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a b s t r a c t

Knowledge based systems have accomplished remarkable achievements in assisting evidence based
decision making for complex problems. However, machine learning-driven, intelligent systems of today
are dependent on the underlying knowledge model, which is acquired from domain experts, or the
available datasets in a structured or unstructured format. Most of the existing literature utilized a single
modal, while very few have combined multi-modalities (mainly two) for knowledge acquisition. In
order to achieve a strong Artificial Intelligence, multi-domain and multi-modal knowledge acquisition,
and consolidation is required. This paper presents the research work, driving the realization of such
a comprehensive framework, in the field of healthcare. Using area specific, state-of-the-art machine
learning techniques, we first extract knowledge from structured and unstructured data, which is
consolidated with expert knowledge and managed through ripple down rules. Our presented technique
shows an accuracy of 92.05%, which is much higher than single modal deep learning at 78.20%, naive
bayes at 69.70%, logistic regression at 61.20%, expert driven knowledge at 86.02%, and naive knowledge
combination at 70.86%. Thus, through the application of our proposed technique, we provide the
foundations for an accurate and evolvable knowledge-base, that can greatly enhance decision making
in the healthcare domain.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The availability of healthcare data and advancement in com-
uting technologies have enabled access to knowledge from a
lethora of sources. Artificial intelligence plays an important role
n knowledge acquisition and intelligent decision making. How-
ver, knowledge acquired from single modality produce limited
erspective and quality compare to multi-modalities [1,2]. This
imitation also affects the state of the art machine learning ap-
roaches, which mimic typical information processing flows, by
reating a set of interpretable rules, which conform to some initial
onditions and restrictions. The created rules are then used to
onvert the data (such as user input or sensory feedback) into
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information (such as predicted labels) and extract knowledge
(which can be fed back to the system, as in case of active learn-
ing techniques) from them. However, in order to break these
shackles, it is necessary to look at various perspectives and utilize
scientific ideas to deduce the true form of the data. Such an ap-
proach would then remove the adhoc restrictions that prevent the
usage of real world data beyond information and basic knowledge
to deep knowledge extraction and wisdom creation.

Consider, as an example the previous paragraph; Looking at
each of the sentences in the paragraph independently can create
confusion for the reader. However, in its true form, and within
the context of this paper, this paragraph enhances the traditional
definition of knowledge, from ‘‘justifiable true belief based on the
subject acquired from education or experience of a person’’ [3]
to ‘‘justifiable true belief based on the subject acquired from
education and experiences of many’’. Over time, and through the
application of many feedback loops, such knowledge can become
trust-worthy to create Artificial Wisdom, which will in-turn form
the basis for a strong Artificial Intelligence.

Such an AI would require the enhancement of both depth
and breadth of knowledge sources, producing comprehensive
algorithms for handling multiple domains and scenarios. Many
state-of-the-art machine learning software is now focused on
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esolving the breadth of knowledge sources by producing generic
odels, which are able to give good results in specific cases.
ecent examples such as BERT [4] and GPT-3 [5] have proved
he applicability of these approaches in the Natural Language
rocessing tasks. Depth of knowledge bases can be enhanced
hrough the application of knowledge consolidation.

Knowledge consolidation is a fusioning process by which
nowledge from various sources can be merged to provide a
onsistent and inclusive decision making workflow, for improving
he quality and scope of results. This process takes into account
he heterogeneity of data sources, resolves their conflicts, and
econciles the discovered value into true values for ensuring
onsistency [6] and durability [7] of the knowledge bases. In this
ay, the depth of the knowledge base can be enhanced, providing
cache for knowledge and automated wisdom.
In the domain of healthcare, while the creation of Hospital

nformation Management Systems (HMIS), Clinical Decision Sup-
ort Systems (CDSS), and other tools have seen massive improve-
ents, the creation of an Artificial Medical Intelligence (AMI) is
till far away. Literature points to a multitude of reasons be-
ind this delay, including the heterogeneity of data sources [8],
ifficulty in expanding current solutions [9], the necessity for
ecision transparency [10], privacy of patient data [11], and many
thers. Resultantly, existing healthcare solutions suffer from a
ack of quality and applicability, unless substantial effort, in terms
f expert’s time and energy is spent on identifying and creat-
ng knowledge [12]. Even then, an expert-only sourced solution
ould be subjectively biased based on the expert’s limited expe-
iences and preferences [13]. Additionally, there is no guarantee
f the solution getting long term acceptance [14], unless the
nowledge base is self-maintainable and evolve-able.
Alternatively, data driven decision making provides a low

