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Abstract
Human activity recognition (HAR) is an important branch of human-centered research. Advances in wearable and unobtrusive 
technologies offer many opportunities for HAR. While much progress has been made in HAR using wearable technology, it 
still remains a challenging task using unobtrusive (non-wearable) sensors. This paper investigates detection and tracking of 
multi-occupant HAR in a smart-home environment, using a novel low-resolution Thermal Vision Sensor (TVS). Specifically, 
the research presents the development and implementation of a two-step framework, consisting of a Computer Vision-based 
method to detect and track multiple occupants combined with Convolutional Neural Network (CNN)-based HAR. The pro-
posed algorithm uses frame difference over consecutive frames for occupant detection, a set of morphological operations to 
refine identified objects, and features are extracted before applying a Kalman filter for tracking. Laterally, a 19-layer CNN 
architecture is used for HAR and afterward the results from both methods are fused using time interval-based sliding window. 
This approach is evaluated through a series of experiments based on benchmark Thermal Infrared datasets (VOT-TIR2016) 
and multi-occupant data collected from TVS. Results demonstrate that the proposed framework is capable of detecting and 
tracking 88.46% of multi-occupants with a classification accuracy of 90.99% for HAR.

Keywords Human activity recognition · Image processing · Object detection · Tracking · Classification

1 Introduction

Over several decades, advances in pervasive computing 
have offered great promise towards the potential of indoor 
localization and Human Activity Recognition (HAR) [1]. 
Over this period, significant research effort has been targeted 

towards the creation of solutions that can reliably monitor 
individuals through the use of on-body wearable sensors, 
dense sensors, and vision sensors [2]. Whilst results utilizing 
on-body sensors have improved greatly, wearable solutions 
are often said to be impractical, as they can be difficult to 
carry or inconvenient to wear continuously [3]. Addition-
ally, vision sensors capable of capturing RGB or grayscale 
images have been studied intensively within the Computer 
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Vision (CV) domain. The use of cameras, however, raises 
serious privacy concerns [4].

Recently, researchers have been investigating the poten-
tial of deploying unobtrusive, inexpensive and low-resolu-
tion Thermal Vision Sensors (TVS) for occupant detection 
and pervasive sensing [5]. Similar to traditional vision-based 
approaches, TVS suffer from same limitations for handling 
complex object appearances due to shape deformation, 
low resolution, varying number of objects, pose variation, 
motion estimation, and object re-identification [6]. TVS do, 
however, address some of the challenges as they tend to be 
more robust to illumination changes, can operate even in 
complete darkness and offer less intrusion on user’s privacy 
[7].

The majority of research into HAR has focused on single-
occupant environments. Nevertheless, living environments 
are usually inhabited by more than one person. Therefore, 
HAR in the context of multi-occupancy would provide a 
more practical solution, however, also more challenging. 
The difficulty with multi-occupant HAR stems from two 
related challenges in occupant identification, known as data 
association, and the diversity of human activities.

In CV, object tracking remains one of the most signifi-
cant research challenges [8, 9]. This becomes even more 
complex when using TVS for monitoring multi-occupants, 
as data only corresponds to variation in temperature. There-
fore, a different strategy is required for identification and 
re-identification of the occupants [10]. The aforementioned 
challenges are addressed by proposing and implementing a 
robust CV-based integrated framework for multi-occupant 
detection, tracking and HAR based on TVS.

The remainder of the article is organized as follows: 
Sect. 2 presents a review of related work; Sect. 3 formulates 
the problem and introduces the proposed framework describ-
ing our pragmatic approaches for multi-occupant tracking 
and HAR; Sect. 4 presents experimental details; Sect. 5 
presents both quantitative and qualitative evaluations and 
comparisons on thermal frame sequence and VOT-TIR2016 
benchmarks; Sect. 6 offers concluding remarks with a dis-
cussion about future improvements.

2  Related work

Multi-object Tracking (MOT) in CV domain has been stud-
ied for decades and has attracted a lot of research attention. It 
is, however, still far from solved regarding HAR [11]. Many 
solutions exist for HAR in a controlled environment. These 
solutions mostly involve the deployment of numerous wear-
able and pervasive sensors [12], which can lead to increased 
cost, privacy concerns and more often inconvenience. To 
alleviate these challenges, attention of the research com-
munity has directed to low-cost unobtrusive sensors [13].

TVS are an excellent candidate for pervasive sensing 
due to their inexpensive nature, portability, limited main-
tenance requirement and lower privacy issues compared to 
traditional cameras. Hevesi et al. [14] have illustrated that 
such a sensing modality can be deployed for indoor HAR 
and monitoring of sedentary behavior of a single occupant 
in an office environment. Solutions based on TVS mostly 
require CV-based approaches for locating moving objects 
by identifying them as a region of interest (ROI) in a frame 
sequence. Detection of a ROI is deemed as the first step 
in most CV-based applications [15]. It may involve vari-
ous techniques such as: (1) thresholding, which yields low 
accuracy and is of lesser use in current applications [16]; 
(2) multi-resolution processing which faces challenges for 
detecting objects during congestion [17]; (3) edge detection 
which has challenges in deriving an ROI where the shape of 
object is highly dynamic; (4) inter-frame differencing which 
uses consecutive frames for detecting an ROI but can only be 
considered for a sequence of a shorter duration [18]; (5) an 
optical flow-based detection which requires a large number 
of frames resulting in poor performance; (6) background 
subtraction which extract objects not belonging to the back-
ground; however, this technique requires a static background 
as an initialization.

Regarding MOT, various techniques [19] have also been 
proposed by the research community. These techniques 
focus on addressing common challenges such as frequent 
occlusions, identical appearances, track management and 
interaction among objects. No single approach currently 
exists which can address all of these challenges. MOT in 
any visual tracking system usually involves three func-
tional models [20]: (1) appearance model, which describes 
the object and distinguishes it from the non-objects; (2) 
motion model which characterizes the current and predicts 
the future states of an object by tracking their trajectories; 
(3) searching strategy which helps to identify and match an 
object based on the appearance model in a frame sequence.

