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Convolutional Network With Twofold Feature
Augmentation for Diabetic Retinopathy
Recognition From Multi-Modal Images

Cam-Hao Hua , Kiyoung Kim , Thien Huynh-The , Member, IEEE, Jong In You, Seung-Young Yu,
Thuong Le-Tien, Member, IEEE, Sung-Ho Bae , Member, IEEE, and Sungyoung Lee , Member, IEEE

Abstract—Objective: With the scenario of limited labeled
dataset, this paper introduces a deep learning-based ap-
proach that leverages Diabetic Retinopathy (DR) severity
recognition performance using fundus images combined
with wide-field swept-source optical coherence tomogra-
phy angiography (SS-OCTA). Methods: The proposed ar-
chitecture comprises a backbone convolutional network
associated with a Twofold Feature Augmentation mecha-
nism, namely TFA-Net. The former includes multiple convo-
lution blocks extracting representational features at various
scales. The latter is constructed in a two-stage manner,
i.e., the utilization of weight-sharing convolution kernels
and the deployment of a Reverse Cross-Attention (RCA)
stream. Results: The proposed model achieves a Quadratic
Weighted Kappa rate of 90.2% on the small-sized internal
KHUMC dataset. The robustness of the RCA stream is also
evaluated by the single-modal Messidor dataset, of which
the obtained mean Accuracy (94.8%) and Area Under Re-
ceiver Operating Characteristic (99.4%) outperform those
of the state-of-the-arts significantly. Conclusion: Utilizing a
network strongly regularized at feature space to learn the
amalgamation of different modalities is of proven effective-
ness. Thanks to the widespread availability of multi-modal
retinal imaging for each diabetes patient nowadays, such
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approach can reduce the heavy reliance on large quantity of
labeled visual data. Significance: Our TFA-Net is able to co-
ordinate hybrid information of fundus photos and wide-field
SS-OCTA for exhaustively exploiting DR-oriented biomark-
ers. Moreover, the embedded feature-wise augmentation
scheme can enrich generalization ability efficiently despite
learning from small-scale labeled data.

Index Terms—Convolutional network, diabetic
retinopathy recognition, fundus photograph, multi-
modal images, SS-OCT angiography, twofold feature
augmentation.

I. INTRODUCTION

D IABETIC Retinopathy (DR), the complication resulted
from being afflicted with diabetes mellitus over a long

period of time, is among the most common causes of visual
impairment and blindness [1]. Traditionally, the DR grade
is determined based on the combined evaluation of different
structural features presented in the color fundus images, for
instance, existence of microaneurysms, exudates, hemorrhages,
and neovascularization [2]–[4]. Accordingly, five severity scales
including no apparent retinopathy (no DR), mild nonprolifera-
tive DR (NPDR), moderate NPDR, severe NPDR, and prolifer-
ative DR (PDR) have been proposed as international clinical
classification system based on the Early Treatment Diabetic
Retinopathy Study [5]. However, such grading process remains
time-consuming and challenging due to the heavy dependence
on examiner as well as errors from low quality of the screened
photos or missing subtle details. Moreover, it can be observed
that effective diagnosis of DR severity level allows the oph-
thalmologists to deploy proper treatment procedure for the
prevention of vision deterioration. These lead to the fact that
the research topic of automatic DR detection from retinal-based
images shows great interest in both ophthalmology and modern
computer vision domains nowadays.

To this end, with the qualitative and quantitative advance-
ments of computational resources and images, respectively,
deep learning (DL) technique has been intensively exploited
in computer vision. Particularly, Convolutional Neural Net-
work (CNN), a powerful DL architecture, has been applied
in diverse vision-oriented areas ranging from natural image
classification [6]–[9], human action recognition [10], [11] to
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biomedicine [12], [13], medical image segmentation [14], and
DR risk prognosis [1], to name a few. As a result, utilizing
CNN to recognize DR severity scales from fundus images
has also attracted numerous researches [15]–[25] thanks to
the representational power of the above-mentioned biomarkers
for automatic diagnosis. Nonetheless, it is worth noting that
large-scale dataset [26] was utilized in those studies for at-
taining an excellent performance of detecting the DR grades.
Additionally, the model training cost becomes a significant
concern due to dealing with a large number of high-resolution
images.

On the other hand, optical coherence tomography angiogra-
phy (OCTA), a novel type of noninvasive retinal imaging, can
provide the visualization of retinal microvasculature changes,
which is incapable in fundus photo. As such, several OCTA-
based researches [27]–[31] investigated that the decrease of
capillary density and increase of non-perfusion area signify the
exacerbation of DR within a limited field of view (FOV). More
recently, swept-source OCTA (SS-OCTA) has been shown to
offer sufficient capillary details of mid-peripheral retina in a
wide-field single scan (12 × 12 mm2 or 15 × 9 mm2) owing to
its longer wavelength and faster acquisition time [32]. Accord-
ingly, novel studies of wide-field SS-OCTA in DR [27]–[29]
remarkably reported that higher percentage of non-perfusion
region on peripheral sector is a more robustly diagnostic marker
of DR severity compared to that of central sectors. In a nutshell,
compared to fundus photograph, the wide-field SS-OCTA offers
better visualization of retinal vein, artery, and especially capil-
lary, from which the measures of avascular (a.k.a. non-perfusion)
areas and/or density can be considered as important biomarkers
related to DR severity.

From those observations, we hypothesize that amalgamating
SS-OCTA 12× 12 mm2 with fundus image in a well-regularized
DL model is able to detect DR severity effectively in the case
of limited dataset size. There are four remarkable reasons sup-
porting such problem statement as follows. Firstly, the avail-
ability of multi-modal imaging to each diabetes mellitus patient
is widespread nowadays for facilitating the ophthalmologists
to diagnose abnormalities more efficiently. Secondly, fundus
images and SS-OCTA 12 × 12 mm2 are noninvasive, which
allows to conveniently capture both of them from the patients
in practice. Thirdly, they share similar FOV, wherein different
clinical manifestations of these two modalities can supplement
each other. Fourthly, the additional involvement of wide-field
SS-OCTA enables the DL model to acquire better generalized
DR-related features at each learning step. As a result, the reliance
on single-modal (e.g., conventional fundus images [26]) dataset,
which should be large enough to cover all-round DR properties,
is alleviated for the training process.