uality but evolvable knowledge source [2]. However, due to
he very stringent nature of decision making in healthcare, data
riven solutions must be merged with expert driven solutions
at least to the extent of verification and validation). The re-
ationship between levels of intelligence and the decision risk
ssociated with it is shown in Fig. 1 [15]. As we move from
ata to wisdom, while the possible options for reaching a con-
lusion decrease, the confidence of decision making increases.
ith enough information processing and reusability of estab-

ished insights, wisdom allows the computing system to make
aster and accurate decisions. Therefore, this process is strictly
ependent on how well the raw data has been processed to
ecome information, information processed into knowledge, and
isdom determined through knowledge. Since computing has
lready witnessed great progress in the first two levels (data →

nformation and information → knowledge), it is imperative that
he focus should now shift towards the third level (knowledge

wisdom). As with intelligence, there is no clear and agreed
pon definition of the wisdom. Generally its ‘‘the right use of
nowledge’’ [16]. Baltes et al. [17] noted that ‘‘Wisdom is asso-
iated with good judgment and actions that contribute to living
ell’’. For this study, we considered wisdom as the ability to
etermine a preferable recommendation among all valid results
sing Ripple Down Rules (RDR) methodology as explained in
ection 3. In the absence of this assistive, wisdom based decision
aking tool, the physicians utilize traditional methods stemming

rom 19th century specifications, which requires a very long
iagnosis process, which is dependent on the experience and
ntuition of the primary physician or their close peers [18]. A data
riven decision making solution, (like a recent study for detecting
iabetic retinopathy using a deep learning algorithm [19]) has
lready started to outperform clinicians.
In order to build wisdom from knowledge, the first step is

o design, create, and evaluate a framework for knowledge con-
olidation through the use of multi-modal sources and novel
2

algorithms. The framework should employ state-of-the-art tech-
niques for acquiring knowledge from multi-model data sources
including image, structured, unstructured, and expert heuristic
for knowledge acquisition, and consolidate the acquired knowl-
edge to a single easy-to-use and maintainable knowledge model.
In this paper, we present such a framework, which acquires
rules from both expert and data, consolidates them using a novel
algorithm, and provides maintenance and evolution opportunities
through the use of ripple down rules (RDR). The applications of
the framework is evaluated in the domain of diabetes diagnosis.
The final result produced by this framework is a high quality,
accurate, and transparent knowledge base, which can be used for
identifying insights and create human like artificial wisdom. The
novel contribution of our proposed research work is twofold.

• Firstly, we designed an integrated architecture of multi-
modal knowledge acquisition including structured, unstruc-
tured, legacy, and expert sources and their consolidation.

• Secondly, the knowledge acquired through the previous pro-
cess has been consolidated into a uniform knowledge base
using RDR with a novel implementation strategy, which is
presented in Section 4.2.

The detailed source code1 of knowledge acquisition,
consolidation, and inferencing are being made available publicly
to assist interested readers in reproducing the system and can
re-purpose it to other related domains and applications. The
rest of the paper is structured as follows. Section 2 provides
related work, Section 3 describes the detail about RDR knowledge
representation, inferencing and evolution. Section 4 explains the
detailed methodology used for knowledge acquisition and con-
solidation, followed by results achieved and their significant in
Section 5. Finally, Section 6 concludes the paper.