Motion models have gained significant attention for object 
state estimation. They operate by producing accurate motion 
affinity models in a linear motion space, which can be used 
to predict object position [21]. Thus, it reduces the search 
space by capturing the dynamic behavior of the object. To 
solve the linear tracking problem, where continuity of mov-
ing objects is not abrupt, Kalman filtering (KF) is often used 
[22]. This approach can track moving objects using their 
center of gravity [23]. KF is a linear state-space motion 
model proved to be an optimal tracker suitable for practi-
cal applications. It promises a good compromise between 
computational complexity and performance for object track-
ing by utilizing a point-based approach in learning statisti-
cal features [24]. It uses identified features and uncertainty 
information to estimate different states of an object through 
the successive frames. KF may, however, experience object 
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drifting due to the loss of an object’s appearance informa-
tion in a frame sequence. The object drifting complexities 
require efficient object refinement schemes to analyze object 
motion properties leading to proper data association [25]. 
Yilmaz et al. [21] addressed some of the issues and com-
plexities related to data associations through a joint solution 
for state estimation. Choi et al. [26] formulated the problem 
of multi-occupancy and resolved it through multiple target 
tracking. They merged the problems of HAR and tracking 
into a single probabilistic graphical model for tracking indi-
vidual actions. Similarly, an adaptive framework was also 
proposed by Shen et al. [27] to identify the correct state of 
the targets. They suggested the use of an adaptive detection 
algorithm for MOT task to refine the detection targets and 
minimize the detection errors.

To classify Activities of Daily Living (ADLs), it has been 
observed that CNN have shown superior performance over 
the traditional Machine Learning (ML) approaches such as 
Support Vector Machines [28] and feed-forward neural net-
works [29]. The visual object recognition tasks [30] can be 
performed over the raw low-resolution TVS frames using 
CNN, which is easier to train by adjusting a few parameters 
and inter-layer connections. It extracts meaningful features 
without requiring domain knowledge and with minimum 
preprocessing over a stacked sequence of frames [31]. The 
CNN model has the capability to extract multiple motion 
features encoded in the adjacent TVS frames for automatic 
classification of ADLs [32].

The current work is closely related to [4] in which the 
authors proposed a system for indoor player tracking captured 
through the thermal camera at a sports arena and pedestrian 
tracking in a courtyard. Ray et al. [33] proposed a detection 
algorithm, which does not depend on any prior background 
knowledge for object detection and also does not require ini-
tialization. Similarly, Leira et al. [34] considered the problem 
of small unmanned aerial vehicles equipped with thermal 
cameras for real-time target detection and tracking at sea 
using the KF based technique. Tiwari et al. [35] highlighted 
the research gaps for video-based HAR. They suggested 
designing an approach to improve the robustness of the detec-
tion and tracking algorithms by increasing the number of 
occupants, which can be tracked over a sequence.

The purpose of this study is to propose a framework for 
moving object detection, tracking and classification of ADLs 
with increased performance using low-resolution thermal 
video frames. To achieve this goal, an implementation 
using a KF was devised by building a robust object appear-
ance model with morphological feature refinements. It also 
involves the Hungarian algorithm for data association per 
frame [27]. Additionally, this study evaluates the robust-
ness of the integrated framework to detect and track ADLs 
of the users using low-resolution TVS. For this, the solu-
tion was tested using comprehensive experimental analysis 

drawing quantitative and qualitative comparisons. Robust 
tracking systems, such as [36], mostly involve an appearance 
and motion model to track the candidate states of the target. 
Computational complexity, however, increases proportion-
ally with the increase in the number of targets to be tracked 
[37]. Therefore, a joint optimization is essential for MOT. 
Most of the MOT-based research focuses on tracking-by-
detection methods, however, an extension to it, by classify-
ing the activities may result in boosting the overall effective-
ness of these methods.

3  Proposed uMoDT framework

This section initially outlines the design challenges before 
presenting the algorithmic solutions and then detailing the 
overall framework.

3.1  Overview

The main challenges in CV-based object detection and 
tracking applications are correct identification of ROI, reli-
able and efficient handling of moving objects along with 
their inter-frame associations. These challenges, however, 
become even more complex for interacting multi-objects, 
which may have erratic movements represented by low-res-
olution appearances in a frame sequence. For this, an effi-
cient method is required to predict their motion and manage 
data association [38]. Additionally, recognition of interac-
tion amongst objects and classification of activities is also 
a computationally intensive task and requires a more robust 
process. This further requires a trade-off when implement-
ing the above-mentioned methods in a more efficient man-
ner for a complete, coherent and correct detection, tracking 
and classification of an occupant’s activities. To address the 
aforementioned challenges, as presented in Fig. 1, we pro-
pose a unified scalable unobtrusive Multi-occupant Detec-
tion and Tracking (uMoDT) framework, which detects, 
tracks and recognizes different indoor activities under mul-
tioccupancy using TVS.

TVS Mul�occupant Detec�on 
& Tracking

TVS Ac�vity Recogni�on

TVS  Mul�occupant Feature Vector

TVSFF
TVSMoAR

Unobtrusive Mul�occupant Detec�on and Tracking (uMoDT)
for HAR

CV

CNN

Fig. 1  Overview of proposed solution strategies as uMoDT frame-
work
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The uMoDT framework addresses six strategies as 
described below:

• We propose an online framework, which uses a CV-based 
algorithm, with improved morphological features, for an 
automatic multi-target initialization using frame differ-
encing with an optimum threshold.

• We rely on refined morphological characteristics, which 
ensure efficient detection and tracking accuracy over the 
dynamic patterns for nonrigid moving targets per-frame.

• We use the Hungarian method for track assignment prob-
lem with an approach for maintaining an association his-
tory of re-identified tracks of individual moving objects 
per-frame.

• The proposed framework is validated using a dataset 
gathered at Smart Environments Research Group (SERG) 
laboratory from the Ulster University, UK. It proved to be 
computationally robust and achieves a promising tracking 
accuracy in comparison with other MOT methods.

• We also demonstrated quantitative evaluations on the 
publicly available dataset for the VOT-TIR2016 chal-

lenge proving the practicality and efficacy of the pro-
posed framework with the state of the art.

• Additionally, we propose to apply a CNN architecture 
to extract and learn spatial features from multiple suc-
cessive Thermal Vision Sensor Frame (TVS-F) for indi-
vidual action recognition.

The focus of the presented work is to simultaneously detect 
multi-occupants as well as recognize their activities frame-
by-frame from TVS. It also requires a solution for resident 
data association in a smart-home environment, which is 
accomplished by unifying two different approaches. Firstly, 
using the CV-based technique, which detects, tracks, and 
monitors the occupant within the controlled area by observ-
ing a robust frame difference between the consecutive 
frames. Secondly, the CNN layers are invoked by the TVS 
frame sequence (TVS_Fseq ), which recognizes the occupant’s 
individual activities such as Walking, Standing, Sitting, Fall 
down. Finally, the recognized activities are associated with 
each occupant using the proposed Thermal Vision Sensor 
Feature Fusion ( TVSFF ) method per frame.

Algorithm 1 TVS-MoFV: Thermal Vision Sensor multi-occupant frame vector algorithm
Input TVS F: Thermal Vision Sensor grayscale sequence frames;
Output: Multi-occupant Frame Vector TV SMoFV .

