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A B S T R A C T   

Objective: Causality mining is an active research area, which requires the application of state-of-the-art natural 
language processing techniques. In the healthcare domain, medical experts create clinical text to overcome the 
limitation of well-defined and schema driven information systems. The objective of this research work is to create 
a framework, which can convert clinical text into causal knowledge. 
Methods: A practical approach based on term expansion, phrase generation, BERT based phrase embedding and 
semantic matching, semantic enrichment, expert verification, and model evolution has been used to construct a 
comprehensive causality mining framework. This active transfer learning based framework along with its sup-
plementary services, is able to extract and enrich, causal relationships and their corresponding entities from 
clinical text. 
Results: The multi-model transfer learning technique when applied over multiple iterations, gains substantial 
performance improvements. We also present a comparative analysis of the presented techniques with their 
common alternatives, which demonstrate the correctness of our approach and its ability to capture most causal 
relationships. 
Conclusion: The presented framework has provided cutting-edge results in the healthcare domain. However, the 
framework can be tweaked to provide causality detection in other domains, as well. 
Significance: The presented framework is generic enough to be utilized in any domain, healthcare services can 
gain massive benefits due to the voluminous and various nature of its data. This causal knowledge extraction 
framework can be used to summarize clinical text, create personas, discover medical knowledge, and provide 
evidence to clinical decision making.   

1. Introduction 

Natural language has provided a key cohesive ingredient for pushing 
the boundaries of technological advances beyond individuals to the 4th 
industrial revolution. In textual form, it provides a long term, stable, 
knowledge base, which can be used to preserve knowledge across gen-
erations. Digital evolution in the last century has greatly accelerated this 
preservation process and provided a means to extract meaningful in-
formation from texts, which is tedious task for the human beings to 
process the plethora of textual documents. Natural Language Processing 
(NLP) is a divergent field, with state-of-the-art research initiatives 

looking towards resolving the various challenges of automatic infor-
mation extraction. Foremost, amongst these challenges is the ability to 
identify the various concepts and their relationship, which form the 
epitome of the target corpus [1]. For humans and machines, cause-effect 
represents an essential relation, which provides ample support for the 
reasoning and decision making process [2]. Automatic causality detec-
tion has benefited greatly from numerous dedicated research efforts [3]. 
As a result, applications such as information retrieval [4], question 
answering [5], and event reasoning and predictions [6] have gained 
valuable improvements through the identification of cause-effect re-
lationships. However, challenges such as the dynamicity of syntax and 
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semantics, and the evolution of vocabulary have hindered the devel-
opment and usage of any generic and cross-domain solution [7]. 

The commonly used approaches for causality detection, fall into two 
categories: pattern-based traditional rule bases, and machine learning 
based automatic classification and entity extraction [2,8,9]. Pattern 
based approaches are based on partial or complete expert intervention 
for crafting and verifying the conditions based on the syntactic and se-
mantic analysis of the corpus. This approach, requires intensive human 
effort and lacks cross-domain generalization. Even after utilizing a 
substantial amount of human time, the extracted rules cannot cover all 
possible linguistic patterns and are usually not usable beyond the orig-
inal domain/corpus. Such an approach also suffers from the diversity in 
linguistic typology, leading to rules formed for a language based on the 
Subject-Verb-Object (SVO) sentence structure (Such as English, Chinese, 
French, and others) not being compatible with those based on other 
structures such as Subject-Object-Verb (SOV) and others [10]. 

Automatic machine learning based approaches utilize labeled data-
sets for extracting causality relationships from unseen data and thereby 
requires less expert intervention, relatively. With this approach, most 
human time is spent on labeling the data and verifying the results, while 
providing a reusable model for cross-domain applications. However, any 
evolution of labels and change in text can render the model unusable. 
Additionally, machine learning models, are typically independent of the 
linguistic topology features and can be customized to work on any 
sentence structure albeit with some effort towards creating and opti-
mizing language vectors, and incorporating natural heuristics derived 
from syntactically labelled (supervised learning) or a well distributed 
large corpus (un/semi-supervised learning) [11]. 

A solution to managing change in the machine learning models and 
reducing the expert’s intervention is available as Transfer Learning, 
where the machine can learn new tasks by reusing a foundational model, 
originally employed for a different but related task in another domain 
[12–14]. Such a cross-domain application may not replicate the original 
performance benchmarks, and requires some model tuning and tweak-
ing before becoming useful. Model tuning is achieved with the help of a 
human expert who provides feedback to the machine learning model for 
improving its learning tasks, a technique more commonly known as 
active learning [15,16]. To gain benefits of these two approaches active 
transfer learning is applied to various tasks in diverse domains [17,18], 
transferring similar models and improving its performance in a single 
workflow. This performance is mainly improved by enhancing the pre- 
trained model with few annotated dataset and expert involvement 
from the new domain. 

Causality mining as an application of causality detection is typically 
based on two tasks, which includes identification of causal triggers, and 
causal pairs participating in each relationship [8]. Also known as causal 
connectives; causal triggers are transitive verbs which form a bridge 
between causality concepts and identify the cause and its effect. 
Leveraging the sentence structuring in English language[10], typical 
causality relation identification methodologies, found in research liter-
ature, follow the Noun Phrase (NP) - Verb (V) - NP pattern which cor-
responds to either Cause - Trigger - Effect or Effect - Trigger - Cause 
forms (<S→NP-Cause, V→ Verb-Trigger, O → NP- Effect>) [19]. Based 
on this heuristic, Kaplan and Berry-Bogge [20] provided an early model 
for creating and using handcrafted linguistic template for causality 
detection. Kalpana Raja et al. [21], built upon the same idea in addition 
to identifying and organizing a dictionary based on causal trigger key-
words, which was then used to define patterns for causality detection. R. 
Girju et al. [5] refined the process of identifying the causal verbs by 
utilizing the WordNet dictionary [22]. Bui et al. [23] applied rule based 
approach for causal relation extraction on HIV drug resistance. Cole 
et al. [24] utilized a syntactic parser to convert the SVO structures into 
SVO triples, which were then passed through various rule based filters 
for causality detection. S. Zhao et al. [8], pointed towards the existence 
of diversity in the manner each causal trigger expresses causality. 
However, the syntactic structure of causal sentences and the way the 

trigger invokes the causality, can provide satisfactory categorization of 
the causal triggers, enabling smart application of the causality identifi-
cation filters. Son Doan et al. [9] presented an application of causal 
mining by marking several verbs and nouns as causal triggers for 
extracting causal relations from twitter messages. Saud Alashri et al. 
[25] proposed a snowball strategy, where the authors defined few causal 
verbs as “seeds” and enlarged the seed list from climate new text by 
generalizing the seed verbs. Girju and Moldovan [19] proposed a semi- 
supervised approach towards causality relation identification by using 
the underlying linguistic patterns of the corpus. 

Many other automatic causal pattern identification methodologies 
have relied on the evolution of machine learning models. In particular, 
[26] has presented a causal relation extraction model using unsuper-
vised learning to detect the noun phrases corresponding to the subject 
and object of the sentence. By analysing an unannotated raw corpus and 
using Expected Maximization(EM) along with a Naive Bayes classifier, 
the authors were able to precisely identify 81.29% of causal relations. 

On the other hand, E. Blanco et al. [27] utilized a supervised learning 
approach by first annotating ternary instances as being a causal relation 
or not, and then applied Bagging with C4.5 decision trees to achieve a 
precision of over 95% in causal relations and above 86% in non causal 
ones. These and many other machine learning approaches have been 
comprehensively classified by [3], which indicates a general trend to-
wards the utilizing of the same, as the models become more mature and 
stable. Of particular interest are the word embedding methods, which 
due to their requirement of unsupervised data, scalability, and accuracy 
have piqued the interest of the NLP research community. 

Several initiatives have already led to the state-of-the-art results in 
completing NLP tasks such as sentiment analysis, text classification, 
topic modeling, and relation extraction [7]. Zeng et al. [28] classified 
relations in the SemEval Task 8 dataset using deep convolution neural 
networks (CNNs). Nguyen et al. [29] introduced positional embedding 
to the input sentence vector in CNNs for improved relation extraction. 
Silva et al. [7] proposed a deep learning (CNN) based causality extrac-
tion methodology that can detect causality along with its direction. The 
author addressed the causality detection problem as a three class clas-
sification problem, where class 1 indicates the annotated pairs has 
causal relation with direction entity1 → entity2, class 2 implies the 
causal relation has the direction entity2 → entity1, and class 3 entities 
are non-causal. 

