
the correct interpretation of the data elements. The motivation
for data standardization on security and privacy comes from
the notion of developing a mutual consensus on the level of
data as well as the protocol definition for sharing.

Several initiatives have taken place to facilitate the adop-
tion of the data standards especially in the omics discipline.
One of these initiatives is BioSharing, which works to ensure
the standards are searchable and informative by mapping
the landscape of the community developed standards in the
life sciences including biomedical sciences [99]. BioSharing
facilitates includes those who are looking for information
based on the existing standards, finding duplications or gaps,
encourage harmonization to avoid reinvention, and develop-
ing criteria items for evaluating the standards for adoption.
The American College of Medical Genetics and Genomics
(ACMG) in conjunction with the Association of Molecular
Pathology (AMP) and the College of American Pathologists
members formed a workgroup with the goal of developing
a classification of sequence variants using criteria informed
by expert opinions and empirical data [100]. This workgroup
is aimed at providing detailed variant classification guid-
ance to update the recommendations on the interpretations
of sequence variants previously provided by the ACMG.
The Canadian Open Genetics Repository is an endeavor that
aims to establish the collaboration of Canadian laboratories
with other countries to support the development of tools for
sharing laboratory data in addition to the collection, storage,
sharing, and the robust analysis of the variants in the labo-
ratories across Canada [101]. There are other initiatives that
have been established to ensure data security and privacy
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through standardization. For instance, a framework has been
established that provides guidance for responsible sharing
of genomic and health-related data, which includes personal
data [102]. The minimum information about a microarray
experiment (MIAME) [103] provides guidelines for the min-
imum information to describe the experiment details of DNA
microarray data, so the experiment could either be repro-
duced or analyze the data de novo [104]. Similarly, data
modeling and XML-based exchange standards microarray
gene expression appeared in the form of an object model
(MAGE-OM), a markup language (MAGE-ML) [105], and
a controlled vocabulary called the MGED Ontology [106].
These standards resulted in the creation and evolution of
several interoperable databases and repositories [104].

For seamless integration and information exchange, Health
Level Seven (HL7) recently extended the efforts on a genomic
data working group with its newly invented popular stan-
dard called Fast Health Interoperability Resource (FHIR)
[107], [108]. One of the main FHIR resources is a sequence
resource, which is designed to describe an atomic sequence
containing the alignment sequencing test result and multiple
variations [109]. For the facilitation of standardized clinic-
genomics apps, a framework called Substitutable Medical
Applications & Reusable Technologies (SMART) on FHIR
Genomics was developed, which specifies genomic variant
data resource definitions [110]. SMART on FHIR Genomics
specification offers developers a unified framework to work
with multiple resources of genomic and clinical data to facil-
itate the type of apps required for precision medicine. A brief
summary of the pertinent initiatives on standardization in the
area of PM is provided in Table 5.

D. SUMMARY AND INSIGHT

At a granular detailed level, a lot of implementation chal-
lenges exist that are highlighted in various studies that range
from genotype data preprocessing, mapping and alignments,
unstructured clinical text processing, image processing, and
environmental data acquisition and synchronization. In this
section, we focused on generalized implementation chal-
lenges that exist irrespective of individuals’ realizations of
PM. The challenges are mostly related to the rethinking on
a new design for the clinical decision support systems to
include information from the other aspects of PM, which
include molecular, -omic, and environmental, in order to
produce the right decision for the right patient. We included
the designs from the existing studies and provided the abstract
representation of an ecosystem of PM to enhance the design
of the existing electronic health record systems with genome.
We deliberated the integration challenges at data and process
levels and the standardization efforts at the global spectrum.

VIl. PM GLOBAL INITIATIVES

PM is spreading globally at a fast pace and is thereby cre-
ating a multibillion market. According to a report issued by
Persistence Market Research, global PM market is expected
to approach $172.95 billion by the end of 2024 [116], [117].
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TABLE 5. Classification of THE Standard initiatives in the domain of
precision medicine.

Initiative Year Standard Body | Scope ‘

Name

Biosharing | 2011 | FAIRsharing

[99] team, Oxford
e-Research
Center.