1: procedure TVS MatPreProcessing
2: Load TV S Fseq ← {TV S F1, TV S F2 . . . TV S Fn} where i = {1, 2, . . . n}
3: Read Matrix TV S Fseq � Reads sequence of frames TV S Fseq

4: for all TV S Fi to TV S Fn do
5: function Low thresholding(TV S Fi)
6: TV S Fi − TV S Fi−1 > TV STh � Frame differencing sensitive to threshold
7: Bn ← TV S Fi � Identify ’n’ Occupants as Blobs
8: TV S Fi ← Gaussk,l(TV S Fi) � Smoothing by Gaussian blur k=l=3
9: end function

10: function morphologicalTV SPreProcessing(TV S Fi) � Morphological filtering
11: TV S Fi ← Ekw,kh

(TV S Fi) � Erode: width ’w’ & height ’h’ =8
12: TV S Fi ← Dkw,kh

(TV S Fi) � Dilate: width ’w’ & height ’h’ =8
13: end function
14: function Detect Contour(TV S Fi)
15: Cntn ← TV S Fi
16: Find CntnContours
17: for all i = 1 to n do
18: min(B) < Cnti < max(B) � min Blob Area < ContourArea < max Blob Area
19: Pxi,yi

← Cnti(pxi
, pyi

)
20: BRn ← boundingrectangle(Pxi,yi

) � Assign Bounding Rectangle
21: array [BR] ← BRn � Populate Rectangle Array
22: P� ← array [BR] � GetContourFeatures Perimeter
23: An ← area(Pxi,yi

) � GetContourFeatures Area
24: A� ← array [BR]
25: Pavg ← Averagepixels(BRn) � Compute pixel p, average avg for Bounding Rectangle
26: end for
27: end function
28: end for
29: return TV SMoFV ←

[
Pxi,yi ,P�,An,A�, Cntn

]

30: end procedure
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3.2  Computer vision‑based occupant detection 
and tracking

This section describes the inner details of the proposed 
framework to detect the presence of multi-occupants in real 
time, and track them throughout the duration of TVS_Fseq by 
following them from frame-by-frame. Figure 2 illustrates the 
overall uMoDT framework with underlying several compo-
nents, namely TVS sensor as an Input device, TVS-F Pre-
processing, Occupant Tracking, and TVS-F Feature Extrac-
tion. These components are connected in series; whereas, 
the information flow between subcomponents is discussed 
further in the following subsections.

3.2.1  Input frames

In this study, we propose to mount the Heimann HTPA 
TVS [39] in the ceiling of the smart-home’s living room 
and kitchen at the height of 3 m. The monitored space is a 
quadrilateral area with dimensions 4 × 3.5 m. This setting 
provides a clear field of view and collects an aerial view of 
the multi-occupants as seen in Fig. 3. It also overcomes the 
challenges related to occupant-to-occupant and, occupant-
to-scene occlusion, whilst avoiding camera motion and is 
operative even in complete darkness. The TVS ensures a 
high degree of user’s privacy by capturing low-resolution 
grayscale TVS_Fseq with the dimensions of 32 h × 31 v × 
1. Each of the 992 pixels correspond to an area within the 

Gaussian Filter 
(Smoothing)

Conversion to 
Grayscale

Binariza�on Inversion and
Dila�on

Blob Detec�onMatrix to 
Frame

Morphological 
exchange

Occupant
Separa�on

Training
Samples

Input

32x31
JSON 

Frames

Thermal 
Vision
Sensor 
(TVS)

Frame Pre-processing

Feature Extrac�onClassifica�on

Tracking

Kalman Filtering 

Ac�vity 
Recogni�onDeep 

Learning 
CNN

Track
History

Management

ROI 
Feature 

Extrac�on

Morphological
Feature 

Es�ma�onFusion

Labelled Frames

Map Features Space with 
Spa�al Coordinate System

Path 
Predic�on

Occupant (s)
Ac�vity 

Recogni�on

Thermal 
Vision 
Sensor 

Frame 
Vector 

(TVS-FV)

Fig. 2  Proposed unobtrusive Multi-occupant Detection and Tracking (uMoDT) framework for HAR

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o)

Fig. 3  a Empty smart living room. Single-occupant activities shown 
as b Sitting, c Standing, d Walking, e Stretching, f Fall Down. Multi-
occupant activities shown as g two persons Sitting, h One person 
Sitting while other Standing, i One person Sitting while other Walk-

ing, j One person Standing while other Fall Down, k Both persons 
Standing, l one person Standing while other Stretching, m both per-
sons Walking, n all are Walking, o one person Walking while other 
one Stretching 
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smart living room and kitchen represented by each pixel 
value ranging between 0 and 255. This range sets a cor-
respondence of every pixel with an average temperature 
characteristic to that area. The TVS_Fseq is managed using 
RESTful HTTP services, which are processed by the server.

3.2.2  Multi‑occupant feature vector (TVS‑MoFV)

The frames represent the presence of heat sources within 
the TVS_Fseq . The characteristics of identified heat sources 
are calculated by using the proposed Thermal Vision Sensor 
Multi-occupant feature vector (TVS-MoFV) algorithm. It 
gathers multi-occupant feature vectors in TVS_Fseq frame-
by-frame. The series of tasks performed by TVS-MoFV 
are described in Algorithm 1, which are summarized as 
follows:-

• Converts the JSON 32× 31 matrices into the sequence of 
frames TVS_Fseq.

• Segments the TVS_Fn frames to detect foreground (multi-
occupant) and background (static smart living room or 
kitchen) per frame.

• Applies the Low_thresholding TVSTh function with a 
background subtraction method sensitive to threshold 
[40].

• Convolves the TVS-F using Gaussian Kernel Guassk,l for 
smoothing and reducing noise with the kernel k=l=3.

• Performs morphological filtering and binarization on 
TVS_Fn to reduce the thermal noise using operations such 
as Erode �kw,kh

 and Dilate �kw,kh
.

• Determines the presence of multi-occupant using con-
nected pixels termed as the contours Cntn represented by 
blobs in the sequence of binary frames TVS_Fn.

• Assigns and encapsulates each identified Cnti , within the 
ROI, represented by Bounding Rectangles i.e. ��n.

• Estimates the centroid �xi,yi
 for the identified Cnti sur-

rounded by ��n , which acts as a pivot for further track-
ing.

• Computes an array of the morphological feature vector 
for every TVS_Fi frame, which includes Perimeter P

◻
 , 

Area A
▪
 , and Contour Pixel Average P��� for every ��n 

in the TVS_Fi.