2. Related work

The digital healthcare system contains a plethora of loosely
coupled data and information management systems. Systems,
such as HMIS, Medical Internet of Things (IoT) related applica-
tions, Physiological sensors, and Medical Picture Archiving and
Communication System (PACS) have been engineered to provide
largely foundational support to managing the physician and pa-
tient encounters. Patients Data, clinical practice guidelines, online
published papers, and clinical notes, are also used to acquire
clinical knowledge and provide decision making support for the
medical experts. The clinical knowledge can be acquired from
patients data (data driven), domain experts (expert driven) or
the combination of both (hybridized/consolidated knowledge).
Montani et al. [1] studied the prevalence of data driven AI in CDSS
focusing on published material between 2017–2018. The authors
have evaluated 75 articles, where 65% (49 studies) of all the
studies were focused on data-driven AI, 20% were purely expert
driven while 6% were hybrid approaches. The study concluded
that the hybrid systems which consolidate/fusion expert-driven
approach with data-driven, performed better as compared to
other approaches. A plenty of knowledge hybridization systems
are available in may domains now, in healthcare, transparency
of knowledge is still a major requirement [10]. As a result, most
current systems forego knowledge consolidation due to its com-
plexity, maintenance problems and difficult verification. How-
ever, these systems provide the foundation for initiating and/or
progressing a knowledge consolidation model and are necessary
to ve reviewed before moving ahead. A summary of some of
the existing approaches, their domain, fusion scope, features and
limitations are shown in Table 1.

1 https://github.com/Musarratpcr/KnowledgeConsolidation.

https://github.com/Musarratpcr/KnowledgeConsolidation
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Fig. 1. Decision risk associated with DIKW pyramid [15].
able 1
ummary of related studies.
Study Domain Fusion scope Key techniques Limitations

S.L. Ting et al.
[20]

Medical prescription Case base reasoning + Bayesian
reasoning

• Similar patients identification using
case based reasoning (CBR)
• Gather physicians experience in
prescribing drugs
• Produces the best prescription
recommendations

Utilizes two separately generated
recommendations to produce the
final recommendation

M. Berkan
et al. [21]

Lung cancer care Rules based + Probabilistic decision
support

• Similar patients identification using
CBR
• Physicians’ experience identification
using Bayesian reasoning
• Final prescription based on
commonalities between the identified
recommendation

The system generates drug
recommendation using the results of
two independent reasoning
techniques

N larburu et al.
[22]

Breast cancer Guidelines knowledge + Experts
knowledge

• Extracts breast cancer-related
knowledge from CPGs
• Convert experts decision for
successfully treated patients into
production rules
• Augment CPG knowledge with
expert knowledge taken

The system acquires and combines
knowledge from two sources.

Ying Shen et al.
[23]

Antibiotics
prescription

Combined various disease ontologies
into single ontology

• Generated a consolidated ontology
from infectious diseases and
antibiotic therapy ontologies.
• Infers potential infectious disease
from patient data
• Proposes a relevant antibiotic
therapy

Ontology maintenance and evolution
is a well known problem

Soufi et al. [24] Triage management Rule based + Fuzzy logic • Categories emergency severity
index using a combination of rule
based and fuzzy logic.

• Knowledge acquisition from two
sources
• Rule based approach used for
emergency severity index and fuzzy
logic for triage assessment
As mentioned earlier, the results achieved by hybrid CDSS are
etter than single model [1]. However, most of the existing sys-
ems either focused on data-driven or expert-driven knowledge
or CDSS. There are very few systems that utilize hybrid and
onsolidated knowledge mainly because of its complexities and
ifficulties in multi-model knowledge acquisition and consolida-
ion. As shown in Table 1, most of the existing hybrid knowledge
ase studies generate multi-step recommendations followed by
final recommendation. In the multi-step recommendations, the

nitial results are produced independently, which may not be as
ffective as in the case of knowledge consolidation. In knowledge
3

consolidation, multi-model knowledge is being processed to pro-
duce a single knowledge model and generate more appropriate
recommendations in a single step.

On the other hand, some of the studies shown in Table 1
have consolidated expert knowledge with data-driven knowledge
and produce promising results. The performance of the system
can be boosted by adding diverse modalities and state-of-the-art
knowledge extraction techniques. Therefore, this study focuses
on extraction knowledge from various modalities including image
data such as Fundus images, x-ray, structured data such as EMR,
EHR, unstructured data such as CPGs, clinical notes, legacy knowl-
edge in the form of production rules, and expert knowledge and
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onsolidate it to a single easy to use and maintainable knowledge
odel (RDR).

