
Received June 5, 2021, accepted July 23, 2021, date of publication July 27, 2021, date of current version August 6, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3100686

Unsupervised Semantic Mapping for Healthcare
Data Storage Schema
FAHAD AHMED SATTI 1,2, MUSARRAT HUSSAIN 1, JAMIL HUSSAIN3, SYED IMRAN ALI1,
TAQDIR ALI 1, HAFIZ SYED MUHAMMAD BILAL 1,2, TAECHOONG CHUNG1, AND
SUNGYOUNG LEE 1, (Member, IEEE)
1Department of Computer Science and Engineering, Kyung Hee University, Giheung-gu, Yongin 17104, South Korea
2School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
3Department of Data Science, Sejong University, Seoul 05006, South Korea

Corresponding authors: Sungyoung Lee (sylee@oslab.khu.ac.kr) and Taechoong Chung (tcchung@khu.ac.kr)

This work was supported in part by the Information Technology Research Center (ITRC) through the support program under
Grant IITP-2017-0-01629, in part by the Grand Information Technology Research Center through the support program under Grant
IITP-2021-2020-0-01489, in part by the Institute of Information & Communications Technology Planning & Evaluation (IITP) under
Grant IITP-2017-0-00655, and in part by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT
(MSIT), Korea Government, under Grant NRF-2019R1A2C2090504.

ABSTRACT Data, information, and knowledge processing systems, in the domain of healthcare, are
currently plagued by heterogeneity at various levels. Current solutions have focused on developing a
standard-based, manual intervention mechanism, which requires a large number of human resources and
necessitates the realignment of existing systems. State-of-the-art methodologies in the field of natural
language processing and machine learning can help to partially automate this process, reducing the resource
requirements and providing a relatively good multi-class-based classification algorithm. We present a novel
methodology for bridging the gap between various healthcare data management solutions by leveraging
the strength of transformer-based machine learning models, to create mappings between the data elements.
Additionally, the annotated data, collected against five medical schemas and labeled by four annotators
is made available for helping future researchers. Our results indicate, that for biased, dependent multi-
class text classification, transformer-based models provide better results than linguistic and other classical
models. In particular, the Robustly Optimized BERT Pretraining Approach (RoBERTa) provides the best
schema matching performance by achieving a Cohen’s kappa score of 0.47 and Matthews Correlation
Coefficient (MCC) score of 0.48, with human-annotated data.

INDEX TERMS Context awareness, decision support systems, expert systems, health information
management, medical information systems, ontology engineering, text processing, unsupervised learning.

I. INTRODUCTION
Data and Information modeling in the healthcare domain
have witnessed significant improvements in the last decade
owing to advances in the development of state-of-the-art
Information andCommunication Technologies (ICT) and for-
malization of storage andmessaging standards. Subsequently,
the scope of Healthcare Management Information Systems
(HMIS), medical ontologies, and Clinical Decision Support
Systems (CDSS) has broadened, beyond the operational
capabilities of traditional rule based systems. One of the
major reasons behind this limitation is due to the numerous
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heterogeneities in healthcare at data, knowledge, and process
level. Thus, healthcare interoperability which aims to provide
a solution to this problem, can be compartmentalized into
data interoperability, process interoperability, and knowl-
edge interoperability. Various abbreviations, used in this
manuscript are listed in Table 1.

Data interoperability resolves the heterogeneity between
data artifacts to enable seamless and interpretable com-
munication among source and target organizations, while
preserving the data’s original intention during storage,
communication, and usage (as defined by IEEE 610.12 [1],
Health Level Seven International (HL7), and Healthcare
Information and Management Systems Society HIMSS [2]).
On the other hand, process interoperability regulates the
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TABLE 1. Abbreviations.

communication among organizational processes to provide
compatability between process artifacts within and seamless
transformations across different organizations [3]. Lastly,
knowledge interoperability provides a sharing mechanism for
reusing interpretable medical knowledge, acquired through
expert intervention and other mechanisms, across decision
support systems [4].

