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Abstract

The proliferation of semantic big data has resulted in a large amount of content pub-
lished over the Linked Open Data (LOD) cloud. Semantic Web applications consume
these data by issuing SPARQL queries. One of the main challenges faced by querying
the LOD web cloud on account of the inherent distributed nature of LOD is its high
search latency and lack of tools to connect the SPARQL endpoints. In this paper, we
propose an Adaptive Cache Replacement strategy (ACR) that aims to accelerate the
overall query processing of the LOD cloud. ACR alleviates the burden on SPARQL
endpoints by identifying subsequent queries learned from clients historical query pat-
terns and caching the result of these queries. For cache replacement, we propose an
exponential smoothing forecasting method to replace the less valuable cache content.
In the experimental study, we evaluate the performance of the proposed approach in
terms of hit rates, query time and overhead. The proposed approach is found to out-
perform existing state-of-the-art approaches, increase hit rates by 5.46%, and reduce
the query times by 6.34%.
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1 Introduction

The Linked Open Data (LOD) cloud provides a global information space with a
wealth of structured facts. The LOD cloud offers for example Geo-location facts'
and cross-domain information (e.g. DBpedia, YAGO [32] and WIKIdata). Currently,
it is estimated that more than thirty billion facts have been published over the LOD
[33] cloud. The data in the LOD cloud is represented using the Resource Descrip-
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tion Framework (RDF)?> and RDF Query Language (SPARQL)? is used as querying
language. The rapid expansion of LOD use in academia and industry evidences the
efficient retrieval of data as one of its major challenges. Although every LOD cloud
supports SPARQL queries to access data from its publicly available interfaces, a cen-
tral problem is the lack of trust regarding these endpoints due to network instability
and latency. Therefore, the typical solution is to dump the data locally and maintain
endpoints to process these data. Recent investigations [3,5,10,13,14,17] have shown
that the content of LOD is dynamic over time and continuously evolving. However,
the data stored at the local endpoints are not up-to-date and require constant updates,
therefore, accurately hosting the endpoints requires expensive infrastructure support.

In recent years, many efforts have been made to circumvent the problem of effec-
tively querying LOD [24,31,35], among these, caching [22,23] is the most popular
technique to reduce query time by serving the requests from a cache (also called
cache hits) [28]. In the literature, two types of caching have been proposed, client and
server-side caching. In client-side caching, requests are immediately served from the
nearest cache to reduce the latency and network traffic. However, client-side caching
is not fully explored [24] and is still in the early days of research. Server-side caching
is not flexible to support different querying patterns and design of server-side caching
usually depends on the database. As cache has limited space, it is important to fill it
with valuable content by replacing unnecessary content. Many cache replacement tech-
niques have been developed for relational databases, such as LRU [8] and LFU [18].
The underlying structure of the LOD is different from relational databases. The caching
algorithms designed for relational databases are not fully applicable in LOD scenarios
[21]. To the extent of our knowledge, we believe, there is very limited work addressing
the problem of efficiently querying and retrieving data from LOD cloud [22,29,36-38].

In this paper, we propose an Adaptive Cache Replacement strategy (ACR) in
order to accelerate overall query processing. ACR works as a proxy between the
querying agents and the SPARQL endpoint. We adopt client-side caching as it is a
domain-independent approach that does not require underlying knowledge of the LOD.
Typically, the queries issued by the end user are repetitive and follow similar patterns
that only differ in specific element. The major challenge of this task is to find similar
queries, as it is possible that two queries are structurally similar but may differ in con-
tent. To tackle this problem, we propose the use of a bottom-up matching approach to
find similar queries. For the structural similarity, we first compute the distance between
the triple patterns and prefetch the results of similar queries to be placed in cache. A
cache has limited space, therefore it is advantageous to replace it with frequently-
accessed data. In this work, our cache replacement utilizes exponential smoothing
forecasting to calculate the frequency of the accessed data and replace content based
on access frequencies. More specifically, we propose a full-record replacement strat-
egy, in which at every new query the hit frequency of accessed triples is calculated
using exponential smoothing and the cache is replaced with the highest access queries.
The motivation behind adaptive cache replacement is to improve the querying effi-
ciency and reduce the burden on the SPARQL endpoint. Repeated queries are cached

2 https://www.w3.org/RDF/.
3 https://www.w3.org/TR/rdf-sparql-query/.
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locally, and the results of these queries are immediately answered to the user. Our
approach optimizes the results of predicted potential queries and less-valuable queries
are replaced from the cache.