Ning An et al. [30] has utilized a word embedding with cosine sim-
ilarity based approach, which uses an initial causal seed list to identify 
the causal relationships as a multi-class (four-class) classification prob-
lem. With one-hot encoding the authors, convert the causal verbs in the 
seed list and the verbs identified in Noun Phrase(NP)-Verb Phrase(VP)- 
Noun Phrase(NP) ternary(triples) into encoding vectors. These vectors 
are then converted into Embedding vectors using Continuous Skip-Gram 
based on a Wikipedia dataset of 3.7 million articles. Finally the encoded 
vectors are then compared using cosine similarity and the pair with 
maximum similarity above a pre-defined threshold value of 0.5 are used 
to classify the causal relationship and evolve the seed list. This method 
achieved an average F-score of 78.67%. While this methodology pre-
sents a significant improvement on previous research initiatives towards 
causal relationship identification, it suffers from low accuracy, due to its 
focus on causal verb identification based on a small initial seed list and 
its limited extension, and classification based, solely on these verbs 
meanwhile losing context of the causal phrase. 

In this paper we present a novel causal relationship identification 
framework, which outperforms, the existing solutions in the domain of 
causality mining in clinical text. This framework uses a multi- 
dimensional approach, which resolves syntactic and semantic match-
ing problems in clinical textual data, providing causal knowledge which 
is useful to summarize clinical text for quick review, create patient 
personas for reapplication of medical procedures and predictive anal-
ysis, discovering medical knowledge from volumnous data sources, and 
provide evidence supporting clinical decision making. 
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This novel framework first identifies causal phrases in the form of 
causal triples (subject, causal verb, and object) using dependency based 
linguistic patterns[31]. These patterns are extracted from part of speech 
(POS) tagged sentences in SemEval Task 8 training dataset[32]. By 
removing linguistic elements, which are not used for causality mining, 
the resultant set of causal triples when compared with the set of unique 
sentences in the text, is larger in terms of total instances (One sentence 
can have many causal phrases, the separation of which increases the 
breadth of our search space) and smaller in terms of words within each 
instance. The causal triple set maintains the model performance in terms 
of causality mining, while reducing compute times at subsequent points. 
Each component of the causal triple is then expanded via transfer 
learning using pre-trained Google News model [33]. The expanded 
causal triple in “NP V NP” (SVO) form is then converted into embedded 
vector using Bidirectional Encoder Represenations from Transformers 
(BERT) [34]. These embedded vectors are then used to calculate a 
similarity matching score, against embedded causal triples from 
SemEval Task 8 test dataset [32]. The matching scores, and evaluation of 
the precision-recall curve then provides the matching threshold, over 
which a triple (and its corresponding phrase) can be classified as causal 
and under which as non-causal. The embedded vectors from the training 
dataset and the threshold calculated thus far, are then applied on two 
test datasets, to classify each test triple as causal or non-casual. The 
matching confidence score is then used to extend each causal triple, 
forming the causal quad (subject, causal verb, object, similarity confi-
dence). The noun phrases within these causal quads are then semanti-
cally enriched using Unified Medical Language System (UMLS) [35,36], 
to extend any and all, healthcare terms within these, with their semantic 
and uniquely identifiable corresponding codes. The extended causal 
quads are then validated by the expert, producing a list of incorrectly 
identified phrases. This list is then semantically matched against the 
trained embedded vectors, and all matches above the threshold are 
removed. The reduced set of embedded vectors, thus produced, are then 
re-used for causality detection in the test datasets, thereby completing 
an active learning loop. 

This methodology is further elaborated in Section 2, with experi-
mental setup following in Section 3, the results in Section 4, and the 
discussion in Section 5. Finally, Section 6 will conclude the paper. 

2. Method 

Modern medicine and healthcare services have greatly improved the 
daily human life and yet they are beleaguered by constant evolution of 
diseases, newfound scientific discoveries, and state-of-the-art 

engineering inventions. This evolution necessitates the use of informa-
tion technology in general and natural language processing in particular 
to mine the plethora of healthcare data, information, and knowledge 
sources to form computable resources. As a part of this endeavor, we 
present a framework and its novel application for automatically 
detecting and classifying causal relationships in healthcare textual data. 
The framework processes clinical text such as clinical notes and clinical 
practice guidelines, to extract causal knowledge for enabling the medi-
cal experts to perform effective diagnosis, treatment, and follow up. 

The framework provide four main service categories/modules; Pre-
processing, Model Development (MD), Causality Mining (CM), and 
Feedback Loop as depicted in Fig. 1. The preprocessing module trans-
forms the input textual corpora into syntactic enriched sentences which 
are used by both MD and CM modules for training and applying casual 
relationship identification model, respectively. The MD module extracts 
causal triples from the annotated dataset and uses various pre-trained 
models to self-expand and then generate embedding vectors forming 
the Causal Trigger Trained Model (CTTM). This model is then used to 
mine candidate causal relations from unseen clinical text by the CM 
module, subsequently preparing the causal relationships for verification 
by an expert. A feedback loop based on the experts’ assessment towards 
the correctness of each relationship, is passed to MD for actively 
improving the CTTM for future applications. Each of these modules is 
further discussed in the following subsections. 

2.1. Preprocessing module 

Real world textual data is considered dirty since it contains many 
defacto linguistic elements which may be a part of daily conversations 
and routine usage between humans but are not understandable by a 
computing device. The primary aim of preprocessing is to prepare 
clinical text for causal phrase extraction which are then used by the MD 
module to expand the list of causal triggers and by the CM module for 
semantic comparisons. 

The first step of this process is to extract individual sentences from 
the input corpora using the Natural Language Toolkit (NLTK) [37] 
sentence tokenizer. Syntactic problems such as redundant text, unre-
lated information (Explanations, such as this one, in parenthesis which 
are useful for readers but not required for establishing context), and 
special characters (− , +, _, etc.) are removed in the normalization step 
using regular expression. Each processed sentence is then tokenized into 
words using NLTK word tokenizer. Finally, Part Of Speech (POS) tagging 
is applied on each word using Standford CoreNLP Parser (version 3.9.2) 
[38], thereby completing the preprocessing stage. The syntactically 

Fig. 1. Proposed methodology workflow.  

M. Hussain et al.                                                                                                                                                                                                                                



Journal of Biomedical Informatics 123 (2021) 103932

4

enriched sentences are now ready for causal phrase extraction by the MD 
module and semantic comparisons by the CM modules. 

2.2. Model Development (MD) module 

The MD module extracts an initial casual trigger list from the syn-
tactically annotated data produced via preprocessing of the training 
dataset. This list is then expanded using pre-trained models, before 
being converted into embedded vectors and becoming a part of the 
CTTM. This process completes in two steps, Causality Trigger Extraction 
and Model Training/Evolution, which are discussed in the following 
sub-sections. 

2.2.1. Causality trigger extractor 
In stage one causal trigger extraction is used to generate a causal 

triple of the form <NP, VP, NP> which can corresponds to either 
<Cause, Causal Trigger, Effect> or <Effect, Causal Trigger, Cause>. 
This process starts by extracting causal triggers which appear as a 
combination of these noun phrases and verbs from syntactically 
enriched sentences (while there may be other sentence structures cor-
responding to causal relationships, in this research we are only focused 
on processing the aforementioned structures). Since there could be 
many verbs within each noun, and there can be multiple phrases within 
each sentence that qualify as a causal triple, we collect the set of all verbs 
within well-defined noun phrases. We then expand the elements (NP and 
VP) of the causal triple using transfer learning technique on a pre- 
trained model. In the presented approach, we have applied transfer 
learning using the pre-trained Google News model, which can be 
replaced with by utilizing other expansion techniques such as, synonym 
search from WordNet dictionary [22], ConceptNet Numberbatch Model 
[39], and/or Facebook Fasttext Model [40]. 

The expansion of each term is restricted to top ten similar words. This 
choice of selecting only the top ten similar words is driven by the impact 
of this selection on quantity of operations required for embedding vector 
generation and their subsequent comparisons. 

Once the triples have been expanded, we then apply Cartesian 
product between the two expanded noun phrases (Expansion set of the 
1st and 3rd element of the causal triple) and one of the verb expansion 
from the causal triple. This increases the number of causal triples, which 

in turn increases the scope of causal sentences that can be correctly 
classified in the testing phase. 

2.2.2. Model training/evolution 
In stage two, the set of causal triples are converted into embedding 

vectors using pre-trained BERT language models. In order to generate 
the embedding vectors, the three elements of the causal triple are 
concatenated by spaces, producing a phrase of the form “NP V NP”. The 
collection of these embedded vectors, forms the Causal Triple Trained 
Model (CTTM). In our experiments, which will be discussed in later 
sections, we compared 6 BERT Natural Language Inference(NLI) models 
with mean, max, and cls tokens [41], in terms of their ability to correctly 
classify causal sentences, from unseen test dataset. Based on the 
coverage of causal terms by these models, a multi-model approach is 
well suited for the causality mining task. As a result, each causal phrase 
is converted into 6 embedding vectors generated via the 6 BERT NLI 
models. While the space of the CTTM is increased 6-fold, due to this 
enhancement, it also provides better semantic matching performance, 
which will be discussed in the results section. 

