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Abstract: Automated medical diagnosis is one of the important machine learning applications in
the domain of healthcare. In this regard, most of the approaches primarily focus on optimizing the
accuracy of classification models. In this research, we argue that, unlike general-purpose classification
problems, medical applications, such as chronic kidney disease (CKD) diagnosis, require special
treatment. In the case of CKD, apart from model performance, other factors such as the cost of data
acquisition may also be taken into account to enhance the applicability of the automated diagnosis
system. In this research, we proposed two techniques for cost-sensitive feature ranking. An ensemble
of decision tree models is employed in both the techniques for computing the worth of a feature in
the CKD dataset. An automatic threshold selection heuristic is also introduced which is based on the
intersection of features’ worth and their accumulated cost. A set of experiments are conducted to
evaluate the efficacy of the proposed techniques on both tree-based and non tree-based classification
models. The proposed approaches were also evaluated against several comparative techniques.
Furthermore, it is demonstrated that the proposed techniques select around 1/4th of the original CKD
features while reducing the cost by a factor of 7.42 of the original feature set. Based on the extensive
experimentation, it is concluded that the proposed techniques employing feature-cost interaction
heuristic tend to select feature subsets that are both useful and cost-effective.

Keywords: cost-sensitive feature selection; ensemble models; decision tree classifiers; chronic kidney
disease; random forest; gradient boosted trees

1. Introduction

Chronic kidney disease (CKD) is an ailment that affects the functionality of a kidney in the body.
Generally, CKD is divided into multiple stages in which the later stages are denoted as a renal failure
when the kidney is unable to perform its functions of blood purification and balancing minerals in
the body [1]. In the case of end-stage renal failure, hemodialysis is performed to supplant the kidney
function. This intervention provides a temporary solution to the problem. Hence, it is of paramount
importance that the CKD is detected at earlier stages where it can be addressed through medication
and lifestyle changes [2]. CKD is a highly prevalent disease, according to an estimate one in nine
Korean adults suffer from kidney disease [3]. Likewise, around 2.5–11.2% of the adult population in
Europe also suffer from it, while around 59% of all the American adult population is at a high risk
of developing kidney disease at some point [4,5]. The high incidence and prevalence of CKD are
attributed to its late diagnosis, especially in developing countries [6].
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In the domain of medical data mining, several intelligent clinical decision support systems
are designed which tend to automate the diagnosis process [6,7]. These decision systems employ
machine learning techniques that assist physicians in the diagnosis and treatment of CKD in an efficient
manner [6,8,9]. Based on a number of important indicators such as blood pressure, albumin levels, blood
and urea tests, potassium, and other comorbidities, e.g., diabetes, cardiovascular disease, etc., a patient
is comprehensively assessed for CKD and its progression. As the earlier diagnosis of the disease
onset can improve the chances of patients to favorably respond to treatment, therefore, most of the
automated systems are optimized for enhancing the overall accuracy of the model [8,10]. It is noted by
Itani et al. [7] that medical decision systems that solely focus on predictive performance are far from the
field reality and hence are not unanimously approved by physicians. In this regard, the interpretability
of the classification model is stipulated as one of the important requirements among others for a
successful medical decision system [7,10]. Similarly, the cost factor as a practicability concern for
medical decision systems recently gained traction in the medical data mining community [6,11–13].
Therefore, one of the key research directions pursued by the research community is to design decision
systems that are accurate, interpretable, and cost-effective.

In a number of studies performed on CKD diagnosis, decision tree models consistently produced
results with high predictive accuracy [8,9,12]. Hence, the main impetus for using tree-based models in
an ensemble technique is two-fold. Firstly, tree models are easy to interpret by the domain experts,
therefore, in domains such as medical diagnosis, it is desirable to assess the validity of the classification
model through visual inspection [7,10,14]. Secondly, tree-models that are based on bagging and
boosting techniques tend to produce highly accurate classifiers on small to medium datasets [6,8,9,15].
Hence, tree models are suitable approaches for considering in an ensemble for a CKD dataset, as they
can cater to both types of requirements i.e., interpretability and accuracy.

Moreover, feature selection is becoming an essential task in building classification models where
the objective is to select a subset of useful features [6,8,15–17]. The notion of usefulness is based on the
worth of a feature in a dataset in terms of its relevancy and redundancy. There are generally three
approaches for feature selection i.e., filter-based approach, wrapper-based approach, and embedded
approach [16,18,19]. In the case of filter approaches, the worth of a feature is evaluated through
univariate statistical approaches such as Chi-Square, Gini index, information gain, etc. Therefore,
feature ranking techniques fall into the filter category. On the other hand, wrapper approaches generally,
construct a set of candidate feature subsets that are evaluated on a classifier [19]. Embedded techniques
are implicitly used by some of the classifiers, such as decision trees, while constructing a model.

A number of studies demonstrated that ensemble-based feature selection techniques generally
perform better than non-ensemble techniques [8,16,17,20,21]. Ensemble feature selection approaches
are composed of multiple evaluation functions for quantifying the worth of a feature or a subset of
features. In this regard, multiple types of feature evaluation functions can be used such as univariate
techniques, classification models, or a set of mixed techniques from the aforementioned categories [8].
Ensembles can be comprised of both homogenous and heterogeneous configurations. In this regard,
for a homogenous configuration, a dataset is horizontally partitioned into multiple subsets where a
single type of the feature evaluation function is executed on each partition [16,21]. On the other hand,
for a heterogeneous configuration, multiple evaluation functions are executed on the dataset in parallel,
and later their results are combined [16,17,21].

Similarly, ensemble feature ranking approaches can be arranged in either a homogenous
configuration or a heterogeneous manner. In both cases, a global ranked list of features is obtained
based on multiple feature lists produced by the individual feature ranking functions. One key challenge
in this regard is to select a threshold value which divides the global ranked list into a set of retained
and removed features [20].

Most of the studies in the CKD domain assume that the cost of data acquisition is symmetric
i.e., having the same cost albeit not necessarily zero; therefore, the cost factor associated with each
feature is generally ignored [6,12,13]. However, this assumption may not hold in many real-world
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medical applications where a patient is required to undergo multiple tests such as urine analysis,
electrocardiogram, blood culture, etc., and the tests may vary in terms of incurred cost. Therefore,
feature selection methods for CKD diagnosis applications may take into account the cost factor as well.

In Figure 1a,b a scenario is depicted in which features are listed in descending order of their
importance. In Figure 1a, a feature merit calculation is performed based on the weightage of a feature
and feature’s associated cost. Both these terms are combined using a trade-off constant factor, α,
pre-specified by the user. As it can be seen in the implicit case that although different ‘α’ values may
have the same overall trend, it is still not clear which value of a threshold to select among a set of
candidate values. Furthermore, after feature number 13, the feature ranking is not consistent with
different ‘α’ values. Therefore, the implicit case is not only sensitive to the pre-specified ‘α’, but it also
makes it subjective to select a threshold value to retain a set of features. On the other hand, in Figure 1b
the blue line denotes feature weightage (FW) while the orange line represents an accumulated cost
of selecting a set of features. In the explicit case, a set of features can be easily distinguished at the
point of intersection which is comparatively cost-effective and useful than those which are below the
intersection point. Hence, in this study, the main question under investigation is this that can the
point of feature-cost intersection be used for selecting a subset of features that are both accurate and
cost-effective in the CKD diagnosis problem?