We now summarize the key contributions of this paper.

— We propose a client-side caching that works as a proxy between the querying
agent and SPARQL endpoint. To accelerate the querying answering process, our
approach can either be deployed within SPARQL endpoint or querying agent to
eliminate the burden on these endpoint.

— Our approach introduces a distance-based query similarity metric, which consid-
ers both content-wise and structural similarities for more accurate comparison
between queries.

— We propose an exploratory prefetching to retrieve contents possibly requested at
the future queries by identifying the concepts of the previously issued queries and
issuing a single query for all required contents. Its benefit is to reduce the trans-
mission overhead and improve the hit rate and query time by retrieving contents
for future queries at once.

— We propose a frequency-based cache replacement method to rank each query
according to its estimated access frequency. The most frequently accessed queries
are kept in the cache. Thus, our work benefit the triple stores in replacing the cache.

— Comprehensive evaluation on real-world LOD datasets showcase the effectiveness
of our approach. The evaluation result outperforms the state-of-the-art approaches
such as (LRU) Least Recently Used, (LFU) Least Frequently Used and (SQC)
SPARQL Query Caching [24] in terms of higher hit rate, shorter query time, and
less overhead.

The remainder of this paper is organized as follows. Section 2 explains the back-
ground of representing and querying LOD and briefly explains the related work in
comparison to the proposed approach. Section 3 explains the main phases of the
approach to find similar-structured queries and perform cache replacement. The eval-
uation of the proposed approach is performed in Sect. 4. This article is concluded in
Sect. 5.

2 Background
In this section, we briefly discuss the background needed to understand LOD, which
includes the data representations and the querying of the LOD. Moreover, we also dis-

cuss an overview of related work in the area of semantic caching and query suggestion,
and highlight the differences of the proposed approach with respect to state-of-the-art.

2.1 Data representation
The Semantic Web [2] is an extension of the Web of Data [1]. As described by Tim

Berners-Lee [2], the Semantic Web enables the machine in such a way that data can be
searched, interpreted and reused. LOD is another important concept in the Semantic
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Fig.1 Showing the LOD diagram containing interlinked data from multiple domains

Web, enabling the machine to browse the web, such as DBpedia.4 LOD is collabo-
ratively built from web corpus and represents knowledge in structured form. Facts
are stored inside the Knowledge Base (KB) and an inference engine is used to assert
conditions based on these facts. There are a number of different publicly available
KBs, such as Freebase [4], DBpedia [20] and Yago [32]. KBs are further categorized
into curated and open KBs. In curated KB, factual information is represented in the
form of entity-relationship (e.g. https://en.wikipedia.org). In an open KB, the facts
are automatically collected from web pages and are often linked together, e.g., by
using LOD. With the current evolution of the Semantic Web 3.0, the LOD enables
data to linked between sources, as shown in Fig. 1. The LOD cloud contains almost
570 datasets from different domains that are interlinked with each other.

The data representation in curated KBs follows a predefined schema, entities and
relationships are modeled using a Resource Description Framework (RDF). The RDF
is considered the standard representation for a curated KB, where the relationships are
represented in many sets of triples, i.e., (subject, predicate and an object). These sets
of triples are a fundamental part of a KB and are also known as a knowledge graph.
The knowledge graph allows the sharing of data and the further linking of these data
sets in the LOD cloud. However, in an open KB, facts are also represented but they

4 https://wiki.dbpedia.org/.
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PREFIX : <http://dbpedia.org/resource/>

PREFIX dbpedia2: <http://dbpedia.org/property/>
PREFIX dbpedia: <http://dbpedia.org/>

SELECT 7philosopherl ?philosopher2

WHERE {

?philosopherl foaf:name "Auguste_Comte" .
?philosopherl ?relationshipWith :Paris .

} unIoN {

9 ?philosopher2 dbo:influenced 7philosopherl .

10 OPTIONAL {

11 ?philosopher2 foaf:givenName "Jean-Baptiste_Say"
12 }

13 }

Fig.2 Showing the example of a SPARQL query

0~ O Uk W=

do not follow a strict schema, and these data are available in various formats, such as
N-triples and the turtle format.