MIAME 2001 | FGED-

[103] Functional Integration
Genomics Data | and Exchange
Society

SMART 2015 | HL7 ®

on FHIR International

Genomics

[108]

PMI Data | - ONC - Office

Security of the National

Principles Coordinator for

Guide Health Privacy and

[111][112] Information Securiz
Technology y

PMI- 2016 | GSWG

AURP

[113]

HGNC 2007 | HUGO

database

[114] Vocabulary

UMLS ® | - U.S. National | and/or

[115] Library of | Nomenclature
Medicine
(NIH)

Different countries share this market by initiating innovative
projects to support PM in terms of establishing infrastructure,
research centers, working groups, and standardization bodies.
Different countries allocated different types and amounts of
funding to support the PM initiative. In this section, we briefly
elaborate on the country-wise initiatives about their goals and
the way they work.

A. THE UNITED STATES

The United States of America took the lead launching the idea
of precision medicine under the Obama administration back
in 2015 [1]. The idea was taken further by the National Insti-
tutes of Health (NIH) and other partners. Initially, a budget of
$215 million was announced in the President’s 2016 Budget.
An NIH-funded resource ClinGen is dedicated to construct-
ing an authoritative central resource to establish the clinical
relevance of genes and variants for the convenient use in
precision medicine and research [118], [119]. Ensuring the
accuracy of NGS tests, US FDA is working on three aspects,
which include guidance for databases to allow developers to
use data from FDA-based databases of genetic variants, rec-
ommendations for designing, developing, the validating NGS
tests, and support to develop bioinformatics tool to engage
users across the world to experiment, share data, and test
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new approaches [120]. Precision FDA [121] as a community
platform for NGS assay evaluation and regulatory science
exploration has resulted as an outcome of FDA efforts.

B. CHINA

Precision medicine is included as part of China’s five-year
plan with an expected investment of more than $9 billion
for research. Among 40 countries where there are initia-
tives related to PM, China is on the top countries from an
investment perspective. Compared to the United States PMI
investments, China is spending $43 for every $1 from the
US, which makes China a global leader in PM [122]. The
Beijing Genome Institute (BGI) [123] is the world’s largest
genomic organization with a focus of genetic sequencing.
Affiliated with BGI, the China National GeneBank [124]
has over 500 million genetic sequences stored in more than
40 databases as of early 2017. Sichuan University’s West
China Hospital, which is ranked first among all Chinese
hospitals for four consecutive years in science & technology
influence, plans to sequence 1 million human genomes itself
[125], [126]. AliCloud by the Alibaba Group partnered with
BGI and Intel Corporations have launched Asia’s first cloud
platform for precision medicine and its applications with a
vision to accelerate the advent of precision medicine [127].
With the PM initiative, it is anticipated that leading institutes,
which include Fudan University, Tsinghua University, and the
Chinese Academy of Medical Sciences, are trying to establish
precision-medicine centers [125].

C. THE UNITED KINGDOM

The United Kingdom has started a well-known project called
100,000 Genomes Project in 2013 with a goal to sequence
100,000 genomes from around 70, 000 people from the par-
ticipants of the National Health Service (NHS) patients who
have rare diseases [128], [129]. This project is considered
currently as the world’s largest national sequencing project of
its kind. A program coordination group led by Innovative UK
is active in precision medicine to bring together representa-
tives from the UK public sector and charity funders. Through
this group, a dataset of over 400 infrastructure investments in
precision medicine has already been developed [130], [131].
Innovate UK is envisioned to invest up to £6 million in preci-
sion medicine technologies related innovation projects [132].
Overall, the UK government has invested more than £1 billion
to develop precision medicine research infrastructure [133].