The learned frame vector TVSMoFV from every TVS-F com-
prises of the morphological states of the detected occupant. 
These states represent the occupant’s thermal area, a center 
of contour, a perimeter of the bounding box, and the area 
enclosed within the bounding box encapsulating the occu-
pant. These multiple features become the basis for TVSMoAR 
with the support of the proposed method TVSFF required 
for the data association before recognizing and associating 
individual activities.
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Algorithm 2 TVS-MoDT: Thermal Vision Sensor multi-occupant detection and tracking algorithm
Input TVS F: Thermal Vision Sensor gray-scale frame sequence;

Output: Multi-occupant tracks TMoDT .
1: procedure TVS MatPreProcessing
2: Load TV S Fseq ← {TV S F1, TV S F2 . . . TV S Fn} where i = {1, 2, . . . n}
3: Read Matrix TV S Fseq � Reads Sequence of Frames TV S Fseq
4: for all TV S Fi to TV S Fn do
5: function VectorPoint Vp(TV S Fi, Cntn) � Detect VectorPoint
6: for all i = 1 to n do
7: P+

c ← BRn {Cntn} � Iterate Contours
8: array [D] ← P+

c � Array of detections
9: TV S Fi ← Draw (BRn, TV S Fi) � drawRectangle ← Contours

10: TV S Fi ← Draw (P+
c , TV S Fi) � drawCenterPoint ← Contours

11: end for
12: end function
13: function Track Ti(Cntn,D, TV S Fi) � initialize (NoOfTracks, TrackSize)
14: for all i = 1 to Size ([D]) do
15: Ti ← new(T ,D)
16: Cost [i] [i] ← Euclid(T pred

i ,D) � Euclidean distance between prediction & detection
17: C ← Cost [i] [j]
18:

− →A ← V ector(Assignment)
19: T assign

i ← HungarianAssignment (C,− →A)
20: if (C > Dthreshold) then � Identify unAssigned tracks
21: [T unassinged

i ] ← add(T unassinged
i ) � Search Un Assigned Tracks

22: end if
23: if ([T VS Fskipped

i ] > maxf ) then
24: T VS F i ← remove (T VS F i) � Remove not detected tracks
25:

− →A ← remove (
−→Ai) � Remove assignments

26: end if
27: if (size(Dunassigned

i ) > 0) then
28: Ti ← add(Ti,Dunassigned

i ) � Initialize New Tracks for un Assigned Detects
29: end if
30: Ti ← T skipped

i > T VSSkippedAllowed

31: /* Update Kalman for All Detected Contours */
32: T VS ← UpdateKalman(TV S Fi,D) � Predict, Update Kalman Occupant State
33: /* Iterate the No of contours, detections in the T VS F i */
34: for all t = 1 to Size (

− →A) do
35: Tid ← Ti(t)
36: T VS F i ← T VS Fappend(T VS F i, Tid,P+

c ) � Draw tracks
37: [T VS F i]history ← T VS Fappend(T VS F i,P+

c ) � Contours & Tracks History
38: end for
39: /* Update T VS F i with Kalman Prediction and Correction */
40: It ← n (Cntn) � Number of Contours
41: while It.hasnext do
42: TV S Fi ← update (TV S Fi,P+

c , [T VS F i]history) � Kalman Effect
43: TV S Fi ← draw (P+

c , [T VS F i]history) � Kalman prediction updation
44: TV S Fi ← draw line (P+

c , Ti−1, Ti, [T VS F i]history)
45: end while
46: end for
47: end function
48: end for return TMoDT
49: end procedure

3.2.3  Multi‑occupant detection and tracking (TVS‑MoDT)

Algorithm 2 describes the TVS multi-occupant detection 
and tracking (TVS-MoDT) method to identify, predict, 
plot, visualize, and maintain the occupant’s tracks within 
TVS_Fseq . Some of the key features for this algorithm are 
summarized as below:

• The TVS_Fseq is read as input simultaneously as in the 
case of Algorithm 1.

• The detected contours Cnti through Algorithm 1 are iter-
ated within TVS_Fseq for computing the vector point Vp 
responsible for tracking and maintaining the history of 
the tracks as shown in Line 4–11.
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• For every detection � for Cnti , the tracks Ti are initialized 
as shown in Line 15.

• We used two classical efficient methods, Hungarian 
method, and KF to handle the occupant’s data association 
and smoother motion refinement with position prediction 
of the multi-occupant, respectively.

• The optimal assignment ��⃗A and cost C computation 
task for tracks Tassign

i
 is performed using the Hungarian 

method.
• We employed KF to generate multi-occupant motion 

trajectories, i.e., estimation and position prediction for 
the blob representing each of the individual occupants 
as mentioned in the Line 32.

• The UpdateKalman prediction function predicts the posi-
tion of the occupant based on the history from previous 
TVS-F whereas the update function rectifies the state 
of the multi-occupant from the current TVS-F (Lines 
39–45).

• Every multi-occupant being tracked is assigned Track-
ing ID ( Tid ) representing tracklets. The morphological 
features such as position, size and other statistical meas-
urements are also calculated for blob.

• Tid is dynamically assigned (or reassigned) to blobs with 
rapidly varying sizes. The array with tracking identifiers 
represents each occupant’s motion model and state his-
tory.

3.3  CNN‑based activity classification

The CNN has been utilized for real-time multi-occupant AR 
from the TVS_Fseq . It is computationally built on five major 
mathematical functions such as Convolution, Batch Normal-
ization, Rectified Linear Unit (ReLU), Pooling, and Soft-
max. These functions are applied in a hierarchical residual 
block within an architecture, which provides fully connected 
layers for processing TVS_Fseq to get multi-occupant activity 
classification output per frame. These are briefly discussed 
in the following subsections.

3.3.1  Input layer

An input layer for the CNN architecture reads the grayscale 
TVS_Fseq of the fixed dimensionality, requires TVS_FTrain to 
train the model while producing an output TVS_Flabelled , rep-
resenting “n” activities performed by the multi-occupants.

3.3.2  Convolutional layer

The convolutional layer is responsible for extracting the 
pixel-wise features from the input TVS-F. To learn the 

(1)TVS_Flabelled ←

{

TVS_Fseq, TVS_FTrain, actn
}

CNN
.

TVS-F features, the kernel weights are adjusted automati-
cally through back-propagation training. The convolution is 
obtained by taking dot product (∙) between sub-part of the 
TVS-F and the convolutional kernel K. In response, a feature 
map fc is computed by sliding the convolutional kernel over 
the TVS-F spatially. The output xl,j

i
 for the l th convolutional 

layer having the j feature map on the i th unit can be pre-
sented mathematically as:

where � is a non-linear mapping, it uses hyperbolic tangent 
function, tanh(⋅) [41].