In more tangible terms, healthcare interoperability at
data, process, and knowledge level can be exemplified
within the healthcare constraints experienced due to the
emergence of Covid 19. The operational capabilities of
the current healthcare service delivery infrastructure has
gone under tremendous stress due to Covid 19. World
over, large primary healthcare units have managed to create
separate units for managing patients, suffering from extreme
cases of the novel coronavirus. For secondary and tertiary
care units, government involvement has become necessary
to filter coronavirus patients and adhering to a national
pandemic response policy. These complex circumstances
have enhanced the need for sharing patient data and state-
of-the-art medical knowledge in real-time, to provide the
medical experts with a tool to make accurate and timely
decisions. Data interoperability can enable the front line
medical workers to fetch, understand, and use patient data,
especially comorbidities, across organizational and physical
boundaries, without suffering from societal taboos that may
prevent the patient from sharing their complete and accurate
medical histories. Knowledge interoperability can improve
the knowledge acquisition and sharing protocols to provide
the medical experts such as epidieomologists and vaccinol-
ogist, with latest information on affected population trends,
disease diagnosis, treatment, and followup procedures, and
interpretable decisions leading to positive or negative out-
comes. Process interoperability can help reduce and in some
cases remove the operational redundancies between health
centers. In this way, successive healthcare treatments can take
benefit from earlier diagnosis, treatment, and followup pro-
cedures, thereby reducing the stress on healthcare experts and
systems.

Healthcare Standards such as HL7 - Fast Healthcare
Interoperability Resources (FHIR), and openEHR provide
the foundations for storing and communicating medical data,
through the use of well defined protocols. While System-
atized Nomenclature ofMedicine—Clinical Terms (Snomed-
CT) [5] and Logical Observation Identifiers Names and
Codes (LOINC) [6] provide a standard definition for clinical
terminologies and laboratory tests, respectively. Similarly
Medical Logic Module (MLM) provides a standardized way
for expressing medical knowledge. Variety in these and
many other healthcare standards necessitates the creation
of bridging standards that can resolve the heterogeneity
between themedical standards [7]. Substantial effort has gone
into this endeavor with the Clinical Information Modeling
Initiative (openCIMI) [8] taking the lead in bridging the
gap between HL7v3 and openEHR. Similarly, SNOMED
CT and LOINC are working to resolve the redundancies
between the two terminological standards since 2013. This
healthcare interoperability solution follows a formal, albeit
long process, which is greatly dependent on the human
factor. However, the current healthcare scenario requires a
quick solution to create a scaffolding of an interoperable
bridge between various healthcare providers. It is also
important to ensure that this scaffolding should be able
to support the formal standardization processes of the
future. In [9], we have presented the Ubiquitous Health
Platform (UHP), which provides semantic reconciliation-on-
read based data curation for resolving data interoperability
between various schema. This methodology is based on the
creation and management of schema maps, that can provide
the framework for transforming a source schema into a target
schema.

In the current study, we will present our research
work to build and manage the schema map knowledge
base. Overall, our methodology is based on the creation,
evaluation, and application of a novel schema matching
technique to identify the relationships between attributes
of the participating medical data schema. Since the terms
used to identify attributes in the data schemas are not
defined in any standard way, it is important to first identify
the component words of the attribute term and then to
append semantic concepts with these to create a meaningful
sentence. This process is based on word expansion using
concept lookup from Unified Medical Language System
(UMLS). Once the sentence has been created, it is then
trivial to create its embedded vectors representation using
transformer based pre-trained models. The cosine simi-
larity of any two embedded vectors can then indicate
the degree of similarity between the original attributes.
The motivation behind this methodology along with its
development and evaluation details will be presented in the
following flow:
- Section II presents the related work
- Section III contains the details of our methodology
- Section IV provides the experimental setup
- Section V presents the results
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- Section VI discusses the challenges and limitations of the
presented methodology and its evaluations

- Section VII concludes the paper.

II. RELATED WORK
Althubait et al. [10] proposed an ontology expansionmethod-
ology that identifies and extracts new class from text articles
using word embedding and machine learning techniques.
The authors identified the similarity of tokens and phrases
of the text articles with the exiting classes of the ontology.
The target ontology is expanded with classes from text
articles having greater similarity with that of already added
classes. A similar word embedding technique was also
used by Nozaki et al. [11], where the authors used instance
based schema matching technique to identify the semantic
similarity between two instances. The results of the study
showed the possibility of detecting similar string attributes
of different schemas. Yousfi et al. [12] also utilized semantic
base techniques and proposed xMatcher XML schemas
matching approach. xMatcher transforms schemas into a
set of words, followed by measuring words context, and
relatedness score using WordNet. The terms from different
schemas having similarities greater or equal to 0.8 are
considered similar. Bylygin et al. [13] devised an ontology
and schema matching approach by combining lexical and
semantic similarity with machine learning approaches. The
authors used lexical and semantic measures as features and
trained various machine learning algorithms including Naive
Bayes, logistic regression, and gradient boosted tree. The
result achieved showed that the combination of algorithms
outperformed the single modal.

