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ABSTRACT The emergence of smart technology has equipped humans with wearables and sensors that
collect relevant data related to individuals and their surroundings. In healthcare, the collected data can
monitor user emotion, behavior, and activity, which leads to the development of personalized decisions
and improves lifestyle. In this paper, we analyzed the existing health fog framework and identified its
limitations in terms of security, performance, and accuracy. Based on these limitations, we propose a
secure health fog (SHF) framework that collects data from different Internet of Things (IoT) devices and
maintains a personalized repository for adaptive model tuning. The adaptive model improves periodically
based on user feedback and generates a personalized recommendation. Moreover, the existing IoT devices
mostly rely on low-cost and low-power Zigbee technology, which is vulnerable to different attacks, such as
device control, eavesdropping, fake device injection, malicious insider, man-in-the-middle, masquerading,
message tampering, privacy leakage, and replay attack. Therefore, we propose a Zigbee Secure Health
Fog (ZigbeeSHF) protocol, which uses symmetric and public-key cryptography to prevent these attacks.
For data migration security, we concatenate the encrypted data with the encrypted digital signature to
provide data authenticity, integrity, and confidentiality. To support our claims, we use the automated
formal verification tools Scyther and AVISPA (Automated Validation of Internet Security Protocols and
Applications), which evaluate the protocols based on the threat model and exploits the vulnerabilities in
different attacking environments. The results of both tools ensure prevention against the mentioned attacks.
As a proof of concept, we also evaluate the accuracy and performance of our proposed framework in a smart
studio apartment. The result shows that the adaptive model tuned for an individual user is very effective,
and the average accuracy of 32.5% is improved after one month. Furthermore, the proposed ZigbeeSHF
protocol requires 7.93% and 25.35%more computation time than Zigbee with and without installation code,
respectively.

INDEX TERMS Secure health fog, adaptive model tuning, personalized decision, security, Zigbee.

I. INTRODUCTION
With the emergence of smart technology and ubiquitous com-
puting, different sensors and wearable devices can collect
information related to a specific user and their surrounding
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environment. The information collected from these sensors
can facilitate the user in their daily life, such as task reminder,
medication intake, fitness, adjustment of room temperature,
lighting, ventilation, etc. Such innovation makes the user’s
life manageable and improves lifestyle. These innovations
depend on activity recognition, which is currently a mature
and popular area of research. The literature related to activity
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recognition has focused on activity monitoring [1], machine
learningmodelling [2], sensor technology [3], behavior track-
ing [4], and emotion recognition [5]. Several healthcare appli-
cations have also been proposed, including smart clothing [6],
health trackers for weightlifters [7], patient fall detection [8],
sedentary behavior identification [9], and recommendations
for chronic disease patients [10]. These applications are
linkedwith specializedmedical devices or embedded sensors,
which continuously monitor patient activities (such as muscle
activity, heart rate, calories burned, and sedentary behavior)
and provide recommendations accordingly.

The importance of such research is to support communi-
ties, especially the aging population, to live safely at home.
The healthcare sector faces severe challenges in terms of
quality-of-life, hospital capacity, and nursing care longevity.
According to global demographic trends [11], the world pop-
ulation is aging due to the increase in life expectancy and
decrease in childbirth, especially in high-income countries
such as the Republic of Korea, Liechtenstein, Sweden, and
Switzerland. The government is taking necessary steps to
overcome these problems by providing training andmonetary
incentives for family members to take care of elderly per-
sons. With increasing age, the older population suffers from
different chronic diseases and thus requires continuous mon-
itoring. However, it is challenging for working family mem-
bers to provide intensive care to the elderly, especially those
with cognitive impairment, physical disabilities, or demen-
tia, which require care around the clock. Therefore, family
members hire a nurse or send their elderly to nursing care
homes, which has a negative impact on elderly health in terms
of depression and anxiety.

The research community proposed different solutions
using IoT devices, wearable sensors, and smartphones to
monitor the patient’s health conditions and provide rele-
vant healthcare services at home. These devices generate a
large amount of data and require computational power for
performing tasks such as the analysis, aggregation, storage,
and generation of context-sensitive decisions. The healthcare
application deals with personally identifiable information
that belongs to patients. Therefore, the traditional sensor-to-
cloud architecture is not preferred due to privacy concerns,
network failures, and data transmission latency issues that
may put a patient’s life at stake. In healthcare, efficiency
and reliability play an important role in real-time opera-
tions. Thus, the traditional sensor-to-cloud architecture was
extended to a decentralized computing infrastructure called
fog computing, which collects the data from underlying IoT
devices, processes resource-hungry or sensitive operations at
the network edge and sends relevant data to the cloud for
long-term storage. Fog computing acts as an intermediate
layer between cloud and end devices. Similar to cloud com-
puting, fog also delivers different services in terms of health
fog [12], vehicular fog [13], and energy fog [14].

In this paper, we focus on the health fog that delivers
healthcare-as-a-fog service and provides efficient services
to the patient regarding monitoring, medication adherence,

and behavior tracking. According to our analysis, the exist-
ing literature related to health fog has primarily focused
on performance measures and considered security as a sec-
ondary feature due to computational overhead, which leads
to several cyber-attacks, such as device control, eavesdrop-
ping, fake device injection, malicious insider, man-in-the-
middle, masquerading, message tampering, privacy leakage,
and replay. To prevent these attacks, we propose a secure
health fog (SHF) framework that acts as an intermediate
layer between underlying IoT devices and the cloud. The
SHF securely collects the data from underlying IoT devices,
analyzes the data, and maintains a personalized repository for
adaptive model tuning, supporting context-sensitive decision
making. Moreover, due to the sensitive nature of health data,
our proposed framework provides data ownership, where the
user can select the data to collect/discard during decision
making and datamigration. Furthermore, we propose security
protocols to ensure prevention against the mentioned attacks.
The main contributions of this study are described as follows:
• Wepropose a secure health fog framework that considers
security, performance, and accuracy as primary factors.

• The secure health fog maintains a personalized repos-
itory based on user feedback that evolves the model
and supports personalized, context-sensitive decision
making.

• We describe the Zigbee Secure Health Fog (ZigbeeSHF)
protocol, which considers the limitations of the exist-
ing Zigbee technology and prevents different attacks,
such as device control, eavesdropping, fake device injec-
tion, malicious insider, man-in-the-middle, masquerad-
ing, message tampering, privacy leakage, and replay.

• We present the data migration protocol, which con-
catenate the encrypted data with the encrypted digi-
tal signature to provide data authenticity, integrity, and
confidentiality.

• We evaluate the protocols using the formal verification
tools Scyther and AVISPA, which evaluate the protocol
based on the threat model and exploit vulnerabilities in
different attacking environments.

• We deploy the secure health fog in a smart studio
apartment to evaluate the effect of adaptive model tun-
ing on personalized context-sensitive decision making.
Additionally, the performance of the proposed proto-
cols is evaluated in terms of processing time and CPU
utilization.

The rest of this paper is organized as follows. Section II
provides an overview of relevant studies. Section III briefly
describes the methodology of SHF framework. The evalua-
tion of our proposed methodology is presented in section IV.
Section V discusses the detailed analysis of results. Finally,
section VI concludes the proposed work and sets future
directions.