3.3.3  Batch normalization layer

The input channel x across the mini-batch is normalized x̂i 
by the introduction of a batch normalization layer [42]. Nor-
malized activation is computed using mini-batch mean �B , 
standard deviation �2

B
 for input channel x, and � to provide 

the numeric stability for mini-batch variances, described as:

It increases the performance of CNN training and reduces 
sensitivity of the neural nets.

3.3.4  ReLU layer

Rectified Linear Unit (ReLU), a nonlinear activation func-
tion responsible for introducing a point-wise non-linearity to 
the CNN by resolving the vanishing gradient problem [43]. 
ReLU layer processes an element-wise activation function 
over each individual input x, wherever the value is less than 
zero, is set to zero and it also linearly conveys the input for 
positive inputs described by Eq. 4:

A rectified feature map f� is obtained as an outcome.

3.3.5  Max‑pooling layer

The max-pooling layer produces compact feature space 
by taking the sub-samples of f� , thus reducing the spatial 
dimensionality and sensitivity of the output. The pooling 
operation derives maximum value from the set of nearby 
inputs as mentioned in Eq. 2, which can also be represented 
mathematically as [31]:

(2)x
l,j

i
= �

(

bj +

m
∑

a=1

wj
a
x
l−1,j

i+a−1

)

,

(3)
x̂i =

xi − 𝜇B
√

𝜎2
B
+ 𝜖

,

(4)f𝜏 = ReLU(xi) =

{

xi, xi ≥ 0;

0, xi < 0;
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where R represents pooling size and T as a pooling stride. 
The soft-max classifier is placed at the final layer for HAR. 
The TVS-F features obtained from the stacked convolutional 
and pooling are represented as:

where K represents the number of units learned from the last 
pooling layer, which acts as a feature map for the soft-max 
classifier.

3.3.6  Training process

The CNN is trained in a supervised learning fashion by 
selecting the parameters using Gradient-based optimiza-
tion method. For faster convergence, the stochastic gradient 
descent method is applied [44]. The training process involves 
a series of steps such as propagation and weight update. 
The gradients are computed in the propagation step using 
standard forward [41] and back-propagation algorithms 

(5)f
l,j

i
= max

r∈R
(x

l,j

i×T+r
),

(6)f l = [f1, f2, f3 … fK],

[45], by minimizing the objective function, which is given 
mathematically as:

where xl
i
 represents the output feature and w is the weight 

vector. The output feature map is passed to every subsequent 
layer till it reaches the output layer, which is formulated as:

It applies chain-rule for computing the propagation error and 
the whole process remains cyclic until the CNN reaches a 
satisfactory validation state or attains the stopping criterion.

3.3.7  Classification

The soft-max regression function in the final layer of the 
neural network leads to the multi-occupant HAR using TVS-
based Activity Recognition (TVS-AR) method. It normalizes 
the output, which is computed by fully connected layers, and 
more often is a combination of a set of positive numbers 
with their sum equivalent to one, and value ranges between 
[0 ...1]. These ranges are further transformed into classifi-
cation probabilities through the Classification layer in the 
CNN residual block. The i-th probability value for soft-max 
function p(yi) [46] is computed as:

The cross-entropy [45] is minimized between the output 
probability vector ŷ and total number of class labels ‘y’ as 
follows:

where yi represents binary indicator if the class label ‘c’ is 
correctly classified from the ith neuron and ŷ is the predicted 
probability of the ith class.

(7)xl
i
=
∑

j

wl−1
j,i

�(xl−1
i

) + bl−1
i

,

(8)
�L

�yl−1
i,j

=

m−1
∑

a=0

�L

�xl
i−a

�xl
i−a

�yl−1
i,j

=

m−1
∑

a=0

�L

�xl
i−a

wa,b.

(9)

ŷi = p(yi) = softmax(xi) =
exp(xi)

∑n

k=1
exp(xk)

, i = 1…Nc,

(10)E = −

Nc
∑

i=1

(yilog(ŷi) + (1 − yi) log(ŷi)), i = 1…Nc
.

Table 1  List of 16 activities recorded for data collection

Activity ID Activity type Activity name No. of occupants

Act1 Single FallDown 1
Act2,Act3 Single, Multi Sitting 1, 2
Act4 Multi SittingStanding 2
Act5 Multi SittingWalking 2
Act6,Act8 Single, Multi Standing 1, 2
Act7 Multi StandingFall-

Down
2

Act9 Multi StandingStretch-
ing

2

Act10 Multi StandingWalk-
ing

2

Act11 Single Stretching 1
Act12,Act15,Act16 Single, Mutli Walking 1, 2, 3
Act13 Multi WalkingFall-

Down
2

Act14 Multi WalkingStretch-
ing

2

Table 2  List of benchmark 
dataset sequences and their 
details

ID Dataset Sensor Resolution Frames Object Threshold

1 ETHZ-CLA [51] FLIR TAU320 324 × 256 659 Human 115
2 Soccer [4, 48] 3× AXIS Q-1922 1920 × 480 3000 Human 120
3 Crouching [48] FLIR A655SC 640 × 480 625 Human 125
4 Depthwise Crossing [48] FLIR A655SC 640 × 480 858 Human 135
5 Crowd [48] FLIR Photon 320 640 × 512 78 Human 110
6 TVS_Fseq Heimann 32 × 31 57,290 Human 155
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4  Experiments

The complete real-time prototype application for our pro-
posed uMoDT framework is built for multi-occupant detec-
tion, tracking and AR. To demonstrate the functionality of 
the uMoDT framework, we first discuss the dataset and later 
the implementation insights.

4.1  Dataset

We collected 57,290 frames in a sequence from three healthy 
male volunteers aging 25±7 [years]; height 1.55 ± 0.7 [m] 
and weight 68 ± 8 [kg]. Each volunteer performed differ-
ent ADLs individually and collectively in a smart living 
room over a duration of at least 3 minutes each, reported in 
Table 1. During the entire collection, the application was 
neither reparameterized nor recalibrated, which means this 
setting remained valid for all kind of ADLs performed dur-
ing this study. Additionally, TVS_Fseq was annotated with 
LabelImg, an open source annotation tool [47]. During 
labeling, multi-occupants were approximated using bound-
ing rectangles over the subsequent frames by assigning 
them unique identifiers referred as ground-truth �i in the 
TVS_Fseq . This process followed a strict annotation protocol 
by qualified researchers.

The goal is to quantitatively evaluate the proposed 
uMoDT framework and prove its accuracy and robustness. 
For this, we tested and compared it, also on five challenging, 
publicly available annotated sequences from VOT-TIR2016 
challenge [48, 49]. These sequences were mostly captured 
with the help of static FLIR and thermal cameras.