Recent studies reported significant scholarly work on developing chronic kidney disease diagnosis
and management systems [6,8,9,11,15,18,22–28]. In this regard, this study is continuation of research
performed on the CKD diagnosis problem. The study addresses the problem of cost-sensitive feature
selection for building decision tree models for the CKD diagnosis problem. The main objective of the
study is to demonstrate that economic considerations can be effectively taken into account along with
retaining the overall performance of the CKD diagnosis systems.

The proposed approaches are based on ensemble ranking techniques with a cost-sensitive threshold
selection. The proposed heuristic rule for threshold selection takes into account both worth of a set of
features and the overall incurred cost concerning the selected features. To the best of our knowledge, it is
the first study that addressed the notion of data acquisition cost within the framework of cost-sensitive
ensemble feature ranking. We proposed two ensemble ranking techniques that use multiple decision
tree-based classifiers as heterogeneous scoring functions. A schematic diagram for an ensemble feature
ranker is shown in Figure 2. The proposed techniques differ in terms of the application of threshold
operation. Ensemble-1 combines all the scores and thereafter automatically selects a threshold value
whereas ensemble-2 applies a threshold to individual ranks, and subsequently a set of feature subsets
are generated which are later combined into a consolidated feature subset. The multiple feature subsets
are combined using the majority voting scheme which is also adopted by several studies [8,17,29].

The major contributions of this study are as follows:

• We propose an automatic cost-sensitive threshold selection heuristic that takes into account both
the worth of a set of features and the overall accumulated cost.

• Decision tree-based classifiers performed favorably on the resulting features on a benchmark
CKD dataset.

• The features could also yield higher average accuracy with more sophisticated classification
structures, which shows that these features present high generalizability.

The rest of the paper is organized as follows: Section 2 deals with the literature review on
the subject. The proposed methodology is discussed in Section 3 in which the proposed ensemble
techniques are elaborated. Section 4 deals with the experimentation and the case study results, in which
we provide a detailed treatment of both the proposed approaches along with their comparison with
other related techniques. The conclusion of the study is provided in Section 5, along with a set of
future directions for extending this research.
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Figure 1. Cost-sensitive feature ranking and threshold selection.

Figure 2. Schematic diagram of an ensemble feature ranker.
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2. Literature Review

A number of studies shown that feature selection improves the generalization capabilities of
the classification models [6,8,9,16,18,20]. Feature selection is similar to dimensionality reduction
whereas the objective of the former is to retain the semantics present in the original dataset
while the latter transforms the data in such a manner as the overall dimensions of the data are
reduced [21]. Feature selection techniques are generally grouped into three broad categories, i.e.,
filter-techniques, wrapper-techniques, and embedded-techniques, as mentioned in the preceding
section. Filter techniques score features based on the general characteristics of the dataset [18]. In this
regard, most of the filter approaches are based on evaluating the correlation between features and the
class label. Hence, features having a high correlation with the target concept are regarded as useful
features. Feature ranking approaches are generally based on filter methods, but ranking can also
be produced by employing a classification model which in turn evaluates a subset of features [16].
Wrapper approaches involve classification algorithms in the process of evaluating a subset of features.
In this regard, a feature subset generation step is followed by an evaluation step [19]. The main objective
of the wrapper approach is to find a subset of features that are neither irrelevant nor redundant.
Filter methods are generally employed when the number of features is very large as these methods
are computationally fast and do not get bogged down in a pairwise comparison of the candidate
feature sets. Wrapper methods generally produce results that are relatively more optimized and
accurate than that of the filter methods whereas the latter produces the result in relatively less time [18].
Embedded methods select a subset of features as an integral part of the process of building a classifier
such as a decision tree algorithm that selects the most appropriate feature as it grows the tree [30].
A high-level summary (adapted from [31]) regarding the merits and demerits of feature selection
techniques is given in Table 1.

Table 1. Comparison among different feature subset selection techniques.

Technique Merits De-Merits

Filter

• Suitable for large datasets
• Computationally less expensive
• Produces more generalized results

• Surrogate classification measures
generally do not reflect the behavior of
the actual classifier

• Comparatively less accurate and
optimized than wrapper techniques

• Feature interaction is not taken
into account

Wrapper

• Produces relatively accurate results
• Accounts for feature interaction
• Produces optimized result with less

number of features

• Computationally more expensive
• Tends to over-fit on small datasets
• Lacks scalability

Embedded

• Fine-tuned for enhancing the
performance of a particular classifier

• Relatively less expensive than
wrapper techniques

• Generally more robust in terms
of overfitting

• Tightly coupled with a specific
classification model

• Lacks generalization capabilities for
other models

• Generally expensive than
filter methods

This research focuses on the application feature selection and classification for the CKD diagnosis
problem. In this section, we discuss some of the representative works in which feature selection
techniques are used for the CKD diagnosis. Salekin and Stankovic [11] proposed a wrapper based
feature selection approach which reduces the overfitting of the Random Forest (RF) classification
model on the CKD dataset. The reported resultant F1-measure of the model on top 5 features is
99.80%. Furthermore, the authors also reported promising results in terms of reduced cost. Chen et al.
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employed three models, i.e., K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Soft
Independent Modeling of Class Analogy for decision modeling of the CKD patients. The reported
approach achieved an accuracy of 93%. It is also reported that SVM was more robust in dealing with
noisy data as compared to other models and hence achieved an accuracy of 99% [23]. Serpen [24] used
the C4.5 decision tree model on the CKD dataset. The resultant tree model produced 8 production
rules of the form IF <condition> THEN <conclusion> and achieved an accuracy of 98.25%, whereas,
Al-Taee et al. [26] reported lower accuracy on the same dataset. Furthermore, the authors also identified
5 salient features in their study. In another study, the same framework as reported in [26] is used,
in which they used three classifiers on a CKD dataset which was acquired from Prince Hamza Hospital,
Jordan. The study reported that the decision tree model performed reasonably well on a number of
performance metrics [27]. Tazin et al. [27] used several classification models such as SVM, Naive Bayes,
KNN, and decision tree on the CKD dataset. Subsequently, a feature ranking is generated from which
the top 10 features were selected. It is reported that the decision tree algorithm produced a model
yielding accuracy of 99.75%. Polat et al. [18] proposed a feature selection technique for SVM based
classification model. The authors used a hybrid feature selection by leveraging both filter and wrapper
methods. They reported an accuracy rate of 98.50% on SVM using ‘Best First’ search technique using
11 attributes. Likewise, Ogunleye and Wang [8] selected the top 13 features for feature selection based
on an ensemble of feature selection techniques. Afterward, the authors performed classification using
an optimized RF classifier for the CKD dataset. The reported accuracy of 100% was over the reduced
CKD dataset. In Ref. [22], the authors experimented with SVM and Artificial Neural Network (ANN)
on the CKD dataset. They reported that ANN produced a comparatively higher accuracy model as
that of SVM. All the experiments are performed on the top 12 features. Apart from feature selection,
the data discretization process is reported to have a favorable effect on the decision tree-based model
construction [28]. Qin et al. [15] experimented with several different data imputation configurations on
a set of multiple classifiers. They reported that RF achieved the highest accuracy of 99.75% for the
CKD diagnosis, while logistic regression (LG) was able to produce an accuracy of 98.95%. Afterward,
the authors proposed an integrated model that employed both the aforementioned classifiers along
with the perceptron and subsequently produced an accuracy of 99.83% using the integrated approach.
Sobrindo et al. [6] performed a comprehensive study on CKD diagnosis using various machine learning
algorithms. The authors reported the highest accuracy achieved by decision tree-based models in the
pool of candidate models which included Naïve Bayes (NB), SVM, ANN, KNN.