Martono and Azhari [14] provided an overview of a
linguistic approach for schema matching. The authors
presented various linguistic methods to identify token strings
in element names, followed by similarity evaluation between
various schema. The process starts by normalizing the
strings, which can be achieved via tokenization, general-
ization, elimination or semantic tagging. The normalized
strings are then categorized based on their information
relatedness. Elements belonging to the same categories
are then compared with each other using two similarity
measures, which include Lavenstein distance between words
and Jaro-distance between 3-grams character sub-strings.
Alwan et al. [15] has summarized the techniques used in
literature for schema matching based on database schemas
and instances. These techniques can be categorized based
on the type of information used for schema matching which
includes schema level, instance level, hybrid (schema and
instances) and auxiliary (which can include information from
external sources). Accordingly, most research is focused
towards schema level and instance level approaches which
can utilize syntactic techniques (such as n-gram, and/or
regular expressions) and/or semantic techniques (such as
Latent Semantic Analysis, WordNet/Thesaurus, and Google
Similarity), to achieve data/information interoperability.
Kersloot et al. [16] performed a comprehensive systematic

review to evaluate Natural Language Processing (NLP)
algorithms used for clinical text mapping onto ontological
concepts. The authors categorized the findings of various
studies based on the use of NLP algorithms, data, validation
and evaluation techniques, result presentation, and general-
ization of results. The authors revealed that over one-fourth
of the NLP algorithms used were not evaluated and have no
validation. The systems that claimed generalization, were self
evaluated and having no external validation.

Xu and Embley [17] presented a framework for discovering
indirect links besides direct links among schema elements.
The indirect matches were detected for relations such as
union, composition, decomposition, selection, and Boolean.
The indirect links are useful to handle concepts merge, split,
generalization, and specialization. The matching techniques
utilized in the study considered terminological relationships
(word synonym and hypernym), structural characteristics,
data-value characteristics, and expected data values. The
experimental results revealed framework effectiveness by
achieving more than 90% precision and recall for direct and
indirect link matching.

III. METHODOLOGY
Healthcare interoperability, with a focus on non-standard
compliant medical schema is dependent on the generation and
validation of schema maps as discussed above. To this end,
the creation of a cohesive workflow is of utmost importance.
In our earlier work [9] we used maximum sequence
identification and suffix trees based matching for syntactic
matching of two distinct data schemas. This was followed
by semantic concept enrichment and subsequently concept
matching for creating rules in the form of schema maps. The
simplified mapping functions, thereby created, provided a
simple methodology for converting semi-structured medical
data into an interpretable model form. In our current
methodology as visualized in Figure 1, we have utilized state-
of-the-art natural language processing (NLP) techniques to
extract the schema mapping rules from semi-structured data
schemas. This methodology is based on identifying similarity
between vector representations of two attributes, belonging to
different medical schemas. Traditional NLP techniques such
as Word2Vec are able to convert a word into an embedded
vector, while Bidirectional Encoder Representations from
Transformers (BERT) extracts an embedded vector from
a sentence [18]. Many of the attribute names within data
schemas are represented by terms that are bigger than a
word (combination of multiple words) and smaller than a
sentence. In order to resolve this problem, we extracted the
set of suffixes from the terms forming the attribute names.
The bidirectional nature of BERT, allows the creation of
contextual embedded vectors, where each target word is
affected by its neighboring words. Hence to convert the
set of suffixes into a sentence, we collected the set of
concepts corresponding to each suffix, from UMLS. This
operation has two effects, firstly it is used to remove any
suffix, which does not have a corresponding concept and

VOLUME 9, 2021 107269



F. A. Satti et al.: Unsupervised Semantic Mapping for Healthcare Data Storage Schema

FIGURE 1. Methodology for creating schema maps.

secondly the extracted concepts are used to add context to
each suffix and produce a contextual sentence. The following
subsections provide the practical details for our methodology
from schema acquisition to attribute name expansion, and
finally schema map generation.

A. SCHEMA ACQUISITION
In the first step of our semantic reconciliation methodology,
we simulate medical data acquisition from five distinct Elec-
tronic Medical Records (EMR) storage systems (S). These
include patient reports from OpenEMR (s1), 100,000 patient
records from EMRBOTS (s2) [19], custom database design
by Pan et. al(s3) for supporting regional clinics and health
care centers in China [20], clinical knowledge discovery tool
MedTAKMI-CDI (s4) [21], and our custom implementation
(s5) [22]. Each of these medical systems as shown in Figure 2,
follows the relational database design with logical entities
such as demographics, diagnosis, medicine or others, placed
into tables which can be further linked to one or more tables.
While the database design implemented by each of these
systems, fulfills the need of their respective information
processing applications, the lack of interoperability, in terms
of identifying similar attributes or exchanging the medical
data is very much evident here.