. Ripple Down Rules (RDR)

Knowledge bases provide automated systems with a rich cache
f memories and patterns, which are essential for making intel-
igent decisions. When more efforts are put into building and
volving a knowledge base from rich data sources or experts,
hen it improves the final decision output. However, the problems
f knowledge transparency, maintenance, validation, verification,
nd consolidation, are just some of the major hindrances to the
im of building a medical AI [10]. Ripple down rules provides a
nowledge acquisition and maintenance model based on the in-
remental modeling approach [25]. As mentioned in [26], the tra-
itional knowledge base systems (KBS) mainly focused on knowl-
dge acquisition, while ignored knowledge maintenance and its
ontextual representation. As said ‘‘rules are made to be bro-
en’’ [26], therefore, RDR adopts incremental knowledge acqui-
ition methodology [26]. It combines rule-based and case-based
easoning and unifies knowledge acquisition with knowledge
aintenance, maintains the context, and converts the phrase into

‘rules are made to be corrected’’ [26]. It uses a failure driven
pproach, where knowledge is contextually patched to the rule
hat produced incorrect result for the case in hand. The case in
and is attached to new patched rule as cornerstone case, the case
hat cause the addition of the new rule to the knowledge base.
DR stores the acquired knowledge as a finite binary tree [25,27],
here each node represents a rule of the form IF condition(s)
HEN conclusion and can be expended by two distinct branches
alled except and if not [28]. An example of the RDR tree is shown
n Fig. 2.

Starting from the initial situation where nothing is known,
DR defines a default rule (Node 1), which is always satisfied.
ormally, the default rule represents the most common decision
f the domain. The new rules will be added as child rule (ex-
ept branch) on each incorrect result produced by a particular
ule (node). The RDR follows the inferencing order from top to
ottom and left to right during recommendation generation and
nowledge evolution. The RDR inference engine starts from the
op node (Node 1) and tests whether rule conditions are satisfied
r not. If satisfied, it then evaluates the child nodes and will
ontinue until there is no child node or no satisfied child node
f the last satisfied node. The final result will be produced from
he last satisfied rule. While, the new rule will be added to the
xcept branch of the final matched rule during the knowledge
volution.
The example of inferencing order during recommendation and

nowledge evolution is shown in Fig. 2. let suppose the knowl-
dge model in Fig. 2 contains a sample of five nodes (from Node
to Node 5), initially. A new case with conditions C2, C3, C9

nd C10 arrive to the system. Based on the current knowledge
the RDR inference engine will produce ‘‘Class 2’’ as the final
recommendation because the last satisfied rule is Node 3 of the
model. However, the domain expert disagrees with this system
generated recommendation, citing the reason that due to con-
ditions C9, and C10 the final recommendation should be ‘‘Class
’’ using his intelligence and wisdom. Therefore, the system will
volve the knowledge model and will add a new rule IF (C9 and
10) THEN ‘‘Class 5’’ at ‘‘EXCEPT’’ branch of the Node 3. However
s there is already an ‘‘EXCEPT’’ branch (Node 5) of the rule Node
therefore, the new rule (Node 6) will be added at the ‘‘IF NOT’’
ranch of the Node 5. The input case (C2, C3, C9, C10) will be
ppended as cornerstone case for the newly added rule Node 6.
he same process will continue on each incorrect result, evolving
he knowledge, and improving the model performance in terms
4

f accuracy, over time. In this way, the model incorporates human
ntelligence and wisdom and reflects it in making human-like
ntelligent, and wise decisions. The RDR knowledge acquisition
nd inferencing process flow can be found here [26].

. Materials and methods

The presented framework, as shown in Fig. 3, has three main
odules, knowledge acquisition, knowledge consolidation, and
utput interfaces.