2.2 SPARQL

SPARQL? is a widely used graph based standard query language to retrieve and manip-
ulate data that are stored in the RDF format. SPARQL is a structured query language
standardized by the W3C for querying RDF triple stores.® The syntax of SPARQL con-
tains different and disjoint query types such as SELECT, CONSTRUCT, ASK
and DESCRIBE. To extract the values from the endpoints, SELECT is widely
used. As an example of SPARQL query illustrated in Fig. 2, the query pattern con-
tains SELECT statement that limit the projection to the certain variables used in the
query such as ?philosopher1 and ?philosopher2. This query used the UNION
and O PTION AL as abasic operations for modifying the content of SPARQL query.
LOD cloud also provides SPARQL endpoint for their datasets. However, querying
SPARQL endpoints is troublesome due to network instability, and the connection
to these endpoints can be temporarily lost, which affects the query efficiency. These
endpoints do not provide any information about dataset modification. Therefore, long-
running applications that use a cache must resubmit the queries to keep the local data
cache up-to-date.

2.3 Related work

A number of works have dealt with issuing related to query LOD. This section present
related work organized under two topics: (1) query suggestion, e.g., techniques to find
the similar-structured queries, (2) semantic caching, e.g., the main idea of semantic
caching is to maintain previously accessed data in a cache. We summarize the state-of-
the-art approaches and briefly discuss their advantages and disadvantages in Table 1.

5 https://www.w3.org/TR/sparql11-overview/.
6 http://www.w3.org/ TR/rdf-sparql-query/.
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2.3.1 Query suggestion

Recently, query suggestion has been introduced into SPARQL processing. It plays a
vital role in improving the overall processing of the query. The suggestion is made
based on the mining of similar queries from logs. Graph Edit Distance (GED) [30]
is normally applied to measure the structural similarity between SPARQL queries.
However, GED is very computationally expensive, and the use of structure similarity
is insufficient. It is possible that two SPARQL queries are same but differ in their result.
To overcome this drawback, Shu et al. [31] proposed a content-aware approach that
utilized query containment to estimate whether the queries can be answered from the
caches. However, this approach is not widely utilized by the semantic web community
since the containment checking approach produces very significant overhead. Lorey
et al. [23] proposed a query augmentation approach to alter SPARQL queries to detect
frequently recurring patterns. The benefit of their approach is to answer the query
from the cache without accessing the LOD. However, the major limitation is that it
considers only the queries requested by the same agent and the hit rate of the template-
based approach is only 39% [15]. In contrast to the aforementioned query suggestion
methods, our approach considers both content-wise and structural similarities based
on a simple distance score, which results in a higher hit rates, shorter query time, and
less spatial overhead.

2.3.2 Semantic caching

Semantic caching was originally proposed for the Database Management System
(DBMS) [7,24] and the purpose of the DBMS is to reduce the overhead of retrieving
data from the cloud. Godfrey et al. [12] proposed the notion of semantic overlaps and
introduced a caching approach that utilized client-server systems. To extend this idea,
Daretal. [7] proposed a semantic region-based caching technique and introduced a dis-
tance metric to update the cache such that the cold (e.g., less frequently access) regions
are removed from the cache. Martin et al. [24] proposes to selectively invalidate cache
objects on updates of the knowledge base by identifying the affected query results.
However, their work does not consider query similarity for cache replacement. Yang
et al. [35] proposed server-side caching to decompose the query into the basic graph
patterns and cache their intermediate results. To prefetch similar-structured queries,
Lehman et al. [19] proposed a supervised machine learning approach that performed
analysis on the user’s previously issued queries. Their approach filters the range of
possible answers and utilizes a learning technique to ensure that no prior knowledge
of the underlying schema of LOD is required. Nishioka et al. [25] proposed a periodic
crawling strategy that predict whether the change occurs in RDF triples. However,
Lehman et al. [19] and Nishioka et al. [25] did not consider the system overhead as
their performance measure. Recently, a proactive policy for maintaining local cache
is proposed by Chun et al. [6] that alleviates the expensive job of copying the LOD at
idle time. In summary, only a few works have been reported to deal with the problems
related to the semantic caching for SPARQL queries. We propose a client-side adaptive
strategy to utilize caching for SPARQL query processing. The goal of our research is

@ Springer
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to keep track of the access queries and evicts the less valuable content from the cache
in an overhead-efficient way and regardless of system idle time.