2.2.3. Example of model development (training phase) 
An example of this process is shown in Fig. 2. Starting with a sample 

sentence from our training dataset, which contains the annotated cause 
and effect entities enclosed within e1 and e2 tags in step 1, we applied 
preprocessing on it. This produced a POS annotated sentence in step 2, 
which is used to identify the tagged nouns and verb terms between them 
in step 3. Each noun term is further expanded to include the preceding 
adjectives, if any. Any verb terms outside the tagged nouns are ignored. 
As shown in the step 4 “is” and “triggered” are two of the candidate 
verbs identified in this process, while “disease” and “ingestion” are their 
encapsulating noun phrases. In step 5, each of the participating noun 
and verb phrase is expanded by identifying their closely related alter-
natives. In step 6, we applied Cartesian product on the sets of two nouns 
and each verb phrase, producing the set of expanded causal triples. In 
step 7, the causal triples are converted into causal phrases, which are 
then converted into embedding vectors as shown in step 8. 

Fig. 2. Training causal trigger extraction example.  
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2.3. Causality Mining (CM) module 

The CM module is used for application of the CTTM on unseen, 
preprocessed test data, for classifying candidate phrases as causal or 
non-causal. This module utilizes three steps Candidate Triple Extraction, 
Causal Candidate Classification, and Triple Semantic Analysis, which 
are described in following sub-sections. 

2.3.1. Candidate triple extractor 
In the first step, starting with preprocessed sentences from unseen 

text, the Candidate Triple Extractor, identifies the candidate triples. 
These candidate triples are obtained by collecting all possible phrases of 
the form <NP, VP, NP> within each preprocessed sentence. This oper-
ation is performed in linear order to collect various candidate causal 
phrases within each sentence, thus increasing the total number of can-
didates but greatly reducing the size of individual phrases. For sentences 
with more than one verb in a sentence, the noun phrases with longer 
dependencies are discarded. This is to maintain context of the nouns 
with their nearest verb phrase for matching with our causality identi-
fication patterns of SVO. An example of this process is shown in Fig. 3, 
where the sentence from step 1, is pre-processed in step 2, before 
candidate triples for the same are generated in step 3. The candidate 
triples are then converted into candidate phrases (“NP V NP”), before 
the 6 BERT pre-trained models convert each of these into 6 embedded 
vectors. 

2.3.2. Causal candidate classification 
Next, we apply the Causal Trigger Trained Model(CTTM) to classify 

the candidate embedded vectors generated in the previous step, as being 
causal or non-causal. The CTTM contains embedding vectors for 6 BERT 
models, which all participate in the causality classification operation, 
using cosine distance measure to solve this 2-class problem. Each of the 
BERT model, classifies a candidate triple as causal if the max similarity 
score is above αi (where i is the index, corresponding to one of the six 
models, and αi is computed using the threshold selection methodology 
presented in Section 4.1). The causal triple thus identified is expanded 
by including the similarity score, as a fourth member, thus transforming 
the triple into a quad of form < NP, VP, NP, [scorei] >. Where scorei, 
represents the similarity measure of a participating BERT model. These 
quads are then filtered using minimum similarity threshold. For 6 BERT 
models, presented in the Section 4, a candidate triple is thus classified as 
causal if at least one model classifies it as causal. Additionally, the 
minimum value of scorei, greater than or equal to αi is retained as the 
similarity score of the candidate triple. In this way, we can determine the 

minimum similarity of a candidate triple with most participating 
models. The final set of quad thus produced, pertains to causally clas-
sified instances only and is of the form < NP,VP,NP,min(scorei) >. 

2.3.3. Triple semantic analyzer 
The resulting set of quads, thus pertains to our classified positive 

class (causal) instances. While it may be possible to judge the classified 
instances, by extending the test data annotation of the sentence to the 
causal phrase, it is better to validate the classified instances from the 
expert. In order to support the expert, with maximum information about 
the classified instances (since conversion from corpus to sentence and 
then to candidate phrases removes a large part of their context), we 
extend each NP in the classified quad, with its associated Concept 
Unique Identifier (CUI) and semantic type using the UMLS REST API.1 

This allows the system to identify if at-least one of the participating 
terms is semantically related to any medical terminology. If both terms 
do not have any corresponding concepts in UMLS, then it is also filtered 
out. The generation of this syntactically and semantically expanded set 
of classified instances then completes the process of lexical analysis and 
classification of the unseen clinical text. 

2.4. Feedback loop 

A feedback loop allows the expert to validate the classified instances 
produced by the MD module by using the semantic information 
expanding the noun phrases of the causal quads and the similarity score. 
The expert can indicate a phrase as causal or non-causal, providing a 
basis for updating the CTTM. This model evolution is acheived by 
generating the embedding vector for each of the expert validated causal 
classified instances, using BERT pre-trained models and simply 
appending the same to the training embedding vector list. Additionally, 
the phrases marked as non-causal, are added to a causal blocklist, which 
is then converted into an embedded vector, and compared with the 
vector lists of the CTTM. For each training embedding vector in the 
CTTM, if the similarity threshold with the blocklist embedded vector is 
greater than αi, it is removed from the list. Initially, this lookup table is 
kept empty and as the expert identifies the correctness of causal phrases, 
it grows to include the correct phrases and discards similar non-causal 
phrases, for each of the six models. In this way, the CTTM evolves 
with each iteration and improves upon the previous results using expert 
feedback. 

Fig. 3. Test candidate causal triple extraction example.  

1 https://documentation.uts.nlm.nih.gov/rest/home.html. 
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We validated the soundness of the proposed methodology by 
applying it on various datasets, and also compared the results with 
existing studies. As mentioned earlier, previous studies on causality 
classification have mainly focused on the creation and utilization of 
expert-generated rules. However, in a recent study [30], the authors 
presented a methodology, driven by the similarity between word em-
beddings, to classify instances from the same datasets we have used for 
evaluations. Their methodology is based on the identification of causal 
verbs between two labeled entities, followed by conversion of these 
verbs and those within the test data set into embedding vectors using 
Word2Vec. The embedding vectors are then compared using cosine 
similarity. If the similarity between the two vectors is greater than 0.5, 
the authors classify the verb from test instances as causal and add these 
verbs into the set of causal verbs used for subsequent matches. Finally 
using expert’s rules, the authors classify the instance into one of the four 
different causality relationships (subject causes object, subject is the 
result of object, attribute relation, and certain relationship). The results 
presented by the authors indicate good performance of their model in 
comparison to two previous studies [23,25]. While the results presented 
by the authors in their manuscript are interesting, in their original form, 
they are incomparable to our results. More details of this gap in the 
evaluation strategies between the authors in [30] and our methodology 
is presented in Appendix D. We therefore, created an implementation of 
the Ning’s strategy [30] to classify causal triples as causal or non-causal 
and compared the same with our results. During this implementation, 
we have utilized the same seed verb list, as presented by the authors in 
their research work, maintained the same similarity threshold value of 
0.5, and followed the same design to classify each verb as causal. For any 
triple, where the verb was classified as causal, the triple is also consid-
ered as causal. The results comparison is shown in Section 4.3. 

3. Experimental setup 

The methodology presented in Section 2, represents a theoretical 
framework for identifying causal relationships in unstructured text. In 
order to build a sound realization of this framework, it is pertinent to 
identify the concrete models and algorithms, which can locally optimize 
each component, providing intermediate results with high performance 
and in turn amalgamate the workflows, providing a global optimal result 
for causality mining. Through various experiments we evaluated the 
impact of causal term expansion models, embedded vector generation 
methodologies, and similarity thresholds calculation to identify a well- 
balanced ecosystem, fulfilling our local and global optimization 
objectives. 

Some initial experiments, including evaluation of only verb expan-
sion, and embedding vector generation using Word2Vec, comparison of 
six pre-trained BERT models (base-nli-mean-tokens, large-nli-mean- 

tokens, base-nli-max-tokens, large-nli-max-tokens, base-nli-cls-tokens, 
large-nli-cls-tokens), and application of BioBert embeddings [42] are 
explained with some detail, in the Appendices A, B, and C, respectively. 
The rest of the experimental setup can be categorized into 3 stages, as 
shown in Fig. 4, where each following stage, receives data from all 
previous stages. 

3.1. Stage 1 - Causal embedding generation 

In Stage 1, Causal Embeddings were generated for the SemEval 2010 
task 8 training dataset[32], using the six pre-trained BERT models. This 
dataset pertains to the semantic relation identification process and 
identifies the relationships between nominals for drug-drug interactions 
from biomedical texts. Each sentence in this training dataset and its 
counter part SemEval 2010 task 8 test dataset [32], is tagged with its 
most plausible truth-conditional interpretation using one of product- 
producer, content-container, cause-effect, and other semantic re-
lations. However, since the target of this study is causality mining, we 
therefore, only considered the cause-effect tag as casual relation and all 
other as non-causal relations. The SemEval 2010 task 8 training dataset 
[32] comprises of 1003 causal sentences out of 8000 sentences. From 
these 1003 causal sentences, we extracted 1071 unique causal triples. 
The verb within each triple is then expanded using the pre-trained 
Google News model [33]. After the expansion, we take Cartesian prod-
uct of the two encapsulating nouns of the source triple and one of the 
expanded verb to produce a little over 1.2 million expanded triples. 
Thus, with this expansion we are able to classify a wider range of causal 
relations, than what would have been possible, otherwise. Next we 
convert these expanded triples into embedding vectors using six pre- 
trained BERT NLI models [43,41], which include nli-base-mean- 
tokens, nli-large-mean-tokens, nli-base-max-tokens, nli-large-max-to-
kens, nli-base-cls-token, and nli-large-cls-token. These model differ in 
terms of their size (base or large) and the pooling layer used at the end of 
their deep neural network (mean pooling word tokens, max pooling 
word tokens, or cls pooling sentence token). Embedding vector gener-
ation for the 1.2 million expanded triples is a computationally expensive 
operation, which can take several days running on the CPU, however, 
due to the ability of the sentence_transformer library in python, to 
optimally use GPU, if available, the computational time is reduced, 
substantially. Through our experiments, we were able to process the 
expanded triples and produce the embedding vectors for base models in 
under 20 min each and for large models in an hour, each. Overall, the 
embedding vectors were produced in 4 h, using NVIDIA GeForce RTX 
2060 GPU. 