II. RELATED WORK
In this section, we have described the literature that provides
healthcare as a fog service. Fog computing is considered an

108374 VOLUME 9, 2021



U. U. Rehman et al.: SHF: Novel Framework for Personalized Recommendations Based on Adaptive Model Tuning

extension of cloud computing and is relatively more secure
due to the data being analyzed and maintained on a local
fog node closer to the data source. However, many chal-
lenges related to security and privacy exist when the fog
node shares data with other resources to perform a specific
task. Similar to the situation in other domains, personalized
analysis and recommendation has become a necessity of
healthcare. Therefore, in this section, we present the most
relevant research studies that propose the health fog solution
and support a healthy lifestyle. In our survey of the litera-
ture, we found only nineteen research studies that provide
healthcare as a fog service.We classified these studies into the
Health Fog Methodology and Health Fog Algorithm, which
include thirteen and six research studies, respectively. The
comprehensive description of the selected studies is described
as follows:

A. HEALTH FOG METHODOLOGY
The health fog methodology considers the process in which
healthcare application delivers a service to the end user
through fog computing. In [15], the authors proposed a
three-layered architectural model for smart health infrastruc-
ture, which measures the patient vital signs regularly and
helps in quality treatment. Fratu et al. described the con-
cept of monitoring pulmonary disease and mild dementia
patients in [16], which analyzes the patient medical condition
and generates a recommendation regarding the actions that
need to be taken. The study considered relevant performance
measures and suggested the use of fog to reduce latency.
Similarly, the benefits of fog computing in chronic obstruc-
tive pulmonary disease were described in [17] to monitor
patient oxygen dosage, energy consumption, and activity.
Then, the information was processed using the fog to gen-
erate a decision regarding the oxygen dosage. The proposed
system provides efficient processingmechanisms, which help
patients perform some physical activity. In [18], a fog com-
puting interface was proposed that processed clinical speech
data from patients with Parkinson’s disease and identifies
features such as perceptual loudness, short-term energy, zero-
crossing rate, and spectral centroid to provide an assessment
of the patient’s condition. The authors used a secure copy pro-
tocol to ensure communication security. Moreover, a service-
oriented fog computing architecture named fog data was
proposed in [19], which collected the data fromwearable sen-
sors and stores the recurring patterns alongwith clinical infor-
mation on the cloud. The preliminary analysis and filtering
were performed using fog computing services that resulted in
data reduction, low power consumption, and high efficiency.
Gia et al. designed a healthcare monitoring system for cardiac
disease using fog computing [20], which extracts features
from electrocardiograms and uses them to diagnose cardiac
diseases. The results show that with the usage of fog comput-
ing, high efficiency and low latency can be achieved. Further-
more, a system architecture for augmented brain-computer
interfaces based on fog computing and linked data was pro-
posed in [21], which uses ubiquitous computing services,

wireless EEG headsets, and smartphones to detect the user’s
brain activity. The fog server in this study acts as a data broker
that collects the data from the EEG sensors and publishes it as
linked data with low latency. In [22], the authors described the
strategic position of gateway in a fog computing environment
to monitor patient health remotely. The system was deployed
and tested for patients with acute illness, but it did not
describe the accuracy or interagreement level of the proposed
solution. Farahani et al. [23] conducted a survey and designed
an IoT-based eHealth ecosystem that considered traditional
healthcare system challenges such as data management, scal-
ability, interoperability, standardization, regulatory affairs,
and security. In [24], the authors deployed a secure central-
ized fog computing architecture, which securely collects the
data from sensors and after processing sent to the cloud for
seamless access. The study emphasized the location-based
tracking of authorized devices, but it did not focus on the
effect of security on performance and accuracy. Hassen et al.
proposed a home hospitalization system that uses sensing
units (such as vital signs and environmental factors) and
supports users in monitoring their vitals on smartphones [25].
Tuli et al. integrated ensemble deep learning in edge comput-
ing devices and designed a health fog framework [26], which
efficiently manages heart patient data and delivers healthcare
services. In [27], the authors designed and developed a fog-
assisted health monitoring system, which analyzes the bio-
logical signs of the patient and informs the medical specialist
in the case of abnormality detection.

B. HEALTH FOG ALGORITHM
The health fog algorithm describes the set of rules according
to which a healthcare application solves a specific prob-
lem and delivers it to the end user using fog computing.
Cao et al. [28] proposed a fall detection algorithm based on
acceleration magnitude values, nonlinear time series analy-
ses, and filtering techniques that detect falls in the case of
a stroke. The proposed algorithm was evaluated with real-
world data, which achieved high sensitivity and high speci-
ficity, with a minimum response time. Similarly, an e-health
system was proposed in [29], which detects falls and gas
leakage in a smart environment. The proposed algorithm
informs the caretaker in case of an emergency and supports
location awareness. In [30], the authors designed a medical
cyber-physical system that uses fog computing for task dis-
tribution and provides a cost-efficient solution. The proposed
algorithm was evaluated based on performance and cost-
effectiveness. Vora et al. designed TILAA [31], a tactile-
based framework that analyzes patient health conditions
using multiple sensing devices and sends tactile feedback
to the healthcare service provider in case of an emergency.
Similarly, the authors of [32] proposed a fog-assisted con-
tinuous monitoring system, which remotely analyzes patient
health conditions (such as glucose level, ECG, falls, and
activities) and provides advanced services (such as inter-
operability, security, and local data storage). The proposed
approach considered the performance measure and encrypted
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the data at the fog node. In [33], the authors proposed an
intelligent system that analyzes the environmental condition
using IoT devices and alerts the individual infected with
the dengue virus. The proposed system considered accu-
racy, security, and performance measures, but symmetric key
encryptionwas used to provide data source authentication and
was vulnerable to replay attacks.

C. ZIGBEE TECHNOLOGY
Recently Zigbee has been deployed in many smart devices
due to its low cost, low power, and low complexity [34].
In this section, we summarize the literature related to
Zigbee technology that exploits vulnerabilities and pro-
pose a security solution. The initial version of Zigbee was
proposed in 2004 [35]; since then, many security enhance-
ments have been implemented to provide secure commu-
nication [36]. Currently, IoT devices rely on Zigbee 3.0,
which supports an optional feature of installation code [37].
The installation code is a quick response (QR) code affil-
iated with each device and supports deriving the link key
using Advanced Encryption Standard-Matyas-Meyer-Oseas
(AES-MMO). The derived link key is used to encrypt the
network key and ensure data authenticity [38]. In Zigbee 3.0,
the attacker mainly exploits the association phase and
launches different attacks, such as communication disrup-
tion, fake device injection, privacy leakage, and device
control [39]. Wang et al. proposed a protocol that uses an
elliptic-curve Diffie Hellman (ECDH) along with the instal-
lation code and ensures prevention against the mentioned
attacks [39]. The security of ECDHs depends on the pre-
shared secret, and exploitation can compromise communi-
cation security [40]. Okada et al. used indirect transmission
in Zigbee and launched a low-rate denial of service attack
that eluded the preventive measures [41]. In [42], the author
proposed a certificate-less key agreement protocol that
uses elliptic curve cryptography and prevents impersonating
attacks.