A similar notion of data heterogeneity, in terms of medical
data schema is evident across the healthcare domain. This
is caused by various factors, including the lack of one
all-encompassing, and universally applicable terminological
standard and different normalization level for representing
attributes.

In the former case, while SNOMED-CT provides a
mechanism for identifying the standard codes for clinical
terms and LOINC can be used for laboratory related terms,

most attribute names are created based on the gut feeling of
the database designer. Additionally, while these codes can
be used to represent elements in the data instances (such as
when recording the disease name, a standard code is more
beneficial than the text string for semantic interoperability),
the elements in a data schema (such as attribute names
which are used in queries) achieve no benefit from the same.
Consider the terms ‘‘name’’ and ‘‘patientName’’, which refer
to the same attribute of the patient entity. However, since
there is no standard way to represent this attribute, both are
considered correct (s1 and s3 use the former representation,
while s2 and s5 use the latter).
In the later case, differences in normalization cause

semantic differences, due to which some data could be
available in one schema but absent in others such as
OpenEMR demographics identifying the patient’s residential
location using specific attributes like ‘‘Address’’, ‘‘City’’,
‘‘State’’, ‘‘Postal Code’’, ‘‘Country’’, and others. Simi-
larly, ‘‘EncounterDate’’ from s5 is semantically similar to
‘‘BeginDate’’ of ‘‘openemr_MedicalProblems’’ table in s1,
‘‘AdmissionStartDate’’ of ‘‘LabsCorePopulatedTable’’ in s2,
‘‘time’’ in ‘‘Diagnosis’’ table of s3, and ‘‘dateOfAdmission’’
in ‘‘Diagnosis’’ and ‘‘CareHistory’’ tables of s4. Finally,
s1 and s3 have separate tables containing the medicinal
prescription details, however the same details are unavailable
in s2, s4, and s5. Once again, this is not an incorrect behavior
since this information, might not be a part of the context
or the requirements for the EMR/EHR storage systems.
In fact, the change in context of the medical data storage
system from the initial time of development to a later stage
of collaborative processing systems, is the main cause of
heterogeneity. In order to provide an interoperable solution,
it is therefore necessary to enhance the semantics of each data
attribute by its contextually equivalent sentence.
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FIGURE 2. The five medical schemas used for achieving data interoperability.

B. ATTRIBUTE TO SENTENCE TRANSFORMATION
In order to process the EMR/EHR schema set S and produce a
set of corresponding semantically enriched sentences, we use
the data representation si, generated through the process
explained in sequence acquisition to collect the various
medical fragments in memory. We then iterate over these
fragments, building a set of attributes, distinguished by
their name, schema’s name, table’s name, schema’s version,
source, and recorded data. This entails that ‘‘PatientID’’ from
each of the four tables in s2, and ‘‘patientID’’ from five
tables in s4, would result into nine attributes (assuming,
as in the current case of no differences in versions of these
systems). For each attribute, we then generate the suffix
array, which provides all possible substring representations
contained within the attribute name. In order to generate the
set of suffixes, we employ three strategies, forward suffix
generation, whereby for a word w of length n, n− 1 suffixes
of size 2 to n − 1 are produced, backward suffix generation,
to produce n − 1 suffixes in reverse order with size n − 1
to 2, and regular expression based suffix generation, which
splits each word on, change of case, special characters(such
as -, _, !, and others), and numbers. In this way a large list of
suffixes is generated, which is combined using a ‘‘TreeSet’’
data structure of Java, which internally sorts this list as
well. An example of this suffix generation process, using
the attribute name ‘‘dateOfAdmission’’ as it appears in s4 is
shown in Figure 3.

Suffix strings for similar attributes such as ‘‘Admission-
StartDate’’. ‘‘diseaseNameOnAdmission’’, and ‘‘Admissio-
nEndDate’’ appear in s2, producemany, synctactically similar

FIGURE 3. An example of suffix arrays produced for the attribute
‘‘dateOfAdmission.’’

suffixes, to the presented example. This process, is only able
to generate syntactic suffixes, producingmany incoherent and
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TABLE 2. Sentence created from the attribute name ‘‘DateOfAdmission.’’

unrelated suffixes. In order to counter this problem, and to
limit the list of suffixes within the domain, we then query
UMLS with exact search strategy, looking for the existence
of any concepts against each suffix. In case, no semantic
concept is found for a particular suffix, it is removed from the
final Suffix Array. On the other hand, if atleast one semantic
concept is found against the queried suffix, it is retained.
Meanwhile the process continues for the next attribute,
then the next table, and finally the next system, till no
further processing is possible. The set of suffixes and their
corresponding concepts are then used to build the sentence,
where by each concept corresponding to a suffix is appended
next to the suffix. An example of the resultant sentence for
the attribute ‘‘DateOfAdmission’’ is shown in Table 2.
Here the various suffixes and their concepts are separated

by the symbol ‘‘;’’, however together they form one sentence,
for which an embedded vector is generated.