Fig. 4. Experimental Setup.  
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3.2. Stage 2 - Threshold selection 

Stage 2 is designed for threshold selection, whereby a sentence can 
be categorized as causal or non-causal, based on its similarity with the 
expanded triple set. Similarity threshold plays a vital role in the cau-
sality classification process and therefore requires extensive experi-
mentation to select the best similarity score, above which a triple can be 
classified as causal. In order to fulfill this aim, we utilized SemEval 2010 
Task 8 test dataset to learn the best threshold value, where the precision- 
recall curve (PRC) obtains maximum area under the curve. In biased 
datasets, where the ratio of positive class is much lower than the 
negative class, Area under the PRC (AUPRC) is an optimal metric for 
selecting the threshold [44]. As shown in Fig. 5, the SemEval 2010 Task 
8 test dataset [32], contains 328 causal sentences, out of a 2717 total 
sentences (12.07% of positive class). We utilized AUPRC to learn 
optimal threshold values for each BERT models. The detailed result of 
threshold selection will be presented in Section 4.1. 

3.3. Stage 3 - Evaluation 

In Stage 3, we performed single model, multi-model, and multi- 
model with feedback loop evaluations on the Asian Bayesian Network 
dataset [30] and the risk factors of Alzheimer’s disease (AD) [30], using 
the causal embedding vectors from Stage 1 and threshold values from 
Stage 2. The AD dataset consists of 1228 causal sentences out of 2500 
sentences, while the Asian Bayesian Network dataset have 316 causal 
sentences from a set of 500 sentences. The sentences in these two 
datasets are tagged with either NP→NP (Noun Phrase influences Noun 
Phrase), NP-NP (Noun Phrase is related to Noun Phrase), or NP× NP 
(both nouns are irrelevant) label. In this study, we considered the first 
two tags (NP →NP and NP-NP) as causal and the remaining (NP× NP) as 
non-causal. Due to the large size of AD dataset and to test various iter-
ations of the feeback loop, we split this dataset into two parts, using 
random selection for 50% partitioning. The complete AD dataset, con-
tains 864 candidate triples, out of which 523 are causal (60.53%) and 
332 are non-causal (39.47%). With 50% random split, the AD1 and AD2 
dataset contain 432 triples each. AD1 contains 267 actual causal triples 
(61.80%) and AD2 contains 256 actual causal triples (59.26%). Evalu-
ations by all three methodologies (single model, multi-model, and multi- 
model with feedback loop) were performed on these three instances of 
the datasets (AD1, AD2, and Asian Bayesian Network). This data split is 
especially, important to execute and evaluate multiple iterations of the 
feedback loop, on unseen data. 

In single model, we evaluate the performance of each BERT model to 
check the effect of the model size in terms of base and large, and pooling 
strategies using CLS-token, mean of all output vectors, and max-over- 
time of the output vectors and select a single best performing model 
for causality mining. However, by inspecting the result of each BERT 
model in terms of unique causal triple identification via a very handy 
UpSet tool [45], which can plot associations between different sets and 

can be used to visualize relationships, where the traditional Venn dia-
grams may fail (such as when the number of sets are greater than 4).2 

Since the aim of our approach is to improve the accuracy of causal 
classification, even in presence of false positives, it is then pertinent to 
analyze the UpSet results, based on a “minimum” intersection degree 
metric. This entails, the evaluation of causal classifications for a mini-
mum intersection degree such as degree ⩾1, degree ⩾2 and above. 
Intuitively, it can be seen that the performance results for degree ⩾2 
should be less than the performance for degree ⩾1 and leads to a multi- 
model evaluation. The UpSet analysis performed in Section 4.2 revealed 
to used multi-model evaluation to increase efficiently of the causality 
mining. 

In multi-model evaluations, we performed the experiments on the 
same three test datasets. However, in this case, we considered a triple as 
causal if any of the six BERT models tagged it as causal and non-causal 
otherwise. The results achieved in multi-model evaluation is shown in 
subSection 4.2.2. 

Finally, we incorporated human expert’s feedback into the multi- 
model similarity matching process, to analyze the change in the qual-
ity of causality detection. For this process, an expert (physician) from 
our collaborative hospital, verified the accuracy of the classified sen-
tences. Since our automated process is dependent upon various datasets 
and has been repurposed, as explained earlier, this secondary verifica-
tion is of utmost importance. This process was repeated in three itera-
tions, while we ensured that once the CTTM is updated by the 
embedding vector of an expert verified causal triple, the same is not 
made a part of any subsequent test sets. Thus, the test sets in each 
iteration remain unseen. In Iteration-1, we used the embedded models 
(CTTM) trained on the SemEval 2010 Task 8 training dataset, and tested 
using the AD1 dataset. Embedding vectors corresponding to the 
correctly classified and expert verified causal and non-causal triples 
were then used to update the CTTM. In Iteration-2, this updated CTTM 
was then used to test the candidate triples from AD2 dataset. Once again, 
the correctly classified and expert verified causal and non-causal triples 
were used to again update the CTTM. Finally in iteration 3, the most 
recently updated version of the CTTM was then used for classifying the 
candidate triples from the Asia dataset. The details of the results ach-
ieved in each iteration are described in Section 4.2.3. 

For experimentation, we used python code on Google Colab, with 
many additional libraries including Gensim models, NLTK, BERT sen-
tence_tranformer, and sklearn. Using the same settings we developed a 
python based end-to-end application, which can extract causal re-
lationships from an unseen copora. The application from Fig. 1 and its 
evaluation was run on a dedicated workstation with Intel(R) Core(TM) 

Fig. 5. Details of dataset.  

2 The interactive UI is available at http://vcg.github.io/upset/?dataset=10, 
with the data drescription file for our presented approaches present at http 
s://raw.githubusercontent.com/Musarratpcr/CausalityDetection/master/Re 
vision1/ADandAsianDatasetUpsetDescription.json. 
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i9-9900KF CPU, with 64 GB ram, and NVIDIA GeForce RTX 2060 GPU. 
The training model was produced in under 4 h, using a combination of 
CPU(for gensim based models which cannot use GPUs and are required 
for word expansion) and GPU(for BERT inference). 

All code and results are available at the following link. https://gith 
ub.com/Musarratpcr/CausalityDetection. 

4. Results 

In the following sub-sections, we shall provide the results obtained 
from various experiments in Stage 2 (threshold selection) and 3 (eval-
uation) of the setup(as shown in Fig. 4). 

4.1. Stage 2 - Threshold selection 

Following the process of preprocessing in Section 2.1, candidate 
triple extraction in Section 2.3.1, and causal candidate classification in 
Section 2.3.2, we calculated the cosine distance between the candidate 
triples of the SemEval 2010 Task 8 test dataset against the six BERT 

Fig. 6. Precision recall cure for threshold selection (a) bert-base-nli-mean-tokens (b) bert-base-nli-max-tokens (c) bert-base-nli-cls-tokens (d) bert-lart-nli-mean- 
tokens (e) bert-large-nli-max-tokens (f) bert-large-nli-cls-tokens. 

Table 1 
Application of trained embedding on Asia Bayesian Network dataset Legend: TP 
is True positive, FN is False Negative, FP is False Positive, TN is True Negative, A 
is accuracy, P is precision, R is recall, and F1 is F1 Score.  

Scenario TP FN FP TN A (%) P (%) R (%) F1 
(%) 

BERT nli-base- 
mean-tokens 

8 39 5 34 48.84 61.54 17.02 26.67 

BERT nli-large- 
mean-tokens 

37 10 26 13 58.14 58.73 78.72 67.27 

BERT nli-base- 
max-tokens 

9 38 10 29 44.19 47.37 19.14 27.27 

BERT nli-large- 
max-tokens 

21 26 14 25 53.49 60.00 44.68 51.22 

BERT nli-base- 
cls-token 

34 13 19 20 62.79 64.15 72.34 68.00 

BERT nli-large- 
cls-token 

38 9 26 13 59.30 59.38 80.85 68.47  

Table 2 
Application of trained embedding on Risk Factors of Alzheimer’s Disease Split 1.  