Accordingly, we introduce a Convolutional Neural Network
with Twofold Feature Augmentation strategy, namely TFA-Net,
to leverage the capability of feature-level generalization from
the bimodal inputs given a small amount of observed data. In
particular, the proposed architecture includes weight-sharing
convolutional layers followed by a pretrained backbone CNN
having Reverse Cross-Attention (RCA) stream, wherein the
augmentation at feature space is twofold. With respect to the

first one, the early convolutional layers are utilized for concur-
rently learning both types of inputs, i.e., fundus photograph and
wide-field SS-OCTA, from which the same weights (parameters)
are updated interchangeably as an augmentation procedure for
boosting the generalization. Regarding the second stage, a RCA
stream is deployed to stair-wisely refine typical fine-grained
details of low-level feature maps using depth-wisely semantic
context of high-level counterparts [14], [33] in the proposed
network. As a consequence, not only spatially informative repre-
sentations of DR-oriented clues are extensively involved but also
the learned feature responses are continuously manipulated in a
feedback-like manner for further enriching the generalization
ability. In other words, our TFA-Net is able to exhaustively
exploit the hybrid information in the bimodal inputs at feature
levels, which subsequently benefits the process of learning from
limited data for DR grade prediction. Notably, to the best of our
knowledge, this is the first work that incorporates fundus image
and wide-field SS-OCTA for DR detection using DL especially
on the small-scale dataset.

As for the evaluation step, we employ a domestic small-
scale dataset of 297 patients taken from Kyung Hee University
Medical Center (KHUMC), Seoul, Republic of Korea, wherein
each individual owns a pair of fundus image and wide-field SS-
OCTA. Subsequently, the experimental performance in terms
of Quadratic Weighted Kappa (QWK) is an indicator for the
effectiveness of the proposed approach in classifying DR scales
given a small number of labeled visual data. Additionally, we
employ the Messidor dataset [34] to prove the superiority of the
proposed RCA stream over the existing approaches regarding
popular Accuracy and Area Under Receiver Operating Charac-
teristic (AUROC) metrics.

In overall, this study offers four key contributions as below
� We introduce the study that learns the amalgamation be-

tween fundus images and wide-field SS-OCTA using DL
on a limited dataset size for DR severity screening.

� We propose a Convolutional Network with Twofold Fea-
ture Augmentation to intensively enrich the generalization
capability at feature level, which is smoothly compatible
with multi-modal small-scale dataset.

� We perform a 5-fold cross validation procedure to prove
the effectiveness of the proposed methodology on a do-
mestic small-scale dataset from Kyung Hee University
Medical Center, Seoul, Republic of Korea.

� We show the robustness of the RCA stream (i.e., the second
stage of the TFA mechanism) compared to state-of-the-
art approaches through a single-modal evaluation on the
public Messidor dataset [34].

Subsequent sections in this article are organized as follows.
Section II discusses about related work, wherein fundus images
are handled by DL technique for DR grading task. Section III
delivers overview of the whole architecture and then provides
an in-depth description of the proposed Twofold Feature Aug-
mentation scheme. Section IV presents the benchmark datasets,
evaluation metrics, implementation details, and experimental re-
sults with corresponding analyses. Section V mentions existing
limitations and future work. Section VI encapsulates the findings
of this study.
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II. RELATED WORK

We categorize the existing CNN-based methods using fundus
images for DR grade detection into two primary groups: (i)
the employment of the CNN built by common trainable and
non-linear layers for classification [15]–[20] and (ii) deep archi-
tecture of multiple network streams learning through ensemble
scheme [21]–[25].

Regarding the first branch, the corresponding models are cus-
tom 11-layer [15], 17-layer [16], 18-layer [17], and 20-layer [18]
CNNs, of which the fundamental constituents are convolutional,
ReLU activation, max/average pooling, and FC layers, followed
by a Softmax classifier. Notably, in SI2DRNet-v1 [18], a convex
post-prediction mechanism attached at the end of the network is
argued to be a key determinant gaining an impressive recognition
performance. Meanwhile, both Gulshan et al. [19] and Sahlsten
et al. [20] fine-tuned a lightweight deep learning architecture,
called Inception-v3 [35], to address the DR severity grading
issue. Model in the former work is trained with a very large-sized
dataset (more than 128 000 retinal images) and subsequently
achieves impressive performance in terms of specificity and
sensitivity for referable DR recognition. On the other hand, the
latter further exploits the correlation between higher-resolution
inputs and smaller-sized sample pool by various experiments
with different private datasets.

In the second branch, Vo et al. [21] introduced two modified
versions of VGG [6] and GoogleNet [7], namely VNXK- and
CKML-Net, respectively, to predict the DR grades. Also, the
authors adopted L-, green-, and I1-channel versions of the orig-
inal fundus images as inputs of those two networks to combine
the prediction scores for boosting classification performance.
Recently, Ting et al. [22] proposed a similar idea, wherein
a raw input fundus image and its local contrast-normalized
modality are fed into two separated VGG networks [6]. Then, the
corresponding output scores are combined for finalizing the DR
grading result. Different from the input-based ensemble learning
manner in [21], [22], manifold CNN streams comprising Main,
Crop, and Attention-based Networks [23] were taken into ac-
count to aggregate DR-oriented signs from various viewpoints
on a same input image at feature space. On the other hand, a
deep multiple instance learning method [24] was introduced to
comprehensively extract DR-oriented information. Particularly,
an input fundus image is exploited at multiple scales, wherein
various patches of each version are fed into different predefined
CNNs. As a result, the acquired patch-level feature maps are
aggregated through all the scales to produce an averaged DR
map for the final classifier. In contrast, to reduce the expensive
computation of multi-stream networks, Junjun et al. [25] em-
bedded an auxiliary spatial attention mechanism, which infers
region scoring maps (RSMs), into the backbone ResNet-18 [8].
Consequently, the features calibrated by the RSMs were proved
to be more discriminative and robust for DR grade prediction
than those learned in the baseline model.

In brief, for inferring the DR severity levels effectively,
the existing approaches either only rely on high-level features
extracted from the deep CNNs or extensively adopt ensem-
ble strategies by involving multiple input formats/scales and

corresponding late feature maps. It is obvious that the former
faces the issue of losing small-sized clinical signs (e.g., microa-
neurysms, hemorrhages) due to manifold downsampling stages
in the CNN, while the latter carries costly computation because
of employing the multi-network regime. On the contrary, as
aforementioned, the proposed architecture aims to aggregate
features of different semantic levels through a lightweight stream
for encoding DR-related biomarkers of various scales efficiently.
Furthermore, the unique combination between wide-field SS-
OCTA and fundus images in our work is able to enrich the pool
of representational features for tackling the difficulty of training
with small-scale dataset.

III. METHODOLOGY

Notably, this study was performed in accordance with the
Declaration of Helsinki. Kyung Hee University Medical Center
institutional review board (IRB) approved the study protocol
(IRB No. KHUH202008028, date of approval: 2020-03-15).