3 Proposed methodology

Web-users increase the burden of SPARQL endpoints by issuing similar queries repeat-
edly and suffer high search latency due to the inherently distributed nature of LOD.
To alleviate the burden and latency, we propose a query similarity based caching
method and access frequency based cache replacement policy. In contrast to exist-
ing approaches [26,31], our proposed method is computationally efficient and more
versatile since the similarity measure utilizes a simple distance score and considers
content-wise similarity as well as structural similarity. These advantages are utilized
to propose our performance-effective and overhead-efficient prefecthing policy with
query template and offline processing. Based on our novel similarity metric, more
specifically, we utilize exploratory prefetching to search and gather contents possibly
requested at the future queries by identifying the concepts of the previously issued
queries. Our cache replacement module is adaptive when the number of queries reaches
a predefined limit, the cache replacement process is triggered, replacing infrequently
accessed data in the cache. Our replacement is effective as compared to the existing
approaches [6,24] in terms of less overhead and higher hit rates. Figure 3 illustrates
the architecture of the proposed overall client-side cache replacement approach. Our
methods are discussed in more detail in the following sections.

3.1 SPARQL query similarity

The existing approach [24] relies on the structural similarity of the query for improving
the performance of the triple stores. We argue that the structural similarity is based on
the ordering of the symbols and it is not sufficient as two queries may represent the
same structure of ordering but share a different content.

Cllent
090 Query Query is ) _.|_| _.|_| .
Oy query Recording cached? e | Il |
user —_— —
wge Bases

Reoord

historical
q uen es

Fetch Query
Results

Query Result: Query Result;

Query Similarity Cache Module
Query Query ~——— ——Cache Query Results——
‘ Matching H Suggestion Repllazﬁr;ent

Fig. 3 Block diagram of the proposed approach
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1 PREFIX :<http://dbpedia.org/resource/> 1 PREFIX :<http://dbpedia.org/resource/>
2 PREFIX dbpedia2:<http://dbpedia.org/property/>2 PREFIX dbpedia2:<http://dbpedia.org/property/>
3 PREFIX dbpedia:<http://dbpedia.org/> 3 PREFIX dbpedia:<http://dbpedia.org/>
4 SELECT ?city 7influence 4 SELECT ?7city ?influence
5 WHERE { 5 WHERE {
6 “?cityl rdfs:label "Paris" . 6 :Auguste_Comte foaf:surname "Comte" .
7 7person PrelationshipWith :cityl . 7 7?city2 rdfs:label "Montpellier" .
8 :Auguste_Comte foaf:givenName "Auguste" . 8 7?Auguste_Comte ?7association :city2 .
9 } 9 3
(a) Example of a SPARQL query with BGP| (b) Example of a SPARQL query with BGP,

Fig.4 Showing the example of the structure similar SPARQL query

To overcome this drawback of existing methods, we propose a query similarity
metric considers both content-wise and structure similarity. Consider the two queries
illustrated in the Fig. 4. Two queries Q1 and Q5 have a similar-structured if the ordering
of their symbols is the same. To determine the similarity between two query patterns,
we first compute the Levenshtein distance between their query patterns. Where the Line
number 6, 7 and 8 shows the triple patterns exits in the query. Here, the most similar
triple patterns can be determined by computing the minimum distance between the
A(s1, 52), A(p1, p2), and A(oq, 02). The composition of the SPARQL query contains
a number of different patterns. To find the similarity between queries, we need to
decompose the SPARQL queries into subgraph patterns. The triple pattern distance
is the minimum number of edit operations, such as addition, deletion, and insertion,
to transform one graph to another. We introduce three functions AND, UNION
and OPT1ON AL. These patterns take the input graph and decomposed it into three
sets of non-empty patterns. As an example, consider the SPARQL query in Fig. 2
that contains the following graph patterns represented as Qanp, QoprrionaL, and
Quni1on and if no such triple patterns exist the result is @.

?philisopherl  foaf : name “AugusteComte” } (1

Qanp = {7philisopherl MrelationshipWith : Paris
Qorrionar = | Iphilisopher2  foaf : givenName “jean — Baptise_say” .} (2)

QOunion = {QanD. QoprrionaL} 3)

More formally, we defined a QueryDecomposition to deduce whether the decom-
position of query patterns exits, as shown in Eq. (4).