Scenario TP FN FP TN A (%) P (%) R (%) F1 
(%) 

BERT nli- 
base- 
mean- 
tokens 

62 205 36 129 44.21 63.27 23.22 33.97 

BERT nli- 
large- 
mean- 
tokens 

111 156 80 85 45.37 58.12 41.57 48.47 

BERT nli- 
base-max- 
tokens 

72 195 45 120 44.44 61.54 26.97 37.50 

BERT nli- 
large-max- 
tokens 

80 187 54 111 44.21 59.70 29.96 39.90 

BERT nli- 
base-cls- 
token 

157 110 100 65 51.39 61.09 58.80 59.92 

BERT nli- 
large-cls- 
token 

165 102 104 61 52.31 61.34 61.80 61.57  

Table 3 
Application of trained embedding on Risk Factors of Alzheimer’s Disease Split 2.  

Scenario TP FN FP TN A (%) P (%) R (%) F1 
(%) 

BERT nli- 
base- 
mean- 
tokens 

60 196 27 149 48.38 68.97 23.44 34.99 

BERT nli- 
large- 
mean- 
tokens 

128 128 70 106 54.17 64.65 50.00 56.39 

BERT nli- 
base-max- 
tokens 

74 182 37 139 49.31 66.67 28.91 40.33 

BERT nli- 
large-max- 
tokens 

88 168 54 122 48.61 61.97 34.38 44.22 

BERT nli- 
base-cls- 
token 

166 190 94 82 57.41 63.85 64.84 64.34 

BERT nli- 
large-cls- 
token 

172 84 111 65 54.86 60.78 67.19 63.82  
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models. Then using the truth values (labels) of each candidate triple 
from the test dataset, and the similarity score pertaining to the cosine 
distance, we individually evaluated the six BERT models, producing 
charts shown in Fig. 6. We evaluated each threshold point, by con-
necting it with the inverse diagonal of the graph (From Precision = 1 and 
recall = 0 to Precision = 0 and recall = 1). We then calculated the area 
under this newly formed curve, and found out the threshold where this 
area was maximized. The average threshold value α then comes to 0.88, 
however, utilizing this average value in the multi-model CTTM would 
greatly affect the performance, by misclassifying instances for five in-
dividual models (more phrases will be classified as causal by bert-base- 
nli-mean-tokens, bert-base-nli-cls-token, bert-large-nli-cls-token, and 
less for bert-base-nli-max-tokens, and bert-large-nli-max-tokens). 
Instead, in the CTTM, we utilized the individual threshold values of 
each BERT model αi, to classify instances, when compared to the cor-
responding embedding vector list. 

4.2. Stage 3 - Evaluation 

In order to evaluate the performance of our generated triples and the 
selected threshold we then performed single-model, multi-model, and 
multi-model with feedback loop evaluation of three, as yet, unseen 
datasets, the Asian Bayesian Network dataset and the two partitions for 
risk factors of Alzheimer’s disease (AD1 and AD2). These are discussed 

as follows: 

4.2.1. Single model evaluation 
In the Asia Bayesian Network dataset from a total of 86 qualifying 

triples, 47 are actual causal(54.65%) and 38 are non-causal(44.18%). 
The results achieved by each BERT model on this dataset are shown in 
Table 1. BERT models, utilizing the complete phrase as a token and then 
cls for pooling at the final layer, show good performance, when 
compared with the others. Overall, the best values for accuracy, preci-
sion, recall and F1 are achieved by these models, however, the BERT nli- 
large-mean-tokens closely follows the classification performance. 
However, the results for base models with mean tokens and max tokens, 
indicate very bad performance with F1 measure under 28% (caused by 
the low performance of recall obtained by these models). 

In absolute terms, the classification performance for the AD dataset 
in terms of accuracy, and F1 measure is lower than the Asia Bayesian 
Network dataset, at par for precision, and higher for recall. Comparison 
amongst the six models shows some similarity with the previous results. 
Causal classification of AD1 shown in Table 2, achieves better perfor-
mance, in terms of its accuracy, recall, and F1 for the two cls-token 
models, with the large version achieving the best results. The perfor-
mance of other models, lacks behind substantially with F1 rates between 
34% and 49%. The precision rates of these six models, are however, 
within 5.15 percentage points, which indicates that the ability of each 
model to correctly identify the actual causal phrase, when a triple is 
classified as causal, is similarly good (or bad). Another important metric 
to analyze these results is to look at the recall rates, which in the case of 
Asia Bayesian Network dataset, were able to correctly identify 80.85% 
of the actual causal instances, however, for AD1 only identify 61.80%, in 
the best case. For the AD2 dataset, performance metrics shown in 
Table 3, indicate the best recall rate of 67.19%, which is better than the 
results for AD1 but substantially smaller than Asia Bayesian Network 

Fig. 7. UpSet analysis of BERT model classification coverage for a combined list of Risk Factors of Alzheimer’s Disease and Asia Bayesian Network dataset.  

Table 4 
Application of Multimodel Embedding on Test Datasets.  

Dataset TP FN FP TN A (%) P (%) R (%) F1 (%) 

AD1 210 57 132 33 56.25 61.40 78.65 68.97 
AD2 205 51 138 38 56.25 59.78 80.08 68.45 
Asia 41 6 28 11 60.47 59.42 87.23 70.69  

Table 5 
Feedback loop results on test datasets.  

Iteration Dataset Dataset Evaluation Expert Evaluation   

A P R F1 Added to Embeddings Added to Block List 

1 AD1 56.25% 61.40% 78.65% 68.97% 314 28 
2 AD2 60.88% (↑ 4.63)  60.43% (↑ 0.65)  98.44% (↑ 18.36)  74.89% (↑ 6.44)  268 49 
3 Asia 61.63% (↑ 1.16)  60.00% (↑ 0.58)  89.36% (↑ 2.13)  71.79% (↑ 1.1)  58 12 

A: Accuracy, P: Precision, R: Recall, The values in parenthesis represent rate of change from multi-model results. 

Table 6 
Result comparison with Ning’s method on test datasets.  

Dataset Ning’s Method Evaluation Proposed Method Evaluation  

A(%) P(%) R(%) F1(%) A(%) P(%) R(%) F1(%) 

AD1 61.81 61.81 100 76.39 56.25 61.40 78.65 68.97 
AD2 59.26 59.26 100 47.42 60.88 60.43 98.44 74.89 
Asia 54.65 54.65 100 70.68 61.63 60.00 89.36 71.79  
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dataset. The best F1 rates for AD2 are achieved by the base version of the 
BERT cls token based model. 

These results provide empirical proof for causality detection, based 
on causal phrase extraction and expansion. However, selection of a 
single model, based on these results alone, would not resolve the 
problem of causality detection in clinical text, where it is critical to 
identify most if not all actual causal sentences. Hence a deeper look at 
the coverage of these six BERT models, in terms of correctly classifying 
the actual causal instances is necessary. 

The associations between the results achieved by six bert models on 
combined triple phrases from Asia Bayesian Network and Risk Factors of 
Alzheimer’s Disease datasets is shown in Fig. 7. Amongst the 950 
candidate triples, 754 have been classified as causal by one or more of 
the BERT NLI models. The Base-Mean classifier, is unable to uniquely 
classify any candidate triple as causal, however, the other five models, 
classify 153 instances as causal. With classification interSection 2, 156 
candidate triples are classified by a combination of only two models 
uniquely classify an instance as causal. Extending this calculation on the 
numbers achieved via UpSet analysis, unique coverage rate from degree 
1–6 are 153(20.29%), 156(20.69%), 139 (18.44%), 127 (16.84%), 70 
(9.28%), and 109 (14.46%), respectively. The actual causal triples in the 
950 candidate triples are 570. True positive classification numbers for 
the six models with degree 1–6 are 83 (14.56%), 96 (16.84%), 86 
(15.09%), 76 (13.33%), 45 (7.89%), and 70 (12.28%), respectively. 
These results indicate that single model application of anyone of the six 
BERT models, will have low candidate classification coverage and even 
lower true positive rates. 

4.2.2. Multi-model evaluation 
Theoretical analysis of the results shown in Fig. 7, indicate that when 

degree ⩾6, 109 phrases have been classified as causal, out of which 70 
are actual causal. The accuracy of this classification is 43.26% and F-1 
rate is 20.62%. For degree ⩾5, 179 phrases have been classified as 
causal, with 115 as true positive. The accuracy rate now, increases to 
45.37%, while the F-1 goes up to 30.71%. Similarly, for degree ⩾4 ac-
curacy further increases to 48.00% and F-1 to 43.61%. For degree ⩾3, 
the accuracy becomes 51.47%, and F-1 54.58%. For degree ⩾2, accuracy 
further improves to 55.26%, and F-1 to 63.71%. Finally for degree ⩾1, at 
least 1 model classified 754 instances as causal, out of which 456 are 
actual causal. The accuracy increases to 56.63%, and F-1 to 68.88%. 
Matching the intuition, presented earlier, this analysis, also shows, that 
if at least one model classifies a candidate phrase as causal, it should be 
accepted, to achieve the highest realistic performance. 

