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Abstract
The lack of Interoperable healthcare data presents a major challenge, towards achiev-
ing ubiquitous health care. The plethora of diverse medical standards, rather than
common standards, is widening the gap of interoperability. While many organizations
are working towards a standardized solution, there is a need for an alternate strategy,
which can intelligently mediate amongst a variety of medical systems, not complying
with any mainstream healthcare standards while utilizing the benefits of several stan-
dard merging initiates, to eventually create digital health personas. The existence and
efficiency of such a platform is dependent upon the underlying storage and process-
ing engine, which can acquire, manage and retrieve the relevant medical data. In this
paper, we present theUbiquitousHealth Profile (UHPr), amulti-dimensional data stor-
age solution in a semi-structured data curation engine, which provides foundational
support for archiving heterogeneous medical data and achieving partial data interop-
erability in the healthcare domain. Additionally, we present the evaluation results of
this proposed platform in terms of its timeliness, accuracy, and scalability. Our results
indicate that the UHPr is able to retrieve an error free comprehensivemedical profile of
a single patient, from a set of slightly over 116.5 million serialized medical fragments
for 390,101 patients while maintaining a good scalablity ratio between amount of data
and its retrieval speed.
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1 Introduction

In the last decade, the digital healthcare space has witnessed a rapid technological
expansion, which has led to the development and deployment of a plethora of policies,
software and devices [45]. As a result, the quality and quantity of healthcare delivery,
in terms of diagnostics, treatment, and follow-up has greatly improved [47,74]. Addi-
tionally, supplementary healthcare sources, such as whole-genome sequencing[73],
precision medicine [57], Clinical Practice Guidelines (CPGs) [37], and medical Inter-
net of Things (IoT), and others have added new dimensions, to medical data. Today,
healthcare data is characterized [40] by its large Volume (number of patients, size of
patient data, additional information), Velocity (production rate, which can range from
seldom produced non-streaming data to streaming data from medical IoT, like contin-
uous glucose monitor), Veracity (different quality), Variety (formal and/or non-formal
standards), and Value (insights).

Consequently, new challenges have emerged in the domain of healthcare, including
lack of interoperability, globalization, collaborative capacity gap, tele-medicine, and
ubiquitous healthcare [24]. The scale and scope of these challenges, has pushed beyond
the scope of traditional datamining and integration techniques. Expert driven solutions
are no longer feasible, while machine learning approaches are not mature enough to
guarantee complete conversions, every single time. Numerous endeavors have focused
on resolving different aspect of the interoperability problem. Our review indicates that
most interoperability tools and techniques, work under the assumption, that some form
of standards are already in use by the participating medical platforms. On the other
hand, the healthcare domain has many formal and even a larger number of non-formal
standards(custom data representation, and exchange formats which are at-most used
at institutional or regional levels) catering to different aspect of the interoperability
problem. As a result, the technical aspect of the interoperability problem, can only
be solved by applying semantic reconciliation at data, knowledge and process level.
Current solutions are focusing on the use of two distinct approaches; a more formal
and slower process of standard integration (to merge commonalities and novelties of
numerous standards, producing only one universally accepted standard) andmediation
based approaches (bridge the gap between all heterogeneous standards for a quick and
dirty solution).

Our approach towards resolving this problem, is based on the Ubiquitous Health
Platform (the platform’s original acronym UHP is not being used in this paper to
avoid any confusion with the acronym for the presented research work, UHPr), which
is shown in Fig. 1. A key part of this large platform is the semi-structured data con-
tainer, the Ubiquitous Health Profile (UHPr) which is used for storing, integrating and
exchanging, multidimensional healthcare data. Going beyond the traditional longi-
tudinal Electronic Health Records (EHR), the UHPr, represents a multi-dimensional
data structure, which combines heterogeneous medical data, using a semi-structured
storage engine. Utilizing, data produced from a variety of sources, ranging from very
structured form (e.g. HMIS) to unstructured streaming data (Medical IoT), the UHPr
is able to store and accurately retrieve archived patient information. While detailed
description of the platform shown in Fig. 1 is outside the scope of this paper, it
is important to understand the need for our presented methodology. As shown in
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Fig. 1 Semantic reconciliation using the Ubiquitous Health Platform

Fig. 1, the Ubiquitous Health Platform acts as a bridge between a patient and medical
experts/systems. On the one side of this bridge lies the big data archive service which
consumes healthcare data from various sources, extracts meta information related to
each patient, serializes the input to strip away its schema and converts it into a rela-
tively flat/denormalized data structure, which is finally stored in a semi-structure form
(UHPr Storage). The other side of this bridge is occupied by service consumers, which
receive the healthcare data in graph form (UHPr model), containing either semanti-
cally linked or semantically integrated comprehensive medical profile of a patient (e.g.
in Fig. 1, EHR A and B are transformed into EHR X, using semantic integration). The
UHPr supports this bridge by providing data curation services for storing healthcare
data, creating and storing the semantic reconciliation knowledge base (refered to as
UHPr Maps), applying UHPr Maps to semantically match the attributes of each par-
ticipating medical fragments, and finally to produce a semantically enriched version
of the comprehensive medical profile of the patient. In this paper, we present the UHPr
methodology, implementation and evaluation in terms of its timeliness, accuracy, and
scalability. The contribution of this research work and paper is threefold. Firstly, we
present the design and implementation of the UHPr engine along with its associated
storage, management, and retrieval process as the major contribution. Secondly from
our review of the current literature and practices, an amalgamation of Big Data cura-
tion technologies with healthcare data integration is a novel initiative, with very little
implementation and evaluation proof. While we have previously introduced the con-
cept behind such an amalgamation in [70], the implementation was very limited and
not scalable. In this paper, we have extended that idea to formally prove it and provide
results and evaluation of our system in detail. Thirdly, we describe the three main
challenges of our approach (Patient Identification, Data Verification, and Security and
Privacy). In the next sections we will discuss the following:
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– Section 2 identifies some of the motivating factors behind the need for UHPr,
including the requirement for a NoSQL based Big Data storage and processing
engine, necessity for the semantic interoperability, especially taking into account
the semantic matching and semantic integration aspects of the same, and data
interoperability.

– Section 3 introduces the Ubiquitous Health Profile by presenting its novelty, the-
oretical foundations, and prototype implementation.

– In Sect. 4, we discuss the experimental setup and results of our evaluation towards
proving the timeliness, scalability, and accuracy of the Ubiquitous Health Profile.

– Section 5 discusses some of the challenges and limitations, identified during our
experiments and from peer review.

– Section 6 concludes the paper.

2 Big data and healthcare data interoperability

2.1 Big data in healthcare

One of the consequences of the changing healthcare environment is the production
of heterogeneous, voluminous, medical data which necessitates the creation of com-
prehensive medical profile of the patient to improve healthcare service delivery. In
particular Clinical Decision Support Systems(CDSS) require the combination of sev-
eral data sources, such as diagnostic tests, patient’s clinical history, CPG, vital signs,
symptoms and others, to aid the decision making process [93].

Traditional healthcare systems have focused on using relational databases for per-
sisting EHRs. Based on the idea of a well-structured storage solution, with the ability
to uniquely store and identify tuples and their inter-relations, relational databases are
beneficial for small to medium scaled medical systems, with little to no interoper-
ability. Other research led initiatives are now turning towards NoSQL technologies
[20,72,79] such as cloud based Column Oriented data store for storing healthcare data
in HL7 v3 form by Celesti et al. [12], which provides very low query (with aggregation
and filter operations over column data) execution times on very large amount of data,
and Graph DB utilized by Balaur et al. [5] to integrate statistical data on molecular
inter-dependencies from a manually curated and annotated relational database. The
UHPr usecase, of retrieving related medical records for a patient, necessitates the use
of a document oriented data store, which can hold each EHR record as a document.
Since the target of UHP services is to provide a fast solution to the healthcare inter-
operability problem, and the participating schemas dont follow any formal messaging
or communication standard, Relational databases, Column oriented data stores, and
Graph data stores are not useful [79].