D. ANALYSIS OF LITERATURE SURVEY
In this study, we focused on the health fog, where the
recommendation needs to be accurate, with no or mini-
mum latency, and contain high-security measures. Any error,
delay, or tampering may lead to a life-threatening situation.
Therefore, we critically analyzed these studies in terms of
security, performance, and accuracy, as shown in Table 1.
According to our analysis, sixteen studies ([16]–[23],
[26]–[33]) have focused on improving the performance of
their proposed solution using fog computing, which justifies
the observation that fog computing improves efficiency and
performance. However, limited studies have considered secu-
rity ([18], [22], [24], [27], [32], [33]) and accuracy ([26], [28],
[29], [31], [33]). Theoretically, accuracy is linked with
decision-making and recommendation, but it needs to be
considered an important health fog factor. Most of the
existing studies considered security as a secondary feature
due to its computational overhead and negative correlation

TABLE 1. Summary of literature review (considered(3),
not-considered(7)).

with performance. Based on these limitations, we have pro-
posed a secure health fog framework that considers security,
performance, and accuracy as primary factors.

Moreover, the sensors deployed in our smart studio
apartment belong to the Zigbee family (CC1352R [43],
CC1352P [44]). Therefore, we have analyzed the existing
literature related to Zigbee and identified that the protocol
uses weak authentication in terms of installation code dur-
ing the association phase [38], which makes the protocol
vulnerable to a variety of attacks [39]. Researchers have
proposed different approaches to ensure prevention against
these attacks [35], [40], [42], but the proposed solution opens
the door for new variants of cyber-attacks [41]. Therefore,
we have proposed the ZigbeeSHF protocol, which considers
the limitations of existing studies and provides prevention
against different attacks, such as device control, eavesdrop-
ping, fake device injection, malicious insider, man-in-the-
middle, masquerading, message tampering, privacy leakage,
and replay.

III. PROPOSED SECURE HEALTH FOG FRAMEWORK
As discussed in the section II, a limited number of stud-
ies have focused on accuracy and security aspects, which
need to be considered along with the performance measure
to gain user trust. It may be possible that a malicious fog
device becomes a part of the network and performs dif-
ferent attacks, such as identity theft, tempering, and ran-
somware. Therefore, we considered all these aspects and
propose a secure health fog framework that overcomes the
limitations of the existing literature and maintains a person-
alized repository for adaptive model tuning. Figure 1 presents
the layered architecture of our proposed framework. The
description of each layer is described as follows. Moreover,
a list of frequently used symbols and abbreviations is given
in Table 2.
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FIGURE 1. Layered architecture of Secure Health Fog framework.

Algorithm 1 Data Collector Layer
Input: dmtx , commP, upref
Output: dmtxls, commPls, uprefBehr
/* scanning state & detect IoT devices */

1 while true do
2 if device � conditions then
3 dmtxls← dmtx
4 commPls← commP

5 split upref into cond and concl
6 cond ← infer and map hlc for cond
7 concl ← infer and map hlc for concl
8 uprefBehr ← cond || concl

A. DATA COLLECTOR
The data collector connects via a gateway to the under-
lying IoT devices and collects the raw data, which
includes the communication protocol (commP), data modal-
ity matrix (dmtx), and user preference (upref ). Algorithm 1
describes our proposed approach for the data collector layer.
Initially, the scanning state is activated to identify the list
of available IoT devices over the network. To become a
part of the health fog, each detected device needs to fulfill
certain conditions, such as authentication, authorization, and
access control, that prevent intruders and malicious devices.
The data collector collects two types of information for each

Algorithm 2 Data Refiner Layer
Input: dmtxls, commPls, uprefBehr
Output: dmtxMap, uprefBehr , lhRule

1 ∀dmtxls
2 if missing value exist then
3 Impute missing value with the column means
4 dmtxls← update dmtxls

5 else if duplicated value exist then
6 remove duplicated rows
7 dmtxls← update dmtxls

8 else
9 do nothing

10 foreach hlc in uprefBehr [cond ] do
11 llc← identify llc from MapRepo
12 if llc exists in dmtxls then
13 dmtx ← extract dmtx from dmtxls
14 commP← extract commP from commPls
15 cond ← llc
16 concl ← hlc

17 dmtxMap← map concl ||cond ||dmtx ||commP
18 lhRule← cond ||concl

authorized device: (i) generated data in the form of a modal-
ity matrix (the x, y, and z coordinates of the accelerometer
are considered a modality matrix); and (ii) communication
protocols such as TCP/UDP that help us ensure transport
layer security. Then, user preferences (upref ) that reflect the
nature or behavior of an individual (such as if sitting in the
living room then adjust temperature) are acquired. The data
analyzer splits upref into condition (cond ) (sitting in the liv-
ing room) and conclusion (concl) (adjust temperature). Then,
the identified high-level context (hlc) (activity, location, and
action) is mapped using a rule-based approach to generate
a rule, which concatenates the condition (cond ) and con-
clusion (concl), such as IF (activity=sitting, location=living
room) THEN (action=adjust temperature).

B. DATA REFINER
The data refiner processes the raw data, removes inconsis-
tencies and generates adaptive policies for personalized rec-
ommendations. Algorithm 2 describes our proposed approach
for the data refiner layer. It takes lists of data modality
matrices (dmtxls), communication protocols (commPls), and
relations between modalities and user preferences (uprefBehr )
as inputs. The data cleaner analyzes the dmtxls, checks for
missing and duplicated values, imputes the column mean
value and removes duplicated rows. The data consolidator
extracts the high-level context (hlc) from the uprefBehr condi-
tion (cond ) (such as activity and location), and then identifies
the low-level context (llc) for each identified hlc using the
mapping repository (MapRepo).MapRepo contains a predefined
list of modalities mapped from hlc to llc (such as activity (hlc)
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TABLE 2. Nomenclature of Secure Health Fog framework.

mapped to llc that includes an accelerometer and a gyro-
scope). Furthermore, the device modality matrix (dmtx), com-
munication protocol (commP), llc, and hlc are mapped based on
the identified llc in dmtxls, which describes the complete struc-
ture of the modalities. The adaptive policy generator concate-
nates the identified llc with hlc and generates a rule structure
such as cond=accelerometer, gyroscope and concl=activity.

C. LEARNING REPOSITORY
The learning repository collects, stores, manages, and shares
the data. This layer consists of three repositories: prepro-
cessed data (ppRepo), model repository (modelRepo), and adap-
tive policy (apRepo). Algorithm 3 describes our proposed
approach for learning repositories. ppRepo maintains refined
data (dmtxMap), which contains hlc, llc, dmtx , and commP,
such as activity || accelerometer || coordinates(x,y,z) || UDP.
The model repository (modelRepo) loads the pretrained model
(ptmodel), such as predicting activity based on accelerometers

Algorithm 3 Learning Repository Layer
Input: dmtxMap, uprefBehr , lhRule, qls
Output: resls

1 store dmtxMap in ppRepo
2 store uprefBehr and lhRule in apRepo
3 load ptmodel in modelRepo
4 foreach query q in qls do
5 res← search q in ppRepo,modelRepo, apRepo
6 if res != null then
7 res← infer res
8 resls← add res

and gyroscopes. apRepo maintains uprefBehr and lhRule, which
support personalized decision making. In the case of any
query (q) or a list of queries (qls), this layer processes the
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Algorithm 4 Hybrid Ensemble Learner Layer
Input: lhRule, ptmodel, uprefBehr , dmtxMap
Output: rec

1 foreach lhRule[concl] in lhRule do
2 if ptmodel not exist then
3 load annData in dsRepo
4 dataSet ← select dataSet from dsRepo, where

dataSet ≡ lhRule
5 split dataSet in {trSet i, ttSet i}ni=1
6 for i=1 to n do
7 Mfeat i← bsLAlgoi on {trSet i, ttSet i}