C. SCHEMA MAP GENERATION
Schema Maps provide an interoperable bridge between two
medical systems (si∧sj), by identifying the semantic relation-
ship between their participating attributes. This identification
is based on the similarity between the embedded vectors,
of the semantically enriched sentences corresponding to each
data attribute. While the embedded vectors can be generated
using any methodology, we tested 11 methodologies with
Word2Vec and 10 models based on BERT further detailed
in section IV. Our results indicate that the large/STSb
version of Robustly Optimized BERT Pretraining Approach
(RoBERTa) [23], provides the best matching results. The
pair of embedded vectors thus produced are then used to
calculate cosine similarity, which is based on the inverse
cosine distance between them. For our classification, we used
the raw results (unnormalized) of cosine similarity, which
produces a score between -1, and 1. Cosine similarity
score of 0 indicates orthogonal relationship between the
two vectors, which in our scenario indicates that the two
sentences, and by extension their attributes are not related
to each other. -1 indicates inverse relationship between the
attributes, while 1 indicates the two attributes are very much
the same. For producing our schema maps, we are interested
in three types of relationships, ‘‘equal’’ (the two attributes are
same), ‘‘related’’ (the two attributes are related to each other),
and ‘‘unrelated’’ (no relationship between the attributes).
In order to classify the similarity results into one of these

three classes, we then calculated the best thresholds using
Matthews Correlation coefficient (MCC) [24] for classifying
each instance as ‘‘equal’’, ‘‘related’’, and ‘‘unrelated’’.

MCC

=
(TP× TN )− (FP×FN )

√
(TP+FP)×(TP+FN )×(TN+FP)×(TN+FN )

−→ [−1, 1] (1)

MCC provides a fair measure of the ability with which
a classifier can correctly predict both positive and negative
instances [24]. The formula for calculating MCC is shown
in Equation 1, which is based on classification performance
measures such as true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). MCC score of 0
represents random classification, however, with an increase in
the number of true positives and true negatives MCC moves
closer to 1. It also takes into account the false positives
and false negatives, which shift the MCC score towards −1.
This measurement is markedly different from accuracy that
fails to account for imbalanced datasets and F1 measure
which is not affected by the true negative scores. As a
result, MCC provides an acceptable alternate in our current
scenario comprising of imbalanced dataset (largely in favour
of class ‘‘unrelated’’) to measuring the true performance
of the models, used for threshold selection and model
evaluation. Finally on a test dataset we evaluated our multi-
class classification approach using MCC and Cohen’s Kappa
coefficient (κ) [25] to identify the relationships between each
pair of attributes.

IV. EXPERIMENTAL SETUP
In our earlier work [9] s1, s2, and s5 were used to generate
over 115 million patient records, which are converted into a
semi-structured form and stored in Hadoop Distributed File
System (HDFS). We extended the same setup to create an
additional 100,000 records, for 1000 patients with 3 medical
fragments for s1, s2, and s4, and 97 randomly selected
and generated medical fragments amongst s1, s2, s3, s4
and s5. These fragments follow various design elements
supporting a variety of valid relational storage architectures.
Such as, s1, s2 and s4 are represented by creating a separate
medical fragment for each participating table, s3 utilizes
its medical fragment to generate a linked record (from a
linked object graph), where by the attributes can refer to
other objects, mimicking the application of explicit foreign
keys, and s5 is a flat table structure. The code to generate
this data set is available at ‘‘uhp_map_generation’’.1 This
application produces three custom formatted files containing
an index for patients, an index for their medical fragments,
and the medical fragment corresponding to the EMR data.
Using the medical fragments file, we then generate the
semantically enriched attribute,2 which contains the suffixes
and their concepts corresponding to each EMR data attribute.