D. JAPAN

Like other countries, Japan is also contributing to support the
development of personalized and precision medicine (PPM)
[134]. Japan has established three biobanks to collect genome
data, which include Bio Bank Japan, National Center Bio
Bank Network, and Tohoku Medical Megabank. All these
three banks work together. However, Bio Bank Japan, which
is the largest of the three, plans to collect data from 300,000
people alone. A total budget of $103 million was allocated
in 2016 for the plans, such as clinical trials, research on
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genomic care, and establishing seven core hospitals to support
the provision of genomic medical treatments [134]. Addi-
tionally, Japan has established the most successful National
Cancer Genome Screening System (SCRUM-Japan) project
under the supervision of the National Cancer Center Hospital
in Japan [135], which assists hospitals and pharmaceutical
companies develop PPM with cancer. The aim of SCRUM-
Japan trials is to enroll 4750 patients with cancer in about
2 years’ plan, which started in February 2015 and ended in
March 2017 [135].

E. SOUTH KOREA

South Korea introduced itself with the International Preci-
sion Medicine Center (IPMC) as the world’s first Precision
Medicine center focused on cell therapy. The IPMC is envi-
sioned to take a pioneering role in the standardization of
future medicine with a focus on genome and bio conver-
gence technology [136]. The Korean scientists succeeded in
producing a de novo genome assembly for a Korean indi-
viduals, and the results are published in Nature [137]. The
Korea’s biobanking system is currently operating a nation-
wide network of 17 university-affiliated hospitals to collect
bio-specimens from patients, and the National Biobank of
Korea has collected biological samples from 770,000 peo-
ple and distributed them to 1,915 research projects, which
resulted in a total of 751 research papers as of the end
of December 2016 [138], [139]. From the industrial sector,
the information erupted that the Syapse, which is a leading
precision medicine company that joined hands with Seoul
National University Hospital (SNUH), Korea to launch a
precision oncology program for cancer care improvement in
Korea [140]. Moreover, the Korean National Cancer Center
with the U.S. National Institutes of Health announced the
establishment of a large-scale precision medicine cohort on
cancer [141]. In summary, the Korean government plan is to
invest $55.7 million in precision medicine until 2021 [142].

F. EUROPE

The European Union (EU) is putting forward numerous
efforts to promote precision medicine in the European region.
As the world’s biggest public-private partnership between the
EU and the European pharmaceutical industry, the Innovative
Medicine Initiative (IMI) facilitates collaborations between
the stakeholders and provides grants and other financial sup-
port to major research projects [143]. The IMI in phase 2,
which is the IMI 2 program (2014-2020), will get a total bud-
get of €3.276 billion, which €1 billion came from the Health
theme of the EU’s Seventh Framework Program for Research
(FP7) and €1 billion came from in-kind contributions from
EFPIA companies [144]. According to a report by ZION,
the European precision medicine market is expected to reach
approximately USD 72,800 Million by 2022 [145]. Under
EU’s Horizon 2020 Program, Barcelona has started the Euro-
pean three-dimensional (3D) genomics project Multi-scale
complex genomics with a goal to standardize experiments
in 3D genomics and relevant activities, such as the storage of
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data. The project is allocated a budget of €3 million and will
be conducted over three years [146]. The EU funded project
PerMed, which is where representatives from EU Member
States in conjunction with other associated countries and
stakeholders, have developed a European strategy framework
for personalized medicine [6]. PerMed [147] is the coordi-
nation and support action (CSA) of 27 partners that include
European key stakeholders and decision makers to allow syn-
ergies, avoid duplication, and ensure maximum transparency
for preparing Europe to lead the global way [148]. The Inter-
national Consortium for Personalized Medicine (ICPerMed)
is a voluntary EU Member states-led collaboration that brings
together over 30 European and international partners to work
on coordinating and fostering research to develop and evalu-
ate personalized medicine [6], [149].

G. AUSTRALIA

Australia is perhaps the world’s first country to have a center
specializing in precision medicine for infants and your chil-
dren. It is funded at Murdoch University and has received
$473,000 in funding from the WA Department of Health
[150]. Precision medicine has the potential to transform Aus-
tralia’s health care system, which was described in a report
released by the Australian Council of Learning Academies
(ACOLA) [151]. ACOLA has started a project on precision
medicine with a goal to explore the current trends in precision
medicine technologies and to broaden the implementation in
the Australian context. In the ACOLA detailed report, there
are 12 potential areas that are highlighted where precision
medicine is likely to show significant impact in the next five
to ten years [152]. Australian Genomics is a national network
of clinicians, researchers, and diagnostic geneticists, and it
is made up of more than 70 partners organizations with a
vision to integrate genomic medicine into healthcare across
Australia [153]. The National Health and Medical Research
Council NHMRC) awarded a $25 million grant in 2015 to
Australian Genomics for a targeted call for research into
preparing Australia for the genomics revolution in healthcare.