While the UHPr architecture is generic enough to run on any document based
NoSQL engine, our current work utilizes hadoop distributed file system (HDFS), as
a document store to archive medical fragments and Apache HIVE [82] (a structured
query engine that runs on top of HDFS) as the data processing unit. The choice of these
tools is based on four factors; firstly, the authors familiaritywith theHadoop ecosystem
allowed for quick deployment, management, and customization. Secondly, Hadoop
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[81] is able to run on commodity hardware and can scale very well, when resources are
added or removed from the cluster. Additionally, both HDFS and Hive provide native
Java API, which is useful for integration with the bigger platform. Thirdly, a plethora
of literature and community based help is available for customization and resolving
errors. Finally, HDFS and Hive both have a native Java API and command line access,
which is useful for integration with the bigger platform. While a lot of effort has
been put into developing proprietary solutions (like Essentia Health,1 Omni MD,2

and BlueEHR),3 and some open source ones (openMRS4 and openEMR5) which can
capture heterogeneous data and create an EHR, there is a general lack of Big Data
solutions for the healthcare market [3]. While there is no formal definition of the term
“Big Data”, any data will require a specialized storage and processing engine, if it has
the following 5 properties (also known as the 5 Vs of Big Data), Volume, Velocity,
Variety, Veracity, and Value [40].

Volume Medical data can be classified into two types, primary data sources and sec-
ondary data sources [26]. Primary data sources require direct interaction with the
patient for data creation. On the other hand, Secondary sources, represent the knowl-
edge management systems, clinical research systems, Biobanks and other tools used
by epidemiologists and medical experts, which provide supplementary diagnosis,
treatment, and follow-up plans, based on indirect observations (e.g. environment and
general living habits). Compounded by the number of patients (e.g. 500,000 partic-
ipants in UK Biobank [78], 100 million for mendelian disorder risk [9], EHR4CR
project with 45 partners in EU [18]) and medical IoT (producing streaming data using
body sensors) the storage requirement for a comprehensive digital health persona has
already grown beyond the scalability, and speed of traditional relational databases.

VelocityHealthcare data producers, emit data at different rates, pertaining to the use of
information systems or medical devices. While medical information and knowledge
systems, produce non-streaming data, which is seldom updated (relatively). Medi-
cal IoT can produce streaming data, which is continuously produced and has to be
shared in real-time [46,60]. E.g. a heartrate monitor on a smart watch produces many
instances of very shallow data, while the EHR is longitudinal and deeper, with infre-
quent instantiation. This requires the use of specialized hardware with low latency,
high reliability, and rapid access to the data.

Variety Variety or Heterogeneity in healthcare data, stems from the existence of a
large number of formal standards [45] and non-formal/custom standards [24]. This
has led to the creation of several semantic reconciliation techniques and platforms
which can resolve interoperability among the EHRs [44]. Medical systems also suffer
from a variety of purpose, whereby they are created and used to serve the patient
(e.g. smart watches), the medical experts, organizations (hospital and/or insurance
companies), or environment (e.g. government, consortium) [21]. Consequently, the

1 Essentia Health: http://www.essentiahealth.org.
2 https://www.omnimd.com/.
3 https://blueehr.com/our-services/electronic-health-records/.
4 https://openmrs.org/.
5 https://www.open-emr.org/.
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data produced by these systems only conforms to their own abstraction level. This
means, if an HMIS has to be used for running a small clinic, in a developing country
like Pakistan, it would only work at the medical expert’s level, leading to the usage of
a cheap solution, creating non-standard, EMR.

Veracity Due to the heterogeneous nature of medical systems, EHRs suffer from a
lack of universal quality. Universal quality is a made-up term, which is used to iden-
tify a golden set of features that an ideal EHR storage and processing system should
have. In the real world, EHRs do usually conform to some (standard) schema, making
them accurate, true and valid in a given context. However, as the (standard) schema
is changed, the existing data becomes stale and often loses its usefulness as well.
Additionally, the mere presence of schema would not enhance the quality of data.
Additional enrichment information in the form of linked medical records and sup-
plementary knowledge bases are necessary for achieving this aim. LinkedEHR has
presented a good approach to partially resolve the data veracity problem, by identify-
ing and building a common platform for primary and secondary data [19], leading to
actionable insights into diagnosis, risk stratification and treatment [30]. Yet another
key factor to consider here is the fact, that high volume does not always translate
to veracity. While it is possible to dilute the gaps in data, when doing quantitative
research, the same is not really possible in qualitative research [10]. One way of veri-
fying the truthfulness or veracity of medical data is tomeasure the data quality in terms
of its timeliness (e.g. When did it happen?), completeness (e.g. Did we capture/record
everything?), uniqueness (e.g. Is this a duplicate entry?), validity (e.g. Does the data
correspond to its schema?), consistency (e.g. Is there any conflicting data?), and accu-
racy (e.g. Was the medical data recorded accurately, mirroring the real world events?)
[3].

Value The main driving force behind the creation of UHPr is to ease the process of
converting high volumes of diverse healthcare data, being produced at ever increasing
velocity and of varying quality into information and knowledge. Due to its nature
as an integrated healthcare record, the UHPr is able to provide value, to the patient,
the medical experts, organizations, and the environment. The UHPr complements the
benefits from traditional healthcare systems [31] by enriching each patient record with
supplementary data from secondary sources and medical IoT.

2.2 Healthcare interoperability

As defined by IEEE 610.12, interoperability is the ability with which, two or more
participating information systems or components can not only exchange information
but also use it [25]. Building on this basic definition, Health Level Seven Interna-
tional(HL7), a healthcare standard management body, divides interoperability into
functional and semantic types; where the former relates to reliable exchange of
information, while the later allows the receiver to interpret and use the information.
Additionally, CEN ISO/IEEE 11073, is a multi-part standard, developed in collabora-
tion with other standards development organization, that defines the communication
standards, enabling real-time, efficient exchange of data produced by (plug-and-play
supported) medical care devices [14]. HIMSS, provides a more comprehensive defi-
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nition of healthcare interoperability by defining it as the ability to exchange data, at
foundational (only relates to exchanging data, without the need to interpret it), struc-
tural (an intermediate level, that takes the schema of the data into account as well), and
semantic (takes, schema and meaning of the information into account) levels, within
and across organizational boundaries [39].

Ubiquitous healthcare can be formalized using these definitions. However, achiev-
ing interoperability, in the presence of voluminous, heterogeneous, low quality
healthcare data, produced at different rates [40], is an uphill task. This is compounded
due to the development of a plethora of messaging, terminological, decision support
and other standards [44,45]. Besides the well-defined and developed standards, prac-
tical healthcare informatics also suffers due to the existence of non-formal standards,
which are used to build specialized small-to-medium scaled systems. Healthcare orga-
nizations tend to move towards standards that are easy to use and cost effective [15].
While, this is usually not a problem when medical components have to be made inter-
operable within the organizational boundary, interoperability between different, often
competing, healthcare organizations is a major challenge [49].

Data Interoperability, is a part of the general interoperability problem, which repre-
sents the set of policies and guidelines, and their application towards building systems
and services that can help create, exchange and consume data while maintaining
its contents, context and meaning. These tasks require the use of schema match-
ing/mapping approaches, to map (transform) source data into a consumable form [63].
The main approaches to data interoperability can be categorized as standard based
and mediation based approaches. Whereby the former, is focused towards creating
and using agree-able standards, which all participating organizations must conform
to, while the later, more autonomous approach, creates data translations from descrip-
tions of the data in participating schemas [66]. LinkedData is awell-known example of
standardization based data interoperability approach [8], while semantic information
layer (SIL) [76] is an ontology mediation approach for data interoperability among
enterprise information systems (EIS).

In healthcare, data interoperability can greatly enhance the financial and admin-
istrative aspects by reducing overhead and redundant costs, saving time at both the
patient and physicians end, preventing operational waste, and allow policy makers to
employ the best accountability and privacy services across the board [7].

Overall, healthcare Interoperability (when achieved), will additionally enable the
healthcare organizations to increase the data and service delivery quality [74] and
remove gaps between healthcare providers and patients [68].

In order to resolve the heterogeneity problem in healthcare, we have to look at the
use cases, where an interoperability service can be utilized. In the case of Ubiquitous
Health Platform, as shown in Fig. 1, input medical fragments can either be transformed
from a source schema to a target schema, or it can be amalgamated into a comprehen-
sive model for the patient’s medical history. The former, challenge can be resolved
using semantic matching algorithms while the later requires semantic amalgamation.
These techniques are further discussed in the following sub sections.
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2.2.1 Semantic matching

While there can be many ways to cater for bridging the ever growing gap between
heterogeneous medical systems and bringing them on the same connected platform,
two primary strategies are standard based andmediation based semantic reconciliation
[66].Here, the former aims to develop a central standard,which allmedical systems can
comply with [18], while the later, uses mediating ontologies, which can semantically
transform data from one format to another [76].