8 whereMfeat i = { ˆtrSet i, ttSet i} and ˆtrSet i =
bsLAlgo(trSet1), bsLAlgo(trSet2), . . . , bsLAlgo(trSet n)

9 ptmodel ← learn Mmodel on Mfeat i
10 store ptmodel in modelRepo

11 retrieve ptmodel from modelRepo
12 dmtx ← select dmtxMap[dmtx], where

dmtxMap[concl] ≡ lhRule[concl] and
dmtxMap[cond ] ≡ lhRule[cond ]

13 p← predict p for dmtx using ptmodel
14 hlc← lhRule[concl]
15 llc← lhRule[cond ]
16 pls← map hlc||p||llc||dmtx

17 ∀pls[p], if pls[p] exists in uprefBehr [cond ][hlc] then
18 get rule r from uprefBehr
19 wt =

∑n
i=0(mAttr i+mAttpi)
mAttr t+mAttpt

×100

20 rls← r||wt

21 sort rls with wt in descending order
22 if r in rls � context then
23 rec← select top r
24 pls← filter pls based on rec

query and returns the required information that includes data,
model, and adaptive policies.

D. HYBRID ENSEMBLE LEARNER
The hybrid ensemble learner uses the combination of a het-
erogeneous machine learning algorithm and a rule-based
approach to generate an appropriate recommendation after
analyzing the input data modality matrix. Algorithm 4
presents the hybrid ensemble learner approach, which takes
lhRule, ptmodel , uprefBehr , and dmtxMap as inputs and generates a
recommendation. This layer analyzes the ptmodel for each hlc
extracted from lhRule[concl]. If ptmodel does not exist, then the
annotated data (annData) are loaded to the dataset repository
(dsRepo). The dataset selector selects themost appropriate data
that contained similar features for predicting a specific label,
such as accelerometer and gyroscope for activity prediction.
The selected dataset (dataSet ) then splits into nth training (trSet )
and testing (ttSet ) chunks. The heterogeneous learner uses
different base-learning algorithms (bsLAlgo) to extract meta-
features (Mfeat i). The meta model (Mmodel) uses Mfeat i for

training and predicting a specific hlc. The pretrainedMmodel is
stored in modelRepo and retrieved when required, which takes
the device modality matrix (dmtx) as an input and predicts
the corresponding hlc. The predicted value (such as sitting),
alongwith dmtx (accelerometer coordinates (x,y,z), gyroscope
coordinates (x,y,z)), lhRule[concl] (activity), and lhRule[cond ]
(accelerometer and gyroscope), is mapped in predicted matri-
ces (pls). The pls depends on the input modalities, such as sin-
gle (activity=sitting) or multiple (activity=sitting, location=
living room) modalities. The decision maker analyzes pls and
retrieves the relevant rules regarding the predicted context
from uprefBehr . Then, the weight of each rule is calculated
based on the number of matched attributes, and the highest
weighted rule is selected as a recommendation (rec), such as
IF (activity=sitting, location=living) THEN (action=adjust
temperature). Furthermore, the pls gets filter based on the
selected rec. If multiple rules have the same weight, then all
the rules are selected as a rec along with its corresponding pls
that satisfy the context conditions (such as adjust temperature
and play music).

E. PERSONALIZED REPOSITORY
The personalized repository validates the generated rec
via user feedback (usrFB) and maintains repositories such
as modality data (PRepo) and behavioral rules (behRepo).
Algorithm 5 describes our proposed approach for the per-
sonalized repository layer. The active learner interacts
with the user and acquires feedback for each rec (rec: IF
(activity=sitting, location=living) THEN (action=adjust
temperature), usrFB: IF(activity=sitting, location=dining)
THEN (action=play music)). The usrFB supports in con-
flicts (confl) identification of the generated rec (confl :
location=dining, action=play music), which gets updated
based on the identified confl . Moreover, if confl occurs in the
condition of rec (rec[cond ]: location=dining), then the corre-
sponding predicted label is updated in the pls (such as replace
‘dining’ with ‘living’ for ‘location’ (hlc)). The updated pls and
rec are stored in PRepo and behRepo, respectively.

Algorithm 5 Personalized Repository Layer
Input: rec, usrFB, pls
Output: rec

1 foreach r in rec do
2 usrFB← acquire usrFB
3 if usrFB conflicts with rec[r] then
4 confl ← identify confl between usrFB and

rec[r]
5 rec← update rec[r] based on confl
6 if confl in rec[cond ] then
7 pls← update pls[p] based on confl

8 store pls in PRepo
9 store rec in behRepo
10 trigger rec
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F. SERVICE PROVIDER
The service provider analyzes the input request and provides
different healthcare services, such as telemedicine, education,
e-coaching, smart pharmacies, smart hospitals, and mobile
health services. Algorithm 6 describes our proposed approach
for service providers. This layer analyzes the service request
(SvReq) based on the input modalities and then validates
the consumer identity (cxID) to ensure that only legitimate
users can utilize the services and checks for ongoing session
identifiers (SessID). The SessID is affiliated with the cxID and
SvReq. If the session is expired/not initiated, then the SessID
is set as null, and the SvReq is inferred after the generation
of a new SessID. For an ongoing SessID, the SvReq is inferred
with the same SessID. In the case of invalid cxID and SessID,
the reauthentication request is generated to prevent unautho-
rized access and set the service response (SvRes) as null.

Algorithm 6 Service Provider Layer
Input: SvReq
Output: SvRes

1 while SvReq is true do
2 cxID← check cxID
3 SessID← check SessID
4 if cxID is valid & SessID is null then
5 initiate session
6 SessID← generate SessID
7 SvRes← infer SvReq

8 else if cxID is valid & SessID exists then
9 SessID← use existing SessID
10 SvRes← infer SvReq

11 else
12 SvRes← null
13 re-authentication request

G. DATA MIGRATOR
The data migrator migrates the data from the source fog node
(SfogN ) to the targeted cloud platform (Tcloud ). SfogN provides
assistance to Tcloud , which contains limited resources (such
as storage) and requires an efficient mechanism to improve
the performance of health fog, as described in Algorithm 7.
The data synchronizer depends on the migration time interval
(migrT ) and data-migration-flag (dmigrF ). The migrT used for
periodic data transfer is based on time (t). dmigrF is activated
when limited storage is available in SfogN . Upon activation,
the trusted third party (TTP) authenticates the SfogN and
Tcloud . Then, the key generator (Kgen) is requested to generate
and share the cryptographic keys among the communicating
entities, which include symmetric keys (k) and asymmet-
ric keys (such as public keys (pk ) and private keys (sk )).
Furthermore, the data synchronizer synchronizes the fog
node repositories (fNRepo) to ensure that the ongoing process
is completed before data encryption. The fNRepo includes

Algorithm 7 Data Migrator Layer
Input: dretrv
Output: Ed

1 if (t = migrT ) or (dmigrF gets activated) then
2 authFlag← TTP authenticate SfogN & Tcloud
3 if authFlag is true then
4 Kgen share sk SfogN ||pk SfogN ||pkTcloud ||k

with SfogN
5 Kgen share skTcloud ||pkTcloud ||pk SfogN ||k

with Tcloud
6 dretrv← Sync data from fNRepo

7 foreach data d in dretrv do
8 Ed ← Encrypt (k,d)
9 Dsig← Encrypt (sk SfogN , cryptoHash(Ed ))
10 EDsig ← Encrypt (pkTcloud ,Dsig)
11 Ed ← Ed ||EDsig
12 disprFlag← dispatch Ed to Tcloud
13 if disprFlag is true then
14 remove d from fNRepo

MapRepo, modelRepo, apRepo, ppRepo, dsRepo, PRepo, behRepo, and
elogRepo. The data encrypter encrypts each repository with
k to ensure confidentiality and efficiency. Then, the digi-
tal signature (Dsig) is computed and encrypted with pkTcloud
to ensure data integrity. The data dispatcher dispatches the
encrypted data (Ed ) to Tcloud , together with the encrypted
digital signature (EDsig ). Moreover, it analyzes the dispatcher
flag (disprFlag) to remove the corresponding data from fNRepo.
The disprFlag identifies the status of dispatched data (such as
disprFlag = true, which means that the data were successfully
sent without tampering).