Precision medicine is largely endorsed by other parts of
the world, such as Africa, the Middle East, and others Asian
countries in their own capacity and scope. For instance, Orion
Health Canada, has developed a care coordination tool that
allows patients to digitally create, update, and share their
personalized care plan. Also, the clinicians are provided with
the cognitive support to make the best decisions possible
[152], [154]. Similarly, the Precision Driven Health initia-
tive (PDHI) in New Zealand is contributing to the growing
body of international research to enable the practice of the
precision medicine while including genetic data as well as
information from exogenous sources, such as an individual’s
diet and social circumstances [155].

A wide array of international initiatives and consortiums
have established to form guidelines for the responsible and
homogeneous approach of data movement from one place
to another place [S5]. For instance, the Global Alliance for
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Genomic and Health (GA4GH) is meant to create interop-
erable technical standards [156].

VIIl. FUTURE DIRECTIONS

PM is broadly welcomed around the world. However, the area
is still in its infancy and many aspects are untouched and
many challenges lie ahead. It is still a big challenge to con-
struct an infrastructure that entirely supports the prevalent
sharing and effective use of health and genomic data in order
to advance a healthcare system that is the least reliant on
external sponsored resources [29].

A. CHALLENGES AND OPEN QUESTIONS
1) DATA COMPLEXITY, VOLUME, AND COMPUTATIONAL
CHALLENGES
The computational requirement of molecular and -omics data
analysis is huge. The big data analytics is challenging because
of multiple factors, such as frequency, quality, dimensional-
ity, and heterogeneity [28]. The processing power and mem-
ory of personal computers are usually not enough to process
DNA sequence data for analysis and interpretations. To sup-
port individual researchers for their investigations, they need
cloud-based computing resources to share the processing
power and space. The biomedical data complexity upsurges in
dual directions, which include the number of sample and the
heterogeneity [12]. These voluminous complex data are avail-
able in different regions of the world through different initia-
tives using -omic and molecular data capturing technologies,
which are now becoming faster and cheaper. The variety of
available biological data entities for instance genes, proteins,
metabolites, drugs, and diseases are too large to manage
through basic and simple methods. To handle, process, and
annotate such gigantic and diverse data is not only compu-
tationally intensive, but it requires significant computational
hardware [157]. For instance, mapping of short reads to get
30x coverage of the human genome requires 13 CPU days. A
comprehensive database that contains clinical, genomic, and
as much molecular information as possible is also required
in addition to hardware. To deal with the high-throughput
data, various methods for dimensionality reduction in feature
extractions (PCA, SVD, tensor-based approaches [158]) and
in feature selections (filter-based and wrapper-based sequen-
tial feature selections [159]) have been experimented with.
The creation of the mutation databases challenge. Knowl-
edge bases, such as ClinVar and My Cancer Genome are
still immature and unfinished, and they raise the need to
create custom mutation databases by different centers [11].
Also, there is a lack of precise annotations of variants, which
require databases to contain the curated variants and their
interactions with potential drugs [160].

2) INTEGRATION OF HETEROGENEOUS DATA

TYPES CHALLENGE

The numerous data types, such as omics, molecular, imaging,
pathology, physiology, lifestyle, and clinical will be required
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to be incorporated together for predictive models [161]. The
orthogonal nature of molecular assays does not allow the
smooth analysis with clinical data. As a result, a separate
analysis is performed initially, and they are later integrated.
This kind of practice is time consuming, and it hides the
holistic view of the data at one place.