1https://github.com/desertzebra/UHP_v4/tree/main/uhpr_storage
2https://github.com/desertzebra/UHP_v4/tree/main/uhp_map_generation
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The resulting set of enriched attributes are temporarily stored
in a JSON file, which is then read by the same application
to partially generate the schema maps. This process is
used to create 20,349 distinct pairs of attributes across s.
Each pair also contains the ‘‘relationshipList’’, which stores
the results of fuzzy string matching [26] 3 between the
attribute names. The JSON file thus produced is then used
by a python script to generate the semantically enriched
sentences and their embedded vectors using Word2Vec, and
10 pre-trained BERT NLI models [23]. The BERT models
include ‘‘bert-base-nli-stsb-mean-tokens’’, ‘‘bert-large-nli-
stsb-mean-tokens’’, ‘‘roberta-base-nli-stsb-mean-tokens’’,
‘‘roberta-large-nli-stsb-mean-tokens’’, ‘‘distilbert-base-nli-
stsb-mean-tokens’’, ‘‘bert-base-nli-mean-tokens’’, ‘‘bert-
large-nli-mean-tokens’’, ‘‘roberta-base-nli-mean-tokens’’,
‘‘roberta-large-nli-mean-tokens’’, and ‘‘distilbert-base-nli-
mean-tokens’’. The embedding vectors are then compared
using cosine similarity. The rationale behind switching the
applications at various stages is to cache the results and
create checkpoints for restarting any failed stages, easily.
Additionally, since python provides better support for easy
generation of embedding vectors, it was thus preferred over
the Java based implementation, which is otherwise very
beneficial for other tools.

V. RESULTS
The validity of our proposed approach has been eval-
uated using several techniques including comparison of
the proposed semantic matching process with fuzzy string
matching, embedded vector generation and comparison using
Word2Vec, and 10 BERT nli models.

A. DATASET ANNOTATION
In order to compare our computed models with ground
truth and to identify the best thresholds for classifying
each instance as ‘‘equal’’, ‘‘related’’, or ‘‘unrelated’’ four
human annotators were utilized to anonymously, score the
similarity of each pair of attribute names. In order to support
this process, we first repurposed one of our generated data
matrix by marking all attribute pairs belonging to the same
schema with the symbol ‘‘-’’. Following this, the annotators
marked each cell corresponding to a pair of attributes
(conversely, each attribute pair corresponds to two cells with
the positioning of the pair-participants swapped; which is
used for clarity and identify correct relationships between
the attribute on left and attribute on right), by determining
the similarity in terms of dissimilar as ‘‘0’’, exactly similar
as ‘‘1’’, row attribute as child of column attribute as ‘‘<’’,
row attribute as a parent of the column attribute as ‘‘>’’, and
finally, unknown as ‘‘ ’’. The data sheets generated after this
extensive human effort have been made available for other
researchers.4

3Java Library: https://github.com/xdrop/fuzzywuzzy
4https://github.com/desertzebra/EMR-Interoperability/tree/master/

Implemenation/Data/Annotated

FIGURE 4. Cohen’s kappa (κ) score among the four annotators.

These sheets, additionally contain some missing values,
which were left out by the annotators but in order to maintain
their originality, these values were not filled; instead during
our evaluation for these datasets, the missing values were
considered as having the score ‘‘0’’. Using κ , we evaluated
the inter-rater agreement of these annotations, which have
been visualized in Figure 4. It can be seen in this plot,
that ‘‘Annotator3’’ has very small correlation with the other
3 annotators. This difference can be traced back to the number
and type of annotations performed by each annotator, which
is shown in Table 3. The ‘‘Annotator3’’ has marked 2103 cells
as related (one of >, <, or ) and left 153 as empty. Even in
the presence of these differences, it is pertinent to include the
data for all annotators in order to avoid any bias.

This annotated data was then processed to replace all
related entries with ‘‘0.5’’ (class0.5) and all ‘‘-’’ with
‘‘0’’ (class0), while the values for similar at ‘‘1’’ (class1)
and ‘‘0’’ (class0) for dissimilar were kept the same. This
conversion was then used to produce a consolidated dataset
of 40,698 attribute pairs using mode scores of all annotators
for each cell. We also tested average scores between the
annotators, but that would produce scores between ‘‘0’’,
‘‘0.5’’, and ‘‘1’’, greatly increasing the number of classes
for classification. Hence the maximum agreement between
the annotators maintains the final label values within these
three classes, which become easier to evaluate. Additionally,
the original dataset and its mode consolidated form is
biased in favour of class ’’0’’, since most attribute pairs
are not related to each other. This dataset is then split into
development and testing partitions with a ratio of 70:30. The
development partition is used for threshold selection based on
the best MCC score for identifying class ‘‘equal’’, followed
by best scores for class ‘‘related’’ and finally best of class
’’unrelated’’. The optimal threshold thus achieved is used
to classify the instances of the test dataset, which is finally
evaluated on its MCC and F1 measure.