A. Architecture Overview

Regarding the architecture illustrated in Fig. 1, our TFA-Net
comprises a backbone network acquiring deep features through
multiple blocks of convolutional layers (enclosed by the area
having a boundary of dashed gray lines), which are associated
with a trainable two-stage feature augmentation mechanism
(covered by the beige regions). About the former, we adopt
the residual blocks in ResNet [8] as the base feature extractors
thanks to its powerful skip-connection strategy for model’s
parameters optimization. Specifically, there are four sequentially
residual-based convolution blocks in the ResNet, for each of
which the amount of convolutional and non-linear activation lay-
ers may be different from one another. Moreover, the final output
features of each block are further involved in the attached RCA
stream. As for the latter constituent, as the core contribution
of this work, the two stages of feature-level augmentation are
taken into account to combat the overfitting issue in the case of
training with multi-modal inputs under the limitation of dataset
size. Subsequently, details of the TFA strategy are conveyed in
following sub-sections.

B. Twofold Feature Augmentation (TFA)

1) Stage 1 - Weight-Sharing Convolution Kernels: Since the
two input images possess a highly similar FOV as presented
in Fig. 1, we aim to employ convolutional layers which should
acquire hybrid finely-patterned features in an effective and gen-
eralized way. It is worth noting that a convolutional layer is
defined as the pipeline of convolution kernels, batch normal-
ization [36], and rectified linear unit (ReLU) activation func-
tion in this work. As mentioned before, fundus photo exposes
the emergence of microaneurysms, soft/hard exudates, hemor-
rhages, etc. Meanwhile, the SS-OCTA 12× 12 mm2 contributes
better visualization of non-perfusion areas and retinal vessel
density. Therefore, weight-sharing convolution layers followed
by depth-wise concatenation are adopted as they can perceive
those distinct DR-oriented biomarkers from different modalities,
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Fig. 1. Architecture of our TFA-Net for DR recognition. Notably, the input wide-field SS-OCTA is mirrored to form into a three-channel image like
the preprocessed fundus version so that these two modalities can then be together transformed by the weight-sharing convolution kernels. ‘Conv.
Block’ and ‘SCA’ stand for the blocks of predefined convolutional layers and Self-Context Aggregation, respectively. The area having a boundary of
dashed blue lines represents processes of the Pairwise Reverse Attention component, while that of dashed green lines embodies operations of the
Multi-level Fusion component in Stage 2. ‘FC, Sigmoid’ means fully connected layers followed by the Sigmoid activation function. View in color is
recommended.

and then learn to adapt the shared characteristics for superior
generalization.

In the case of using separated convolutional layers for each
input type, the amount of training data should be large enough
to make the obtained features more robust. Meanwhile, by
the utilization of weight-sharing strategy, the same kernels can
selectively collect clinical details of interest from the two modal-
ities right at the beginning of our model. Subsequently, the
learned parameters are continuously revised in order to effec-
tively represent essential cross-modal features. Thus, we argue
that such progressive manipulation of the shared weights with
respect to multi-modal inputs can be considered as a feature-wise
augmentation stage, which may ease the significant dependence
on large-scale dataset for training.

Let If and Io ∈ RH×W×3 be the preprocessed input fundus
image and wide-field SS-OCTA, respectively. Note that we
replicate the raw SS-OCTA itself to form into a three-channel
image like the fundus version. Then, the first stage of our TFA
scheme is executed as follows

Fc = C[ReLU(Wshared ∗ If ), ReLU(Wshared ∗ Io)] (1)

where Wshared ∈ R7×7×3 are trainable weights of 32 shared
convolution kernels having stride of 2 and padding of 3; C[.]
indicates the depth-wise concatenation; and Fc ∈ R

H
2 ×W

2 ×64

are the learned feature maps gained from the first stage of
our feature-level augmentation mechanism. For simplicity, the

operation of batch normalization is not included in (1). After-
wards, the Fc are fed into the aforementioned backbone CNN
for higher-level feature representation.

2) Stage 2 - Reverse Cross-Attention Stream: It is obvious
that semantically-richer features are encoded along channel di-
mension by deeper layers, but subject to lower spatial resolution
(with strides of 4, 8, 16, and 32 following the four convolution
blocks in Fig. 1) and vice versa. Therefore, as the Stage-2
region in Fig. 1 illustrates, we propose an RCA stream coupled
with the backbone ResNet [8] for leveraging the impact of
finely-patterned features at earlier layers on the final prediction.
Concretely, channel-wise semantic details of the higher-level
features are utilized to enhance the informative responses while
mitigating the less effective ones in feedback-like manner. As
a consequence, such reverse refinement brings two noticeable
benefits as follows. Firstly, it allows encoded DR-oriented in-
timations that rely on spatial representations (e.g., soft/hard
exudates and avascular zone) to gain extra emphases on the final
output. This activity is achievable since finer-resolution (i.e.,
low-level) feature maps, of which the semantic information is
much enhanced by higher-level context reversely, can be early
engaged to the Softmax classifier without significant obscurity.
Secondly, it acts as an extensive augmentation procedure at
multiple feature levels because our TFA-Net has an additional
learning stream of backward and parallel styles besides the main
feedforward path.
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Fig. 2. Functional layers in the Self-Context Aggregation module.
‘GAP’ signifies the global average pooling layer.

In general, the proposed RCA stream consists of three major
components, i.e., (i) Self-Context Aggregation (SCA) inspired
from Hu et al. [9], (ii) Pairwise Reverse Attention (PRA), and
(iii) Multi-level Fusion (MLF). The corresponding details are
given as follows.

(a) Self-context aggregation: At first, the four chosen feature
maps (i.e., final output of the fundamental blocks of convo-
lutional layers in ResNet) are fed into corresponding SCA
modules for individually exploiting semantic context encoded
along the depth dimension. Let Fn denote those feature maps
of interest, where n = 1, . . . , 4 such that larger n indicates the
higher-level features, which have semantically-richer context
but smaller spatial size. Subsequently, the process of aggregating
self-context shown in Fig. 2 is initially performed by a global
average pooling (GAP) layer, which is G : Fn ∈ RHnxWnxCn →
gn ∈ RCn . The corresponding formulation of G is defined as

gnc = G(Fn) =
1

Hn ×Wn

Hn∑
h=1

Wn∑
w=1

Fn(h,w,c) (2)

where h = 1, . . . , Hn; w = 1, . . . ,Wn; and c = 1, . . . , Cn are
height, width, and channel coordinates of pixels in the consid-
ered feature maps Fn, respectively.