We provided a general overview of the feature selection techniques and classification algorithms
applied to CKD diagnosis and it can be observed that decision tree-based models are one of the
popular modeling approaches for the CKD diagnosis. Our proposed approach is based on feature
ranking therefore we herein mention a few studies which addressed the problem of automatically
selecting an appropriate threshold value using heuristics. Most of the studies opt for a fixed threshold
value for retaining a set of top features [32–34]. But as it is observed that a fixed threshold value
may over-select or under-select an appropriate number of features [20,29,35,36]. Authors in [37] used
data complexity measures for selecting a threshold value while authors in [38] used a minimum
union method to combine multiple rankings and produced promising results on high dimensional
datasets [39]. Tsai and Hsiao [17] performed a detailed study regarding combining multiple feature
selection methods for stock prediction problem. Authors reported higher predictive accuracy over
the ANN classifier based on the multi-point interaction among Principal Component Analysis (PCA),
Genetic Algorithm (GA), and Decision Tree (DT) feature sets, among other combination strategies.
Osanaiye et al. [40] proposed an ensemble feature selection technique in which the authors combine
partial results from multiple filter measures. Subsequently, 1/3rd of features from each feature selection
method are retained. Consolidated feature subset is obtained through the intersection of the candidate
feature subsets.
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Several threshold selection approaches are reported in the literature that are primarily geared
towards optimizing the accuracy of the classification task. But the aforementioned approaches cannot
take into account valuable meta-information associated with the feature set, such as cost of data
acquisition. It is important to note that the cost-free feature selection approaches may also result in
cost reduction but such a cost reduction would be effectively unintentional since the cost-free feature
selection methods are oblivious to the cost meta-data associated with the features. Our proposed
approaches are based on explicitly taking into account the cost factor along with the feature worth.
In this regard, we show that an automatic threshold value can be selected based on the feature-cost
interaction curve, as shown in Figure 1b, which results in a feature set that is both useful and
cost-effective. In the following section, we elaborate on the proposed methodology for computing
feature weightage along with the application of a threshold value in arriving at a final feature set.

3. Proposed Methodology

In this section, we elaborate on the underpinnings of our proposed approach for cost-sensitive
feature ranking. In most of the feature ranking techniques, a feature weightage is produced which
in turn is used for the feature ranking. Afterward, a threshold value is used to filter-out undesirable
features while the retained features are fed to a data classification model. One of the major challenges
in this regard is to find an appropriate threshold value as shown in Figure 1a. Furthermore, it is
also important to select the feature scoring function which is not biased towards any particular data
characteristics, e.g., information gain tends to favor attributes that take on a large number of distinct
values [41]. Filter-based feature weighting measures such as the Gini index do not account for feature
interaction and hence the measure may not be comprehensive enough to capture the complementary
feature interaction i.e., a set of features that may not be highly relevant but when considered collectively,
they enhance the overall model’s performance. In this regard, the feature ranking approach depends
on the comprehensiveness of the weighting function. Therefore, in this research, we use three decision
tree-based classification models, Classification and Regression Tree (CART), RF and, Gradient Boosting
Trees (GBT), which evaluate both the relevance and redundancy of a feature set. It is important to note
that the model-based scoring functions can be executed in parallel, therefore the running time of the
ensemble is proportional to the running time of its slowest classifier. In this regard, using concurrent
processes we can execute the classifiers and afterward combine their results. The main objective of
the feature weightage step is to score features based on their importance as well as their interaction
with other features in the dataset. Once a reliable feature score is obtained, based on their weightage,
features are ranked in descending order of their importance. Subsequently, an averaging operation is
performed on the obtained feature weightage and a final feature score is generated.

In this research, we propose two approaches for combining features i.e., ensemble-1 is based on
combining individual scores, whereas ensemble-2 generates three partial solutions in the form of three
subsets obtained from the scoring functions. Afterward, the partial solutions are combined using the
majority vote. In ensemble-1, a threshold value based on the feature-cost intersection is selected after
combining multiple lists, whereas, in ensemble-2, the threshold is applied on an individual list which
is obtained from the scoring function and a resultant feature subset is generated. Each feature subset
is treated as a partial solution. A final solution is obtained by applying the majority vote scheme to
the partial solutions. We normalized the cost values; hence, the overall cost of the entire feature set
adds-up to 1. The proposed ensemble-1 is depicted in Figure 3, while Figure 4 shows ensemble-2.
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Figure 3. The architecture of the proposed ensemble-1.

Figure 4. The architecture for the proposed ensemble-2.

3.1. Data Preprocessing

Data preprocessing is a pre-requisite task in a number of data-driven applications. The main
objective of this operation is to ensure that the data are of high quality before commencing the
model construction process. The major operations performed by this component are missing values
imputation and feature id-ness detection and removal. For this study, we used a k-nearest neighbor to
impute missing values, where k = 3. This technique selects a set of records from the dataset which are
similar to the missing value record and subsequently imputes the missing value based on the local
information of the selected instances. Furthermore, we used Euclidean distance for computing the
similarity of numerical attributes. Numerical values are replaced with taking the mean value of the
selected attribute while mode value is used for nominal features. The chronic kidney disease dataset,
discussed in the subsequent section, contains 242 records with missing values while the complete
dataset is composed of 400 records. Therefore, around 60% of the records contained one or more
missing values.

3.2. Classifier-Ensemble

The proposed approach uses decision tree-based classifiers for feature scoring. Following is a
brief description of the classification models used in the ensemble:

Classification and Regression Tree: It is one of the popular decision tree induction algorithms.
CART creates strictly binary decision trees by employing recursive partitioning to build the model [42].
CART selects a subset of features from the complete feature set for building a decision tree model.
The choice of feature selection is based on the quantification of a feature’s worth in generating a
homogenous data subset. Generally, the Gini index is used to calculate the importance of a feature
at a specific level in the tree whereas information gain is also one of the popular choices for feature
quantification. The main objective of the CART algorithm is to construct the model which can separate
the data into homogenous subsets with respect to the class label. We used the Gini index to calculate
the impurity of a feature subset. Feature weightage is obtained from CART by taking into account the
effect of adding a feature to the decision tree and the subsequent decrease in the impurity in the model.
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Random Forest: It is based on a decision tree model where a set of decision trees are generated.
In this case, each tree is incrementally improved by partitioning the dataset into homogenous subsets [12].
RF creates a set of pre-defined decision trees where each tree is constructed from a bootstrapped
dataset. RF generally performs well for small to medium-sized datasets and the resulting model is
robust against overfitting, feature interaction, and spurious data patterns [43]. The key approach of
this algorithm is to create a set of bootstrapped datasets through which a set of pre-defined randomly
selected features are selected and a tree model is created. The standard RF model is a combination of
binary decision trees. Unlike CART, RF is an ensemble tree model where multiple decision trees are
created for introducing diversity in the overall model. Bagging is applied to the input dataset through
which several data subsets are created. Generally, trees are constructed based on randomly-selected
features but other feature selection schemes can also be used [12]. Finally, all the generated trees are
integrated through a majority voting scheme for the classification problem. Although the resulting
model is not fully interpretable as that of CART, the individual decision trees can be extracted. Similarly,
feature weightage is computed by taking into account the average decrease in impurity over all the
trees in an ensemble.

Gradient Boosted Trees: It is an ensemble modeling technique for either regression or classification
problems. It is based on a forward-learning approach in which predictive results are incrementally
improved through introducing weak models. A weak model is one that is slightly better than a
random guess. GBT is based on a non-linear regression procedure that improves the accuracy of
decision trees. Weak classification tree models are applied to different distributions of the dataset in a
sequential manner where misclassified data points are given higher weightage. As weak models are
added to the integrated model the error recorded through the loss function minimizes by applying the
gradient descent approach. In the case of GBT, the feature weightage can be obtained by the sum of
improvements for a given attribute at a node.