B. THRESHOLD SELECTION
A good text classification methodology is dependent on
the correct choice of a threshold, which can maximize the
target class participation. In case of independent labels, area
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TABLE 3. Annotations performed by the four annotators on five medical schema.

FIGURE 5. Thresholds selection using MCC scores where t1 indicates the similarity threshold between class0 and class0.5, and t2 indicate
the similarity threshold between class0.5 and class1.

under the precision recall curve can provide this optimal
measure, however as in our case, for dependent classes on
a biased dataset the MCC, is better [24]. Since our aim is
to apply an optimal text similarity classifier to resolve this
multi-class problem (class0, class0.5, and class1), we have
to test various threshold scores for separating the instances
between class0 and class0.5 (t1), and then class0.5 and class1
(t2). Additionally, since our aim is to correctly identify the
similar attribute instances, it is pertinent to maximize the
classification performance of class1 (similar), followed by
class0.5 (related), and finally class0 (unrelated). With a step
size of 0.05 (step), and starting from t1 as 0.0 and t2 as t1 +
step, we move the thresholds until t2 reaches 1.0, followed
by increase in t1 by step size. Eventually, t1, reaches 0.95
and t2 reaches 1.0, at which point, the process stops. This
is to ensure that t1 remains behind t2, for all iterations,
measuring MCC score, for the 12 models. These models
include, ‘‘Fuzzy_Wuzzy’’, ‘‘Word2Vec’’, and 10BERTbased
models. The optimal thresholds achieved by each of these
models is shown in Figure 5.
Threshold values for Word2Vec are placed at the lower end

of the spectrum indicating a very large number of instances

are classified as similar (above similarity score of 0.1), while
a small number of instances (with similarity score 0.05) are
classified as dissimilar. Similarly, the class0.5 lies within
the similarity threshold of 0.05 similarity points. It can be
observed that the threshold for selecting the related class
is within 0.05 points, in all except one case (bert-large-nli-
mean-tokens where the difference is 0.15 points). Five BERT
based models, trained on the STSb dataset, all have minimum
threshold values of 0.85 and maximum of 0.9, while the
4 remaining BERT models, lie between 0.9 and 0.95. These
results show a general trend of how the cosine similarity
varies/maintains itself, against embedded vectors generated
from various pre-trained models. In absolute terms, however
these threshold values provide the mechanism for classifying
the test dataset, which is evaluated for performance in the next
subsection.

C. MODEL EVALUATION
On unseen test dataset with thresholds selected in the previous
step and the 12 models, we measured the performance score
using one vs all binarization of the multi-classes. As evident
in Table 4, very high values of accuracy are visible across
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TABLE 4. Performance matrix for individual classes using one vs. all binarization technique.

all models with all three positive classes. In all, except the
case ofWord2Vec, precision and recall also show values close
to 1.0. However, these measures are very misleading, since
the dataset is greatly biased in favour of class0. In terms
of F1 measure class0.5 shows the worst possible results,
independently, with all except Word2Vec and bert-large-
nli-mean-tokens having a score of 0.0. Bert-large-nli-mean-
tokens provides the best F1 measure at 0.49. These metrics
are thus not useful to gauge the performance of the evaluated
models. Instead, focusing on the MCC score, provides a good
picture of the model performance for individual classes when
all other instances are negative.

Finally, we evaluated the overall κ coefficient and MCC
score to evaluate the performance of each model on the
test dataset. These scores range between [-1,1], providing
a measure quantifying the accuracy of the classifier to
correctly predict correct and incorrect instances. As shown in
Figure 6, the models Word2Vec, bert-large-nli-mean-tokens,
and roberta-base-nli-mean-tokens, with values between
[0,0.20] indicate random classification, while κ score
between [0.21,0.39], achieved by fuzzy wuzzy, bert-base-nli-
mean-tokens, roberta-base-nli-sts-mean-tokens, distilbert-
base-nli-stsb-mean-tokens, bert-base-nli-mean-tokens,
roberta-large-nli-mean-tokens, and distilbert-base-nli-mean-
tokens, show only minimal agreement with the annotated

data [27]. Relative best rates, in this case, are achieved
by roberta-large-nli-stsb-mean-tokens, which substantially
surpasses the other models, however in absolute terms,
it shows only weak agreement. Similarly, MCC scores
show a similar result, with roberta-large-nli-stsb-mean-
tokens, achieving the relative best performance amongst all
classifiers.