H. SECURITY MANAGER
This layer manages the security requirement of the health
fog and ensures prevention against different attacks, such
as masquerading, man-in-the-middle (MITM), eavesdrop-
ping, message tampering, and replay. The security manager
analyzes the communication protocol (commP) and ensures
transport layer security. It also provides different services
to the health fog, including authentication, access control,
key management, confidentiality, and integrity. These ser-
vices depend on the protocol and requirements of the health
fog. Algorithm 8 describes the generic approach for secu-
rity managers, which analyzes the security service request
(SecSvReq) and forwards it to the relevant function for secu-
rity service response (SecSvRes). To use our proposed health
fog framework, the user needs to complete the registra-
tion (reg) and use the credentials for authentication (auth).
We have defined a limit on authentication attempt (authAtt )
to avoid brute-force attacks. Access control (actrl) identifies
the rights of authenticated users and provides services accord-
ingly. Key management (Kmgt ) generates, shares, and revokes
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Algorithm 8 Security Manager Layer
Input: SecSvReq
Output: SecSvRes

1 while SecSvReq is true do
2 if SecSvReq is reg then
3 SecSvRes← infer SecSvReq

4 else if SecSvReq is auth then
5 if authAtt ≤ limit l then
6 SecSvRes← infer SecSvReq
7 increment authAtt

8 else if SecSvReq is actrl then
9 SecSvRes← infer SecSvReq

10 else if SecSvReq is Kmgt then
11 SecSvRes← infer SecSvReq

12 else if SecSvReq is confMeas then
13 SecSvRes← infer SecSvReq

14 else if SecSvReq is Imeas then
15 SecSvRes← infer SecSvReq

16 else
17 SecSvRes← null

Algorithm 9 Event Monitor Layer
Input: edata, cevt
Output: ealert

1 foreach dmtx in dmtxMap[dmtx] do
2 edata[dmtx]← analyze edata for time t
3 thld [dmtx]← set thld for edata[dmtx]

4 ∀ dmtx , if cevt [dmtx] > thld [dmtx] then
5 ealert [dmtx]← generate ealert

6 store edata, thld , and ealert in elogRepo

cryptographic keys (such as k, sk , and pk ). These cryp-
tographic keys can be used for encryption/decryption and
digital signatures to ensure confidentiality (confMeas) and
integrity (Imeas), respectively.

I. EVENT MONITOR
The event monitor analyzes the health fog operation for intru-
sion detection and generates an alert. Algorithm 9 describes
the proposed approach for event monitoring, which analyzes
the event data (edata) for a specific time (t) and identifies the
threshold (thld ) for each dmtx . The edata consists of multiple
logs, such as application, user activity, device, and compli-
ance, which detect intrusion at different levels and support the
design of health fog preventive strategies. The event manager
compares the current event data (cevt ) with the identified thld
to generate an event alert (ealert ) for necessary action. Then,
the edata, thld , and ealert are stored along with the timestamp

in the event log repository (elogRepo), which can be used for
audit and anomaly prediction in the future.

J. ADAPTIVE MODEL TUNING
The proposed health fog framework maintains the person-
alized repository that evolves the annotated dataset and
finetunes the machine learning model after a specific time
interval. We have considered the publicly available annotated
data as a seed for predicting a specific context based on
the input modalities. The personalized repository contains
an active learner that interacts with the user and acquires
feedback to refine the data labels. Algorithm 10 describes
our proposed approach for adaptive model tuning, which
periodically analyzes the thld of PRepo for labeled data. If the
stored data meet the thld condition, the corresponding annData
are retrieved from the dsRepo and appended with the PRepo
in such a way that each feature contains its relevant values.
Then, the updated annData are stored in dsRepo and the hybrid
ensemble learner is requested to retrain the model. Similarly,
uprefBehr is updated based on the behRepo that supports the
personalized recommendations.

Algorithm 10 Adaptive Model Tuning
Input: PRepo, behRepo
Output: update dsRepo and apRepo
/* Analyze PRepo and behRepo */

1 foreach hlc in PRepo[pls] do
2 if data d ≥ thld then
3 annData← retrieve annData from dsRepo,
4 where annData ≡ PRepo[pls]
5 annData← map and append d with annData
6 store annData in dsRepo
7 update model using annData

8 else if rule r exists in behRepo then
9 update r in apRepo[uprefBehr ]

10 else
11 periodic analysis continue

IV. EVALUATION AND RESULTS
In this section, we have evaluated our proposed secure
health fog framework in terms of security, performance, and
accuracy. To evaluate security protocols such as the Zig-
bee Secure Health Fog (ZigbeeSHF) and data migration,
we used an automated formal verification tool Scyther [45]
and AVISPA [46], which evaluate the protocol based on the
threat model and exploit the vulnerabilities in different attack-
ing scenarios. To evaluate the performance and accuracy,
we deployed our proposed secure health fog framework in
a 40 square meter smart studio apartment, which contained
different sensors such as magnetic switches (detecting door
openings), occupancy sensors (detecting indoor motion and
controlling light switches), and temperature sensors (measur-
ing heat energy). Each of these sensors was assigned a unique
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FIGURE 2. Smart studio apartment layout and sensors placement.

tag supporting data collection and event identification at a
specific portion. Moreover, these sensors are customizable
in the Zigbee family (CC1352R, CC1352P), which contains
352 kB of memory, 80 kB of RAM, and support security
accelerators. Figure 2 presents the smart studio apartment
layout and placement of sensors connected with the secure
health fog and cloud. The description and result of each
evaluation criterion is described as follows.

A. SECURITY EVALUATION
The secure health fog collects the data from IoT devices and
maintains a personalized repository based on user feedback,
which evolves the model and supports personalized context-
sensitive decision making. The data collected from these
devices contain personally identifiable information, and the
exposure of such data to an unauthorized person may lead
to severe consequences. For this purpose, we have proposed
protocols to ensure wireless personal area network security
and data migration security.