4.2  Implementation details

The proposed uMoDT framework, comprising of TVS-
MoFV (Algorithm 1), TVS-MoDT (Algorithm 2) and TVS-
AR method, was implemented. The former algorithms utilize 

the Java-based standard libraries OpenCV (an open-source 
API) [50], while the latter method requires MATLAB inter-
faces (machine learning toolbox API). The uMoDT frame-
work was implemented and evaluated using the PC system 
equipped with AMD A10-5800K APU with Radeon(tm) 
HD Graphics (4 CPUs 3.8GHz), 16GB RAM, and NVIDIA 
GeForce GTX 750 GPU 4GB.

Proposed algorithms, TVS-MoFV for feature extraction 
and TVS-MoDT for multi-occupant detection and tracking 
were tested. Both of them used stored TVS_Fseq , which was 
retrieved from the intermediate repository as JSON object 
arrays, by a pull-based web service. In TVS-MoFV, TVS-F 
vector was obtained by varying binary threshold values and 
finding the best value, suitable for each of VOT-TIR2016 
benchmark datasets and the TVS_Fseq as mentioned in 
Table 2. The parametric settings also involved finding the 
optimal value for the contour area to predict the maximum 
number of occupants in the benchmarks and TVS_Fseq as 
shown in Fig. 4. These TVS-F feature vectors support while 
iterating the multi-occupant represented as Blobs predicted 
as bounding rectangles, implemented through the TVS-
MoDT algorithm. The Euclidean distance was calculated 
between the detected and predicted bounding rectangles 
for multi-occupant tracking frame-by-frame. The process-
ing time for each algorithm and method to process a single 
frame is referred to in Table 3. The source code for uMoDT 
framework and TVS_Fseq is available on GitHub at [52].

To recognize multi-occupant’s ADLs from TVS_Fseq , a 
supervised CNN model was trained. For this the entire col-
lection of TVS_Fseq was sorted into two subset groups, i.e., 
training and test categories, each having 16 classes. The 
training set is further split with random TSV-F distribution 
into two halves, i.e., 70% for training samples ( TVS_FTrain ) 
and remaining to validate each class. We used 28,485 TVS-F 
samples to train CNN model and 1920 TVS-F test samples 
(120 TVS-F for each of 16 classes) to evaluate the prototype 
uMoDT framework application.

)d()c()b()a(

(e) (f) (g) (h) (i) (j) (k) (l)

Fig. 4  Examples of raw Input (I) frames and processed Output (O) frames using proposed framework. a, b  ETHZ-CLA  (I&O), c, d  Soc-
cer (I&O) e, f Crouching (I&O), g, h Depthwise Crossing (I&O) i, j Crowd (I&O) k, l TVS-F (I&O)
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The nineteen-layer CNN architecture is designed based 
on the findings from the systematic comparison and bench-
marking to achieve an affordable classification time and 
computation cost [53]. The implemented CNN architecture 
comprises of two units, i.e., feature extractor and a non-
linear classifier [29]. The former unit encapsulates fifteen 
layers (Layer2...Layer16); whereas, the latter unit, i.e., non-
linear classifier is built on all fully connected layers along 
with the soft-max classifier. During the model training pro-
cess, the CNN hyper-parameters were set with the help of 
input functions, by adjusting the learning rate effectively to 
0.01, every 10 epochs using Stochastic Gradient Descent 
with Momentum (SGDM) algorithm with the maximum 20 
number of epochs size [45]. For every iteration, a mini-batch 

of size 16 (64) was applied for which the details are men-
tioned in Table 4. The output of the last ReLU (relu4) at 
Layer 16 is given to fully connected layer Layer 17, which 
uses the features and processes it for class prediction based 
on the TVS_FTrain . The classification layer, i.e., Layer 18 uses 
the soft-max activation function, which squashes the output 
probability vector between sixteen multi-occupant activities 
and returns the binary indicator to them.

5  Results and discussion

In literature, there exist several performance measures to 
deal with single-target and multi-target tracking; however, 
none of them proved to be a defacto standard. In our experi-
ments, we adopted some of the effective multi-occupant 
detection and tracking evaluation strategies to: (a) detect and 
track the multi-occupants and (b) classify multi-occupant 
activities in TVS_Fseq . For this, we investigated frame prop-
erties in the sequences to identify the influence of different 
parameters such as variable thresholds and overlap measures 
on the overall performance. Moreover, conformity of evalu-
ation measures to any other application and sequence has 
been proven by the uMoDT framework on VOT-TIR2016 
sequences other than TVS_Fseq.

Table 3  Processing time for benchmarks and TVS_Fseq with TVS-
MoDT and TVS-AR algorithms

Algorithm Dataset Duration (s)

TVS-MoDT ETHZ-CLA 3.91 × 10−6

Soccer 2.99 × 10−6

Crouching 6.35 × 10−6

Depthwise Crossing 2.93 × 10−6

Crowd 2.93 × 10−6

TVS_Fseq 4.88 × 10−6

TVS_Fseq(O = 1) 7.1 × 10−2

TVS-AR TVS_Fseq(O = 2) 8.3 × 10−2

TVS_Fseq(O = 3) 9.0 × 10−2

Table 4  TVS-AR: Activity recognition for multi-occupants using Convolution Neural Networks

Layer Layer type Activation Parameters (No. of units, Size, Stride)

1 TVS_Fseq Image Input 32 × 32 × 1 images with zerocenter normalization
2 conv1 Convolution 16 3 × 3 × 1 convolutions with stride [1 1] and padding [1 1 1 1]
3 batchnorm1 Batch Normalization Batch normalization with 16 channels
4 relu1 ReLU ReLU
5 maxpool1 Max Pooling 2 × 2 max pooling with stride [2 2] and padding [0 0 0 0]
6 conv2 Convolution 32 3 × 3 × 16 convolutions with stride [1 1] and padding [1 1 1 1]
7 batchnorm2 Batch Normalization Batch normalization with 32 channels
8 relu2 ReLU ReLU
9 maxpool2 Max Pooling 2 × 2 max pooling with stride [2 2] and padding [0 0 0 0]
10 conv3 Convolution 32 3 × 3× 32 convolutions with stride [1 1] and padding [1 1 1 1]
11 batchnorm3 Batch Normalization Batch normalization with 32 channels
12 relu3 ReLU ReLU
13 maxpool3 Max Pooling 2 × 2 max pooling with stride [2 2] and padding [0 0 0 0]
14 conv4 Convolution 64 3 × 3 × 32 convolutions with stride [1 1] and padding [1 1 1 1]
15 batchnorm4 Batch Normalization Batch normalization with 64 channels
16 relu4 ReLU ReLU
17 fc Fully Connected 16 fully connected layers
18 soft-max soft-max Bayesian binary classifier
19 classoutput Classification Output crossentropyex with FallDown and 15 other classes
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5.1  Multi‑occupant detection and tracking 
evaluation

Objectively quantitative assessment of multi-occupant 
detection and tracking is not a straight forward task. Most 
of the evaluation techniques require a ground-truth Gi , which 
serves as a reference to measure the performance quanti-
tatively. We adopted such evaluation methods, which rely 
on frame-based spatial overlap between Gi and bounding 
rectangles BRn [54].