Practical application of the multi-model methodology, where a 
phrase is considered causal, if at least one model classifies it as such, 
produces the same result, showing an accuracy rate of 56.63% and F-1 as 
68.88% for the combined dataset. Separately, the results for Asia 
Bayesian Net dataset show small improvement in their F-1 score (multi- 
model selected additional 3 correct causal phrases than the best results 
for BERT nli-large-cls-token on this dataset) and a slight drop in its ac-
curacy, due to an increases number of True negatives (skewing the ac-
curacy measure, towards positive results). Both AD1 and AD2 dataset, 
show substantial improvement of causality classification, with the 
application of multi-model technique. The number of correctly classified 
causal pharses in AD 1 have increased form 165 in the best case to 210, 
while for the AD2 have increase from 172 in the best single model 
application to 205 here. Overall the performance of multi-model clas-
sification on this dataset has brought it at par with the result of the other 
dataset. The F-1 measures for both AD1 and AD2 have increased, 
showing the correctness of the multi-model strategy for causality 
detection. However, the large number of false positives and true nega-
tives, still leave a room for improvement of this model, which we 
resolved by additionally employing the feedback loop. The results for 
this upgrade are shared in the following evaluation. 

4.2.3. The feedback loop evaluation 
In Iteration-1, the CTTM trained on the SemEval 2010 Task 8 training 

dataset was tested using the AD1 dataset. The six models in CTTM were 
updated by adding embedded vectors for the 314 causal triples verified 
by the expert and, removal of triples with similarity score αi for the 28 
marked as incorrectly classified. In the base version of the nli-mean- 
tokens model, 60 similar triples were removed, while in large version 
190 triples were removed. Similarly, for the base and large version of the 
nli-max-tokens 94 and 143 triples were removed,respectively. Finally 
for the cls-token version, 676 triples were removed from base and 626 
triples from the large version. As shown in the Table 5, the accuracy of 
multi-model CTTM application on the AD2 dataset, shows minor 
improvement, in accuracy (from 56.25% to 60.87%), precision (from 
59.78% to 60.43%), recall(80.08% to 98.44%), and F1 (68.45% to 
74.86%), on incorporation of results from AD1. 

In Iteration-2, the expert verified 368 classified causal triples as 
correct, while 49 were marked as non-causal. Based on this new set of 
causal triples, we again updated the CTTM before iteration 3, to further 
add the 368 embedding vectors and removed 175 triples from base 
version of the nli-mean-tokens, and 308 from the large version. For the 
nli-max-tokens 251 were removed from base version and 477 from large 
version. Finally, in the case of cls-token 804 were removed from base 
and 774 from large. 

In Iteration-3, the evolved CTTM was applied on the Asia Bayesian 
Network Dataset, which registered small improvements on the multi- 
model results. Since this dataset is the smallest of the three, CTTM 
model evolution has very little impact on it. Addition of 759 triples in 
the original 1,246,975 embedded vectors from CTTM model before 
iteration 1, and removal of various others (between the minimum total 
of 235 triples removal from base nli-mean-tokens in 2 iterations and 
maximum of 1480 from base cls-token), increased the true positive from 
38 in best case single model to 41 in multi-model, and finally to 42 in the 
third iteration. 

4.3. Comparison with existing studies 

In order to compare our methodology with an existing study, we 
utilized the methodology presented by [30] to classify sentences as 
causal or non-causal, from the AD1, AD2, and Asia dataset. However, 
since our methodology incorporates the datasets into the CTTM, using 
feedback loop, and because we want to maintain the unseen nature of 
these, so as not to contaminate the results, we compared our iteration 1 
result for AD1, iteration 2 result for AD2, and iteration 3 result for Asia 
dataset. At these specific points, the datasets are unseen and true test 
sets. The results for causal classification on the test datasets for both 
methodologies (Ning’s and proposed) are shown in Table 6. We 
observed that our implementation of Ning’s methodology [30], classifies 
all triples as causal achieving a recall rate of 100%. However, the ac-
curacy, precision, and F1 scores are decreasing by comparatively large 
margins. These results are in line with our previous experiments based 
on word embedding (Appendix A). Hence, it is safe to conclude that even 
when starting with a well-identified set of causal verbs, word embedding 
by itself is not sufficiently able to evolve the causality classification 
model. On the other hand, our methodology is able to improve upon its 
results across iterations. 

5. Discussion 

The main aim of this study is to develop a framework that can 
identify causal sentences in clinical text. The success criteria of this 
framework are dependent on correctly identifying most causal re-
lationships, with some leeway available in incorrect classification of 
non-causal sentences as causal. Precision, recall, and their association in 
the form of F1 provides the metric to evaluate our proposed framework, 
in parts, as a whole, and with existing work. Application of this classi-
fication methodology can then enable an expert from the domain of 
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healthcare and wellness, to be able to contextually summarize the 
contents of the clinical text. To this end, we extract the causal phrases 
from the causal sentences, which are larger in numbers but smaller in 
their participating linguistic elements (including two NP and one VP). 

The results presented in Section 4, provide the performance metrics 
for various steps leading up to our proposed multi-model classification 
with a feedback loop. In particular, the evaluation metrics for the Asian 
Bayesian Network, and two partitions of the Alzheimer’s disease data-
sets, generally saw an increase, when moving from single model to 
multi-model and then to multi-model with a feedback loop. 

The rationale for moving from using a single BERT NLI model to a 
multi-model application was established using UpSet analysis, presented 
in Section 4.2.1. Additionally, the rationale for moving from multi- 
model to multi-model with a feedback loop can be naively established 
from intuition, however, it is far more beneficial to analyze the phrases 
which were originally classified by the machine learning models and 
then removed by the expert. As an example one of the triples identified 
by the multi-modal methodology from the AD1 dataset is “cancer  =
alcohol”. The origin of this triple can be traced back to the following 
instance: 

“After adjusting for various socioeconomic and health variables, no 
significant differences were observed between hazardous drinking and 
type of cancer [PR  = 0.99  = 0.83–1.17) in people with alcohol-related 
cancers compared to non-alcohol related cancers] and time since diag-
nosis [PR  = 1.01 in people with a cancer diagnosed >5 years ago 
compared to those diagnosed <=5 years ago].” 

Stanford POS tagger (version 3.9.2) had incorrectly identified the 
symbol “=” as a feasible VP and since this fell between the two entities 
(cancer and alcohol), this triple was considered valid. The expert veri-
fied this triple as incorrect since it does not provide enough information 
to classify the original sentence as causal or non-causal. Hence the 
embedding for this triple and all others similar to it, with the threshold 
equal to or above, for each model, were then removed. This removal 
process is not dependent only on the VP, as in iteration 2, we observed 
additional triples with invalid VPs, such as “stroke  = diabetes” and 
“alcohol [depression”. In iteration 3, none of the triples had a symbol as 
a VP. 

Another triple identified by the expert as incorrect was “smoke 
monitored hypertension”. This triple contains a valid VP, tagged by the 
POS tagger as “VBN”. The original instance from which this triple was 
extracted is as follows. 

“The earlier advice to physicians still seems prudent and is briefly 
stated: 1) Try to avoid prescribing oral contraceptives for women over 
35 years of age; 2) Women who smoke cigarettes should avoid using oral 
contraceptives, and users should not smoke; 3) Prescribe the formulation 
with the lowest dose and/or potency of estrogen that is effective and that 
does not cause unacceptable “breakthrough” bleeding; 4) Women with 
hypertension should be carefully monitored, and women who develop 
hypertension while on oral contraceptives should be switched to another 
form of contraception, if possible.” 

In hindsight, intuitively, it is evident from the original text that the 
phrases “smoke”, “monitored”, and “hypertension” all belong to 
different contexts. However, the machine learning models are agnostic 
to such contexts, unless they can incorporate a very large number of 
sentence and document structuring rules. While there are other triples 
extracted from this instance, which may qualify the instance as causal or 
non-causal, it does not help fulfill our aim of identifying individual 
causal sentences from the classification of causal triples. Hence, we 
update the model, to only hold those triples which can represent causal 
relationships, from a wide variety of datasets. In iteration 3, only 12 
triples were identified as incorrect by the expert, including “bronchitis 
smoke smoking” and “lung cancer secondhand smoking” (while lung 
cancer can be caused by secondhand smoking, this triple is missing the 
causal verb). Here it is pertinent to mention that by removing these 
triples, we are not changing our results but rather evolving the model for 
subsequent classification in unseen datasets. In the absence of active 

learning, our model would not be able to update itself and hence provide 
relatively mediocre results as discussed in Section 4.2.2. 