1) WIRELESS PERSONAL AREA NETWORK SECURITY
The smart studio apartment consists of magnetic switches,
occupancy, and temperature sensors, which rely on the Zigbee
standard and create a mesh networking topology, where
multiple end devices connect with a single network coordina-
tor [47]. Zigbee is popular due to its low cost, low energy con-
sumption, and built-in security features that support a wide

FIGURE 3. Zigbee Secure Health Fog (ZigbeeSHF) protocol for wireless
personal area network security (sk: private key, pk: public key, SessK:
session key, H: hash function, NwkK: Network Key).

range of home automation products and industrial devices.
However, with all these benefits, Zigbee is still vulnerable to
several attacks, such as device control, eavesdropping, fake
device injection, malicious insider, man-in-the-middle, mas-
querading, message tampering, privacy leakage, and replay
(as discussed in sections II-C and II-D). The sensors deployed
in the smart studio apartment rely on Zigbee 3.0, which
derives a unique link key from the installation code using
AES-MMO and uses it to encrypt the network key instead
of the global master key. However, this approach has a vul-
nerability; a unique link key exists and is transmitted in plain
text. If the adversary obtains this link key, then the security of
the Zigbee network is compromised. Therefore, we have pro-
posed the Zigbee Secure Health Fog (ZigbeeSHF) protocol to
improve the installation code mechanism by considering it a
sensor identifier and ensure prevention against the mentioned
attacks. Figure 3 illustrates the interaction between the Zigbee
end device and coordinator. Additionally, the explanation of
each step is described as follows.

1) Initially, the end device broadcasts a beacon request
until it receives a response from the Zigbee coordinator.

2) When the Zigbee coordinator in the open state receives
a beacon request, it generates an installation code
request to obtain the sensor identifier.

3) The installation code affiliates with a specific end
device and is sent to the coordinator through physical
or remote access.

4) Upon receiving an installation code, the coordinator
broadcasts a beacon that includes a media access con-
trol (MAC) address and a personal area network (PAN)
identifier.
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FIGURE 4. ZigbeeSHF protocol verification result using Scyther.

5) Based on the provided information, the end device
generates an association request, which is concatenated
with the installation code digital signature and times-
tamp and encrypted with the end device public key.

6) The coordinator verifies and validates the received dig-
ital signature. Upon success, an association response
and a session key are generated. To ensure integrity,
the digital signature of the session key and installation
code are computed. Then, the digital signature, session
key, and timestamp are encrypted with the end device
public key.

7) The end device receives the encrypted packet from the
coordinator and validates the session key. To prove the
identity again, the end device computes the hash value
of the installation code, appends with the timestamp,
and then encrypts it with the received session key.

8) The coordinator verifies the end device’s identity
and then transmits the network key and timestamp
encrypted with the shared session key.

9) When the end device wants to transmit the data over the
Zigbee network, it uses the network key to encrypt the
data along with a timestamp.

Our proposed ZigbeeSHF considers identity and data
authenticity, integrity, data consistency, and confidentiality,
ensuring prevention against device control, eavesdropping,
fake device injection, malicious insider, man-in-the-middle,
masquerading, message tampering, privacy leakage, and
replay. To support our claims, we used the automated formal
verification tool Scyther. Figure 4 presents the ZigbeeSHF

protocol verification results evaluated using Scyther, and the
description of these claims are described as follows.
• Secret: ZigbeeSHF verifies secret claims because the
session key, network key, and sensor data are transmitted
securely over the communication channel, which pre-
vents eavesdropping and privacy leakage.

• Alive: This claim ensures the integrity of transmitted
data over the communication channel, which indicates
that ZigbeeSHF prevents message tampering.

• Weakagree: Most attacks are possible due to a lack
of authentication. The weakagree claim ensures that
ZigbeeSHF provides source identity authentication and
source data authentication because it uses digital sig-
natures during the association request and associa-
tion response. This ensures prevention against different
attacks, such as those of man-in-the-middle, masquerad-
ing, and malicious insider.

• Commit: ZigbeeSHF ensures correct response on run-
ning events, specifically the exchange of session
and network keys among the communicating entities,
supporting device control and preventing data loss.

• Niagree: The ZigbeeSHF communicating entities agreed
upon the data values and verified the noninjective agree-
ment (Niagree), which ensures prevention against fake
device injection.

• Nisynch: ZigbeeSHF ensures noninjective synchroniza-
tion (Nisynch) and considers the timestamp as a nonce,
which prevents replay attacks because it is transmitted
securely among communicating entities.

Moreover, we have also evaluated ZigbeeSHF with
AVISPA, which analyzes the protocol based on secrecy,
authentication, proof-of-origin, and integrity [46], [48]. The
AVISPA works on formal methods principles to achieve the
security goals, which includes On-the-Fly Model-Checker
(OFMC) [49], Constraint Logic-based Attack Searcher
(CL-ATSE) [50], Satisfiability-based Model Checker
(SATMC) [51], and Tree Automata-based Protocol Analyzer
(TA4SP) [52]. We evaluated ZigbeeSHF with OFMC, which
identifies all known attacks from the Clark and Jacob library.
Figure 5 presents the output of AVISPA, which summarized
ZigbeeSHF as SAFE based on OFMC analysis and ensured
prevention against the Dolev-Yao intruder.

2) DATA MIGRATION SECURITY
The secure health fog contains limited resources and
required data migration to the cloud for long-term storage
(as described in section III-G). The procedure starts when
the data-migration flag (dmigrF ) is activated or the migration
time interval (migrT ) ends. Then, the fog node requests the
cloud for mutual authentication based on access tokens and
security credentials. After successful authentication, the fog
node encrypts the data and timestamp using symmetric
key cryptography. Additionally, the digital signature of the
encrypted data is computed along with the timestamp and
then encrypted with the cloud public key. Finally, concate-
nate both blocks and transmits them over the communication
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TABLE 3. Entities, function, key size, and key generation time of Secure Health Fog framework.

FIGURE 5. ZigbeeSHF protocol verification result using AVISPA.

FIGURE 6. Proposed data migration protocol (k: symmetric key,sk: private
key, pk: public key, H: hash function).

FIGURE 7. Data migration protocol verification result using Scyther.

channel, as shown in Figure 6. The purpose of encrypting the
data using symmetric key cryptography is to ensure data con-
fidentiality and reduce computational overhead. The secure
digital signature of encrypted data ensures data consistency
and authenticity, and identifies tampering during data migra-
tion. Similar to ZigbeeSHF, we formally verified the protocol
using Scyther to identify vulnerabilities. Figure 7 presents the
verification results obtained from Scyther.We have encrypted

FIGURE 8. Data Migration protocol verification result using AVISPA.

the data using symmetric key cryptography that ensures data
confidentiality and verifies the secret claim. The verification
of Niagree and Nisynch ensures prevention against man-in-
the-middle and replay attacks, respectively. Similarly, alive,
weakagree, and commit verification ensures data integrity,
data consistency, source identity authentication, and source
data authentication due to secure digital signatures. Figure 8
describes the protocol verification result using AVISPA,
which analyzes the secrecy, authentication, proof-of-origin,
and integrity of the data migration protocol under the OFMC
and summarizes it as SAFE.