VI. DISCUSSION
In text classification, production and use of a well annotated
corpus for supervised and semi-supervised learning is of
utmost importance. The same is also useful for evaluating
the performance of unsupervised learning techniques. In the
real world, the production and maintenance of these corpora
is an expensive task, often requiring extensive human
effort and conformance to ethical principles, which can
restrict access to critical data for the researchers. While
there are many factors, influencing this reality, one of
the most critical is the perception and cognitive ability
of an expert user to subjectively assign a label to an
instance [28], [29]. Data validity is especially important in
the domain of healthcare, where the acquisition, curation,
and sharing processes are all encapsulated by the need to
ensure correctness as well as privacy and security of the
user. Consequently, the availability of healthcare data, its
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FIGURE 6. Performance evaluation of various models using MCC and kappa (κ) scores.

accuracy, and transparency are major concerns for most
researchers associated with this domain [30]. It is not only
important to access the data but also to understand how it was
produced, the caveats associated with it, and any assumptions
made during or after its acquisition. In the case of our
annotated dataset, the instances have been labeled by four
human experts (two medical practitioners and two computer
science graduates), using their subjective knowledge. One
example of this subjective classification, is evident in the
raw form of the data instances labeled by ‘‘Annotator3’’.
According to ‘‘Annotator3’’ the relationship between the term
‘‘AdmissionId’’ and ‘‘ClinicalHistory’’ is parent-child.While
the selection of this label can be debated from a subjective
view point, changing or removing it or any other label, from
the (objective) view point of the computing methodology
would be incorrect [31]. As a result, the annotations were kept
anonymous so as not to induce any bias. Thus, the complete
annotated data in its original form became the basis of
our threshold selection and model evaluation methodology.
A mode based voting mechanism was then used to resolve
the differences between the annotators. The consolidated true
dataset was then formed based on the agreed upon label
by atleast three annotators. As pointed out in [28], the net
effect of such a voting mechanism is an increase in the
precision of the machine learning classifiers in lieu of, their
accuracy. As shown in the results and discussed further on,
due to the bias nature of our dataset, accuracy measure is
replaced by MCC. The lower scores of agreement between
the (annotated data) true labels and predicted labels, have thus
been evaluated in a contextual and relative manner.

Throughout this research work, the choice of performance
metrics used for threshold selection and model evalua-
tions are also driven by the dataset’s nature. Even before

annotation, the dataset is bias in favour of unrelated attributes.
As established by the human experts and the machine
learning model, for 254 attributes involved in 40698 pos-
sible pairs only a little over 300 similar instances are
found. In these circumstances performance metrics, such
as accuracy, precision, and recall are meaningless. These
metrics are unable to account for the imbalanced datasets
and provide an incorrect view of the classifier’s accuracy.
Instead metrics such as F1, MCC, and κ can provide a true
picture of the classifier’s accuracy. These metrics are also
well suited for evaluating multi-class classifiers, using one
vs all or one vs one binarizations of the dataset, as well
as consolidating the results into a single measure. In our
experimentation, we also evaluated the Area Under the
Receiver Operating Characteristic (AUROC) curve and Area
Under the Precision Recall (AUPR) curve, as a threshold
selectionmetric. These graphs are well suited for independent
classes as shown by [32]. Additionally, in our case it is
important to maximize the identification of similar attribute
pairs (class1), followed by related ones (class0.5) and finally
the unrelated ones(class0). AUROC and AUPR were thus
replaced with our current approach for threshold selection.
The benefit of using this kind of dependent classification is
its usefulness in practice to identify a small set of similar
attribute pairs, which can be used to establish positive results.

VII. CONCLUSION
Healthcare information systems are slowly moving towards
a standardized approach, whereby the storage, exchange,
and usage of health data, information, and knowledge is
becoming interoperable. However, research and development
of ubiquitous health management systems, still require
manual interventions by human experts. These approaches
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require costly resource allocations, which are not possible
for small and medium scaled healthcare service providers.
In order to provide data interoperability services to these
providers, and automating the process of generating maps
between HMIS schema, which can match and transform
patient data from a source provider to a target one, it is
important to utilize state-of-the-art NLP techniques. Using
transformer based pre-trained BERT models, we show the
applicability of these techniques on creating the, as yet
non-validated, schema maps. As a result, human effort can
now focus on validating and verifying the schema maps,
which can greatly accelerate the application of healthcare
data interoperability, and provide a cohesive ecosystem for
ubiquitous healthcare service delivery. In future, we shall
look towards developing a mechanism for schema map
storage and evolution, along with expert validation to finally
close this loop. We shall also work on re-training some of the
existing pre-trained models, to improve the performance of
schema map creation.
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