Then, fully connected (FC) layers followed by ReLU activa-
tion are applied to exploit underlying cross-channel interactions
of the retrieved vectors gn. Formally,

in = ReLU(WT
fc1n

gn +Bfc1n)

sn = σ(WT
fc2n

in +Bfc2n) (3)

where {Wfc1n ∈ RCn×Cn
r , Bfc1n ∈ R

Cn
r } and {Wfc2n ∈

R
Cn
r ×Cn , Bfc2n ∈ RCn} are respectively trainable parameters

of two FC layers in use; in ∈ RCn/r and sn ∈ RCn are inter-
mediate and final outputs of the SCA module, respectively; and
σ(.) symbolizes the Sigmoid activation function that weights
vectors’ entries from 0 to 1 based on corresponding utilities.
It is noted that value of r, the compression rate for saving
computational cost, is set to 16 following Hu et al. [9]. Besides
that, the lengths Cn of sn, where n = 1, 2, 3, 4, are determined
based on the ultimate output’s channel size of the four funda-
mental convolution blocks. For instance, using ResNet-18 as the
backbone introduces Cn = {64, 128, 256, 512} while the 50-
and 101-layer counterparts give Cn = {256, 512, 1024, 248}.

Remarkably, in the original work [9], the output represen-
tational vector of this SCA module is subsequently used to
re-calibrate its input feature map only at every layer, which can
be referred to as intra-feature attention. Meanwhile, the counter-
part in our TFA-Net is employed to further incorporate with the

corresponding version at lower scale for performing both intra-
and inter-feature (in a reversely cross manner as described at
next sub-section) attention tasks. Another noteworthy difference
is that the SCA blocks in the proposed model are only involved at
the end of the four predefined convolution blocks in the backbone
network.

(b) Pairwise reverse attention: Clearly, previous step only
introduces the utilization of intra-relationships across channels
within each individual feature map taken into account. To this
end, we additionally exploit semantic inter-dependencies be-
tween the considered features by uniquely learning all pairwise
concatenation of the self-context vectors, i.e., sn and sn+1,
where n = 1, 2, 3. This allows deeper feature maps involved
from the backbone CNN to enrich semantic representations
onto the shallower counterparts reversely, which then suggests
two advantages. Firstly, the refined low-level features, which
possess high resolution, have stronger contributions since they
can be alternatively applied as a shortcut to the final classifier.
As a result, characterizations of small-sized factors related to
early DR (e.g., microaneurysms, hemorrhages, or capillary ab-
normalities), which may certainly get loss at later layers due
to spatial pooling operations, can be apprehended extensively to
improve the recognition performance. Secondly, it is argued that
incorporating a stream of manipulating multi-level features in
reverse fashion can be considered as another intensive procedure
of feature-level augmentation for avoiding overfitting issue.

According to center part of the Stage-2 region in Fig. 1, the
workflow of this PRA module is formulated as follows.

Fpra4
= F4 ⊗ s4

Fpran
= Fn ⊗ σ(WT

fc3n
(C[sn, sn+1]) +Bfc3n) (4)

where n = 1, 2, 3 in this step; ⊗ refers to as the point-wise
multiplication at each channel; and {Wfc3n ∈ R(Cn+Cn+1)×Cn ,
Bfc3n ∈ RCn} denote the parameters of the FC layers followed
by another Sigmoid activation function. These learning layers
manage the integration of features having semantically-richer
information into those with finer representation of spatial-based
details. Notably, such reverse combinations only take place in
pairwise fashion to ensure reasonable increment of computa-
tional burden and refrain low-level self-context vectors from
overwhelming acquisition of heterogeneous higher-level infor-
mation. Then, the cross-context output vectors are utilized for
re-calibrating the corresponding feature maps Fn via point-
wise multiplication along channel dimension. Afterwards, the
retrieved results, denoted as Fpran

, are the finalized represen-
tatives of typical semantic and spatial scales adopted for multi-
level learning by Softmax classifier in the proposed architecture.

(c) Multi-level fusion: To this end, we feed each Fpran
into

the GAP layer followed by channel-wise concatenation for gain-
ing the mixture of multi-level context, which smoothly carries
finely-patterned and semantically-rich features of DR-related
factors. Such procedure is given as follows

Fdr = C
[
G(Fpra1

),G(Fpra2
),G(Fpra3

),G(Fpra4
)
]

(5)

where Fdr stands for the final features handled by the subsequent
Softmax classifier. Eventually, the severity grading performance
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Fig. 3. Example samples of: (a) internal KHUMC dataset and
(b) Messidor dataset [34].

can be improved since DR-oriented clinical signs in various
spatial scales are involved exhaustively and unambiguously
thanks to the RCA stream.

IV. EXPERIMENTS

A. Benchmark Datasets and Metrics

1) Internal KHUMC Dataset: This dataset is privately ac-
quired from Kyung Hee University Medical Center, Seoul,
Republic of Korea. There are totally 297 pairs of color fun-
dus images (with resolution of 3608 × 3608) and wide-field
SS-OCTA (1024 × 1024) involved in this research. Notably,
the ground-truth classes of DR severity scales are manually
graded and finalized by four experienced ophthalmologists in
the Department of Ophthalmology. As a consequence, there are
65, 48, 64, 84, and 36 pairs of fundus and SS-OCTA 12 ×
12 mm2 images corresponding to the grades of no DR, mild
NPDR, moderate NPDR, severe NPDR, and PDR, respectively.
Fig. 3(a) presents several examples of wide-field SS-OCTA, fun-
dus photographs of inconsistent appearances and corresponding
preprocessed versions from this internal dataset. Obviously,
training a DL model for remarkable DR screening performance
with such kind of small-scale dataset is a challenging matter.
Therefore, this difficulty motivates the proposal of our TFA-Net,
which learns from multi-modal images, as a promising solution
in this paper.

Following the existing DR-oriented studies [26], [37], we
adopt QWK as the main metric assessing the performance of
the proposed model with regard to different settings on this
dataset. According to Scikit-learn framework [38], QWK is
the measure representing the agreement degree of classification
results between two raters, i.e., the group of grading experts
and the prediction of our deep network in this scenario. The

corresponding formulation is defined as follows

QWK = 1−
(

L∑
x=1

L∑
y=1

Wx,yOx,y

)/(
L∑

x=1

L∑
y=1

Wx,yEx,y
)

(6)
whereL denotes the number of DR severity labels;W represents
the weighting matrix that shows penalty of difference between
prediction and corresponding ground-truth labels; O refers to
as the observed confusion matrix computed from classifier’s
results; and E stands for the expected matrix inferred by the
outer product between the L-length ground-truth and prediction
vectors, which carry the occurrences of actual and predicted
labels counted from all the test data, respectively. The final result
of higher value indicates stronger agreement while the zero or
negative rate demonstrates that the agreement is random.