3.3. Combiner

It plays an important role in the overall proposed architecture.

• Ensemble-1 produces multiple feature weightages obtained from individual feature scoring
functions. In this case, the task of combiner is to consolidate the individual feature weightages
into a consolidated score. The final scores are obtained by taking the average across multiple
scoring functions as shown in Equation (1):

f =
1
|N|

∑N

m=1
σm( f ) (1)

The final score of a given feature f̂ is the average weightage across three independent scoring
functions σ applied on a feature f , where N is the total number of functions in the ensemble. IL is an
intermediate object that contains feature weightage and the associated information for each scoring
function. A feature list is denoted by an object L that stores a feature’s score, its ID and the accumulated
cost for a given feature f. *L represents the sorted list based on features’ score. Please note that the
scoring values are scaled between 0 and 1 before applying Equation (1).

• Ensemble-2 deals with multiple partial solutions in the form of feature subsets. In this case, each
scoring function produces an independent ranked list. A threshold operation is applied to each
list. Subsequently, three different subsets are produced. All the subsets are combined by taking
the majority voting scheme. In our case, as the ensemble is comprised of 3 scoring functions,
therefore the majority voting is effectively translated into the selection of a feature that is present
into at least 2/3rd of the subsets.

Table 2 provides summary of the functions used in both Algorithms 1 and 2.
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Algorithm 1 Ensemble-1

Input: Dataset D, Cost vector Cv, List of scoring functions N
Output: Selected feature set S
1: Begin
2: foreach m in N do:
3: IL[m] = score_function(m, D) //N=3 i.e., DT, RF, GBT
4: endfor
5: L = average (IL) // using Equation (1)
6: *L = sort(L) // *L, is sorted in descending order
7: foreach f in *L do:
8: Acc_Cost (f) = Cv(f) //using Equation (2), cost accumulation based on all the elements in *L up to ‘f’
9: *L.cost[f] = Acc_Cost (f) //accumulated cost assignment
10: endfor
11: T = intersection (*L) // where *L.score < *L.cost
12: S = retained (*L, T) // retained features in *L after applying T
13: return S
14: End

Algorithm 2 Ensemble-2

Input: Dataset D, Cost vector Cv, List of scoring functions N
Output: Selected feature set S
1: Begin
2: foreach m in N do:
3: L[m] = score_function(m, D) //same as Algorithm 1
4: *L[m] = sort(L[m]) //separate list for each scoring function ‘m’
5: foreach f in *L[m] do:
6: Acc_Cost(f) = Cv(f) //same as Algorithm 1
7: *L[m].cost = Acc_Cost (f) //accumulated cost assignment for ‘m’
8: endfor
9: T = intersection (*L) //same as Algorithm 1
10: Sm = retained (*L, T) //feature subset is obtained for ‘m’
11: endfor
12: S = combine(Sm) //using majority vote scheme
13: return S
14: End

Table 2. Summary table for elaborating the proposed methods.

Function Name Input Output Purpose

score_function ()
m: Feature scoring

function i.e., DT, RF, GBT
D: dataset

List: feature weightage based on
‘m’ on ‘D’ for each feature ‘f’

To quantify the merit of the feature
set based on different scoring

functions

average () List: an object containing
feature list

Average of different feature
scores obtained from ‘N’ scoring

functions for each feature ‘f’

To obtain a single value describing
the merit of each feature

sort () List: an object containing
feature list

Obtain a re-ordered list based on
feature’s weightage

To place more important features
earlier in the list

intersection () List: an object containing
sorted feature list θ: intersection point

To employ θ in feature subset
selection. θ is a point of intersection
where a feature’s score/weightage is
less than that of its accumulated cost

retained ()
List: an object containing

sorted feature list
θ: intersection point

List: a subset of features

Final solution in the case of
Algorithm 1. For Algorithm 2,

a partial solution is obtained for
each ‘m’

combine ()
List: a list of partial

solutions in the form of
feature subsets

List: selected features that
qualified the majority

voting constraint

Final solution in the case of
Algorithm 2
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3.4. Feature Cost Aggregator

Feature cost aggregator is used for selecting a threshold value over a feature weightage curve.
Both ensemble-1 and ensemble-2 approaches use a threshold to select a subset of features. Features are
arranged in the descending order of their combined score. The individual cost of a feature is retrieved
and accumulated in a top-down manner as given in Equation (2).

Acc_Cost(Fi) = Cv(Fi) + Cv(Fi−1) + . . .+ Cv(F0) (2)

where i = 1, 2, 3, . . . , m. And Cv denotes a cost vector; therefore, Cv(F0) = 0.
In this study, values of the cost feature are normalized between 0 and 1. Please note that, although

the feature score curve is calculated only once, whereas, different cost factors associated with a
feature may generate different accumulated cost (Cscore) curves. We investigated the economic cost
perspective, whereas other cost factors such as data’s availability, risk, or the computational cost may
also be taken into account.

3.5. Threshold and Feature Subset Selector

The purpose of the threshold value is to select a subset of features from the given feature list after
incorporating the cost value. Ensemble-1 produces a feature list based on average scores. In this regard,
we can find a point of intersection between feature weightage and the corresponding accumulated
cost values. The point of intersection between ‘FW’ and accumulated cost score ‘Cscore’ can be
found where FW < Cscore. A sample graph based on the feature-cost intersection curve is depicted in
Figure 1b. A threshold value is automatically selected based on the point of intersection, e.g., the point
of intersection is at feature number 6 in Figure 1b. Hence, all the features starting from feature number
3 leading up to feature number 6 would be retained while the rest of the features would be discarded.
The assumption taken in this regard is that the features over the interaction point are reasonably useful
and cost-effective, whereas, the accumulated cost of features below the intersection point out weigh
their importance.

In the case of ensemble-2, we consolidate individual feature subsets by accounting for the
occurrence of a feature in multiple subsets and taking a majority vote among the partial solutions.
For example, we have features such as α, β, and γ, placed at arbitrary positions in three separate
subsets produced by three scoring functions, DTs1, RFs2, and GBTs3. Then we compute the frequency
of these features e.g., <α:3>, <β:2>, and <γ:1>. According to the aforementioned selection strategy,
we select both α and β features based on our majority voting heuristic, i.e., 2/3rd of feature frequency,
while discard γ and all other features which are having a frequency as that of γ or lower. The intuition
between the second approach is that, if a feature appears more frequently in multiple subsets, then
it is less likely due to any spurious patterns or any particular bias of the scoring function. Table 3
shows a sample scenario for the ensemble-2 approach. In this case, we have three different subsets.
We generate an integrated subset by taking into account the frequency of a particular feature regardless
of its position in the subset. The highest score of a feature is determined by the number of scoring
functions in the ensemble. As we have three classifiers, therefore, the highest score a feature may get
is 3. In Table 3, the selected features are denoted with boldface letters while the remaining features
are discarded.

It is important to note that the subsets generated by scoring functions may not be of equal size.
Since for each scoring function e.g., CART, features’ weightage is obtained and then subsequently based
on the intersection of the FW and the accumulated cost i.e., Cscore, similar to the ensemble-1 approach,
a subset of features is selected for each function. More details regarding this step are presented in
Section 4.
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Table 3. Ensemble-2 frequency-based feature ranking.