In iterations 2 and 3, incorrect triple embeddings similar to the ones 
identified in previous iterations are not included. The similarity is 
determined by converting the incorrect triples into embedding vectors 
and using the 6 BERT models to determine all embeddings which have 
cosine similarity above their respective thresholds. The correctly iden-
tified causal triples are added into the CTTM by appending their em-
beddings at the end. Additionally, on subsequent classifications, the data 
instances (a sentence, text excerpt, or a document) are classified using 
the evolved CTTM. This is why even after removing related embeddings 
the results obtained by including active learning are gradually 
increasing, even on unseen and minimally related datasets (AD2 in 
iteration 2 to Asia in iteration 3). 

On a related note, the evaluation of our results has been performed 
using the labels of the test data, while the expert-provided feedback was 
used only to update the model. As a result some phrases such as “cancer 
associated alcohol”, and “cancer rising alcohol”, were classified by the 
machine learning model and the expert as causal, however, the dataset 
had the associated sentence labeled as non-causal. Since CTTM is di-
rection agnostic it is unable to distinguish between various forms of the 
causal phrases such as “cause triggers effect” and “effect triggered by 
cause”. As an example the triple “cancer associated alcohol” has been 
extracted from the following instance: 

“The results showed that frequent intake of fruits, chicken, fish and 
alcohol drinking were associated with risk for colorectal cancer.” 

Here, the triple has been correctly identified, since one of the verbs 
between “cancer” and “alcohol” is “associated”. The triple was also 
identified as causal by the CTTM and the expert, however, the dataset 
marks it as non-causal. Thus while the triple itself is causal, the origi-
nating instance is non-causal (the dataset labels it as “cancer x alcohol”), 
which negatively affects the evaluations and reduces our performance. 

The causality classification methodology presented in this manu-
script attempts to alleviate problems caused by discrepancies in causally 
valid POS tagging, triple expansion (which can include non-causal tri-
ples), and other operations. Through the use of active learning, we have 
observed an increase in the performance of our proposed methodology. 
While, we have reduced the expert’s involvement in the causality clas-
sification process, substantially, when compared with the previous 
studies, further reduction is possible through the use of specialized POS 
taggers, contextual triple expansions, better sentence embedding gen-
eration, and similarity measures. 

6. Conclusion 

Active transfer learning using amalgamation of results from multiple 
models is a novel and, as proved above, successful methodology for 
identifying causal sentences. This two class classification problem, 
whereby we aimed to correctly identify the causal sentences, shows 
better and maintainable recall rates, while the performance of this 
methodology, in terms of accuracy, precision, and F measure can be 
improved by incorporating additional active learning iterations. In 
future, we shall look towards the application of our methodology for 
solving other relevant clinical problems, such as generation of patient 
summaries from clinical text. 
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Appendix A. Experimental result with Word2Vec embeddings 

In Experiment Appendix A, we performed some initial experiments to test the applicability and performance of Word2Vec based embedding vector 
generation process, for causal verbs and causal triples, in both training and test datasets. A summary of the results are shown in Table A.7. 

In Experiment 1, we extracted the causal verbs using the stanford POS tagger, from our training dataset. Without any expansion, we then applied 
word embedding on the causal verb, which was used to look up similar verbs in the SemEval test data set. In this iteration, we predicted 1318 sentences 
to be positively causal and 1399 sentences to be non-causal. From the predicted positive sentences, actual causal sentences were 205, and incorrect 
ones were 1113. The accuracy of this approach is 54.50% and recall 62.5%. However, the precision of this scenario is only 15.55% and F1 is 24.81%. 

In Experiment 2, we expanded the causal verbs extracted in experiment 1 using Google News pre-trained model. Using word embedding, we 
transformed the extracted as well as the expanded causal verbs into word vectors. In the SemEval test data, using cosine similarity, 1453 sentences 
were classified as causal, with 210 correctly classified and 1243 incorrectly. After causal verb expansion the accuracy was dropped to 49.90%, 
precision to 14.45%, F1 to 23.58% but recall increased slightly to 64.40%. This indicates that word expansion from Google News pre-trained model 
has a very small impact on the classification process. 

In Experiment 3, we switched the word expansion model to ConceptNet, with numberbatch embeddings, which provides semantically similar 
terms. In this iteration, we predicted 929 sentences to be causal and 1788 sentences to be non-causal. However, only 59 causal sentences were 
correctly predicted, with an accuracy of 58.07%, recall of 17.98% and lowest precision of 6.35% and F1 of 09.39% amongst all experiments. Causal 
terms are highly discriminable, while the words expanded with ConceptNet have higher diversity and lacks discrimination, which leads to the drastic 
decrease in the model performance [46]. The results obtained thus far have proved the in-applicability of Word2Vec based embedding vectors 
generation. The Word2Vec considered a word without its context and neighbor terms, which may lead to inappropriate vector generation. Therefore, 
we generated the embedding vectors via BERT models in the upcoming experiments. 

Appendix B. Experimental result with BERT embeddings 

In Experiment Appendix B, like in the experiment Appendix A only verb was expanded. However, is this experiment the embedding vectors were 
generated using 6 BERT models to utilize sentence level embedding vector generation for a more contextual comparison. We compared 6 different 
BERT pre-trained models in terms of their performance on our test data set, with summary results shown in Table B.8 [43,41]. The 6 BERT models (nli- 
base-mean-tokens, nli-large-mean-tokens, nli-base-max-tokens, nli-large-max-tokens, nli-base-cls-token, and nli-large-cls-token) differ in terms of 
their model size(base or large) and the pooling layer used at the end of their deep neural network(mean pooling word tokens, max pooling word 
tokens, or cls pooling sentence token). Experiment 4 pertains to the base form of the BERT model that uses mean token pooling, while Experiment 5 
uses the large form of similar layered model. Likewise, Experiment 6 is the base model, while Experiment 7 is the large model, with max pooling layer. 
Finally, Experiment 8, and 9 are base and large models, respectively, with cls pooling layer. The result obtains in each experiments is shown in 
Table B.8. 

The result of these experiments show much improved performance, with experiment 4 (base model with mean pooling) showing the best accuracy 
(88.55%), precision(52.27%) and F1 (55.76%). The best recall(69.82%), is however, produced by the experiment 7 (large model with max pooling). 
On close inspection, we found experiment 7 to have correctly classified 229 sentences out of which 196 sentences were exactly similar to the True 
Positive results in experiment 4. However, the precision of experiment 7 is relatively small, due to the large number of False Positives. 

Beyond these tests, it is also imperative that the generated embedding are tested on other text corpora for determining their ability to maintain 
acceptable performance, generally. Asia Bayesian Network and risk factors of Alzheimer’s disease (AD) dataset were used to test this generalization. 
The results for the former are shown in Table B.9 and later in Table B.10. As shown in Table B.10 accuracy of each model decreases on Asia Bayesian 
Network as well as AD datasets. However, precision as well as recall of models shows a slight improvement on diverse datasets. In results for 
Experiment A.2 on the Asia Bayesian Network dataset, BERT nli-base-mean-tokens and BERT nli-large-mean-tokens show a precision of 100%, which 
is because of 0 false positives, however, this result is biased due to the very small number of identified causal triples. 

These results paint an abysmal picture of the Experiment A.2 process. This is due to the fact that the verbs identified as causal through extraction 
from SemEval training dataset and their expansion are not able to capture all the causal sentences. These result partially support our novel meth-
odology of incorporating the nominals (nouns and noun phrases) in the text producing the embedded vectors, thereby switching to causal quads for 
causal sentence identification. The intuition behind this arrangement, stems from the fact that causal sentences, implicitly contain semantic re-
lationships between the cause and effect entities. Addition of these entities in the causal relationship identification process would spread a wider net 
for causal sentence identification. This intuition has been materialized and empirically tested in the manuscript. 

Table A.7 
Initial Experiments with Word2Vec based embedding vector generation on SemEval Test dataset.  

Experiment TP FN FP TN A (%) P (%) R (%) F1 (%) 

1 205 123 1113 1276 54.50 15.55 62.5 24.81 
2 210 118 1243 1146 49.90 14.45 64.02 23.58 
3 59 269 870 1519 58.07 06.35 17.98 09.39  
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Appendix C. Experimental result with BioBERT embeddings 

The experiments performed in Appendix B are repeated by replace the BERT model with BioBert for generated trigger and candidate embeddings 
for comparing their similarities. As mentioned earlier, the trigger in the form of triple  < noun, verb, noun > was extracted from SemEval training 
datasets, and the verb terms were expanded with Google news model to extended the converge of the triggers. We calculate precision recall curve as 
shown in Fig. C.8, to identify the similarity cut off value of 0.96 for classifying a triple as causal and non-casual. However, the performance of the 
BioBert Embeddings are very low on the test dataset as shown in Table C.11. The unexpected performance of the BioBERT based embeddings is mainly 
due to the fact our test dataset contains non-clinical concepts along with clinical concepts. Therefore, we used Bert models instead of BioBert for our 
experiments and evaluations. 

Table B.8 
Experiment A.2 - Setting 2 with BERT based embedding vector generation on SemEval Test dataset.  