.1. Knowledge acquisition

The knowledge acquisition module caters for variety in health-
are systems by reusing existing tools for acquiring knowledge
rom structured, unstructured, expert based, and legacy sources.
summary of all the knowledge acquisition techniques used

n the study is given in Table 2. Structured data such as Elec-
ronic Medical Records (EMR) are an abundant source of patient
nformation that typically contain their demographics, lab test
esults, vital signs, diagnosed diseases, treatments, and follow up
lans. Using advanced information processing technologies such
s semantic query processing and machine learning, this data can
roduce some meaningful knowledge. In order to achieve this, we
ave to first look at the format of elements in the structured data.
ormally, structure data contains disease related images, which
an clarify disease status. Therefore, first we utilize deep learning
or identifying the labels corresponding to each image and its
ssociated feature map. Deep learning techniques have already
roven applications of better interpretation, classification, and
attern identification in clinical images [29–31]. These can also be
sed to extract valuable features, insights, and labels for an im-
ge with human-like intelligence. We utilize the Skip-connection
eep Network technique based on a pretrained Convolution Neu-
al Network (CNN) [32] to extract the classification labels and
eatures map of each image. The labels are then augmented into
he EMR data, which is analyzed using our previous work on
ost-sensitive ensemble feature ranking and automatic threshold
election methodology [33]. This technique is applied on the
erialized form (flat comma separated values, CSV based file with
eys and attributes forming the header and values in cells) of
he augmented EMR data. Then we select all attribute names as
eatures of the data and allow the expert to associate a cost to
ach or any feature, optionally. Then we apply feature scoring
sing tree based modeling approaches and ensemble learning to
dentify cumulative relevance score based on its given cost, if any,
or each feature. We then identify the feature selection threshold,
ynamically, to find most relevant features. Using this set of rel-
vant features, we create a cumulative set of interpretable rules
hat have transparent decision making logic [34,35] obtained
rom various other white box techniques such as C4.5, Random
orest, Ripper, CART, and PART. These techniques can be further
nhanced or specialized based on expert’s intuition. An abstract
verview of knowledge acquisition and consolidation is shown in
ig. 4. The final output of the service is a set of production rules,
hich are a restructured form (IF conditions THEN Conclusion)

of the interpretable rules.
Unstructured and semi-structured data such as clinical notes

and standard practice guidelines are a second source for the
knowledge acquisition module. Using an active transfer learning
based natural language processing methodology, we identify the
conditions and action parts of the clinical text that are used to
extract knowledge rules. The technique used to convert descrip-
tive text into rules and the addition of Active Transfer learning is
a part of our previous work, presented in [36] and [37], respec-
tively. As shown in Fig. 5, the process starts with well-known
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Fig. 2. An example of ripple down rules knowledge tree.
Fig. 3. Knowledge extraction and consolidation workflow.
Fig. 4. Structured knowledge acquisition process flow.
ext preprocessing of clinical corpus, which identifies the sen-
ences, words, and parts of speech in the text. We then identify
he relevant qualifier in each sentence by calculating its weight.
his is calculated using the average weight by correlation, Gini
ndex, Information Gain, and Information Gain Ratio. The top 20
ualifiers are then extracted in the sentence, which are expanded
sing semantic and syntactic techniques [36]. Then the direction
f the qualifier is determined to check the relationship, if any,
etween the conditions and action parts of the sentence. At the
ame time, we use the pre-processed text to also identify the
5

clinical and wellness terms of each participating sentence. Each
term once identified through the Unified Medical Language Sys-
tem (UMLS) API [38], is augmented with its associated semantic
type, also queried through UMLS. The semantic type helps to
identify the category of the term, such as ‘‘Sign or Symptom’’,
‘‘Acquired Abnormality’’, ‘‘Clinical Drug’’, and others. These cat-
egories are used to classify each term as a condition or an action
(consequence). The conditions are then used to identify a prob-
able triple representation of each condition, by using the form

<Term, Qualifier, Value>. These are converted into an embedding
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able 2
summary of knowledge acquisitions methods used in proposed study.
Knowledge acquisition
method

Input Key techniques Output Limitations

Image based knowledge
acquisition

Fudus image EMR
data

Trilogy of skip-connection deep
networks

Diabetic retinopathy risk
progression

• Requires full set of pre-specified
fundus images and EMR-based
attributes
• Retinal modalities such as
Fluorescein Angiography (FA) and
Optical Coherence Tomography
Angiography (OCTA) are not
considered.