Ounion (Q), iff Ounion (Q) #0
QueryDecomposition := { OoprronaL (Q). iff OoprionaL (Q)#0 (4
Oanp (Q), else.

To calculate the similarity between two query patterns, we use the Levenshtein
distance that is a string metric for assessing the difference between the two sequences.
For example, the Levenshtein distance [9] of the two similar-structured queries is in the
range of [0, 1]. The overall distance of the triple pattern is calculated by aggregating
the individual score of the subjects, predicates, and objects. The general formula for
the distance score is defined as:

@ Springer
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0,
. L Levenshtein(Q1,07)
Distancescore := max(stringlength(Q1),stringlength(Q2)) )
11

By using this distance score in Eq. (5), we can determine the matching between the
triples. Consider the triple matching between the two Basic Graph Patterns (BGP)
as shown in Fig. 4. Here the most similar patterns for Lg, L7, Lg in BGP; are
L7, Lg, Lg in BG P,, respectively e.g., L represents the Line number correspond
to Fig. 4a, b. For example, the minimum value for the edit distance is calculated as
aggregating the individual distance score of subject, predicate and an object as fol-
lows: A(L6ggp1, L7pgp2) = (0+ 0 + %) = 0.75. Complete matching is only
possible in the case of bipartite graphs, where triples occur with the same num-
ber as for the triples patterns. Maximum matching can be determined in polynomial
time. The matching of the triple is a computationally expensive process and existing
approaches [31,37] do not consider the cost while performing the matching between
two queries. In contrast, we use a cost threshold to cut off too expensive matching
and utilize the classical algorithm called Hungarian Method [39] to solve the max-
imum matching of triples with minimum cost. This algorithm compute an optimal
solution in a finite time. More specifically, we consider only contents of which the
minimum matching cost does not exceed one. Thus, the maximum matching of the
triples {(L6pGpr1, L7pGpr2), (L7pGP1, L8BGp2)} has a cost 0'75#, which shows
that these BG Py and BG P, are unfit to match with each other.

3.2 Query prefetching

Similar queries occur frequently in real-world SPARQL query logs. This has also been
reported previously [34]. The query prefetching approach is suitable for alleviating
the burden on SPARQL endpoints by extracting the results of subsequent queries.
In the common keyword-based search engines, the user is often not aware of the
most suitable keyword to optimally extract information from the resource. In several
iterations, the user is more likely to formulate their own keyword to find the correct
answer. Similarly, in a LOD user might query for additional details based on the initial
results, after making incremental changes the initial queries.

Definition 1 (Query cluster) To identify the similar-structured queries, we propose a
query cluster. Consider Tp = {Q1, Q2, ..., Q,} be the set of the SPARQL queries
with corresponding query patterns {P Q1, P Q>, ..., PQ,}. A query cluster is defined
based on the pairwise matching with three constraints between the triple patterns such
as A(s;,sj) <1, A(p;i, pj) < 1,and A(0;,0;) < 1.

Given this definition, the query cluster only derived the query using parameter
Apmax = 0 that can only be derived if the two queries are identical. Therefore, a query
cluster consists of those query patterns that are structurally the same, based on the
corresponding mappingm = © (P Q1) x (P Q»). To represent the query patterns as a

@ Springer
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4 N

Dist,
TQ={Q,,Q,,..Q,} Distl\
Template
Dist, Query
-~ Similarity
Dist, | Dist, | Dist, | Dist, K j
Distance Calculation Query Cluster
Fig.5 Showing the example of query cluster of similar-structured queries
1 PREFIX : <http://dbpedia.org/resource/>
2 PREFIX dbo: <http://dbpedia.org/ontology/>
3 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
4 SELECT ?p 7o ?birthPlace ?influence
5 WHERE { | p o [
6 :Auguste_Comte dbo:birthPlace 7birthplace . rdf:typc dbo:person
7 “7birthplace dbo:country :France . dbo:birthDate  1798-01-19
8 :Auguste_Comte dbo:influenceBy ?influence . d.b “do Positivis
9 7Auguste_Comte 7p 7o . .0'1 ca - OSTUIVISI
10 3 dbo:influenced  :KarlMarx
(a)Example of a SPARQL query preftech- (b) Showing the result of the query
ing

Fig.6 Showing the example of the SPARQL query prefetching

feature, we first cluster queries based on the content-wise and structural similarities as
shown in Fig. 5 and distances between each pair of queries are computed by adopting
the k-medoids algorithm [27]. We use this algorithm to cluster the training data of
the query. This algorithm chooses the data points and allows us to utilize the distance
function. To calculate the query distance, we utilize the distance score in Eq. (5) and
define the similarity score of the query cluster as shown in the Eq. (6).