Experiment TP FN FP TN A (%) P (%) R (%) F1 (%) 

4 - BERT-base-nli-mean-tokens 196 132 179 2210 88.55 52.27 59.76 55.76 
5 - BERT-large-nli-mean-tokens 211 117 300 2089 84.65 41.29 64.33 50.30 
6 - BERT-base-nli-max-tokens 227 101 633 1756 72.98 26.40 69.21 38.22 
7 - BERT-large-nli-max-tokens 229 99 564 1825 75.60 28.88 69.82 40.86 
8 - BERT-base-nli-cls-token 202 126 217 2172 87.38 48.21 61.59 54.08 
9 - BERT-large-nli-cls-token 206 122 264 2125 85.79 43.83 62.80 51.63  

Table B.9 
Experiment A.2 - Application of trained embedding on Asia Bayesian Network dataset.  

Scenario TP FN FP TN A (%) P (%) R (%) F1 (%) 

BERT nli-base-mean-tokens 2 45 0 38 47.06 100.00 4.26 08.16 
BERT nli-large-mean-tokens 4 43 0 38 49.41 100.00 8.51 15.69 
BERT nli-base-max-tokens 11 36 11 27 44.71 50.00 23.40 31.88 
BERT nli-large-max-tokens 31 16 18 20 60.00 63.27 65.96 64.58 
BERT nli-base-cls-token 6 41 1 37 50.59 85.71 12.77 22.22 
BERT nli-large-cls-token 1 46 2 36 43.53 33.33 2.13 04.00  

Table B.10 
Experiment A.2 - Application of trained embedding on Risk Factors of Alzheimer’s Disease dataset.  

Scenario TP FN FP TN A (%) P (%) R (%) F1 (%) 

BERT nli-base-mean-tokens 53 423 16 316 45.67 76.81 11.13 19.45 
BERT nli-large-mean-tokens 162 314 83 249 50.87 66.12 34.03 44.94 
BERT nli-base-max-tokens 276 200 148 184 56.93 65.09 57.98 61.33 
BERT nli-large-max-tokens 282 194 194 138 51.98 59.24 59.24 59.24 
BERT nli-base-cls-token 110 366 50 282 48.51 68.75 23.11 34.59 
BERT nli-large-cls-token 176 300 84 248 52.48 67.69 36.97 47.83  

Fig. C.8. Precision recall curve for threshold selection for BioBert.  
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Appendix D. Comparison with existing studies 

Using the same datasets (Asian Bayesian Network and risk factors of Alzheimer’s disease), previous studies have utilized rule based and word 
embedding based strategies to classify the participating instances (each instance contains one or more sentences) into causal or non-causal sets. The 
results in terms of their precision, recall, accuracy, and F1-score is shown in Table D.12. These results indicate that the three studies ([23,25,30]) are 
able to accurately classify between 74% and 76% of instances in the Asia dataset and between 75% and 83% of the AD dataset. In all three of these 
methodologies, the researchers have utilized the labeled entities to classify the instance as causal, if they follow rules generated by experts or contain a 
causal verb. Contrarily, our methodology extracts and classifies the triples with each sentence of the dataset, as shown in Table 4. While in the previous 
studies the two entities can be classified as causal based on their existential semantics in the corresponding instance and non-causal otherwise, our 
methodology performs independent classification. Summarily, while the previous studies perform causal classification within the context of the 
instance, our methodology provides generic classification, within a limited context. Resultantly, the results obtained by our methodology and the ones 
presented in Table D.12 are not comparable, unless a mapping from triples to the instances can be made. 

The performance comparison between previous studies and our methodology for the Asia and AD datasets is not straight-forward. Firstly, the 
causality classification aims of the previous studies on these datasets and our presented methodology is not same. Secondly, since the feedback loop in 
our methodology incorporates the causal triples from the two datasets into the set of embedding vectors, it is important to perform the comparison on 
post-multi-model and pre-feedback-loop versions of our model. Thirdly, we discarded the set of triples from the test dataset in favor of a list of triples 
and their corresponding instances from the datasets. This extended data-structure allows the evaluation of four strategies to map the task of causal 
triple classification on to instance classification (identification of causal relationship between labeled entities within the scope of the instance). The 
four strategies include, causal instance on one causal triple (classify the instance as containing the causal relationship, if at least one triple is classified 
as causal by our methodology), causal instance on half causal triples (if at least half of the triples extracted from the instance are causal), causal 
instance on maximum causal triples (if more than half of the triples extracted from the instance are causal), and finally, causal instance on all causal 
triples. The results for these four strategies are shown in Table D.13. 
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Pennacchiotti, L. Romano, S. Szpakowicz, Semeval-2010 task 8: Multi-way 
classification of semantic relations between pairs of nominals, in: Proceedings of 
the 5th International Workshop on Semantic Evaluation, Association for 
Computational Linguistics, 2010, pp. 33–38. 

[33] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed 
representations of words and phrases and their compositionality, in: Advances in 
neural information processing systems, 2013, pp. 3111–3119. 

[34] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep 
bidirectional transformers for language understanding, arXiv preprint arXiv: 
1810.04805 (2018). 

[35] D.A. Lindberg, B.L. Humphreys, A.T. McCray, The unified medical language 
system, Methods Inform. Med. 32 (4) (1993) 281. 

[36] O. Bodenreider, The unified medical language system (umls): integrating 
biomedical terminology, Nucl. Acids Res. 32 (suppl_1) (2004) D267–D270. 

[37] S. Bird, Nltk: the natural language toolkit, in: Proceedings of the COLING/ACL 
2006 Interactive Presentation Sessions, 2006, pp. 69–72. 

[38] C.D. Manning, M. Surdeanu, J. Bauer, J.R. Finkel, S. Bethard, D. McClosky, The 
stanford corenlp natural language processing toolkit, in: Proceedings of 52nd 
annual meeting of the association for computational linguistics: system 
demonstrations, 2014, pp. 55–60. 

[39] R. Speer, J. Chin, C. Havasi, ConceptNet 5.5: An open multilingual graph of general 
knowledge, 2017, pp. 4444–4451. URL http://aaai.org/ocs/index.php/AAAI/AAAI 
17/paper/view/14972. 

[40] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, A. Joulin, Advances in pre- 
training distributed word representations, in: Proceedings of the International 
Conference on Language Resources and Evaluation (LREC 2018), 2018. 

[41] N. Reimers, BERT NLI Models, https://github.com/UKPLab/sentence-transform 
ers/blob/master/docs/pretrained-models/nli-models.md [Online; accessed 20- 
April-2020]. 

[42] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C.H. So, J. Kang, Biobert: a pre-trained 
biomedical language representation model for biomedical text mining, 
Bioinformatics (2019). 

[43] N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using siamese bert- 
networks (2019). arXiv:1908.10084. 

[44] D. Chicco, G. Jurman, The advantages of the matthews correlation coefficient 
(mcc) over f1 score and accuracy in binary classification evaluation, BMC Genom. 
21 (1) (2020) 1–13. 

[45] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, H. Pfister, Upset: Visualization of 
intersecting sets, IEEE Trans. Visual Comput. Graphics 20 (12) (2014) 1983–1992. 

[46] M.-H. Hsu, M.-F. Tsai, H.-H. Chen, Query expansion with conceptnet and wordnet: 
An intrinsic comparison, in: Asia Information Retrieval Symposium, Springer, 
2006, pp. 1–13. 

M. Hussain et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S1532-0464(21)00261-6/h0070
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0070
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0100
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0100
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0105
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0105
https://doi.org/10.1145/219717.219748
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0115
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0115
https://doi.org/10.1016/j.compbiomed.2019.103524
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0175
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0175
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0180
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0180
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
https://github.com/UKPLab/sentence-transformers/blob/master/docs/pretrained-models/nli-models.md
https://github.com/UKPLab/sentence-transformers/blob/master/docs/pretrained-models/nli-models.md
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0210
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0210
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0210
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0220
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0220
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0220
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0225
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0225
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0230
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0230
http://refhub.elsevier.com/S1532-0464(21)00261-6/h0230

	A practical approach towards causality mining in clinical text using active transfer learning
	1 Introduction
	2 Method
	2.1 Preprocessing module
	2.2 Model Development (MD) module
	2.2.1 Causality trigger extractor
	2.2.2 Model training/evolution
	2.2.3 Example of model development (training phase)

	2.3 Causality Mining (CM) module
	2.3.1 Candidate triple extractor
	2.3.2 Causal candidate classification
	2.3.3 Triple semantic analyzer

	2.4 Feedback loop

	3 Experimental setup
	3.1 Stage 1 - Causal embedding generation
	3.2 Stage 2 - Threshold selection
	3.3 Stage 3 - Evaluation

	4 Results
	4.1 Stage 2 - Threshold selection
	4.2 Stage 3 - Evaluation
	4.2.1 Single model evaluation
	4.2.2 Multi-model evaluation
	4.2.3 The feedback loop evaluation

	4.3 Comparison with existing studies

	5 Discussion
	6 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Experimental result with Word2Vec embeddings
	Appendix B Experimental result with BERT embeddings
	Appendix C Experimental result with BioBERT embeddings
	Appendix D Comparison with existing studies
	References