3) DATA PRIVACY CHALLENGE

For the protection of genomic data from being used against
employment and health protection, various ethical and social
issues need to be addressed [162]. It is also required to
educate the public workforce, develop human capital and
infrastructure, and empower the general public with the cor-
rect information. Moreover, Cloud and Web are likely to play
a huge role in the management of massive genomic data,
and mobile computing will be used to access the data, which
increases the privacy concerns, at the same time [163].

B. A PROPOSED HOLISTIC INTEGRATED PRECISION
MEDICINE FRAMEWORK

To address the unresolved challenges of PM, more informat-
ics approaches are required to be designed. We designed a
futuristic framework (Figure 8), by incorporating functions
covering the most needed areas of PM implementation. The
framework is a high-level demonstration of modules, such as
primary analysis, secondary analysis connected with knowl-
edge management, and data analytics that produce knowledge
and data services. These services are provisioned to use by
different stakeholders and organizations that include hospi-
tals, pharmacies, and laboratories. The framework has also a
provision for security and privacy functions to access to the
individuals’ data through adequate authentication, authoriza-
tion, and access policies.

VOLUME 8, 2020

The primary analysis module is designed to acquire diverse
data from different input sources, which include clinical data,
molecular and -omic data, sensory data, environmental data,
and published literature data. At this stage, the data is pre-
processed to filter-out the undesirable data items through the
application of different natural language preprocessing and
other statistical techniques. The primary analysis module uti-
lizes the support of multiple tools particularly -omic data pre-
processing tools, such as GMAP, BWA, GATK, and others.

The secondary analysis module analyzes the data received
as an outcome from the primary analysis. Some parts of
the data need to be integrated for a combined analysis, and
others may be analyzed independently. One of the important
activities is to find correlations among various data items,
such as among the genes and how they are related while
studying a disease occurrence due the genes mutations. Sim-
ilarly, it takes care of the correlation between genotypes and
phenotypes to study the relationships of clinical factors and
gene mutations. The analyzed data is stored as an internal
storage for further processing, and it is provided to the exter-
nal entities as a service.

There are two modules on the top of the secondary anal-
ysis, which include knowledge management and data ana-
lytics. Both modules utilize the analyzed data generated at
the secondary analysis. The knowledge management mod-
ule constructs KBs by creating, maintaining, and validating
knowledge rules from the analyzed data. Based on this knowl-
edge, various knowledge services, such as clinical decision
support services can be produced. Similarly, the data analytics
module targets designing models for descriptive, predictive,
and prescriptive services. The analytical models generate data
visualization services to present data in graphs, charts, and
other statistical modes of presentations.
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IX. CONCLUSION

Both medical professionals and informatics researchers
across the globe have started device computational infras-
tructural solutions to address the need of timely and precise
decision about patients’ health issues. It is a high time for
both the informatics community and the medical community
to collaborate with each other to develop a combined effort
to achieve the common goal of better-quality patient care.
In this study, we elaborated the major areas of research and
development for the realization of PM in the perspective of
informatics. The study provides a lot of attention to cover
the important aspects and requirements to establish the PM
program. We explained the need of the coexistence of EBM
and PM by bridging the gap between them. To understand
the informatics viewpoint of how the PM is implemented,
we provided an overview of the enabling tools and techniques
in three potential areas, which include biomedical informat-
ics, clinical informatics, and participatory health informatics.
For a deeper understanding of PM, the paper offers a broad
view on how Al and big data become an integral part of PM.
We also associated the IoT paradigm with PM and uncovered
various advantages of integrating the two approaches.

In addition, this paper highlights some of the major imple-
mentation challenges in terms of computational tools, data
integration, security, standardization, and overall infrastruc-
tural solutions that are required to implement PM. Finally,
we proposed an integrated holistic framework for PM to over-
come the existing limitations. In summary, the outcomes of
this study are expected to be beneficial for the researchers and
the professionals working in the area of medical informatics.

An array of future works is required to see PM in its
maximum potentials. Of the essentials, the low computational
complexity solutions for molecular and -omics data analysis
appears as a big challenge. Processing and mining heteroge-
neous datasets such as omics, imaging, clinical data required
for associated predictions also requires a large volume of
research works. Furthermore, introducing secure mechanisms
to protect genomic data from being maliciously used is still
an open issue.
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