In coming up with a central standard, Clinical Information Modeling Initiative
(CIMI) [13] has shown great promise, by integrating the best features of Health Level
Seven Version 3 (HL7v3) [35] and openEHR. This endeavor is especially important,
given the fact that both HL7v3 and openEHR provide structurally distinct templates
(and archetypes) for medical data representation and exchange [17]. In the same way
systematized nomenclature of medicine—clinical terms (SNOMED CT [75]), is a
terminological standard representing systematically codified clinical nomenclature,
while and logical observation identifiers names and codes (LOINC) [51] is a termi-
nological standard for laboratory tests and other measurements. Until 2013, both of
these standards had some overlapping, leading to problems in using them together.
However, efforts are now underway to link LOINC and SNOMED CT, removing any
overlapping, leading to healthcare interoperability at the terminological level. In terms
of achieving some automation for this semantic reconciliation process, a lot of state-
of-the-art ontology matching tools have been presented using the ontology alignment
evaluation initiative (OAEI) [62] platform. However, apart from few matching tools,
most have limited extendibility, reusability, and expressive mapping representations,
leading to their low adoption rates. Semantic reconciliation, using mediation based
approaches, require the usage of similar ontology matching and transformation tech-
niques, which can bridge the gap between heterogeneous systems. Over the years,
several methods have been proposed and implemented for achieving the objective of
interoperability. These methods, include but are not limited to, the use of standards,
mediation via third parties, specification-based interaction, and mobile functional-
ity [64]. Semantic Mediation Systems, represent a formal transformation process,
which can provide coupling and cohesion between different data sources [66,85],
using Model-Driven Engineering [6].

A plethora of medical platforms have achieved some form of interoperability by
mediating between healthcare standards, and extending the benefits of formalization
and systematic definitions. One of the most prominent and active semantic transfor-
mation tools is the LinkEHR [84], which provides transformation between between
HL7 clinical document architecture (CDA) [33], openEHR, CEN/ISO 13606, CIMI
reference model, and others [52]. LinkEHR, uses archetypes which contain definitions
of clinical information models and a mapping specification generated by the knowl-
edge engineer which is then used for converting legacy data into one of the supported
standard types, finally producing a normalized XMLfile. This conversion is based on a
common ontology which provides both syntactic and semantic relationships between
the two participating schemas [53,55]. The knowledge engineer, with ample knowl-
edge on informatics can use a purpose built UI for matching the schemas. Application
of LinkEHR have also proven effective to achieve interoperability between CDSS and

123



Ubiquitous Health Profile (UHPr): a big data curation… 2417

EHR, which correspond to different levels of abstraction in terms of patient informa-
tion (usually CDSS is a more abstract representation than EHR) [54]. The LinkEHR
platform doesn’t provide native data storage services but can be integrated with other
similar implementations(including other LinkEHR deployments) and can also act as
a semantic transformation engine for other healthcare interoperability platforms.

2.2.2 Semantic integration

Traditionally, healthcare solutions have focused on the use of well-structured storage
for resolving interoperability. However, with a variety of medical platforms becom-
ing widely available the interoperability problem now requires the use of ontologies
and semantic maps which can identify and create relationships between various data
elements from various sources [23]. Semantic Integration, provides a solution to the
interoperability problem, by utilizing standardized models, in the form of resource
description framework (RDF) [90] and web ontology language (OWL)[89]. Three
main methodologies to achieve semantic integration are discussed as follows.

Ontology-based data access (OBDA) framework represents such a solution that is
dependent on well-defined domain ontologies, which can map concepts from several
data sources. The OBDA model consists of data elements and their semantic rela-
tionships build using a terminological service. When a user queries for some selected
variables associated with the patient data, it is converted into SPARQL [88] which
identifies the semantic relations between participating systems and creates native sub-
queires, which are executed in a federated manner. The results from these queries are
finally integrated using unique identifiers from their data tuples.

The usefulness, of this framework to semantically integrate medical data for cancer
patients is proved in [92]. The authors used a top-down approach to first construct an
ontology for cancer research variables (OCRV), which contains the semantic relation-
ships between the concepts in virtual RDF graph forms, from four different relational
data sources. This ontology contains well-defined terminologies which are based on
the National Cancer Institute (NCI) Thesaurus [61]. For converting SPARQL queries
into native SQL queries the Ontop OWL API [11] is used which relies on the Ontop
model, containing both semantic axioms and the data configuration necessary for con-
necting with the data sources. The results from each data source is then integrated
using the unique identifiers for all records, and presented to the client.

Some multi domain semantic integration strategies, have focused on the develop-
ment and/or usage of enterprise service bus (ESB), which provides a loosely-coupled,
highly distributed, communication channel for software applications and modules in a
service-oriented architecture (SOA). In general, several services can connect with this
shared communication channel as a consumer or a producer. Each producer converts
the messages into an internal format understood by all services, especially consumers.
Using a publish/subscribemodel, the services are able to communicate with each other
using event driven paradigm. In healthcare IBM provided an early implementation of
the ESB to create the IBM Healthcare Service Bus [56] which enables the integra-
tion of multiple services by using web services description language (WSDL) [86],
simple object access protocol (SOAP) [87], and HL7 Standards. The service has now
been upgraded [38] to become completely deployable on the cloud and to provide
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support for many healthcare standards suchs as HL7v2.X, Fast Healthcare Interop-
erability Resources (FHIR) [36], Digital Imaging and Communications in Medicine
(DICOM), and others. It also now supports several types of message flows including
eXtensible stylesheet language transformations (XSLT), extended structured query
language (ESQL), file transfer protocol (FTP), java message services (JMS), and oth-
ers.

Health service BUS (HSB) [67] is an implementation of the Mule ESB [58], which
uses a native XML-database and XSLT to provide semantic translation services from
HL7v3 to HL7v2 [34] and openEHR. The patient EHRs are stored using OpenEHR
database, while HL7v2 and HL7v3 are used for sharing messages belonging to a
particular patient. The HSB uses SNOMEDCT for providing terminological services,
which are also embedded into the ESB as XML messages and used with a custom
ontology mapping tool called OWLmt to provide semantic interoperability between
patient records. In [56] an event-based HSB based on the JBossESB is presented
which converts heterogeneous data into RDF quads, before utilizing the health and
lifelogging data (HLD) Ontology for building a semantically linked graph of health
and lifelog data. The authors have used LOINC as the terminological handler, which is
used to provide semantically annotated versions of input sensory data from wearable
devices, before creating the RDF quads and applying semantic integration using the
HLD ontology. Internally, the bus is able to provide point-to-point communication
between any two services, and a publish/subscribe broadcast model using JMS queues.
The overall platform can be used to push notifications to the users, using event-driven
paradigm and can also provide query services for executing SPARQL queries.

Yet another interesting initiative is the Yosemite Project [43], which aims to bridge
the gap between healthcare standards and the data. The main driving force behind
this initiative is the conversion of messaging standards like HL7v2 and FHIR into
RDF graph for semantic representation. It is also concerned with resolving the ambi-
guity in the human language by using Natural Language Processing technologies for
processing unstructuredmedical data (such as Clinical Notes, Clinical Practice Guide-
lines, and others). Their methodology consists of two related process, standardize the
healthcare standards and using crowdsourcing for translations. Here the former task
has been undertaken to find and create semantic links between 30 most used vocabu-
laries amongst over a 100 listed by unified medical language system (UMLS) [59].

Using a custom tool, iCat, which currently only support international classification
of diseases (ICD)-11 [91], the yosemite group provides an easy to use interface to the
medical experts. Over 45,000 concepts with 17,000 links to external terminologies
have been defined by the medical experts, which are converted into RDF form for cre-
ating computable data resources. The latter task of translation using crowd sourcing
resolves the problem of standard complexity, evolution of technologies and method-
ologies in computing and healthcare, and finally change in the standards themselves.
This translation process is an extension of the inference process which can identify
implicit relations, RDF assertions and localization between languages to enrich the
existing semantic maps. This semantic integration is language/tool agnostic and can
be used with any other platform.