B. PERFORMANCE MEASURE
The secure health fog considers various factors to provide
reliable personalized services. However, efficiency is con-
sidered an essential factor for measuring the performance
of information security systems. Therefore, we have evalu-
ated our proposed scheme’s performance in terms of time
efficiency and processing overhead. Table 3 summarizes the
key generation time of cryptographic functions used in the
secure health fog framework. We have used the advanced
encryption standard (AES) with a 256 bit key size to encrypt a
large amount of data and reduce the computational overhead.
The AES-256 bits take an average of 0.0015 milliseconds
for a one-time key generation. Moreover, we used elliptic
curve cryptography (ECC) with a 160 bit key size for a rela-
tively small amount of data encryption and digital signature,
specifically for the secure transmission of a secret key. The
ECC-160 bits take an average of 513.096milliseconds for key
pair generation and distribution of the public key.We used the
secure hash algorithm (SHA) to generate a collision-resistant
cryptographic hash value of 256 bits to ensure data integrity.
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To evaluate the computational time required during the
Zigbee joining procedure, we have identified that the sensors
deployed in our smart studio apartment rely on Zigbee 3.0,
which supports the installation code feature. Therefore,
we analyzed the computational time of Zigbee 3.0 with and
without installation code. Then, we deployed our proposed
ZigbeeSHF in the smart studio apartment using Zigbee hard-
ware belonging to CC1352R and CC1352P. According to our
analysis, Zigbee 3.0 with and without installation code takes
0.3297 seconds and 0.2673 seconds, respectively, while our
proposed ZigbeeSHF takes 0.3581 seconds. Figure 9 presents
the difference between the computational time and the time
taken by each protocol. ZigbeeSHF exchanges three types
of encrypted digital signatures during the association phase,
which requires computational time to verify the end device
identity and receive requests. Therefore, it required 7.93%
and 25.35% more computation time than Zigbee with and
without installation code, respectively.

FIGURE 9. Comparison of ZigbeeSHF with the standard Zigbee
3.0 Protocol.

FIGURE 10. Data migration time taken with transfer rate between
80 Mbps and 100 Mbps.

Similarly, we evaluated our proposed data migration proto-
col based on different data sizes, as shown in Figure 10. The
result shows that the proposed data migration protocol takes
36.57% more computational time than the standard protocol
due to the concatenation of the encrypted digital signature,
with a transfer rate between 80 Mbps and 100 Mbps. More-
over, Figure 11 describes the CPU utilization for 1 minute
during the peak interval, where the secure health fog collects
the data from end devices, trains a personalized model, and
migrates the data to the cloud simultaneously. The result
shows that the average CPU utilization of the secure health

FIGURE 11. Health Fog and Secure Health Fog CPU utilization
for 1 minute.

fog is 3% less than that of the standard health fog because
the secure health fog utilizes the resources efficiently and
reliably.

C. ACCURACY EVALUATION
Accuracy identifies the effectiveness of an algorithm based on
the probability of true values. We have set up an environment
to evaluate the accuracy of our proposed secure health fog
framework and identify the impact of adaptive model tun-
ing. The details of the accuracy evaluation are described as
follows.

1) DATASET SELECTION, PREPROCESSING AND
ENSEMBLE LEARNING
To evaluate the accuracy of our proposed secure health fog
framework, we considered two datasets: publicly available
data and smart studio apartment data. The purpose of using
the publicly available dataset was to identify the effectiveness
of adaptive model tuning on personalized recommendations.
We selected the data from the CASAS project based on
features that are similar to those of the smart studio apartment
data. The publicly available data from the CASAS project
consist of data collected from 30 smart homes affiliated
with different age group residents performing daily routine
activities [53]. Our smart studio apartment dataset consists
of one-month data collected from 25-35 age group residents
performing daily routine activities. We have used similar
labels as the CASAS project and performed several prepro-
cessing steps to ensure consistency among both datasets [54].
Moreover, we mapped and synchronized each dataset in a
uniform time grid, in which one instance represents a day
with varying length and activities. Additionally, we ana-
lyzed the datasets to extract the relationship of low-level
and high-level contexts, which was stored in the mapping
repository (MapRepo). According to [55], human behavior
evolves around three states: physical activity, sedentary, and
sleep. Therefore, we mapped the activity labels to a higher
level based on granularity into these three categories without
overlapping, as shown in Figure 12. For ensemble learning,
we used five base learners, support vector machines (SVMs),
artificial neural networks (ANNs), bagging prediction, ran-
dom forest, and least squares boosting (LSBoost), with the
evolutionary salp swarm algorithm (SSA). The approach is
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FIGURE 12. Categorization of datasets into physical activity, sedentary, and sleep based on human behavior state.

similar to the concept proposed in [56], where SSA optimizes
the weight and solves the electromagnetic problem. We have
applied this approach to predict the user activities inside the
smart studio apartment based on CASAS project data and
smart studio apartment data.

2) INTERACTIVE MEDIUM SELECTION AND
PARTICIPANT GUIDANCE
Our proposed secure health fog framework collects user pref-
erences and feedback to maintain a personalized repository
for adaptive model tuning. Therefore, the interface needs to
be user-friendly and appropriate for any age group. For this
purpose, we have used an extended version of our previous
work,Medical Instructed Real-timeAssistant (MIRA), which
interacts with the user in a natural way of communication
and supports speech/text for interactive conversation [57].
However, instead of identifying the patient’s health condition,
we used MIRA for user preferences and feedback collec-
tion and named it MIRA extension (MIRAext ). Moreover,
we selected the participant after a standard operating proce-
dure provided by the Kyung Hee University Ethics Assess-
ment Committee (KHU-EAC). The participant belonged to
the 35-45 age group and had underlying chronic conditions

such as diabetes and hypertension. Written consent was
signed by the participant, which were informed that the col-
lected data would be used for research purposes only, and no
personally identifiable information would be released under
any circumstances. Additionally, the collected information
will be destroyed after five years based on the KHU-EAC
policy. Furthermore, we guided the participant to perform
their daily routine activities inside the smart studio apartment
and acquire a feedback schedule, which contains dynamic
time intervals, and configured the application accordingly to
generate an alert. Initially,MIRAext acquired user preferences
in an IF-THEN format, consisting of two categories: user
behavior and privacy preservation. User behavior describes
the nature of an individual that needed to develop policies for
generating a recommendation. Privacy preservation ensures
data ownership to specify which type of data needs to be
stored on the cloud and what type of data needs to be dis-
carded. Based on the user preferences, the secure health fog
framework makes a decision about the actions.

3) IMPACT OF ADAPTIVE MODEL TUNING ON ACCURACY
We analyzed the participant’s daily activity inside the smart
studio apartment for 30 days and maintained a catalog, which
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FIGURE 13. Day 1 transition state of participant activities inside smart studio apartment.

included ground truth, predicted activity, activity state, and
timestamp data. Figure 13 describes the transition state of
the participant for the first 24 hours inside the smart studio
apartment. The x-axis represents the time, while the y-axis
describes the user activities on a specific day. The different
colors identify the nature of activities, such as light orange
for physical activity, rose for sedentary, and lavender for
sleep. Similarly, we categorized the day into morning (blue:
06:01-12:00), afternoon (light yellow: 12:01-18:00), evening
(green: 18:01-00:00), and night (light gray: 00:01-06:00).
The ground truth (¤) data described the actual activity of
the participant inside the smart studio apartment. M1 (‡) and
M2 (§) represent the predicted activities based on pretrained
models such as CASAS project data (M1) and smart studio
apartment data (M2). Moreover, MIRAext interacts with the
participant as per the schedule, acquires feedback for each
predicted activity, annotates the collected data and stores in
the personalized repository for adaptive model tuning. For
the proof of concept, we merged the personalized label data
collected within 24 hours with the preprocessed data and
retrained the models, which supported personalized decision
making and evolved the models periodically after 24 hours.
Figure 14 presents the day-wise accuracy evaluated based on
user feedback. The x-axis describes the number of days and
status of personalized labeled data (P). The y-axis presents

the accuracy in percentage. According to our analysis, adap-
tive model tuning improves the accuracy of M1 (pretrained
model of CASAS project data) and M2 (pretrained model of
smart studio apartment data) by 36% and 29%, respectively.
Furthermore, Figure 15 presents the category-wise accuracy
of predicted activities based on M1 and M2. The x-axis
describes the model with personalized label data, and the
y-axis presents accuracy as a percentage for each category.
The results show that M1 accurately predicted 46.81% phys-
ical activity, 21.84% sedentary, and 31.35% sleep. Similarly,
M2 predicted 46.66% physical activity, 21.73% sedentary,
and 31.61% sleep, which indicated that both models were
correlated in terms of category-wise accuracy.