2) Messidor Dataset [34]: This public dataset comprises
1200 fundus images of various resolutions graded in four scales
by three domain experts. The quantitative distribution corre-
sponding to these categories is 546, 153, 247, and 254, respec-
tively. However, following the existing work [18], [21], [23],
the data of those severity levels are further grouped into two
classes only, i.e., the referable (representing those of the first
two lower grades) and the non-referable DR (amounting to those
of the latter two). Note that some sample images of this dataset
with their preprocessed counterparts are exhibited in Fig. 3(b).
Since this becomes a traditional binary classification problem,
Accuracy, AUROC, and QWK metrics are involved for assessing
the effectiveness of a learning model. As mentioned before, we
design an ablation study on such relatively small-scale dataset
to benchmark the robustness of the RCA stream regarding DR
severity recognition in Section IV-C3.

B. Implementation Details

This article applies Pytorch [39] to train and quantify the
proposed TFA-Net on one NVIDIA 1080TI GPU. Regarding
the model’s input resolution, all the images in use are re-scaled
to different sizes such as 224 × 224, 448 × 448, or 600 × 600
for relevant ablation studies described at next subsections. In
addition, since the raw wide-field SS-OCTA is grayscale while
the fundus photograph being of RGB format, unless otherwise
specified, the former is replicated itself by three times to form
into a three-channel image like the latter as a default configu-
ration that we mentioned before. About the preprocessing step
applied into the fundus images, the local mean intensity sub-
traction method [37] is utilized for combating the large variety
of brightness and contrast, which is caused by the inconsistency
of nonmydriatic cameras. Besides that, we set the mini-batch
size at 60 pairs of fundus images and wide-field SS-OCTA for
the internal KHUMC dataset and 120 fundus images for the
Messidor dataset.

Remarkably, in addition to the feature-wise augmentation in
the TFA scheme of our model, conventional data-level augmen-
tation and learnable regularization scheme are of great impor-
tance to elevate the generalization capability. Hence, we involve
various manipulations onto the raw inputs such as random
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Gaussian noise insertion, vertical and horizontal flipping, ar-
bitrary rotation, and channel-wise normalization. Concurrently,
the weight decay term with coefficient of 0.0001 is attached to
the cross-entropy objective function.

As for the initialization of our TFA-Net’s parameters, we
apply He’s method [40] to those of the learnable layers in the
TFA scheme (for all experiments) as well as in the backbone
CNN (for several ablation studies only). Otherwise, as a default
setting, the parameters belonging to the backbone network are
those from the corresponding ResNet [8] pretrained with Ima-
geNet [41]. Then, the gradient descent algorithm having learning
rate initialized at 0.001 with momentum fixed at 0.9 is applied to
optimize the model’s parameters. Note that a learning rate decay
schedule in ‘poly’ style [42] is also adopted. Finally, a 5-fold
cross validation strategy is deployed to perform the evaluation
procedure. Note that training period in each validation fold is
400 epochs and the final reported QWK includes mean and
standard deviation values across five folds. Meanwhile, we take a
10-fold cross validation protocol as in [18], [21], [23], where the
training process lasts 50 epochs at each fold, for the evaluation
on Messidor dataset.

C. Experimental Results and Discussions

1) Coordination Between Fundus Image and Wide-Field SS-
OCTA for DR Severity Labeling Given Small-Scale Supervised
Dataset: The experiments in this part are conducted using the
internal KHUMC dataset, wherein all of the considered input
images are resized to 448 × 448. Besides that, the chosen
backbone CNN is ResNet-18 [8] pretrained with ImageNet
dataset [41]. By such baseline settings, we then train the pro-
posed network with different configurations using three sep-
arated groups of inputs, i.e., fundus images only, wide-field
SS-OCTA only, and the amalgamation between those two
modalities, respectively. At each evaluation phase, manifold
settings of enabled/disabled Stage 1 (Weight-sharing convolu-
tion kernels followed by channel-wise concatenation) and Stage
2 (RCA stream) are in-turn performed as shown in Table I.
Notably, because the Stage 1 of TFA mechanism is not applicable
to single-modal learning cases, we follow the conventional layer
setting wherein 64 initial convolution kernels applied to the input
images have size of 7 × 7 × 3, stride of 2, and padding of
3 for producing half-spatial-sized feature maps to be fed into
the first residual block in the backbone network. Regarding the
scenario only using wide-field SS-OCTA for learning the DR
grade classification model, the ground-truth labels are deter-
mined through screening the fundus counterparts. Although this
procedure is obviously meaningless in terms of conventional
DR-oriented study, we still involve it to further express that
despite the restriction of dataset size, DL technique remains
efficient if its architecture is well-regularized at feature space
and trained with multi-modal images.

Compared to the baseline model of single-modal learning,
the extra attachment of the proposed RCA stream improves the
QWK rates by 2.1% (for the case of only using fundus inputs)
and 2.4% (wide-field SS-OCTA). Notably, the corresponding
trade-off is the increase by 2.7% of trainable parameters’ amount

TABLE I
QWK (%) ON THE INTERNAL KHUMC DATASET WITH DIFFERENT INPUT
TYPES (WITH SAME SIZE OF 448 × 448) AND STRATEGIES OF TWOFOLD
FEATURE AUGMENTATION GIVEN THE RESNET-18 [8] AS BACKBONE CNN.

Wf64 ∈ R7×7×3 (APPLIED TO INPUT FUNDUS IMAGES ONLY) AND

Wo64 ∈ R7×7×1 (APPLIED TO WIDE-FIELD SS-OCTA) DENOTE
TRAINABLE WEIGHTS OF 64 CONVOLUTION KERNELS HAVING STRIDE OF 2

AND PADDING OF 3. Wf32 ∈ R7×7×3, Wo32 ∈ R7×7×1, AND

Wshared ∈ R7×7×3 (APPLIED TO BOTH INPUT MODALITIES) STAND FOR
32 KERNELS WITH OTHER CONFIGURATIONS SAME AS ABOVE. C[.]

INDICATES THE DEPTH-WISE CONCATENATION USED IN MULTI-MODAL
LEARNING CASES. ‘�’ SIGNIFIES THE UTILIZATION OF STAGE 2, OTHERWISE

THE SOFTMAX CLASSIFIER DIRECTLY PROCESSES THE GLOBAL-POOLED
FEATURES OF THE 4th CONVOLUTION BLOCK’S OUTPUTS AS IN THE

ORIGINAL RESNET-18 [8]

for backbone ResNet-18, which is insignificant. About multi-
modal utilization, naively combining the fundus images and
wide-field SS-OCTA as inputs of the baseline network, i.e.,
each modality is learned by separated convolutional layers prior
concatenation, even deteriorates the QWK-based performance
(with only 80.4%, the lowest rate in Table I). The primary cause
for such bottleneck is basically the severe lack of data, due
to which the conventional DL network struggles to efficiently
coordinate the contextual mixture of those two input types.
Therefore, the involvement of the proposed TFA mechanism
is vastly important for leveraging the generalization capability
of the whole model given the constraint of very small-scale
dataset. Particularly, the results in Table I show that individually
using the weight-sharing convolution kernels (Stage 1) and the
RCA stream (Stage 2) can boost the QWK values by 6.3%
and 8.3%, respectively, which are a great deal of performance
advancement. Furthermore, simultaneously applying the two
stages of feature-level regularization strategy nails the highest
QWK rate at 90.2%.