While many paradigms have been introduced to resolve the semantic matching and
integration problem, it is clear that the difficulty in creating ontologies and seman-
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tic bridges between various standards and terminologies is greatly hampering any
functional interoperability solution. Additionally, the initiatives for standardizing the
standards are still about a decade away from becoming implementable. Meanwhile,
the healthcare data is growing beyond the management abilities of traditional data
curation engines. Moreover, the top-down approach necessitates the use of medical
experts for initially creating a rule base and/or ontology, which is not always possible.
It is therefore necessary that a novel methodology is used to archive the existing med-
ical data and keep it available to create and test semantic integration methodologies.
Additionally, due to the various methodologies involved in this semantic reconcilia-
tion process, it is important to store this data, while maintaining most of its original
schema. Conversion to RDF quads, XML, relational or other methodologies can lose
the original schematic information.

3 Ubiquitous Health Profile (UHPr)

3.1 Platform novelty

As evident from the discussion above, healthcare interoperability, presents a major
challenge towards achieving ubiquitous healthcare. Many factors influence this chal-
lenge, including availability of a large number of standards, evolution of standards,
privacy concerns around patient data, lack of access to healthcare data, large number
of healthcare information management and support systems, and others. In aiming to
resolve these problems, one crucial question has been left unanswered in literature,
relates to, how do we provide interoperability support to the large number of small
and medium scaled HMIS and other healthcare platforms, which are not currently
complying with any formal standard?

The Ubiquitous Health Platform, aims to provide a solution to this problem by
providing a large medical archive and transformation platform, which can evolve and
apply the semantic reconciliation process with changing organizational needs. It is
also imperative to mention here, that while initiatives to standardize the standards,
like CIMI and Yosemite project are slow in their development, they are necessary for
any healthcare interoperability solution to evolve and generalize in future. Essentially,
the UHP and its underlying UHPr engine, together with a semantically integrated stan-
dardized communication, messaging, and storage mechanism would act as mutually
enabling healthcare interoperability enabling technologies of the future.

On the other hand, technologies and platforms such as LinkEHR, OBDA, and HSB
provide an alternate to the UHPr approach, which have been discussed above and
briefly compared in the Table 1. The platforms have been compared in terms of their
features during data acquisition and data retrieval. This comparison has been based
on the available literature only and what has been achieved so far and not in terms
of their capabilities which is beyond our scope. In particular, LinkEHR has focused
on using well defined archetypes to provide a semantic and syntactic transformation
engine, with large input from the knowledge engineer, leading to high dependency on
well-defined standards such as HL7 CDA, OpenEHR, and others. Once the mapping
has been provided, there is little to no chance of data loss during data acquisition
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since LinkEHR does not natively store the data, rather it provides transformation
on the fly. However, based on how complete the metadata and bridging ontology is,
LinkEHR may lose data while data retrieval. Based on the user query, the internal
XML representation may require an additional conversion to the requested form, with
the help of two way semantic relations defined by the knowledge engineer. Finally,
from the current literature, there is no evidence to suggest that LinkEHR manages the
traceability of healthcare records, beyond what may be present in the standard itself.

On the other hand, OBDA is dependent on a well formed ontology, to which all
participating systems must comply. As a result adding a new source can become
problematic if it does not comply with the structure in the current ontology. Similar
to LinkEHR, OBDA does not lose healthcare data owing to its use of only remote
data source connections. During data retrieval, data loss by OBDA is dependent on
the accuracy of the reasoner and how well the custom API is able to transform the
SPARQL queries into native SQL queries. This may lead to some data loss, in terms
of the number of retrieved healthcare records. There is no data conversion during
acquisition or retrieval by OBDA, however there is very limited traceability in terms
of unique identifiers from various healthcare sources, participating in the result set.

Both OBDA and LinkEHR utilize the federated query model to resolve interoper-
ability during data retrieval and are based on well-defined semantic bridges between
participating healthcare sources. While LinkEHR uses a one-to-one model, where
each pair of systems have a supporting archetype and metadata, OBDA uses a central
ontology and thesaurus to bridge many systems together. HSB also uses a semantic
interoperability paradigm similar to OBDA, however in HSB, the various healthcare
systems, as producers and consumers are only loosely coupled with each other and
require transformation services from well-defined standard form to an an internal for-
mat for exchanging data. Additionally intermediate conversion at both data acquisition
and retrieval phases is required to convert from one standard form into another. Data
Loss in HSB is mitigated through the use of buffering queues. Finally, the current
implementations do not show any traceability at the data source level.

Finally, the proposed engine UHPr, is not reliant on any well-defined healthcare
standard but requires serialization of the data and its conversion into a semi-structured
format before storage. This process is explained, in some detail, in the next sections.
Adding a new data source to the UHPr is relatively a trivial process and is dependent
on writing a simple java class which can read the data, extract meta patient informa-
tion(name and date of birth), serialize the data as a single string. The UHPr on retrieval
requires extensive conversion to convert the same data string into a computable and
semantically enriched form. Since UHPr archives the medical data and semantic maps
for bridging schema it does not suffer from data loss. UHPr also provides traceability
for identifying the patient and the source medical system.

Figure 2 shows the comparison between various interoperability paradigms. Figure
2a shows the standards based approach, whereby the semantic reconciliation process
is used to transform non-compliant data sources. After this process, the interoperable
medical data is in one standard form, which enables the user to execute one query and
get the results. An alternate to this approach is shown in Fig. 2b and as an example the
pipeline typically followed by the federated query approach is shown. In this approach
a controller is used to generate separate queries for each of the data sources, these are
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Fig. 2 Novelty of the proposed approach in terms of the semantic reconciliation pipeline

executed on the corresponding Medical data, the results of which are then combined
and shown to the user. Figure 2c shows the pipeline of our proposed approach which
archives all medical data after integration (conversion to semi-structured form) and
then uses UHPr maps to apply semantic reconciliation on subsets based on their
individual schema and relationship to the inquired schema. The proposed approach is
able to efficiently deal with data volume (using well established Big Data tools and
technologies), variety (unlike the other two approaches, requiring less intervention for
each integrating new data source), and velocity (by separating the data acquisition and
semantic reconciliation process like other mediation based approaches). This platform
then provides the foundation for identifying new values from the integrated medical
data and enhance its veracity. On the other hand, most interoperability initiatives are
tightly bound with existing standards and data exchange interfaces [32]. The novelty
of our approach, towards solving the Interoperability problem, lies in delaying the
semantic reconciliation process, and thereby moving it away from the data and closer
to the user. As a result, UHPr has been optimized for acquisition, storage and minimal
processing of the medical data.

UHPr, provides data curation services for heterogeneousmedical data, utilizing two
distinct but related forms; UHPr storage form and UHPr model form. The UHPr stor-
age form, utilizes the concept of minimal changes before insertion routine, which is
used for dumping data into an archive. While the UHPr model form represents a graph
data structure that holds the comprehensive digital profile of a patient. In the following
sub-sections, we will first present the theoretical representation of the UHPr, followed
by our prototype implementation, which is focused on creating the infrastructure for
storing and processing of the UHPr, to finally produce a comprehensive medical pro-
file of the patient. The use of heterogeneous data models in hospital management
and information system (HMIS) obstructs the communication and integration of the
systems in clinical workflows. The diverse medical concepts diminish the systems’
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Fig. 3 UHPr data representation

interoperability. The aforementioned barrier is overcome using semantic reconcilia-
tion model, which is proposed in our previous work [1]. The proposed mapping model
maps diverse localized concepts, called domain clinical model (DCM), with standard
and non-standard medical terminologies. The existing mapping algorithms only focus
on the internal semantics of terminologies such as parents, childs, and siblings sim-
ilarity matching within the source and target terminologies. While in our proposed
model, we include the external semantics of the source and target concepts in the form
of concepts and relationships provided by the semantic libraries such as UMLS [59]
and ConceptNet5 [50].