1
SimilarityS To, = 6
imilarityScore(Tg, Q¢) I+ Distancescore(Tg, 00) (6)

Furthermore, we introduce an exploratory prefetching. More specifically, we iden-
tify a query cluster that previously issued queries belong to and construct a query
template using all queries in the cluster. Then, we prefetch all contents that were
used to answer the queries in the template since those queries are more likely to be
requested by the same user in the future. This prefetching is completed by issuing one
single query which includes all queries in the template. For example, we modified
the content of the queries previously issued in Fig. 4 and retrieve all relevant con-
tents that are useful for the future queries as shown in the Fig. 6. This query retrieves
the additional information based on the central concept, instead of issuing the many
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Algorithm 1: Central Concept Fetching (CCF)

Input :Tg ={01, 02, ... On}
Output: Occurrence of most frequent subject

1 S.Count<« 0

2 foreach Q) € T condition do

3 | S<oe(pPy)

4 while S 7 0 do

5 foreach Q) € Sdo

6 it ©(Pg,) > 1then

7 | S<sSue(py)

8

9 else

10 | (S,P.0)« ©(Pg,)
11

12 if S € S.Count then

13 \ S.Count.increasecount(sS)
14 else

15 | S.Count.put(S,1)

16 end

17 end

18 end

19 end

20 return getHighestCount();

similar-structured queries, prefetching retrieve all the relevant information by issuing
a single query.

For extracting the additional information for the specific resource, we propose an
Algorithm 1 called central Concept Fetching (CCF) to generate the central concept
from a query as shown in the Fig. 6a. In CCF algorithm, we first discovered the
frequency of the subjects in all query patterns in Line 7 and aggregate whether the
subject is already included in the S. Count. We further increase the count of the subject
and add to S.Count in Line 11 and analyzed all the triple patterns. This algorithm
will analyze all the triple and give a good indication of a common theme in all the
SPARQL queries.

3.3 Cache replacement

We propose an offline process for cache replacement to calculate the access frequency.
Logging every record produces the most accurate result, however, it is computationally
expensive. Existing approach [21] utilize forward scanning to identify record access
with a time slice [7,, fn11].

However, this is not an efficient process and decreases the system performance, as
it requires scanning and storage of the entire record. Moreover, the forward scanning
approach requires a significant amount of time to classify the record. To optimize this
process, we maintain partial records within a specific time period. We parallelize this
task by splitting the logs into n consecutive periods and use a hash function to store the
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Fig.7 Showing working example of the ACR algorithm maintaining cache and query access frequency

Algorithm 2: Adaptive Cache Replacement (ACR)

Input : Query Log Q, Job Scheduler H
Output: List of added cache triples

fatest < max(LA¢, CAyp);

learliest <= min(LA;, CAy);

Records < get Records(tjgtest s tearliest)s
Function: Modified ForwardAlgo(Q, H);
if newTriples in Records then

max (estimation, cachedTripples);
Calculate(Frequency, LA;);
update(Frequency, LA;);

Remove = Leastaccessedtriples;

R T Y N S

10 else

11 Triples notin Records;

12 Calculate(Frequency, LA;);
13 | Add(newAccessTriples;

=

return addnew AccessTriples ;

frequency estimation for each query as shown in Fig. 7. Where Q1 represents the query
and R; denotes the results of the query. The estimation of the record is calculated by
Eq. (7) and this algorithm ranks each query by its access frequencies. The storage of
the access log is placed in a separate hash table. When each of the parallel executions
finishes, the results of the most highly accessed frequencies are returned immediately
and infrequently accessed queries are removed from the cache.

The overall flow of ACR is described in Algorithm 2, which explains the details of
updating the cache by analyzing the access logs. The ACR algorithm takes previously
access logs to calculate the access frequencies and provide the list of the updated cache
triple, where L A, represents the last access time of the triple and C A, represents the
current access time. ACR algorithm scans the records and updates the frequency. In
the case of a cache miss, the algorithm first checks for the case of a record in the cache
and updates the L A,. Based on the access frequency ACR decides whether the new
triples need to be added to the cache.