V. DISCUSSION
The proposed SHF framework was evaluated using security,
performance and accuracy measurements. We considered the
security of the Wireless Personal Area Network (WPAN) and
data migration. The WPAN supports several protocols based
on IoT device compatibility, including infrared data associ-
ation (IrDA), Bluetooth, Z-Wave, and Zigbee. To identify
the protocol of IoT devices in our smart studio apartment,
we examined the wireless microcontroller model to define
the scope of communication protocols, and then analyzed it
using Wireshark to validate the protocol based on the header
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FIGURE 14. Day-wise accuracy based on user feedback.

FIGURE 15. M1 and M2 day-wise accuracy based on human behavior state.

and payload. We found that the smart studio apartment IoT
devices use the Zigbee 3.0 protocol on the CC13× 2 micro-
controller. Zigbee 3.0 uses installation code for authentica-
tion, which makes the protocol vulnerable to various attacks,
such as device control, eavesdropping, fake device injection,
malicious insiders, man-in-the-middle, masquerading, mes-
sage tampering, privacy leakage, and replay. Our proposed
ZigbeeSHF uses ECC with a key size of 160 bits for source
identity and data authentication, SHA-256 for data integrity,
and AES-256 for data protection. The ZigbeeSHF considers
the installation code as a device identifier and securely trans-
mits the network key after two-factor authentication (shown
in steps 5 and 7 of Figure 3). If the network key is com-
promised, the security of WPAN communication is at risk.
The proposed ZigbeeSHF was evaluated using the formal
verification tools Scyther and AVISPA, which categorize it
as secure against the mentioned attacks. Similarly, the data
migration protocol was enhanced with ECC, SHA-256 and
AES-256 to ensure the authenticity, integrity and confiden-
tiality of the data. Scyther and AVISPA summarize the data
migration protocol as secure within the scope.

IoT devices consist of limited resources in terms of mem-
ory and computational power, which makes it challenging
to propose an efficient and reliable security protocol. There-
fore, we use the agile model to design and develop our
proposed protocols, such as ZigbeeSHF and data migration.
Initially, we have considered the Rivest-Shamir-Adleman
(RSA) algorithm as public key cryptography with the key size
of 512 bits, 1024 bits and 2048 bits which take 438.11 mil-
liseconds, 686.08 milliseconds and 1317.63 milliseconds on
average to generate and distribute the key pair. Similarly,
we analyze the ECC with 160 bits, 224 bits and 256 bits
keys which take 513.096 milliseconds, 851.56 milliseconds
and 1184.129 milliseconds on average respectively. Accord-
ing to [58], [59] ECC consumes less battery resources and
computational power, which can be considered as an effi-
cient public key cryptography compared to RSA. Therefore,
we have used ECC (160 bits) instead of RSA. In addition,
the AES-256 is used to encrypt a large amount of data which
is resistant to brute force attacks and reduces the compu-
tational overhead. The SHA-256 is used to quickly com-
pute a collision-resistant hash value to ensure data integrity.
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Based on these constraints, we found that the ZigbeeSHF
end devices take 0.3581 seconds to join a Zigbee network
and transmit the data. ZigbeeSHF exchanges three types
of encrypted digital signatures, which require 7.93% and
25.35%more computation time than Zigbee with and without
installation code, respectively. The data migration protocol
concatenates the encrypted data along with the encrypted dig-
ital signature, which requires 36.57%more computation time
than the standard protocol. The proposed protocols are com-
paratively expensive compared to the existing approaches,
but this did not affect the overall performance of our pro-
posed SHF framework. Moreover, the overall CPU utilization
is 3% less than the standard health fog framework due to
the appropriate selection and strategic placement of crypto-
graphic algorithms.

We collected the participant feedback on predicted activ-
ities generated from pre-trained models of CASAS project
data and smart studio apartment data. The participant was
overwhelmedwith continuous feedback and received an aver-
age of 97 and 51 notifications per day in the first (day 1∼15)
and second (day 15∼30) half of the month, respectively.
However, the collected feedback improves the annotated data
labels, which supports adaptive model tuning and person-
alized recommendations. Each model evolves periodically
with the personalized label data collected during 24 hours
along with the preprocessed data. The result (Figure 14)
shows that the accuracy of M1 (CASAS project data) and M2
(smart studio apartment data) without adaptive model tuning
on day 1 was 45% and 68%, respectively, which gradually
increases to 81% and 97% with the evolution of models after
every 24 hours. On days 6 and 11, the participant performs
some additional activities due to which the predicted labels
were incorrect, and the accuracy decreases compared to the
previous day. The accuracy of both models was unchanged
after day 28, which shows the maximum accuracy achieved
within 30 days for the selected datasets based on adaptive
model tuning. Furthermore, the category-wise activity predic-
tion (Figure 15) describes that bothmodels predicted physical
activity and sleep with high accuracy compared to seden-
tary. However, predicting sedentary activity with limited IoT
devices such as magnetic switches, occupancy sensors, and
temperature sensors is challenging. In the future, we will
increase the scope of IoT devices and evaluate the accuracy
of adaptive model tuning with relevant datasets.

VI. CONCLUSION
The health fog delivers healthcare as a fog service, which
provides efficient services to the end user and improves
their quality of life. According to our analysis, most of the
existing studies have focused on performance measures and
considered security as a secondary feature due to compu-
tational overhead, leading to several cyber-attacks. In this
paper, we proposed a secure health framework that consid-
ered security, performance, and accuracy as a primary factor
to ensure prevention against different attacks. Our proposed
secure health fog maintains a personalized repository based

on user feedback that evolves the model and supports
personalized context-sensitive decision-making. Addition-
ally, we proposed protocols for providing wireless personal
area network security and data migration security. The pro-
posed protocols were evaluated with Scyther and AVISPA,
which ensures prevention against device control, eavesdrop-
ping, fake device injection, malicious insider, man-in-the-
middle, masquerading, message tampering, privacy leakage,
and replay. For proof of concept, we deployed our secure
health fog framework in a smart studio apartment to eval-
uate the performance and accuracy. The results show that
the proposed protocols were expensive compared to existing
approaches, but it did not affect the overall performance.
Moreover, adaptive model tuning was very effective and
gradually improved the accuracy within a short period. Based
on the user experience, continuous feedback and interaction
were burdensome, but the feedback frequency decreased with
the evolution of models.

The secure health fog framework was deployed in a
smart studio apartment, which consists of magnetic switches,
occupancy sensors, and temperature sensors. Therefore,
we considered a dataset that consists of relevant features and
recognizes the activities inside smart studio apartment. In the
future, we will evaluate the proposed framework with the
Internet of Medical Things (IoMT) and identify the effective-
ness of adaptive model tuning. Additionally, we will design
attack models to evaluate the security of secure health fog
in a real environment. To evaluate the performance measure,
we will extend the evaluation matrix in terms of processing
time, energy utilization, power consumption, and latency.
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