3.2 Theoretical representation

TheUHPr storage form, as shown in Fig. 3a represents themedical fragments acquired
from a variety of healthcare sources and stored in semi-structured form, characterized
by a data and a metadata component. The data part of UHPr storage form, also
called the Medical Data Archive, is represented by a 4-ary Cartesian product of the
set of Identifiers(I ), Types(τ ), Serialized Fragments(F), and Versions(V ). Where set
of Identifiers, as defined in Eq. 1, is used to uniquely identify an individual record
in the UHPr storage engine. The identifier is dynamically generated using any fixed
or dynamic length technique [41]. It is not dependent on any features related to the
patient or the source medical system and is used for linking the data components with
their respective patient’s metadata component, which are in-turn identified by their
own unique identifiers. Universally Unique Identifier(UUID) as defined in RFC 4122
[48] version 4 (pseudo-random) with its 128 bit encoding can be used to uniquely
identify upto 5.3× 1036 objects and is well qualified for use as identifier for both data
and metadata components.

I = {
i f | f εF

}
(1)

The set of Types, defined as in Eq. 2, holds a unique identifier for the participat-
ing medical fragment schema that a particular medical fragment corresponds to. For
practical purposes, the name of themedical fragment schema(such as OpenEMR, HL7
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CDA,KrsiloEMR, or other) is sufficient to be used as an identifier. In case of collisions,
the name can be augmented by other differentiating features, such as the organization
name, country code and so on. This meta information is used to select the appropriate
UHPr map for semantic linking or transformation, during retrieval. Consequently, a
medical fragment is considered unique, and becomes a candidate entry in the sent τ ,
if it has a different schema than the ones already participating. Essentially if a two
medical fragments, coming from two different organizations, but following the same
schema τ1, would result in one unique entry in the set τ .

T ype(τ ) = {
τ1, τ2, τ3, . . .

}
(2)

The non-empty set F , defined in Eq. 5, represents the serialized form of the medical
fragment, provided by a connected medical system M and identified by a type τ . This
serialization, de-normalizes the data into key:value form, where each key belongs to
and is unique within the schema τ . For disambiguation, keys can be prepended with
the database name and table name, if they come from a relational data source. This
is used to provide disambiguation between the keys, which enables correct semantic
matching and transformation, at retrieval.

F = {
fm | fm : τ&mεM

}
(3)

The set of versions V , in Eq. 4, represents a ternary of author, timestamp, and the
changes to a previous version of the fragment fm . Version control in UHPr is provided
only for handling minor errors in existing medical fragment data. Any change to the
metadata(such as patient’s name or date of birth) should be managed by creating a new
medical fragment and handling this corner case at the consumer’s end. In line with the
Big Data architecture, the UHPr curation engine discourages any update or deletion
of records, which would require a deletion of the entire archive fragment containing
many records and reinsertion of the same(a very expensive operation in terms of data
consistency and availability).

V =
⋃ {

(t, a, v f )|v f ⊂ fm&t = timestamp&a = author
}

(4)

UHPr storage metadata, also known as the location store (L-Store), contains meta
elements of the UHPr data structure. This store, as shown in Eq. 5, provides a logical
indexing service, by storing references to the global identifier iUH Pr . These references,
in turn refer to the medical fragment identifier from Ipatient’s meta information and
the medical system sourcing the health record.

L = {
iU H Pr ⇒ (i f , d,m)|i f εF&dεD&mεM)

}
(5)

In addition to themedical schema type τ , some information is also required to uniquely
identify the source medical system. This information is available in the metadata
component of the UHPr storage form, and is defined in Eq. 6. This information is also
kept as a single string to keep the overall data structure largely denormalized. Since
this information is a part of the metadata, it can become a part of the UHPr engine,
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only if there is a medical fragment in the archive, sourced from the medical system
(m).

M = m|hasFragment(m) (6)

Additionally, some disambiguation attributes(D) are necessary to keep the global
identifiers unique. The selection of appropriate attributes to uniquely and universally
identify a patient, across medical systems is a big challenge, which is discussed briefly
in Sect. 5.1. A naïve implementation can use the patient’s name and date of birth for
this purpose. This is shown in Eq. 7.

D = {
d|∃dxεD : (∀dyεD → dx = dy

}
(7)

UHPr model represents the structurally integrated output of the UHPr storage
engine. This particular data representation is used to zip together the most impor-
tant aspects of the user’s record and to provide an iterate-able data structure to the
consumer. The resulting data structure can be in the form of a well-defined stan-
dard(such as HL7 V2, HL7 V3, HL7 FHIR, CIMI archetypes, or others), or in a graph
data structure, shown in Fig. 3b. This data structure is obtained by structurally trans-
forming the UHPr storage form. UHPr storage conversion to a well-defined standard
form requires a supporting schema map, however out of box support for the UHPr
model graph form is provided by the UHPr engine.

This graphdata structure contains the iUH Pr as the root node. The root node is linked
to patient’s disambiguation attributes (D), which can be used by the consuming agent
to identify the patient. Additionally, it is linked to the set of all the medical fragments
instances belongs to the patient. Each instance is identified by its unique identifier i f .
It also contains the medical systemm (from Eq. 6) and the data element, which unlike
UHPr is semantically enriched to contain semantic relations or transformed into a
target schema, based on the retrieval query. Changed versions are linked with their
respective data elements for supporting traceability of medical records. The version
elements contain the timestamp of change, author information, and the changed data,
corresponding to the data element. In this way, the UHPr model is able to re-build a
comprehensive medical profile of the patient. This theoretical representation provides
the foundational elements of the UHPr engine. It provides the necessary infrastruc-
ture for providing data level interoperability, in particular and supporting healthcare
interoperability, in general. In the next section we present the implementation details
for building the UHPr engine.

3.3 Implementation

3.3.1 UHPr storage

Implementation of the prototype UHPr storage form has been achieved by consolidat-
ing information from three medical systems (M), OpenEMR patient reports, 100,000
patient data set from EMRBOTS [42] and our custom implementation of expert driven
medical diagnostic system (Krsiloemr). This platform is based onHadoop, with HDFS
acting as the main storage medium, while Apache Hive is used to temporarily create
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Fig. 4 Schemas for medical fragments participating in UHPr

the UHPr schema (shown in Fig. 4) and fetch all records for the patient. The UHPr
hadoop deployment is composed of 1 master and 2 slave nodes with 1.8TB HDFS
size, 20MB block size, Block Replication of 3. The master node has 64GB ram, while
the slave nodes have 32GB ram. Each unit of this cluster has 4 core AMD Ryzen 3
2200G processor ([2]), and has CentOS ([83]) 7.5 as the operating system.

The UHPr storage form as shown in Fig. 3a, is stored in form of text files in HDFS,
which in turn, contain various medical fragments in semi-structured form. With Hive
we temporarily create a schema, utilizing the semi-structured elements (the identifiers)
and perform complex queries, which are then converted into MapReduce operations.
Each patient is assigned a global identifier (iUH Pr ) using a 128 bit UUID which maps
each patient’s firstname, lastname, and date of birth with a related medical fragment
( fm). Medical Data Archive, stores the medical fragment in block form, where many
medical fragments are combined together into one file (identified by the global id).
The medical fragments, in turn, contains, the unique identifier, as available in the L-
Store (different versions of the same medical fragment, will have the same identifier).
Additionally, it contains a type element, which is used to identify the schema of the
medical fragment and will be used later on for using the correct, ontological map for
transformation. Each fragment also contains a locally unique version identifier, which
is used formanaging instance evolution and verification purposes. Startingwith 40 real
patients in Krsiloemr and 12 patients for openEMR with various medical problems,
we generated medical fragments for 80,000 patients. Each patient has 1 openemr-
DemographicReport, and is randomly assigned another 29medical fragments amongst
Krsiloemr, openemr-MedicalProblems, and openemr-Prescriptions. After 7 iteration
and including the 100,000 patient dataset fromEMRBOTS, the data store now contains
115,737,428 (a little over 115million) records, corresponding to 390,101 patients. The
dataset from EMRBOTS was slighlty modified to include ‘PatientName’ (since this
is required for our approach), before being serialized into a UHPr compliant format.
The schema for our three participating medical systems is shown in Fig. 4.

Through our experiments, we were able to determine that the most feasible strat-
egy to store these fragments, along with L-Store metadata, in HDFS is by using a
1 file-per-transaction strategy [70]. In this strategy, we consolidate various medical
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Fig. 5 Class diagram, representing the UHPr model building application

fragments, from 1 transaction(similar to data buffering) into 1 metadata, 1 data, and
1 connector file. The metadata file, contains the meta information for the L-Store, the
connector file contains index entries for mapping iUH Pr identifiers to i f identifiers,
and the data file contains the medical fragment, corresponding to each i f identifier.In
this way we can store a large amount of data in relatively smaller number of files. This
strategy enables the most preferred way of data processing using MapReduce opera-
tions, with small number of large sized files [27,28]. As a result of this process, the
UHPr is able to achieve transactional consistency. For data processing we then move
the relevant records into memory by employing a temporary external table (schema-
on-read), created using Hive. Using simple Hive Query Language (HiveQL) based
queries (as shown in Table 2) we are able to retrieve the medical fragments belonging
to a particular user (Fig. 5).