5.1.1  Evaluation metrics

The object detection in benchmark sequences and multi-
occupant detection in TVS_Fseq uses standard Pascal, Inter-
section over Union (IoU) criterion, a natural bounding box 
evaluation measure for comparing spatial overlap and locali-
zation accuracy [48]:

5.1.2  Performance evaluation and analysis

We take the advantage of the Counting algorithm to esti-
mate number of occupants against Gi frame-wise in each of 
the sequence [55]. In our experiments, we considered count 
detection as true positive (TP) for IoU greater than 0.5, oth-
erwise as false positive (FP). For IoU<0.5, however, we also 
considered rotated BRn locations for each object obtained 
from KF in the frame to see if updated object state has any 
spatial overlap relation with ground-truth. Figure 5a–f pre-
sent results for Gi , detected, and KF predicted BRn frame-
wise in each sequence. The best counting success rate is 
achieved by improved frame pre-processing algorithms 
TVS-MoFV (1) and TVS-MoDT (2) for the Soccer sequence 
with around 94.76%; whereas, TVS_Fseq achieved a counting 
accuracy of 88.46%. Results by the counting algorithm using 

(11)IoU(BRn,Gi) =
BRn ∩ Gi

BRn ∪ Gi

.

(a) (b)

(c) (d)

(e) (f)

Fig. 5  Quantitative evaluations shown in a ETHZ-CLA, b Soccer, c Crouching, d Depthwise Crossing, e Crowd, f TVS-F
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KF predicted occupants exhibit an excellent performance 
for each sequence where occupants are well separated in 
the frames as compared to the sequences in which they are 
occluded by each other.

To evaluate multi-occupant detection and tracking per-
formance, it is not suitable to use only one single metrics; 
therefore, we extend the frame-wise IoU overlap measure 
for performance evaluation by estimating Multiple Object 
Tracking Accuracy (MOTA), an accepted evaluation meas-
ure [56]. MOTA measure also takes into account the impact 
of erroneous responses such as: false negatives ( FNt ), false 

positives ( FPt ), number of identity switches IDSt , and Gt 
at time t. By combining these sources of error, MOTA is 
defined as:

Table 5  Evaluation comparison 
of the uMoDT framework for 
benchmark sequences and 
TVS_Fseq

The best value in each category is bold

Name FP↓ FN↓ MOTA↑ IDS↓ Precision↑ Recall↑ MSE↓

Dataset ETHZ-CLA 441 414 5.58 210 0.61 0.44 1.04
Soccer 311 1540 74.42 246 0.94 0.39 5.19
Crouching 163 428 57.17 243 0.80 0.29 1.08
Depthwise 456 408 53.03 180 0.72 0.38 0.96
Crowd 110 211 57.40 110 0.81 0.41 12.27
TVS_Fseq 52 469 64.26 72 0.87 0.42 0.84

Table 6  Evaluation comparison for the uMoDT framework against 
other techniques

The best value in each category is bold

Name FP↓ FN↓ MOTA↑ IDS↓

Method Bochinski et al. [57] 5702 70,278 57.1 2167
Wan et al. [58] 10,604 56,182 62.6 1389
Bewley et al. [59] 7318 32,615 33.4 1001
Murray et al. [60] 3130 76,202 27.4 786
Chen et al. [61] 9253 85,431 47.6 792
Gade et al. [55] 9.8% 18.8% 70.36 219
uMoDT ( TVS_Fseq) 52 469 64.26 72

Fig. 6  ROC curves for benchmark sequences and TVS_Fseq

Fig. 7  Precision–recall curves for benchmark sequences and TVS_Fseq

Fig. 8  Accuracy–robustness plot for the uMoDT with benchmarks 
and TVS_Fseq
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We report quantitative evaluations and comparative anal-
ysis through the experiments over a set of test sequences 
for frame-based detection and tracking in Tables 5 and 
6, respectively. It is evident that the uMoDT framework 
demonstrated better performance in terms of MOTA for 
benchmark sequences and TVS_Fseq . It outperformed other 
techniques on all sequences especially for Soccer sequence 
and TVS_Fseq with MOTA scores of 74.42% and 64.26% 
respectively. Additionally, the Mean Squared Error (MSE) 
between the localization of predicted BRn and Gi was also 
computed as:

The error rates showed lowest MSE value of 0.84, which was 
achieved for TVS_Fseq and a highest MSE value of 12.27 for 
Crowd sequence. The tabulated results, however, showed a 
higher number of IDSt , an increased MSE, and a decreased 
MOTA, which appeared to be from occlusions and deform-
ing blobs.

The performance of uMoDT is also compared by con-
structing ROC curves for accumulated true detection rates 
and false-positive rates using Gi and predicted BRn with 
IoU>0.5 as shown in Fig. 6. The ROC curve produced by 
TVS_Fseq has shown a larger area under the curve than other 
sequences. This suggests and validates the robustness of the 
proposed algorithm for occupant detection. TVS_Fseq has les-
sor FPR, which is due to minimal occlusion as compared to 
other sequences, especially in Crowd sequence, which has 
maximum occlusion.

Figure 7 shows the resulting precision–recall curves 
based on overlap metric. Such a quantitative analysis proves 
as how successfully the BRn are predicted for Gi in the 
benchmark sequences and TVS_Fseq . The uMoDT framework 
achieved a highest area under the curves with an average 

(12)MOTA = 1 −

∑

t

�

FNt + FPt + IDSt
�

∑

t Gt

.

(13)MSE =
1

n

n
∑

i=1

(

BRn − Gi

)2
.

97.16% precision rate for TVS_Fseq and the lowest one with 
around 72.04% for ETHZ-CLA sequence.

5.1.3  uMoDT robustness

To assess the ability of the uMoDT framework as how it 
deals with the tracking failure, we further quantify it for 
robustness measure correlated with accuracy. Robustness 
refers to the uMoDT failures whenever the overlap IoU 
measure becomes equal to zero. To measure the average 
overlap areas and complete failures, these measures are 
intuitively computed for benchmark sequences with IoU 
threshold value equal to zero. We also assumed each occu-
pant in a frame as a separate entity, represented by an inde-
pendent motion trajectory to evaluate tracking performance 
[62]. The resulting robustness, however, in some cases does 
not have an upper bound so it was interpreted as a reliability, 
defined by e−S(F0∕N) for visualizing purpose [63, 64]. Here, 
N denotes number of frames for an individual sequence, S 
represents the number of frames since the last failure, and 
F0 is a failure rate, which is set as IoU equal to zero. We exe-
cuted the uMoDT framework separately for each sequence 
to record their average scores, failure rate and unsupervised 
re-initialization for multi-occupants.