Those quantitative results extensively deliver the following
two major remarks. Firstly, the weight-sharing kernels enable
the network to earlier orchestrate informative hybrid features of
the two different modalities, which should facilitate the learning
process at later layers more optimally. Meanwhile, the exploita-
tion of mutual context when using separated filters only takes
place after depth-wise concatenation layer, which may easily
lead to sub-optimal state. Secondly, the QWK’s improvement
rate of the RCA stream for the multi-modal inputs strongly
dominates the single-modal cases (8.3% vs. 2.1% and 2.4%).
This outcome indicates that the cross-modal representations of
the two input types perform a critical role in strengthening
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Fig. 4. QWK (%) on the internal KHUMC dataset with different input
combination styles in Stage 1 of the TFA-Net: channel-wise concate-
nation at image level; 1-channel (grayscale) or 3-channel (RGB) inputs
followed by various feature-level fusion manners (element-wise summa-
tion, element-wise maximization, and depth-wise concatenation).

the augmentation ability of the RCA stream, especially under
the scenario of learning DR-oriented biomarkers from such a
small-scale dataset.

2) Correlation Between Modalities’ Format and Feature-
Level Combination Styles for Cross-Modal Learning in Stage 1
of the TFA Mechanism: Since the original channel dimension
between the two input types is different, wherein the fun-
dus modality is RGB (3-channel) image while the wide-field
SS-OCTA is grayscale (1-channel), we deploy three separated
approaches as follows. Firstly, the two input modalities are
directly concatenated along the channel dimension. Secondly,
64 weight-sharing convolution kernels Wshared ∈ R7×7×1 are
applied to the grayscale version of the preprocessed fundus
input and the original wide-field SS-OCTA. Thirdly, those of
Wshared ∈ R7×7×3 are adopted to extract features from the
preprocessed fundus image and the 3-channel form of the raw
wide-field SS-OCTA (generated from channel-wise replication
as described previously). Then, besides the feature-level com-
bination scheme of depth-wise concatenation in Stage 1 of the
proposed TFA-Net, we further experiment with element-wise
summation [8] and maximization [43] to examine the impact
of these mixture styles on the subsequent cross-modal learning
process. It is noteworthy that the input resolution is fixed at 448
× 448 and the rest of the architecture is a backbone of pretrained
ResNet-18 [8] connected with the RCA stream (Stage 2).

As illustrated in Fig. 4, the image-level concatenation ap-
proach yields the lowest QWK value since each input modality
has its own DR-oriented biomarkers, from which the direct
fusion may introduce significant ambiguities to subsequent
learning stages. Meanwhile, QWK rates of utilizing 3-channel
inputs outperform those of using 1-channel counterparts by
3.3-4.5% given the above-mentioned combination techniques at
feature space. These results arguably indicate that the DR-related
biomarkers encoded in the original 24-bit format of preprocessed
fundus modality are more profitable to the model learning
process than those attenuated in the 8-bit image representation.
Moreover, it can be realized that the extra operation of mirroring
the raw wide-field SS-OCTA along the depth dimension does

not cause any adverse effects. Particularly, since the feature
extraction basis of the convolution kernels is linear combination
within the receptive field, applying those filters to the original
(1-channel) image and the 3-channel replicated version shall
produce corresponding output features having linear scaling
relationships. For instance, let us suppose that all weights of the
convolution kernels in use are same, output features’ intensities
inferred from the 3-channel input are equal to those acquired
from the 1-channel counterpart multiplied by a scale factor of 3.

Regarding the feature-level combination methods, the depth-
wise concatenation strategy delivers superior performance over
the remaining schemes by 1.6–3.5% (for 1-channel inputs) and
2.4–3.1% (for 3-channel inputs). These experimental results can
be explained by the following two aspects. Firstly, although
the two input image types share a similar FOV, their structural
details are not per-pixel aligned. Hence, element-wise merging
approaches such as summation or maximization may bring
about unexpected biases of information propagation in next
layers of the network. Secondly, the channel-wise concatenation,
which regulates corresponding regions of interest between the
two modalities placed along the depth dimension, enables the
subsequent convolutional layers to flexibly manipulate the corre-
lations of cross-modal features based on the predefined spatial
extent. In other words, this procedure allows the unrestricted
exploitation of hybrid features at region level, rather than a fixed
combination at pixel level beforehand like the two compared
schemes.

3) Robustness of RCA Stream Compared to the State-of-
The-Arts: Subsection IV-C1 demonstrated that the engagement
of the RCA stream with a base CNN introduces more robust
feature representation for higher diagnosis performance. Fur-
thermore, for the purpose of proving this mechanism’s novelty
in the literature, we use the Messidor dataset [34], a popular DR
screening-related fundus dataset having relatively small size, to
benchmark and compare the TFA-Net (without Stage 1) with the
state-of-the-arts [18], [19], [21]–[23].

Accordingly, the comparison in terms of Accuracy and AU-
ROC along with the total number of trainable parameters are
exhibited in Table II. Note that we additionally include the
standard deviation and QWK values (which are linearly pro-
portionate to the Accuracy rates in such binary classification
problem) in our results. In general, with the lowest-capacity
version (i.e., ResNet18-RCA), the proposed model outperforms
the compared ones by a large margin for both Accuracy (1.6–
6.7%) and AUROC (1.3–11.3%). Moreover, as the total number
of layers increases up to 101, the performance gain of those
two benchmark metrics is approximately 2% and 1.6% higher,
respectively, which are significant in such recognition-related
area. Additionally, compared to the baseline counterparts, those
attached with the RCA stream achieve remarkable performance
gaps of higher Accuracy (5.9–7.5%) and AUROC (10.4–11.2%).
These attainments suggest that the proposed RCA stream, by
utilizing higher-level semantic details in coarser patterns to
reversely refine lower-level ones in finer scales based on depth-
wise context, is not only flexible to different backbone CNNs
but also robust against overfitting issue on such a relatively
small-sized dataset.
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TABLE II
PERFORMANCE COMPARISON ON MESSIDOR DATASET [34]. NOTE THAT THE
RESULTS OF OUR MODELS ARE ACHIEVED WITH PREPROCESSED INPUTS.