3.3.2 UHPr maps

As discussed in 2.1, the mapping of various attributes in the participating schemas is
a challenging task. In our previous work we have developed a semantic reconciliation
model that insets explicit semantics into word vectors of a SNOMED-CT following
schema and a non-formal schema model similar to Krsiloemr [1]. However, for map-
ping two non-formal schema we need some initial tweaking, especially in terms of
identifying the correct stop words that can separate multiple ‘word’ strings from an
‘Attribute’ string (such as PatientLanguage, PatientMRNNo, MartialStatus have mul-
tiple words which are not identifiable using traditional whitespace based separation
techniques). An initial prototype of this scheme has been presented in our previous
work [71]. Our extended methodology now utilizes UMLS concepts to enrich and
improve the semantic matching. The current approach is shown in Fig. 6.
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Table 2 QUERIES

Ine Id Query Description

Ine Q1 Select medicalfragmentidx.fragmentid,
uhpridx.firstname, uhpridx.lastname,
uhpridx.dob, uhpridx.gid from
medicalfragmentidx,uhpridx where
medicalfragmentidx.gid=uhpridx.gid AND
uhpridx.firstname=”Harry” AND
uhpridx.lastname=”Potter” AND
uhpridx.dob=”19880708”

Selects the fragment id, patient’s first name,
patient’s last name, patient’s date of birth,
and global identifier, from the L-Store, for
user named “Harry Potter” who was born
on 19880708

Ine Q2 Select ∗ from uhpr where fragmentid in
(select fragmentid from
medicalfragmentidx where gid=(select gid
from uhpridx where firstname=”Harry”
AND lastname=”Potter” AND
dob=”19880708”))

Selects the medical fragments from UHPr
storage form, by matching the global
identifier for the patient named “Harry
Potter” , who was born on 19880708

Ine Q3 Select fragmentid from medicalfragmentidx
where gid=(select distinct(gid) from
uhpridx where firstname=”Harry” AND
lastname=”Potter” AND
dob=”19880708”)

Select the fragment id from L-Store for the
patient named “Harry Potter” who was
born on 19880708, selecting only distinct
global identifiers first

Ine Q4 Select distinct(fragmentid) from
medicalfragmentidx where gid=(select gid
from uhpridx where firstname=”Harry”
AND lastname=”Potter” AND
dob=”19880708”)

Select only the unique fragment id from
L-Store for the patient named “Harry
Potter” who was born on 19880708

Ine Q5 Select ∗ from uhpr where fragmentid in
(select fragmentid from
medicalfragmentidx where gid=(select
distinct(gid) from uhpridx where
firstname=”Harry” AND
lastname=”Potter” AND
dob=”19880708”))

Selects the medical fragments from UHPr
storage form, by matching the distinct
global identifier with the fragment id for
the patient named “Harry Potter” , who
was born on 19880708

Ine Q6 Select ∗ from uhpr where fragmentid in
(select distinct(fragmentid) from
medicalfragmentidx where gid in (select
gid from uhpridx where firstname=”Harry”
AND lastname=”Potter” AND
dob=”19880708”))

Selects the medical fragments from UHPr
storage form, by matching the distinct
fragment identifier with the global id(s) for
the patient named “Harry Potter” , who
was born on 19880708

Ine

The process is split into two phases; an offline phase, which generates the semantic
maps between the participating schemas, and an online phase which is used to apply
the schema for semantic linking or transformation. In the offline phase, all participating
medical fragment schemas are provided to the tool in form of a text file which contains
the list of attributes in the form of ‘SchemaName_IgnoredText, AttributeName’. This
list is then used to apply 7 steps, for semantically enriching each attribute (A) by its
concept (C) and its corresponding word (W ), syntactic comparison between a pair
of attributes and their corresponding words, and semantic comparison between the
attribute and word pairs. In step 1, a simple case insensitive match between attribute
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Fig. 6 UHPr Map generation process

strings is applied (A − A). If the two attributes match, they are not processed further.
If the attributes do no match step 2 is performed. In Step 2, we search for the longest
common subsequence between the two attributes A− A using the Suffix Tree method.
Using Concurrent Suffix Tree implementation [22], the two attribute strings are com-
bined into one Suffix Tree, which contains character sequences of all possible lengths
between the two strings. The longest subsequence which is common between the two
strings is placed in the leaf node of this tree, which can be queried quickly.

The attributes are then split into words in stage 3. For identifying the words, we
utilized a regular expression to split the attribute string, on any case change (this
would lead to PatientMRNo becoming ‘Patient’, ‘MR’, and ‘No’), any occurrence of
digits, or special characters (A → W ). In step 4 each word (WinA) is queried on
UMLS to collect its associated concept identifier and source (C[W ]). Utilizing over
213 terminology services, UMLS returns a list of concepts which may belong to a
word. Due to result size limitations in the UMLS REST API call, multiple queries are
often necessary to collect all corresponding concepts against a word.

Then for each distinct pair of words, step 5, 6, and 7 are performed. First, in
step 5, the UMLS concepts from each word pair is compared to identify any similar
concepts (C1[W1] − C2[W2]). This is done by intersecting the list of concepts from
both words in the word pair. Next, in step 6, Longest SubsequenceMatching is applied
to identify the syntactic similarities between an attribute and the words from (A−W ).
Here we again use the Concurrent Suffix Tree implementation to identify the longest
substring common between the two strings. Finally, in step 7, the words are checked
on ConceptNet for their relatedness (C1[W1] = C2[W2]) measure, obtained from
numberbatch.h5 embeddings [77]. The final results of these steps are then placed into
SchemaMap in JSON form.
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The glue between these two phases are the model classes, which are shown in Fig.
7. The base model here is the UHP_MAP of type ‘SchemaMap’, which represents a
HashSet(for holding only unique values) of ‘AttributeMap’. The ‘AttributeMap’ holds
two attribute nodes, leftNode and rightNode. Additionally, it contains the schemaRe-
lation, which corresponds to the semantic and syntatic relationship between the two
attributes. Finally, it contains comments, method and confidence strings for holding
additional details of the mapping. The ‘Attribute’ contains, the name of the table, com-
plete name of the attribute, and a list of words, corresponding to the attribute. ‘Word’
holds the title of the word, and a string representation from ConceptNet which can be
optionally filled. Finally it contains a list of Concepts which are collected fromUMLS,
in the form of concept unique identifier (CUI), name, and source (such as SNOMED
CT, UMLS Metathesaurus) of the underlying concept. A supplementary ‘WordMap’
entity has class attributes similar to the ‘AttributeMap’, (except forwordLeft in place of
attributeLeft, and wordRight in place of attributeRight) for holding the semantic rela-
tionship between the word pairs belonging to a pair of attributes. This map becomes a
part of the comment string, for the corresponding ‘AttributeMap’ and is used for expla-
nations and mapping traceability. In the online phase, each medical fragment provides
the name of the schema, which is used to search for the appropriate SchemaMap. From
the SchemaMap, using attribute names, the related schema maps are selected. These
are then converted into appropriate object models and loaded in memory, while the
UHPr model generator is running. It is then used to either enrich the attribute name or
to transform it into a target format. The offline process was executed on a workstation
with AMD Ryzen 3 2200G CPU with 4 cores, and a maximum memory allocation of
10Gb(by using the -Xmx Java Virtual Machine argument). A dedicated machine with
ConceptNet was also set up with 4 core AMDRyzen 3 2200G processor, 32Gb RAM,
and 10 dedicated virtual processing threads. The Schema Maps for 144 attributes as
shown in Fig. 4, were generated in a little under 97 mins. It contains a total of 17913
relationships with step 1 generating 10 relations, step 2 generating 0 relations, step 5
generating 8980 relations, step 6 generating 69, and step 7 producing 8854 relations.