Subset 1 Subset 2 Subset 3 Feature ID Frequency

3 19 3 3 3
6 18 19 19 3
20 3 20 18 3
19 15 4 20 2
7 5 22 4 2
16 8 18 15 2
22 14 23 22 2
18 2 12 23 2
4 1 21 7 1
23 9 11 16 1

4. Experimentation

This section deals with the experimentation details of the study. In this regard, a brief description
of the dataset is provided along with a summarized analysis of the quality of the dataset. Afterward,
we elaborate on the performance metrics used in this study and the interpretation of the results.
Furthermore, we carried out two sets of experiments. Experiment 1 deals with evaluating the efficacy
of ensemble-1 with that of the baseline models, while ensemble-2 is compared with baseline models
in experiment 2. Once we establish the performance of both the proposed approaches, we then
compare them with other similar methods mentioned in Section 2, over several performance metrics
and incurred cost.

To demonstrate the efficacy and applicability of our proposed approach, we used a benchmark
dataset from the University of California (UCI, Irvine, CA, USA) online repository [44]. The chronic
kidney disease (CKD) is a real-world dataset acquired over a period of two months by Apollo Hospitals,
Tamilnadu, India.

4.1. Dataset Description

The CKD dataset is composed of 400 instances where each instance is comprised of 24 attributes
excluding the class attribute. There are 13 categorical attributes while 11 of the attributes have numerical
values. The dataset is used to model a dichotomous decision variable i.e., 1 represents a given patient
is diagnosed with the disease, while −1 denotes otherwise. The overall dataset contains 250 CKD
patients while the rest of the patients have a non-CKD diagnosis. The acquired data are preprocessed
to impute missing values and ID attributes. Table 4 provides a summary of the CKD dataset, along
with the economic cost of acquiring data for a particular feature. The cost factor associated with each
attribute is adapted from the work of Salekin and Standkovic [11].

The attribute importance in terms of its correlation with the class variable is shown in Figure 5.
As it can be seen that several features have a high correlation with the target concept. The nature of
correlated features and their treatment are generally domain-dependent and therefore, a decision-maker
is generally involved to decide on either retaining or removing highly correlated features. In the
absence of a domain expert, features having higher correlation are generally preferred over lower
correlation features but in the case where the availability of such features is not certain at the time of
decision making then it is recommended to remove such highly correlated features.
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Table 4. Chronic Kidney Disease (CKD) dataset description.

ID Attribute Cost Description ID Attribute Cost Description

1 Age <age: numerical> 1 In years 13 Sodium
<sod: numerical> 4.2 mEq/L

2 Blood Pressure
<bp: numerical> 1 Mm/Hg 14 Potassium

<pot: numerical> 50 mEq/L

3 Specific Gravity
<sg: numerical> 1 1.005, 1.010, 1.015,

1.020, 1.025 15 Hemoglobin
<hemo: numerical> 2.65 Gms

4 Albumin
<al: numerical> 26 0–5 16 Packed Cell Volume

<pcv: numerical> 2.62 Integer valued

5 Sugar
<su: categorical> 21 0–5 17

White Blood Cells
Count

<wc: numerical>
31 cells/cumm

6 Red Blood Cells
<rbc: categorical> 40 1: Normal,

0: Abnormal 18
Red Blood Cells

Count
<rc: numerical>

31 millions/cmm

7 Pus Cell
<pc: categorical> 31 1: Normal,

0: Abnormal 19 Hypertension
<htn: categorical> 1 1: Yes, 0: No

8 Pus Cell Clumps
<pcc: categorical> 31 1: Present,

0: Absent 20 Diabetes Mellitus
<dm: categorical> 19.4 1: Yes, 0:No

9 Bacteria
<ba: categorical> 51 1: Present,

0: Absent 21
Coronary Artery

Disease
<cad: categorical>

51 1: Yes, 0: No

10
Blood Glucose

Random
<bgr: numerical>

21 mgs/dl 22 Appetite
<appet: categorical> 1 1: Good, 0: Poor

11 Blood Urea
<bu: numerical> 12.85 mgs/dl 23 Pedal Edema

<pe: categorical> 1 1: Yes, 0: No

12 Serum Creatinine
<sc: numerical> 15 mgs/dl 24 Anemia

<ane: categorical> 28.64 1: Yes, 0: No

Figure 5. Pareto-chart of features in the Chronic Kidney Disease (CKD) dataset.

4.2. Experimental Setup

In this study, we used seven classification algorithms for evaluating the performance of the
proposed approaches. The selected classifiers are comprised of decision tree-based models as well as
other well-known classification algorithms. Moreover, extensive experimentation is also performed
in which a number of relevant techniques are compared with that of the proposed approaches.
All experiments are performed on a system having processor AMD Ryzen 3 2200 G with 8 GB RAM and
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64-bit Windows 10 Enterprise Edition. In this study, we used the RapidMiner Studio 9.6 version [45] for
simulating the proposed approaches. Workflows related to generating feature weightage for different
feature scoring functions are hosted at MyExperiment.org, which is a collaborative repository to share
workflows and other associated files [46–48].

Table 5 shows the parameters selected against each classification model.

Table 5. Classification models parameters.

Method Parameters

Naïve Bayes (NB) N/A

Logistic Regression (LG) N/A

Deep Learning (DL)
Layers: 4

Hidden Layer size: 50 each
Activation: Rectifier, Softmax

Decision Tree (CART) Impurity measure: Gini index
Maximal depth: 4

Random Forest (RF) Number of trees: 20
Maximal depth: 7

Gradient Boosted Trees (GBT)
Number of trees 20
Maximal depth: 7

Learning rate: 0.100

Support Vector Machine (SVM) Gamma: 0
C: 10

To evaluate the efficacy of the proposed approaches, we used several evaluation metrics such as
accuracy, precision, recall also known as sensitivity, specificity, F1-measure, and Area under Receiver
Operating Characteristics Curve (AUC). The evaluation metrics are computed through the confusion
matrix such as:

True Positive (TP): denotes positive instances predicted as positive.
True Negative (TN): denotes negative instances predicted as negative.
False Positive (FP): denotes negative instances predicted as positive.
False Negative (FN): denotes positive instances predicted as negative.

Based on the aforementioned definitions, the quality metrics of interest are calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Precision =
TP

TP + FP
(4)

Recall/Sensitivity =
TP

TP + FN
(5)

Specificity =
TN

TN + FP
(6)

F1−measure = 2×
(Recall ∗ Precision)
(Recall + Precsion)

(7)

The evaluation results are reported on 5 fold cross-validation in which the original dataset
is horizontally partitioned into 5 partitions. In each iteration, four of the partitions are used for
scoring features and obtaining a final feature subset. The remaining fifth partition is used for building
classification models. In this manner, the reported result values for each classification model are
averaged over different testing partitions.
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5. Results and Analysis

5.1. Baseline Results

In this section, we report the results of the baseline models over the full CKD dataset without any
feature selection, as shown in Table 6.

Table 6. Evaluation results for baseline models.