THERE ARE FIXED 1080 TRAINING AND 120 TESTING IMAGES AT EACH
ROUND OF THE 10-FOLD CROSS VALIDATION

†: Experimental results are achieved by our own implementation following default con-
figurations in the original work.
‡: Experimental results are achieved by finetuning the pretrained baseline networks.

Regarding the computational complexity, all the variants of
the proposed network have much fewer parameters compared to
ensemble-oriented approaches, which simultaneously involve
either different styles of fundus photos [21] or multiple feature
learning streams [22], [23]. About approaches adopting conven-
tional structure of CNN like 20-layer SI2DRNet-v1 [18] and
Inception-v3 [7] finetuned in [19], although the corresponding
models are more lightweight, their input’s resolution should be
large enough so that spatially-rich representations of DR-related
biomarkers are encoded more effectively throughout multiple
downsampling layers. Clearly, SI2DRNet-v1 [18] (with large in-
put size of 672× 672) gives superior Accuracy and AUROC over
the Inception-v3-DR [19] (299× 299) as reported in Table II. On
the contrary, our network still grants superior performance given
much lower-resolution input images despite slightly trading-off
8% more parameters (in the case of using backbone ResNet-18).

4) Interactions Between SCA, PRA, and MLF in the RCA
Stream: The effectiveness of Stage 2 (i.e., RCA stream) has been
shown in the earlier ablation studies on both internal KHUMC
and Messidor [34] datasets given bimodal and single-modal
input images, respectively. To this end, we further evaluate
how the constituent components within the RCA stream, i.e.,
SCA, PRA, and MLF, interact with each other to leverage the
performance of DR grade recognition. Note that we continue
to apply the baseline setting with input size of 448 × 448 and
backbone network of pretrained ResNet-18 [8]. Fundamentally,
as manifested in Fig. 5, there are five deployed strategies: (i)
baseline ResNet-18 finetuned from pretrained parameters; (ii)
ResNet-18 with chosen feature maps of four different scales
directly fed into the MLF component; (iii) ResNet-18 with those
feature maps re-calibrated using SCA followed by point-wise
multiplication before the MLF component; (iv) the proposed
TFA-Net (ResNet-18 coupled with the RCA stream comprising
SCA, PRA, and MLF); and (v) SEResNet-18 [9] (wherein SCA
blocks are embedded along the feedforward pass by default)
connected with the PRA and MLF modules. Remarkably, the
MLF component is essential when employing SCA and/or PRA
so that all the multi-level features of interest are involved in the

Fig. 5. Recognition performance on the internal KHUMC and Messi-
dor [34] datasets with following strategies: ResNet-18 [8] with baseline
structure (having 11.18 M parameters), with only MLF (11.18 M), with
SCA + MLF (11.23 M), with SCA + PRA + MLF (i.e., RCA stream having
11.48 M parameters), and SEResNet-18 [9] with PRA + MLF (11.57 M).

Softmax classifier of the proposed network. As a consequence,
the two diagrams of experimental results on both benchmark
datasets in Fig. 5 present a similar performance paradigm as
follows.

In comparison with the baseline, the involvement of only MLF
component to the backbone ResNet-18 generally decreases the
recognition rates in terms of QWK (by 4.2%) for the internal
KHUMC dataset as well as Accuracy (5.4%) and AUROC
(3.2%) for the Messidor [34]. It is apparent that adopting directly
the low-level features, which carry spatially rich details but
semantically poor context, to the Softmax classifier induces even
more ambiguities in the final decision.

Meanwhile, when utilizing the SCA modules, of which the
output self-context vectors are used to channel-wisely refine
their input feature maps via point-wise multiplication, preceding
the MLF scheme, the classification results are slightly improved
over those of the baseline in both benchmark cases. Particularly,
QWK value rises by 0.7% for the bimodal inputs, while Accu-
racy and AUROC gain increases of 0.4% and 1.4%, respectively,
for the single-modal ones. We argue that the re-calibration proce-
dure on each feature map of interest can facilitate itself to express
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TABLE III
QWK (%) ON THE INTERNAL KHUMC DATASET WITH DIFFERENT SETTINGS OF BACKBONE NETWORK CAPACITIES, INPUT RESOLUTIONS,

IMAGENET-PRETRAINED PARAMETERS INITIALIZATION, AND FUNDUS-RELATED PREPROCESSING

informative details and vice versa, which then reduces unex-
pected uncertainties caused by the original low-level features.
However, the benefits of only utilizing such intra-contextual
dependencies remain trivial.

Accordingly, by further engaging the feedback-like strategy
of inter-context exploitation introduced by the PRA component,
such models outperform the baseline by a significant margin. In
specific, while QWK rate achieves an improvement of 3.5% on
the internal KHUMC dataset, the Accuracy and AUROC surge
by 7.5% and 11.2% on the Messidor [34], respectively. These
results demonstrate the advantage of combining semantically-
rich context with fine-grained details, which leverages the use-
fulness of the concerned multi-scale features for the final pre-
diction as argued previously. Furthermore, the strategy using
SEResNet-18 [9] combined with the PRA and MLF modules
can improve the evaluation metrics marginally (by 0.3–0.9%)
on both benchmark datasets thanks to a more powerful feature
extraction process (but trading-off more parameters for manifold
embedded SCA blocks).

As for model complexity aspect, the increment of trainable
parameters due to the proposed RCA stream is insignificant. Par-
ticularly, provided that the MLF is not a learnable component, in
comparison with the baseline ResNet-18 having 11.18 M param-
eters, involving SCA only or SCA plus PRA further raises that
quantity by 0.45% (11.23 M) or 2.68% (11.48 M), respectively.
These statistics specify the notable efficiency of depth-wisely
transforming self-context information in conjunction with the
reverse mixture tactic.

5) Sensitivity of TFA-Net to Predefined Hyperparameters:
Earlier experiments unveiled the advantages of feeding multi-
modal inputs into our well-generalized TFA-Net subject to the
challenge of learning from small-scale dataset. The comparison
results in Table II also show that backbone network’s capacity
has an obvious impact on the final performance for the case of
single-modal (i.e., fundus photos only) learning. Therefore, we
additionally carry out another ablation study about the sensitivity
of DR-oriented multi-modal learning with respect to various
backbone CNN’s capacities, input resolutions, model’s param-
eters initialization manners, and the utilization of fundus image
preprocessing technique on the domestic KHUMC dataset. Ac-
cordingly, all the related measurements of QWK are presented
in Table III.