3.3.3 UHPr model

Structured output of the UHPr storage engine is presented in the form of UHPr
model. This representation is retrieved after applyingUHPrMaps, as semantic bridges,
between the various attributes of the participating schema. In order to implement the
UHPr Model, a java based application reads the medical fragment data from a csv file,
generated from Hive. It also reads the UHPr Maps JSON file and loads the Schema
Maps in memory. Then based on the name of the schema for each medical fragment, it
reads the appropriate schema map, and generates the graph form of the UHPr model.
Based on user request, the UHPrModel generator can either add the all AttributeMaps
belonging to an attribute in the output graph, or it can read the use the AttributeMaps
linking the source and target attributes and apply transformation, if the confidence
score of the mapping is above some user defined threshold. The class diagram for
this model is shown in Fig. 5. It uses the UhprModel as the base class holding the
root node, and MedicalFragmentModel, holding a map of fragmentId and the medical
fragments. The MedicalFragment itself, is a parent class of our 8 specialized medical
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Fig. 7 Modeling UHPr maps

OpenEMR

KRSiloEMR

Medical Fragments

Fig. 8 UHPr results for selected user

systems: ‘ Krsiloemr_tblPatient ’, ‘ Emrbots_PatientCorePopulatedTable ’, ‘Open-
emr_Demographics’, ‘Openemr_MedicalProblems’, ‘Openemr_Prescription’, ‘Emr-
bots_LabsCorePopulatedTable’, ‘Emrbots_AdmissionsCorePopulatedTable’, and ‘Emr-
bots_AdmissionsDiagnosisCorePopulatedTable’.

The same application then transforms the UHPr object form into JSON based graph
form. Here, loading the SchemaMap into memory and its deserialization into object
form took 988 ms. For 1 patient with 30 records, the semantic linking process took
under 3 s. While the semantic transformation process for the same user too 404 ms.
The UHPr model, in this graph form, is then transformed into a user friendly format,
as shown in Fig. 8.
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3.3.4 Availability of data and software

All code(for creating, transforming, and view), some sample data(minus the EMRBots
data set), and results related to this version of theUHPr are available in a public GitHub
repository(https://github.com/desertzebra/UHPr).

4 Results and evaluation

Building upon the initial results from UHPr, an experimental setup was created, with
the aim to evaluate the timeliness, scalability and accuracy of this platform. Based on
the data quality definition by [3], the modified evaluation metrics of the UHPr are as
follows:

1. TimelinessThemedical fragments are archived in the storagemediumand retrieved
from it within some soft time-bound.

2. Scalability All the medical fragments are recorded completely.
3. Accuracy Each medical fragment is retrieved accurately.

Here timeliness and scalability are related to the performance of the storage engine,
while accuracy is related to the data retrieval and transformation process.

4.1 Experimental setup

Starting with a set of 2.4 million synthesized medical fragments against 80,000
patients, we performed 7 iterations to increase the data and test the three metrics.
Data for the first 6 iterations is based on 40 real patients in Krsiloemr and 12 patients
for openEMR. In iteration 7, we used the EMRBOTS dataset of 100,000 patients. In
each iteration, we evaluated 8 timeliness criteria to evaluate the performance of data
insertion into HDFS (corresponding to UHPr storage form), creation of temporary
schema in Hive, and timeliness of data retrieval (corresponding to the transformation
process from UHPr storage form to model form). These are shown in Table 3. In order
to test the actual transformation of medical fragments from UHPr storage form to the
model form, we executed Q1 and Q2 in iteration 1–5, while Q3, Q4, Q5, and Q6 in
iteration 6 and 7, to retrieve medical fragment ids and medical fragments, respectively.
The queries and their description is shown in Table 2. These were repeated 10 times
to strengthen the results. The evaluation results of these iterations and the relationship
of the evaluated criteria across them is discussed as follows:

In the first iteration we started by generating medical fragments for 100 patients,
with 20 medical fragments per patient. Total number of medical fragment instances
for the user “Harry Potter” , who was born on 19880708 were 30 (same as iteration
0). The results for executing Q1 and Q2 10 times, for criteria C7 and C8 respectively,
is shown in Fig. 9. The average time taken for C7 is 28.8528 s and for C8 is 119.1014
s. In the second iteration, the number of new patients was increased to 10,000, with
each having 20 medical fragments. Executing Q1 and Q2, 10 times, for criteria C7 and
C8, respectively, yielded the results shown by Fig. 9. The average time taken for C7
is 28.4869 s, while for C8 is 121.4805 s. The total number of rows returned by these
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Table 3 Evaluation criteria for each iteration

Ine Id Description Metric

Ine C1 Time taken to insert UHPr medical fragment file into
HDFS

Time

Ine C2 Time taken to insert medical fragment bridging
information, linking global id(gi d) with fragment
id($f_id) into HDFS

Time

Ine C3 Time taken to insert UHPr patient index part of L-Store
into HDFS

Time

Ine C4 Time taken to create UHPr table schema in Hive Time

Ine C5 Time taken to create medical fragment bridging table
schema in Hive

Time

Ine C6 Time taken to create UHPr patient index table schema in
Hive

Time

Ine C7 Time taken to retrieve all fragment ids for 1 user Time

Ine C8 Time taken to retrieve all medical fragments for 1 user Time

Ine

1 2 3 4 5 6 7 8 9 10
C7(28.8528s) 27.782 27.991 28.849 29.663 28.719 28.983 29.233 29.022 29.272 29.014
C8(119.1014s) 121.43 119.56 117.02 117.93 118.11 117.48 118.31 119.2 122.38 119.6
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Fig. 9 Iteration 1–5 results for C7 and C8 after executing Q1 and Q2

operations were 30 (same as iteration 0). In the third iteration, 40,000 new patients
with 20 medical fragments each was generated. The results for this iteration are shown
in Fig. 9. The average time for C7 is 30.9533 s and for C8 is 128.011 s. In the fourth
iteration, 80,000 new patient records were generated, with 30 fragments for each. As
shown in Fig. 9, the average time for C7 is 33.0076 s and for C8 is 139.1931 s. Similar
to the previous iteration, 80,000 new patients with 30 fragments each were added as a
new UHPr storage file in the HDFS. As indicated by the results shown in Fig. 9 there
is only a slight increase in the amount of time consumed by Hive. With an average
time of 33.7804 s for C7 and 148.0349 s for C8, there is a slight increase of 0.7728 s
for parsing the medical fragment identifiers and a relatively larger increase of 8.8418 s
for retrieving the UHPr storage forms. Here, the former can be explained by the small
size of each row, while the latter is the result of processing a large amount of text,
especially in the raw data column.

123



2434 F. A. Satti et al.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

)sdnoces(
e

m iT

A�empt

Itera�on 6a

C7(124.8474s) C8(194.5284s)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(s

ec
on

ds
)

A�empt

Itera�on 6b

C7(57.4094s) C8(104.7012s)

Fig. 10 Iteration 6 a results for C7 and C8 after executing Q3 and Q5 and b for C7 and C8 after executing
Q4 and Q6

Themain aimbehind iteration 6,was to evaluate the accuracy of theUHPrwhen new
medical fragments for a particular patient are added. In this iteration we generated an
additional 40medical fragments for our selected patient. It is also important to point out
here that while the UHPr platform and the selected queries, allow for non-unique gid
(iUH Pr ), the theoretical model is based on these being unique for individual patients.
As a result, the gid of the new fragments was also matched with the already existing
one. The number of medical fragments for the selected patient were increased to 70
(These exist in two distinct files for UHPr, and L-Store with the split 30–40).

On executing Q1, the total number of rows returned were 140 in 32.918 s. The
results indicated that each fragment id was repeated twice, which is the result of
multiple “Map” operations, converging without consolidating their records. While
this is not an erroneous execution, it is still undesirable for our use case. As a result,
we switched the queries to Q3, Q4, Q5, and Q6. Executing in two sets of 10 repetitions
each, we first calculated the results of Q3 and Q5, followed by 10 repetitions of Q4
and Q6.

In the first case, used the distinct function on the inner most query, which would
produce a set of unique gid (which is 1 only), further used to retrieve the fragment ids
and eventually the medical fragments. The results for this case are shown in Fig. 10a.
On the other hand, Fig. 10b, shows the results of the second case, whereby the distinct
function was applied on the outer query in Q4/middle query in Q6, to produce the
unique set of fragment ids, eventually used for retrieving the medical fragments. The
distinct operation is executed via the “Reduce” operation in Hive, which consolidates
the results, leading to 70 correct records, every single time.