Models Accuracy Precision Recall Specificity F-Measure AUC Cost

NB 62.3 ± 2.0% 62.3 ± 2.0% 100.0 ± 0.0% 0.0 ± 0.0% 76.6 ± 1.5% 0.908 ± 0.09

475.36

LG 84.3 ± 6.6% 83.2 ± 5.8% 94.3 ± 9.3% 66.9 ± 14.0% 88.2 ± 5.6% 0.952 ± 0.58
DL 89.5 ± 2.3% 85.4 ± 2.8% 100.0 ± 0.0% 72.8 ± 5.7% 92.1 ± 1.6% 1.0 ± 0.0
DT 87.7 ± 4.8% 97.3 ± 3.7% 90.4 ± 10.5% 95.6 ± 6.1% 93.3 ± 4.5% 0.966 ± 0.03
RF 89.5 ± 3.5% 83.9 ± 3.6% 100.0 ± 0.0% 66.4 ± 11% 91.2 ± 2.2% 0.998 ± 0.004

GBT 73.8 ± 5.8% 86.2 ± 6.9% 100.0 ± 0.0% 71.4 ± 15.6% 92.5 ± 4.0% 1.0 ± 0.0
SVM 92.2 ± 9.0% 71.8 ± 8.1% 97.2 ± 3.8% 35.8 ± 20.7% 82.4 ± 5.6% 0.844 ± 0.12

Average 82.75 ± 4.8% 81.44 ± 4.7% 97.41 ± 3.3% 58.41 ± 10.4% 88.07 ± 3.5% 0.952 ± 0.04

5.2. Feature Weightage Calculation and Feature Subset Acquisition

As mentioned earlier, both ensemble-1 and ensemble-2 approaches require a robust feature scoring
function. In this regard, three decision tree-based classifiers are used as the scoring functions to obtain
a consolidated feature score. In the following section, we elaborate on the feature scores obtained
from different functions along with the feature subsets selected. Please note that ensemble-1 combines
individual weightage obtained from multiple scoring functions and afterward selects a threshold,
whereas ensemble-2 is based on an eager approach in which threshold is applied to individual scoring
functions and a set of feature subsets are obtained which are afterward combined into a consolidated
feature set.

• Decision Tree Score: Features are scored through the CART decision tree classifier. The blue line
in Figure 6 shows the feature weightage (FW) in the decreasing order of their importance while
the orange line denotes accumulated cost (Cscore). Both values are normalized. The point of
intersection between FW and Cscore is found around feature number 5 as shown in Figure 6.

• Random Forest Score: The second scoring function is based on random forest. The blue line
in Figure 7 shows the feature weightage (FW) while the orange line denotes accumulated cost
(Cscore). Both the values are normalized. The point of intersection between FW and Cscore can
be observed around feature number 9 as shown in Figure 7.

• Gradient Boosted Trees Score: The last scoring function is based on GBT. The blue line in Figure 8
shows the feature weightage (FW) while the orange line denotes accumulated cost (Cscore).
Both the values are normalized. The point of intersection between FW and Cscore is around
feature number 3 as shown in Figure 8.

In this study, all the feature scoring functions are based on decision tree family models. Therefore,
it would be interesting to investigate the correlation of generated ranking lists. We used the Kendall
rank correlation coefficient [49] to compute the pair-wise correlation of lists produced by DT, RF, GBT
as shown in Table 7.

Table 7. Kendall rank correlation coefficient for different scoring functions.

DT and RF RF and GBT GBT and DT

−0.17 −0.09 0.22
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Figure 6. Decision tree-based feature scoring.

Figure 7. Random forest-based feature scoring.

Figure 8. Gradient boosted trees based feature scoring.
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As it can be observed that the correlation between different lists is closer to zero. The correlation
results of the ranked lists support the null hypothesis of mutual independence. Therefore, we can
conclude that there is statistically significant independence between the ranked lists. Furthermore,
the lists generated by both GBT and DT are relatively in agreement with each other while the lists
produced by DT and RF, and as well as RF and GBT show disagreement. In this regard, each scoring
function account for important characteristics of the dataset while not diverging too much in their
final results.

Furthermore, we can also look at different feature subsets obtained from the aforementioned
scoring functions as reported in Table 8 and their Jaccard index value [50]. Figure 9 depicts a Venn
diagram for all possible logical relations among different feature subsets.

Table 8. Selected features by individual scoring functions.

Scoring Function List Selected Features

Decision Tree L1 15, 6, 17, 24, 5
Random Forest L2 20, 19, 18, 6, 15, 3, 22, 9

Gradient Boosted Trees L3 6, 19, 4, 20, 14, 11, 3

Figure 9. Jaccard index for different feature subsets.

It is interesting to note that, although the ranked lists produced by GBT and DT have a higher
correlation, whereas, the feature subsets obtained after applying a threshold value to the respective lists
have a lower value on the Jaccard index i.e., 0.1000. On the other hand, a higher Jaccard index value is
obtained between RF and GBT feature subsets while their ranked lists reported a negative correlation.
Based on these observations, we can conclude that both the lists and the subsequent feature subsets
obtained from the scoring functions are not redundant.

The resulting selected features collected in lists 1, list 2, and list 3 are based on the decision tree,
random forest, and gradient boosted trees, respectively. As it can be seen that there are some variations
in the selected features, which shows that each scoring function has its own inductive bias while
constructing a model as shown in Table 8. A detailed study of the inductive bias of decision tree
models is not within the scope of this study.

The averaged evaluation results of the aforementioned seven classification models are provided
in Table 9. These results reflect the performance of classification models on reduced datasets acquired
from each scoring function. In this regard, the decision tree classifier is constructed based on features
present in list L1. Likewise, classifiers for random forest and gradient boosted trees are built on L2 and
L3, respectively.

The overall performance of the random forest and gradient boosted trees increased. Although the
decision tree could not improve the accuracy over the full dataset, it slightly improved the sensitivity.
As it can be seen that the automatic threshold selection successfully opted for threshold values which
resulted in the selection of important features while also keeping the overall cost of the selected
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feature set low. Hence, the feature subsets produced by different scoring functions are both relevant in
enhancing the accuracy of the classification models and distinct.

Table 9. Averaged evaluation results for individual scoring functions on seven classification models.

Scoring
Function

Average
Accuracy

Average
Precision

Average
Recall

Average
Specificity

Average
F-Measure Average AUC Cost

DT Only 71.95 ± 3.44% 70.21 ± 2.94% 99.01 ± 1.28% 27.32 ± 7.05% 81.78 ± 2.27% 0.937 ±0.056 123.29
RF Only 96.01 ± 2.64% 95.30 ± 2.71% 98.78 ± 1.91% 90.42 ± 5.92% 96.98 ± 2.25% 0.995 ± 0.006 197.05

GBT Only 85.24 ± 3.88% 84.71 ± 4.58% 98.34 ± 2.14% 63.22 ± 13.18% 90.25 ± 3.01% 0.941 ± 0.05 150.25

5.3. Ensemble-1 Results

Feature weightage obtained from individual scoring functions are consolidated through an
averaging operation. The intuition behind the consolidation process is that the final scores will reflect
both low-cost and high-accuracy characteristics of the individual functions. Figure 10 shows the
feature-cost interaction graph for ensemble-1.

Figure 10. Ensemble-1 based feature scoring.

As can be seen in Figure 10 shows that the point of intersection is around feature number 3.
Therefore, all the features starting from feature number 6 up to feature number 3, i.e., 6, 15, 20, 19, 18,
and 3, would be selected. In this regard, Table 10 shows the results of evaluation metrics for features
selected by the ensemble-1 approach.

Table 10. Ensemble-1 results based on selected features.