It can be realized that the behaviors of TFA-Net regarding
the number of layers in backbone CNN are slightly different
from those discussed in Section IV-C3. Firstly, the QWK values
inferred by the deeper backbone networks introduce a big gap of
more than 5.3% compared to those of the 18-layer version. Sec-
ondly, using ResNet-50 as the base feature extractor surprisingly
offers higher QWK rate (approximately 1.5%) than employing
the 101-layer counterpart on our internal dataset, as opposed
to the experiment with the Messidor [34]. Consequently, the
former observation points out that the proposed architecture with
feature-level augmentation scheme enables a more proficient
utilization of larger-capacity backbone CNNs. Meanwhile, the
latter suggests that there exists a peak of the correlation between
network capacity’s increment and training data volume, over
which the performance degradation arises despite the strength
of the applied regularization scheme. This accordingly explains
for the event that adopting ResNet-50 as backbone extractor
yields better classification performance than ResNet-101 for the
smaller-scale dataset like ours, and vice versa for the Messidor
benchmark [34] with larger image quantity.

As for the dependence of grading performance on input
resolution, there is also an analogous orientation to the above
capacity factor. In specific, the QWK rates resulted from both
spatial sizes of 448× 448 and 600× 600 are similar while higher
than that of 224× 224 by around 7%. These outcomes imply that
richer spatial details allow the proposed model to represent DR-
related manifestations more comprehensively. However, there
is also a saturation scale, over which the larger values of input
size do not considerably improve the QWK rate while inducing
more computations in the model.

Finally, the remaining measures report that the manners of
parameters initialization and fundus image preprocessing affect
the QWK-based performance as well. Among the corresponding
four test cases, those with backbone CNN originated by parame-
ters pretrained on ImageNet [41] hold the first and second ranks
of QWK values (with an average higher rate of 8.85% compared
to the random initialization settings). Arguably, despite the
difference of data domain, ImageNet-pretrained parameters are
still able to reasonably characterize general features of interest
(e.g., the important edge-based appearance of retinal vessels)
from the beginning of the training process. This activity should
be more helpful than considering the random initialization plan.
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Fig. 6. Illustrations of typical feature maps throughout the proposed architecture. First row (left to right): raw fundus input, preprocessed fundus
version, fundus-based output of weight-sharing convolution kernels Wshared, Fc (cross-modal output of Stage 1 of the TFA mechanism), F1 (final
output of the first convolution block in the backbone CNN), F2, F3, and F4. Second row (left to right): raw wide-field SS-OCTA input, OCTA-based
output of Wshared, Fpra1 (output of the PRA component, which corresponds to the input F1 of Stage 2), Fpra2 , Fpra3 , and Fpra4 . View in color
is highly recommended.

Moreover, involving the preprocessed fundus inputs instead of
the raw formats can leverage the final QWK metric by 4.85%
averagely. As a result, the alignment of these two settings profits
the final performance in terms of QWK rate greatly.

6) Illustrations of Typical Feature Maps Throughout the TFA-
Net: To this end, as illustrated in Fig. 6, we deliver appear-
ances of several pivotal features along the proposed architecture
comprising two stages of our TFA mechanism with a backbone
CNN in the middle. Let a pair of fundus image and wide-field
SS-OCTA be fed into the trained model, for each of the inspected
feature maps, the pixel values are averaged over the depth
dimension, of which the obtained results are then calibrated to
the intensities ranging from 0 to 255 [33]. Note that the regions
highly corresponding to strong features are roughly expressed
by higher intensity values.

Initially, low-level features of both input modalities, depicted
in the third column of Fig. 6, respectively, are acquired by the
weight-sharing convolution kernels Wshared. Next, they are
concatenated in channel-wise manner, of which the cross-modal
feature map Fc possessing the combined expressiveness (as
shown in the fourth column of Fig. 6) is the final output of
Stage 1 in the TFA scheme. Afterwards, a backbone CNN
(i.e., ResNet-18 [8]) is engaged to transform that concatenated
feature at manifold semantic levels. Notably, spatial resolutions
of the extracted feature maps get coarser while the correspond-
ing semantic contexts are enriched more intensively along the
feedforward pass of the network. Then, ultimate outputs with
different scales of the four constituent convolution blocks in
ResNet-18 [8] (as demonstrated by the last four heat maps in
the first row of Fig. 6), i.e., Fn where n = 1, 2, 3, 4, are further
involved in the TFA’s second stage (i.e., RCA stream). Sub-
sequently, the corresponding output features Fpran

, which are
managed by the regime of SCA followed by PRA components,
are manifested in the last four columns of the second row in
Fig. 6. Since fine-grained details of lower-level features are
refined by the reverse integration of semantically-richer informa-
tion from higher-level versions, the visual disparities between
those original and corresponding manipulated representations
are obvious. Finally, the recalibrated multi-level features con-
tinue to pass through the MLF component followed by the
Softmax classifier for DR severity grade recognition.

V. LIMITATIONS AND FUTURE WORK

Despite achieving promising performance on DR severity
recognition using two different input modalities, there still ex-
ists noticeable limitations as follows. Firstly, both the bench-
mark datasets contain samples of a narrow population and the
manually grading process may suffer from subjective biases.
Secondly, although several feature visualization tools are avail-
able, there are still challenges in transparently interpreting the
DR-oriented signs during the feedforward process inside a DL
architecture. This subsequently raises concerns of the ophthal-
mologists in clinical practice about following up the exact risk
factors exacerbating in the considered images.

In the future, we target to efficiently involve more image
types related to DR domain such as Fluorescein Angiography
and/or narrow-field SS-OCTA (3 × 3 mm2), which have better
representations of foveal avascular zone and vessel density.
Moreover, not only the depth-wise attention scheme is reversely
exploited as in this work, but also spatially-attentional mecha-
nism incorporated forwardly shall be studied for improving the
DR grade classification performance.

VI. CONCLUSION

In this study, a Convolutional Network with Twofold Feature
Augmentation, called TFA-Net, is introduced for DR severity
grading given a very small-scale dataset of fundus and wide-
field SS-OCTA modalities. Specifically, the proposed model
comprises a backbone CNN extracting deep features of various
representational scales and an attached feature-wise augmen-
tation scheme operating in two stages. The first one is the
employment of weight-sharing convolution kernels for coordi-
nating cross-modal characteristics in a generalized manner. The
second is the utilization of the RCA stream, which facilitates the
integration of semantically-rich details (higher-level features)
to finely-patterned appearances (lower-level counterparts) in
feedback-like procedure. Such nonlinear transformations allow
features refined at multiple scales to engage with the Softmax
classifier more comprehensively. Consequently, the incorpora-
tion between data- and feature-level augmentation mechanism
in the proposed network attains impressive recognition per-
formance on the small-sized internal KHUMC and Messidor
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datasets. Although both of the benchmarks do not exhibit di-
verse population, we show that applying multi-modal inputs
of the same instance to a CNN architecture, which is strongly
regularized at feature levels, can be a considerable alternative
mitigating the massive dependence on big labeled data.
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