Figure 8 demonstrates the effectiveness of the uMoDT 
framework, which proved to be most robust on TVS-F 
sequence (positioned most right) but it was surpassed by 
Crouching sequence, which appeared to be more accu-
rate (positioned higher). The observed high robustness for 
TVS_Fseq is because of no occlusion, static distinguishable 
background and quality of multi-occupant estimates using 
KF. On the other hand, high average accuracy for Crouching 
sequence is observed, which is due to frequent re-initializa-
tion as occupant’s appearance is challenging which matches 
with background. The uMoDT framework performed 

Fig. 9  Classification accuracy using CNN for test TVS-F

Table 7  Average accuracy confusion matrix for multi-occupant HAR
Ground Truth Activities
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Act1 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Act2 0 120 0 0 6 0 0 0 0 0 0 0 0 0 0 0
Act3 0 0 117 0 0 0 0 80 0 0 0 0 0 0 0 0
Act4 0 0 0 96 0 0 0 0 0 0 0 0 0 0 0 0
Act5 0 0 0 24 114 0 0 0 0 0 0 0 0 0 0 0
Act6 0 0 0 0 0 120 0 0 0 0 0 0 0 0 0 0
Act7 0 0 0 0 0 0 120 0 0 0 0 0 0 0 0 0
Act8 0 0 3 0 0 0 0 40 0 0 0 0 0 0 0 0
Act9 0 0 0 0 0 0 0 0 120 60 0 0 0 0 0 0
Act10 0 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0
Act11 0 0 0 0 0 0 0 0 0 0 120 0 0 0 0 0
Act12 0 0 0 0 0 0 0 0 0 0 0 120 0 0 0 0
Act13 0 0 0 0 0 0 0 0 0 0 0 0 120 0 0 0
Act14 0 0 0 0 0 0 0 0 0 0 0 0 0 120 0 0
Act15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120 0
Act16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120
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differently between the benchmark sequences depending 
on their frame properties, however, it achieved an overall 
best performance except for the Crowd sequence (positioned 
lowered). At a closer look, we see that in terms of accuracy, 
it is challenging as occupants are not well distinguishable 
from background and also frequent uMoDT failures occur 
due to occlusions. It still, however, has achieved satisfactory 
robustness.

5.2  Multi‑occupant activity recognition

In the following subsection, to show the generality of the 
TVS-AR method, we describe and evaluate the proposed 
CNN-based model using the TVS_Fseq for AR. We pre-
sent the classification results to prove the performance and 
suitability of the presented approach using low-resolution 
TVS_Fseq in terms of accuracy [65]. We used frame-based 
approach for recognizing 16 different activities showing the 
efficacy of a model by demonstrating it for a high HAR accu-
racy score of approximately 90.99%.

5.2.1  Activity recognition evaluation metrics

The performance metric that is most widely used to evaluate 
a classifier in the context of multiclass classification is over-
all accuracy [41]. The recognition accuracy is linear to the 
number of training frames. The training frames were used 
to fit in the parameters such as weights, validation set to fine 
tune the parameters and CNN architecture. The performance 
of the customized CNN was evaluated on validation split 
as a test data to validate the generalization and prediction 
power of the classifier. Additionally, the other most common 
performance evaluation metrics such as precision, recall, 
F-measure also provided an essential information required 
to assess the classification model [43].

5.2.2  Performance evaluation of activities

For each experiment, we followed the data splits and cross-
validation evaluation technique for TVS_Fseq . We divided 
TVS_Fseq into three splits: training split TVS_FTrain to train 
CNN model, validation split to tune the hyper-parameters 
such as learning rate, epoch size on unseen data, and finally 
test split to evaluate the classification performance. An aver-
age accuracy of 97.34% was achieved with a learning rate 
of 0.01 for 28,485 TVS_Fseq . A drop in accuracy, however, 
was observed with a decrease in the learning rate. The test 
split contained 1,920 TVS-F for validating 16 activities 
as mentioned in the confusion matrix illustrated through 
Table 7. It is observed that the TVS-AR method accurately 
classified most of single-occupant and multi-occupant activi-
ties. Nevertheless, some confusion has been observed for 
multi-occupant activities such as StandingWalking (Act10 ) 

and StandingStretching (Act9 ) have been confused due to 
similar motion patterns for Walking and Stretching. This is 
due to the activity Stretching, which involves extension of 
arms and returning to their original position, again sharing 
motion patterns to the activity Standing in a TVS_Fseq . Simi-
larly, static multi-occupant activities SittingSitting (Act3 ) and 
StandingStanding (Act8 ) share similar occupant appearances 
in the TVS_Fseq . For these, the activities Standing and Sit-
ting were confused due to similar heat maps in the frames. 
Furthermore, Fig. 9 shows the evaluation metrics in terms 
of Precision, Recall and F-Measure. By visualizing these, 
it can be concluded that multi-occupant activity, i.e., ( Act8 ) 
with both occupants Standing and ( Act10 ) with one occupant 
Standing and other one Walking has shown the lowest per-
formance for the test split of TVS_Fseq.

6  Conclusions

In this work, we proposed and demonstrated an unobtrusive 
Multi-occupant Detection and Tracking (uMoDT) framework 
for HAR based on low-resolution TVS. In this study, using 
a binarization technique with Gaussian filter for smoothing, 
a morphological improvement with inversion and dilation 
process, an individual occupant in the form of the blob was 
detected over a sequence of frames. This blob was further 
tracked by using a KF with location improvement and evalu-
ated with Intersection over Union (IoU). The above meth-
ods achieved detection and tracking accuracy of 88.46% for 
Thermal Vision Sensor frame sequence ( TVS_Fseq ). Addi-
tionally, a CNN-based multi-occupant HAR method was 
evaluated, achieving a validation accuracy of 97.34% and 
an accuracy of 90.99% for classification tasks. This experi-
mentation demonstrates improvements in occupant detection 
and, activity association using TVS. The experimental evalu-
ation using state-of-the-art benchmark datasets also revealed 
the robustness and effectiveness of the proposed framework. 
Further improvements may be achieved by introducing mul-
tiple TVS(s) for HAR. These settings may include movable 
TVS to recognize ADLs for more complex scenarios at dif-
ferent indoor locations.
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