We have calculated the frequency of the data access using the exponential smoothing
technique [11]. This method is widely utilized to predict economic data in financial
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applications. The traditional approach [22] contains all the accessed queries in the
cache. In our work, ACR serves each query according to the estimated frequency, the
query with the highest frequencies are kept in the cache for future access. The general
formula of exponential smoothing is as follows:

E,=axx;+ (1 —a)*xE;_ (7)

As shown in Eq. (7), where E; represents on exponentially moving average of
access frequencies up to time ¢ and x; represents an access frequency observed at time
¢ in discrete time with the smoothing constant « € (0, 1). The high value of « gives
significance to the new observations. By using the Eq. (7), we satisfies our requirement
of selecting the highly accessed queries. We further modified Eq. (7) to represent the
time of the last hit. In Eq. (8), #,,., represents the time of the last query hit and X torev
represents the frequency estimate of the previous query at 7., . For example, assume
that = 0.05, ¢ = 12, fprey = 3, x; = 0.6, and Xtprey = 0.5. The value of E; is
calculated by E; = 0.05 % 0.6 4 0.05(1 — 0.05)'273 % 0.5 = 0.046.

E, =ax; +a(l — ot)[_tl”"”x,prev (3)

In case of the queries that are not similar to the previous ones stored in the cache,
the result of these queries is served from the LOD and ACR algorithm store the access
frequencies by using Eq. (8). When the cache becomes full, replacement is based
on the access score; the top queries are kept in cache and less-frequent queries are
removed from the cache.

4 Experimentation and results

This section is devoted to show the effectiveness of the proposed approach. We per-
formed an evaluation on real-world datasets. The major goal of the experiment is to
examine the hit rates and overhead comparison of the proposed approach with the
current state-of-the-art cache replacement approaches.

4.1 Experimental setup

We conducted the experiments on an OpenLink Virtuoso Server 07.10 with a 4x AMD
A8-7650K Radeon R7 graphics card, 64bit Ubuntu 16.04.2 LTS, and 32 GB of RAM.
We utilized the DBpedia3.6 and Linked Geo Data (LGD) query logs provided by the
USEWOD 2014 challenge.” The query log contains a number of requests received by
the SPARQL endpoint. The log is formatted in the form of the Apache common log
format and contains the information about the query session that is used to retrieve
the data from the endpoint. It is possible that in a single query session, two queries

7 http://usewod.org/usewod2014.html.
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Table 2 Showing the size of the query logs used in our evaluation

Source Total queries Valid queries Unique queries
DBpedia 2013 28,423,201 27,563, 105 12, 326, 855
DBpedia 2014 4,132,742 3,708,727 1,517,002
DBpedia 2015 31,345,875 30, 245, 552 3,258,671
LGD 2013 1,721,770 1,512,785 247,731
LGD 2014 1,730,770 1,513,895 517,530
Total 67,354,358 64, 544, 064 17, 867, 789

100 100 100

904 904 Equality

Percentage of Occurances (%)
Percentage of Occurances (%)
ratio of query executions
@
3

8.4% NN

0 10 20 30 40 50 60 70 80 0 100
Select Construct Descibe ratio of unique queries

(a) (b) (c)

Fig.8 Showing the patterns of the queries in a DBpedia and b LinkedGeoData, ¢ the Lorenz curve for the
impact of a unique query on query execution

are issued by the same user over time. The requests included in the DBpedia3.6 query
logs include the timestamp. The query log contains IP address, timestamp, query and
userID. The valid queries were extracted from the query logs and the syntax of the
query was checked according to the SPARQL1.1 specification.

The DBpedia3.6 dataset contain the structure information extracted from the
WIKIpedia and published over the LOD cloud. This dataset is obtained directly from
the USEWOD query logs for DBpedia 2013, 2014 and 2015 as shown in the Table 2.
The DBpedia3.6 KBs contain 3.0M entities about the general knowledge. We first
extracted the textual information from the log to get the previously issued queries then
parse each query using Apache Jena.®

The Linked Geo Data (LGD) dataset holds the geographic sensor information
mainly related to the OpenStreetMap and it is currently available as RDF format.
We utilized the LGD 2013 and 2014 that consist of more than 10 billion triples. From
the available LGD query logs, our evaluation contain repetitive and unique queries.