Models Accuracy Precision Recall Specificity F-Measure AUC Cost

NB 98.25 ± 2.92% 95.72 ± 3.81% 98.78 ± 1.64% 91.94 ± 7.55% 97.14 ± 2.21% 0.995 ± 0.006

95.05

LG 99.10 ± 1.90% 98.80 ± 2.80% 100.0 ± 0.0% 97.50 ± 5.60% 99.40 ± 1.40% 1.0 ± 0.0
DL 97.40 ± 2.40% 96.10 ± 3.60% 100.0 ± 0.0% 93.10 ± 6.40% 98.0 ± 1.90% 1.0 ± 0.0
DT 89.40 ± 4.0% 87.70 ± 5.20% 97.10 ± 3.90% 76.40 ± 12.3% 92.10 ± 2.80% 0.975 ± 0.03
RF 98.30 ± 2.4% 97.50 ± 3.4% 100.0 ± 0.0% 95.0 ± 6.805 98.70 ± 1.80% 1.0 ± 0.0

GBT 95.70 ± 4.3% 93.80 ±6.1 % 100 ± 0.0% 88.30 ± 11.9% 96.70 ± 3.20% 1.0 ± 0.0
SVM 95.60 ± 3.1% 96.20 ±5.6 % 97.20 ± 3.8% 93.30 ± 9.90% 96.50 ± 2.40% 0.993 ± 0.009

Average 96.25 ± 2.82% 95.72 ± 3.81% 98.78 ± 1.64% 91.94 ± 7.55% 97.14 ± 2.21% 0.995 ± 0.006

A cursory glance at Tables 9 and 10 shows that the proposed ensemble-1 technique successfully
reduced the overall cost while improving the key evaluation metrics over the individual scoring
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functions. Moreover, multiple combinations of feature scoring functions and their respective averaged
results over seven classification models are shown in Table 11.

Table 11. Multiple combinations of scoring functions and their respective results.

Scoring
Functions

Averaged
Accuracy

Averaged
Precision

Averaged
Recall

Averaged
Specificity

Averaged
F-Measure

Averaged
AUC Cost

DT Only 71.95 ± 3.44% 70.21 ± 2.94% 99.01 ± 1.28% 27.32 ± 7.05% 81.78 ± 2.27% 0.937 ±0.056 123.29
RF Only 96.01 ± 2.64% 95.30 ± 2.71% 98.78 ± 1.91% 90.42 ± 5.92% 96.98 ± 2.25% 0.995 ± 0.006 197.05

GBT Only 85.24 ± 3.88% 84.71 ± 4.58% 98.34 ± 2.14% 63.22 ± 13.18% 90.25 ± 3.01% 0.941 ± 0.05 150.25
DT-RF 93.78 ± 3.04% 95.29 ± 4.90% 95.31 ± 6.50% 91.41 ± 9.00% 95.04 ± 2.57% 0.99 ± 0.02 143.69

DT-GBT 91.40 ± 2.27% 91.89 ± 3.01% 96.01 ± 4.36% 83.79 ± 5.61% 93.59 ± 1.89% 0.95 ± 0.02 162.54
GBT-RF 93.39 ± 2.70% 91.53 ± 4.07% 99.19 ± 1.47% 83.80 ± 8.19% 95.04 ± 1.96% 1.00 ± 0.01 172.05

Ensemble-1 96.26 ± 2.93% 95.73 ± 3.81% 98.79 ± 1.64% 91.94 ± 7.56% 97.14 ± 2.21% 1.00 ± 0.01 95.05

5.4. Ensemble-2 Results

As mentioned earlier in Section 3.5, the ensemble-2 is based on consolidating the feature subset
acquired from different scoring functions in such a manner that the majority of the features are retained
from the individual subsets while the rest of the features are discarded. Table 12 shows features subsets
acquired from different scoring functions and the final consolidated solution based on ensemble-2.

Table 12. Feature selected through ensemble-2.

Scoring Function List Selected Features Frequency

Decision Tree L1 15, 6, 17, 24, 5
6:3, 3:2, 15:2, 19:2, 20:2, 1:1, 2:1, 4:1, 5:1, . . .Random Forest L2 20, 19, 18, 6, 15, 3, 22, 9

Gradient Boosted Trees L3 6, 19, 4, 20, 14, 11, 3
Ensemble-2 *L 6, 15, 20, 19, 3

In this regard, Table 13 shows the evaluation metrics applied to the classification models constructed
from the ensemble-2 feature subset.

Table 13. Ensemble-2 results based on selected features.

Models Accuracy Precision Recall Specificity F-measure AUC Cost

NB 96.5 ± 3.60% 100.0 ± 0.0% 94.40 ± 6.0% 100.0 ± 0.0% 97.0 ± 3.20% 1.0 ± 0.0

64.05

LG 96.5 ± 2.0% 100.0 ± 0.0% 94.50 ± 3.10% 100.0 ± 0.0% 97.10 ± 1.60% 0.997 ± 0.007
DL 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0% 1.0 ± 0.0
DT 93.90 ± 6.60% 100.0 ± 0.0% 90.40 ±10.50% 100.0 ± 0.0% 94.70 ± 5.9% 0.952 ± 0.052
RF 98.30 ± 2.40% 97.40± 3.50% 100.0 ± 0.0% 95.30 ± 1.80% 98.70 ± 1.8% 0.998 ± 0.004

GBT 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0% 1.0 ± 0.0
SVM 95.70 ± 4.30% 98.70 ± 3.0% 94.50 ± 7.60% 97.80 ± 5.0% 96.30 ± 3.70% 0.961 ± 0.057

Average 97.27 ± 2.92% 99.44± 0.92% 96.25 ± 3.88% 99.01 ± 1.64% 97.68 ± 2.31% 0.986 ± 0.017

It is important to note that the ensemble-2 approach employs the majority vote among individual
partial solutions. In the case of three scoring functions, the majority vote based selection heuristic
can also be stated as a 2/3rd rule i.e., a feature would be selected if it is present in at least two partial
solutions. The alternative options available are a union case in which all the distinct features obtained
in partial solutions are selected, and in intersection case, only those features present in all partial
solutions are admissible. In this regard, the majority vote can be seen as a multi-point intersection as
discussed in [17]. Comparative results of the aforementioned subset combining cases are provided in
Table 14.

In terms of comparative analysis between ensemble-1 and ensemble-2 it can be observed that for
the CKD problem, the latter performs better in terms of accuracy, precision, specificity, F1-measure,
the cardinality of selected features and the overall cost of the solution. It would be interesting to
explore whether these results generalize to other cost-sensitive diagnosis problems or not?
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Table 14. Multiple combinations of scoring functions and their respective results.

Case Averaged
Accuracy

Averaged
Precision

Averaged
Recall

Averaged
Specificity

Averaged
F-Measure

Averaged
AUC Cost

Intersection 62.30 ± 2.0% 62.30 ± 2.0% 100.0 ± 0.0% 0.0 ± 0.0% 76.80 ± 1.50% 0.56 ± 0.03 31
Union 89.77 ± 2.43% 89.56 ± 2.99% 97.61 ± 3.01% 76.96 ± 6.94% 92.77 ± 1.81% 0.98 ± 0.01 317.54

Multi-intersection 97.27 ± 2.70% 99.44 ± 0.93% 96.26 ± 3.89% 99.01 ± 1.64% 97.69 ± 2.31% 0.99 ± 0.02 64.05

5.5. Comparison with Other Similar Approaches

In this section, we compare our results with other feature selection approaches on the CKD
dataset. All the experiments are performed on the aforementioned seven classifiers, and subsequently,
the averaged results are reported in Table 15.

Table 15. Multiple combinations of scoring functions and their respective results.