In iteration 7 we introduced the large dataset from EMRBOTS into the platform
after tweaking it to include randomly generated patient names(a requirement for our
platform). The dataset contains 100,000 new patients, along with their corresponding
record of 107,535,388 fragments(from Admission, Admission Diagnosis, and Labs
table). Average time for C7 is 264.9 s and for C8 s. Here again, there was a substantial
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Fig. 11 Iteration 7 results for C7 and C8 after executing Q4 and Q6

increase in the query execution time, as shown in Fig. 11. However the returned results
were error free and conform with the platform scalability, discussed in the following
section.

4.2 Evaluation

The evaluation results are presented in the following sections.

4.2.1 Timeliness

In order to evaluate the timeliness aspect of the UHPr, we analyzed the time taken
in each iteration to store the medical fragments and their associated metadata into
HDFS. As shown in Fig. 12a, there is a general increasing trend in the amount of
time consumed, in relation with an increase in the amount of records. In iteration 1
and iteration 6, the time consumed by C1 and C3 is almost the same. For iteration 2
there is approximately 200% increase, while in iteration 3, 4, and 5 there is a 300%
increase. For C2, in all iterations the difference remains within 0.402 s. This variation
is explained by the increasing file size involved in each iteration, as shown in Table 4.
For criteria C4, C5, C6, all six iterations showed similar execution time. This is due to
the fact that in creating a table, Hive only performs basic indexing operations, thereby
creating a logical schema, which is unaffected by the amount of actual data or files
in the system. Figure 12b. Shows this trend, with only one corner case in iteration 1,
which is most likely, an outlier. Finally, for C7 and C8, we took the average time of
10 queries, as discussed earlier and analyzed the results, which also showed a general
increasing trend, till Q4 and Q6, dramatically changed the results. This trend can be
explained as a by-product of an unintended optimization. The result of this analysis is
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Fig. 12 a Timeliness of recording medical fragments and their metadata in HDFS. b Time taken by Hive
to create tables [C4, C5, C6]. c Timeliness of retrieving medical fragments

Table 4 HDFS file size comparison

Ine iteration Total medical fragments File size for C1 (Kb) File size for C2 (Kb) File size for C3 (Kb)

Ine 1 2000 659 6 181

Ine 2 200,000 66,260 580 18,059

Ine 3 800,000 264,923 2320 72,242

Ine 4 2,400,000 755,295 4639 216,617

Ine 5 2,400,000 755,417 4639 216,608

Ine 6 40 13 1 4

Ine 7 116560948 25752400 7263 11118380

Ine

shown in Fig. 12c. Summarizing these results, it is evident that the rate of increase in
file size and medical records has a very small impact on the rate variations of C1, C2,
C3, C7, and C8. While there is no impact on C4, C5, and C6 criteria. This indicates
that the UHPr platform is able maintain timeliness of data storage and retrieval, while
also supporting high scalability.

4.2.2 Scalability

As discussed earlier, from our 7 iterations, we have been able to stress test the storage
platform, eventually recording over 116 million medical fragments for slightly over
390,000 patients. The storage strategy here, is very important as Hadoop and by
extension Hive are really good at processing a small number of large sized files. As
shown in Fig. 13, the platform is not only able to scale up when adding new patients
and their associated medical fragments but has also proved successful in scaling the
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Fig. 13 Scalability in UHPr

medical fragments of an already existing patient. In particular between iteration 6 and
7, when there was a 14-fold increase in data, only 9-fold increase in querying time
was observed.

4.2.3 Accuracy

For our test case of retrieving records of the user “Harry Potter” born on “19880708”,
the UHPr has shown 100% accuracy in all 7 iterations, albeit with some adjustment
in the 6th iteration. However, even in the case where our particular query returned
more results than expected, it did only double up every correct value. This has been
explained earlier as a lack of consolidation for the results, which once applied, returned
the correct results. Another associated caveat here is the somewhat tightly controlled
nature of the sampled data. Even though the data was synthesized (partially based on
52 real patient data), producing over 116 million records, no patient with the same
name and data of birth was repeated. However, in real world that may not be the case
leading to the challenge of sparse data, which we will discuss in the next Sect. 6.

5 Challenges

The UHPr platform provides the necessary underlying infrastructure for resolving the
interoperability problem in the field of Healthcare Informatics. However, during this
long journey we were able to identify new challenges via, experimentation and peer
review, some of which will be discussed henceforth.
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5.1 Patient identification

Patient identification number is considered one bottleneck for cross sharing of the
patient information among different medical organizations. The proposal of a single
identifier across the country to identify patients in everymedical organizationwould be
one restricted solution.But the implementation of this strategyworldwide, still needs to
be seen.Many covid 19 fatalities thatwere having underlyingmedical conditions could
have been saved, if patient identification was performed properly across the countries.
The problem of unique indexing can be explained by a simple question, raised by one
of the reviewers of our work, “What happens when there are two individuals named
Harry Potter and born on 19880708?” . This is one of the key research in the field
of information systems. Also known as the entity resolution problem, in a Big Data
environment, this problem is especially important, given the schema less storage and
the large volume of items, qualifying as an entity [4].

There are two perspectives of this particular challenge. Firstly, the problem of
disambiguation, whereby two different individuals from the real world, must remain
so in the digital world as well. Secondly, due to sparse data, we may not always have
the complete picture leading to one real world user, having multiple digital profiles.
The problem might look trivial with an obvious solution to incorporate some more
unique attributes like patient’s address, or a hash of the patient’s demographics, or
an email or a phone. However, for one thing this would lead to a cyclic argument,
whereby no amount of extra attributes would be enough for a universal solution.
Pattern recognition technique such as the one presented in [80], which performs a
similarity analysis, while keeping the computation with-in database can prove to be
useful in our setting as well.

5.2 Data verification

Another challenge towards achieving complete data interoperability is the lack of a
comprehensive and easy to use data verification platform. This is partially due to the
veracity of medical data. As discussed in the motivation section, it is not possible to
expect the over-worked medical experts to provide complete information. Instead a
system of incentive based verification along with distributed voting, crowd sourcing or
Blockchain could prove to be successful here. Another related aspect of this problem,
is verification of semantic matching and semantic integration, in order to provide
semantic reconciliation at data, process, and knowledge levels.

Data verification is made more complicated because of the occurrence of duplicate
records in the patient index. Similarly, duplicates can occur when multiple records of
the same patient are created in a medical system. This will not provide full medical
history to the medical staff, restricting the quality of care. Confusions can also occur
when same ID is provided to multiple patients. This can be very risky as the history
of one of the patients should be the combination of the two patients with similar IDs.
In addition, inaccuracy of data can be another challenge for data verification. For
example, inaccurate data collection at the current or previous registration process at
same or different medical organizations.
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5.3 Security and privacy

Due to the very sensitive nature of the healthcare domain, data privacy is a major
challenge, which requires implementation of very precise and comprehensive method-
ologies and policies for preventing any unauthorized access [16]. This includes
providing an authentication and authorization procedure, maintaining integrity of the
data, keeping the patient records confidential,maintaining availability, and disallowing
non-repudiation [65]. Security and privacy is one of the most critical factors for any
information system in general and an interoperable one in particular. This involves the
questions such as whom to share, how to share, why to share, and how much to share?
This also is related with another debate about who is real owner of the data (patient,
one of the participating medical organizations, or all of the medical organization).

While ample solutions do exist which can help resolve this problem, identifying
and using the one with least impact on the timeliness and scalability is the main con-
cern, here. Additionally, depending upon the abstraction level at which the platform,
like UHPr, is deployed, it may be necessary to take into account multiple legisla-
tion and organizational policies. e.g. compliance with Health Insurance Portability
and Accountability Act of 1996 is required in the US, while in the EU medical record
management systemsmust complywithGeneralDataProtectionRegulation 2016/679.

6 Conclusion

In this paper we presented realization of the proposed UHPr platform. The platform
covers various dimensions of curating healthcare big data with big data management
tools. The results showed, the platform achieving data level interoperability, by eval-
uating the timeliness, accuracy and scalability aspects. In summary, we have created
and evaluated the UHPr platform and its associated management tools, as a proof of
concept for applying semantic mediation, on semi-structured healthcare data. As a
future work, we intend to extend the platform and resolve the challenges addressed in
this paper.
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