In both datasets, the majority of the queries are the SELECT queries in the DBpedia,
and LinkedGeodata logs and within these SELECT queries, we identified the occur-
rences of BGPS, as in Fig. 8, which shows SELECT, CONSTRUCT, DESCRIBE and
ASK. Most of the queries in both datasets are SELECT queries (95% in DBpedia
and 89.3% in LinkedGeoData) and the most widely used features are ASK (4.4% in
DBpedia and 8.4% in LinkedGeoData) followed by CONSTRUCT (1.2% in DBpedia
and 2.3 % in LinkedGeoData).

8 https://jena.apache.org/.
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Figure 8c shows the impact of the unique query account for the query execution.
Our aim is to ascertain the impact of the unique and frequently executed queries on the
overall execution. We analyzed the execution using the DBpedia and LGD query logs.
In DBpedia, 70% of the unique queries account for 30% of the overall executions,
which shows that most of the execution instances involved the frequently accessed
queries. Similarly, the impact of the unique queries on the overall execution is low, as
almost 90% unique queries account for the 20% of the total query executions.

4.2 Performance evaluation

In this evaluation, we compare ACR with existing approaches, such as (LRU) Least
Recently Used [16], (LFU) Least Frequently Used [18], and (SQC) SPARQL Query
Caching [24] and measure the efficiency in terms of average hit rate and space over-
head.

We evaluate the impact of existing cache replacement algorithms to improve the
performance in terms of hit rates and overhead. Therefore, we compare ACR with
three well-known cache replacement approaches (1) LRU: to replace the cache Least
Recently Used (LRU) is applied to remove the items from the cache in order to provide
space for the new item. This approach is simple to implement, especially when the
objects are uniform. (2) LFU: with this method, the Least Frequently Used (LFU)
resources are removed from the cache and the cache item is replaced with a new
resource. However, LFU does not consider the size of the objects and CPU memory
utilization. (3) SOQC: SPARQL Query Caching (SQC) [24] improves the performance
of triple stores by the selective invalidation of cache objects. This approach eliminates
the cache objects that do not contain the predefined timestamp.

Figure 9a shows the hit rates achieved by the existing approaches. This experiment
feeds the access logs of 3M to the ACR algorithm, whose job is to rank the access
frequencies of the queries based on the exponential smoothing technique. It is noted
that ACR outperforms existing approaches. However, the LFU technique remains
accurate for a cache with a small size. The choice of the « effects the performance
of the hit rate. We have set the value to 0.05 due to the higher accuracy of the results
obtained, as the optimal value of « is almost certainly inversely proportional to the
size of the cache, and perhaps related to the size of the database. If the cache is smaller,
« should probably be larger as shown in Fig. 9b. Upon varying the size of the cache,
our proposed approach outperform the other approaches, as shown in Fig. 9c. On
average, our approach outperforms existing approaches in terms of higher hit rates,
up to (80.65%).

Figure 10a depicts the space overhead used by the cache replacement algorithms for
varying data set sizes. We measure the maximum space consumption of each approach
based on the maximum number of records that each algorithm stores. It is observed that
existing approaches consume more space to maintain the records. Figure 10b shows
the time overhead average of the proposed ACR technique compared with state-of-the-
art solutions. The existing solutions take a long time; on average the hit checking time
of our approach takes (280 ms), which is almost 10 times better than other approaches.
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Fig.9 Hit Rate achieved by ACR as compared to the LRU, LFU and SQC algorithms
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Fig. 10 Space and time overhead of existing as compared to ACR

5 Conclusion

In this paper, we proposed an Adaptive Cache Replacement (ACR) to improve
SPARQL query processing on the LOD cloud. ACR algorithm parallelizes the task to
calculate the access frequencies. To find similar queries, ACR utilizes the edit distance
to identify clients similar querying patterns and place the frequently accessed queries
in the cache to reduce the burden on SPARQL endpoints. Through experimental eval-
uation, we found that our approach outperforms the state-of-the-art approaches in
terms of better query response time and less space overhead without losing the cache
hit rate. This shows that on average, we achieve hit rates of 80.66%, which accelerates
the querying speed by 6.34%. Specifically, our ACR technique is capable of classify-
ing the access log with better space efficiency as compared to LFU, LRU, and SQC.
In the future, we plan to investigate the effect of prefetching on system performance,
this may lead to an improvement of ACR by parallelizing the algorithm to run on a
separate machine as an offline process during system idle time.
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