Method Averaged
Accuracy

Averaged
Precision

Averaged
Recall

Averaged
Specificity

Averaged
F-Measure

Averaged
AUC Cost

[8] 83.29 ± 5.07% 82.65 ± 5.82% 97.20 ± 3.34% 60.04 ± 12.11% 88.55 ± 3.75% 0.934 ± 0.50 167.31
[15] 92.64 ± 2.74% 93.5 ± 2.45% 97.38 ± 3.02% 84.68 ± 5.44% 94.41 ± 2.15% 0.987 ± 0.01 141.10
[17] 90.0 ± 2.80% 90.71 ± 2.57% 97.22 ± 2.60% 78.25 ± 4.31% 93.07 ± 2.22% 0.979 ± 0.02 193.70
[18] 85.74 ± 2.44% 84.92 ± 2.91% 99.40 ± 1.0% 62.94 ± 4.84% 90.75 ± 1.82% 0.918 ± 0.02 236.11
[22] 93.41 ± 3.27% 94.24 ± 3.04% 96.61 ± 3.34% 88.20 ± 6.21% 95.0 ± 2.64% 0.981 ± 0.02 272.20
[32] 87.37 ± 3.40% 86.84 ± 3.47% 98.62 ± 1.50% 68.87 ± 9.18% 92.95 ± 2.42% 0.976 ± 0.03 136.72
[40] 90.51 ± 3.24% 89.54 ± 4.18% 98.6 ± 1.80% 80.60 ± 8.20% 93.31 ± 2.42% 0.994 ± 0.02 91

Ensemble-1 96.26 ± 2.92% 95.72 ± 3.81% 98.76 ± 1.64% 91.94 ± 7.55% 97.14 ± 2.21% 0.995 ± 0.006 95.05
Ensemble-2 97.27 ± 2.70% 99.44 ± 0.82% 96.25 ± 3.88% 99.01 ± 1.64% 97.68 ± 2.31% 0.986 ± 0.01 64.05

A detailed comparison based on similar techniques and proposed techniques is drawn in Table 16.
The boldface values denote the best performance achieved under a specific criterion. As it can be
seen that most of the comparative techniques are primarily optimized to produce models with higher
accuracy. Therefore, in terms of accuracy, the difference between the competing approaches is not
statistically significant as reported in Table 16. Furthermore, the entire dataset was used at the feature
scoring stage and this would have introduced a potential source of over-estimation of the results.
The results of the statistical test are consistent with the overall observation that the proposed approaches
produce results for the CKD diagnosis problem that are comparable with other methods in terms of
predictive accuracy while at the same time are relatively more cost-effective.

Table 16. Comparison between proposed and other methods in terms of statistical difference (two-tailed
unpaired student t-test, significant level 0.05).

Method Statistical Difference

[8] ±

[15] º
[17] º
[18] º
[22] º
[32] º
[40] º

º Ensemble-1 and ensmeble-2 are not statistically significantly different; ± Both ensemble-1 and ensmeble-2 are
statistically significantly different.

Moreover, we ranked the comparative techniques in terms of predicted accuracy, precision, recall,
specificity, F1-measure, AUC, feature set cardinality, and cost of the solution. Lower the rank, better the
approach, as the best approach for each criterion is placed at rank 1. Although it is already established
in the preceding sections the ensemble-2 approach outperformed all other comparative techniques
but as it can be seen in Figure 11, ensemble-1 obtained a lower rank than ensemble-2. It is because
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ensemble-2 resulted in the lowest recall value among all the competing approaches, which effectively
placed it at 9th position. Therefore, both the proposed approaches have their strengths and weaknesses.
Ensemble-1 performed consistently over both performance and incurred-cost evaluation factors. On the
other hand, ensemble-2 was able to outperform ensemble-1 in terms of incurred cost and on general
accuracy metrics over the CKD dataset. It is also noted that, in terms of the recall factor, ensemble-2
lagged behind the other techniques mentioned in the comparative analysis. It can be seen that the
cost difference between ensemble-1 and ensemble-2 is $31, while the recall difference is around 2.5%.
In this regard, it might be worth spending an extra $31 to timely diagnosis patients. In this regard, both
ensemble-1 and ensemble-2 can be treated as non-dominating solutions, i.e., the merit of one approach
cannot be undermined by that of the another. In such cases, the final selection is left to the discretion of
the decision maker.

Figure 11. Combined ranks of different approaches across performance and cost factors.

6. Conclusions

Cost-sensitive feature selection is one of the important areas of research where the cost of data
acquisition plays an important role in the applicability of the solution. Generally, it is assumed that
cost of data acquisition is the same, i.e., not necessarily zero. This assumption does not hold in certain
application domains such as disease diagnosis. In this study, we used a well-known benchmarked
dataset for disease diagnosis i.e., chronic kidney disease. A significant scholarly work is reported in
designing algorithms and systems for chronic kidney disease efficiently. The proposed techniques for
cost-sensitive feature selection reported in this study is in the continuation of CKD research, where the
key objective is to enhance the performance of decision tree-based classification models.

Decision tree-based classification models shown a great promise in the domain of medical
diagnosis, especially in dealing with structured heterogeneous datasets, e.g., electronic medical records
for chronic kidney disease patients. This research deals with addressing the applicability concerns
of decision tree models through ensemble feature ranking techniques. In the proposed techniques a
set of multiple feature scoring functions are used which are based on the decision tree family. It is
also demonstrated that the partial solutions obtained from these scoring functions are not redundant
and hence are useful in creating an ensemble technique. Furthermore, a heuristic technique based
on feature weightage and the accumulated cost is introduced to select a subset of features. It is also
demonstrated that the features selected based on the threshold value are both useful and cost-effective.
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The two proposed approaches for cost-sensitive ensemble feature selection primarily differ in the
application of the threshold operation. Ensemble-1 combines multiple feature scores into a consolidated
score and thereafter applies the threshold operation. In the case of ensemble-2, the threshold is applied
to the individual lists obtained from multiple scoring functions. In this case, multiple feature subsets
are produced as partial solutions. Afterward, all the solutions are combined using the majority
voting scheme. Extensive experimentation is performed, in which it is demonstrated that although
ensemble-2 is better in terms of general evaluation criteria for the CKD problem, ensemble-1 produces
more consistent results. Both the aforementioned techniques are compared with other similar feature
selection methods. It is demonstrated that cost-free feature selection techniques generally produce a
solution with high accuracy but as the cost is not taken into account therefore, the resultant solutions
are not cost-effective. Based on the comparative analysis, it can be seen that proposed techniques
produce solutions for the CKD diagnosis problem which are accurate and cost-effective. The proposed
approaches selected a final feature subset for the CKD dataset by retaining around 1/4th of the original
features, decreasing the cost by a factor of 7.42 of the original feature set, and achieving comparable
average accuracy as that of other methods in this study.

This research can be extended in a number of directions such as we used a classifier-ensemble to
account for feature interaction. Although this approach provided promising feature weights but the
overall running time of the scoring functions can be reduced by employing lightweight filter techniques.
Furthermore, cost can be modeled as a multi-objective function along with the error rate and hence
a number of candidate solutions can be generated for the decision maker for an informed decision
making. Another important direction worth exploring is to treatment multiple features, collectively.
In this study, each feature has its own cost, while, in the medical domain, it is generally the case that
data acquired from multiple features are clubbed together under different medical tests.
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The following abbreviations are used in this manuscript:

CKD Chronic Kidney Disease
FW Feature Weightage
CScore Cost Score
KNN K-Nearest Neighbor
SVM Support Vector Machine
RF Random Forest
ANN Artificial Neural Network
PCA Principal Component Analysis
GA Genetic Algorithm
CART Classification And Regression Trees
GBT Gradient Boosted Trees
UCI University of California, Irvine
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AUC Area under Receiver Operating Characteristics Curve
TP True Positive
TN True Negative
FP False Positive
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