Structured knowledge
acquisition

EMR data • Cost based features selection
• Ensemble modeling on white box
classification models

Productions rules • Cost is an external factor which
may not be available. Therefore, a
sudo cost needs to be assigned to
features.
• The automatic threshold selection,
selects a high threshold value which
filtered out most of the features.

Unstructured knowledge
acquisition

Clinical text
document

• Transfer learning for concept
expansion and similarity
identification
• Active learning for knowledge base
enhancement

Productions rules • The rules extraction is heavily
dependent on concept identification.
• The methodology process document
sentence wise while rule conditions
and corresponding action may be
described in more than one sentence.

Legacy knowledge
controller

Production rules • SNOMED CT and vMR for concept
alignment to domain clinical model
(DCM) and MLM representation
• Semantic reconciliation model
(SRM) for concept mapping

Productions rules The DCM used for mapping local
concepts with standard terminologies
is a manual task and required
tremendous efforts and time.

Experts’ knowledge
controller

– Mind map and Iterative decision tree
(IDT) base knowledge acquisition

Productions rules • The expert base knowledge
acquisition is dependent on experts
experience and heuristics, which may
various between various experts.
• The expert knowledge may not be
compliant with standard medical
procedures.
e
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vector using transfer learning technique applied on a pre-trained
BERT [4] generic model. The newly generated embedding vector is
then matching with our pre-trained triple model, which contains
a large set of valid clinical causal relationships. The results of this
triple matching then determine if we should use the conditions
and actions to create a rule of the form <IF condition THEN
ction>. From the set of all possible rules, we finally amalgamate
he results by removing duplicates and combining rules, where
he actions are exactly the same. The final filtered set of rules
re then reformatted into interpretable rules and stored in a
epository, temporarily for further processing.

The third source of knowledge is acquired by interfacing
ith legacy knowledge sources and providing an interoperability

ramework for it. The legacy HMIS has diverse schemas for pre-
enting their data and knowledge models that cause hindrance
n knowledge interoperability. Here, we re-purpose our previous
ork [39] to map concepts of the legacy knowledge to our target
oncepts for consolidation. The knowledge interoperability is
chieved via a semantic reconciliation model (SRM) that gener-
tes maps between legacy concepts via domain clinical model
DCM), and decision support standards such as virtual medical
ecord (vMR), and SNOMED CT. The SRM enables us to acquire,
nderstand and supplement the legacy knowledge bases into
ur consolidated knowledge model. The SRM model enables us
or inter (legacy) and intra (structure, unstructured, and expert)
nowledge base communication to achieve the interoperability.
Finally, we provide the domain experts with a smart and

ser-friendly interface for creating knowledge. The Intelligent
nowledge Authoring Tool (IKAT) [39], provides a web based
nterface, where the medical expert can add the various con-
itions and a conclusion of a rule, using intelli-sense based on
linical concepts. Leveraging the authors’ expertise in the field of
 c

6

ndocrinology, 14 rules, based on 12 attributes (further explained
n Section 5.1.1 as Seoul Saint Mary-Data Set; SSM-DS), and 4
onclusions were produced. These rules combine both theoretical
nowledge and practical experience of the physicians, work-
ng actively to treat diabetic patients. Using an iterative process
hese rules have undergone numerous refinements, eventually
roducing the workflow diagram as shown in Fig. 6.
The same interface is also used for verification and validation

f the rules before they are added to RDR knowledge base. This
s further explained in the following section.

.2. Knowledge consolidation

State-of-the-art solutions based on multi-modal knowledge
cquisition have found acceptance in the healthcare domain but
he accuracy of these independent (using only one modality) or
n some cases partially dependent (using a combination of two to
hree modalities) solutions is not at par with the high standards
f healthcare service delivery in the real world [40]. Knowledge
onsolidation can resolve this problem with the help of RDR,
hich provides a well-managed and evolvable knowledge base.
owever, the acquired knowledge in the form of interpretable
ules has a different format from the one required by RDR as
nput. These rules can contain inequalities (less than, greater than,
ot equal to), intervals (closed or open), and other indicators,
hich provides a general requirement. However, as explained in
ection 3, RDR requires cornerstone case for each rule. Therefore,
e used the Virtual Case Factory to generate virtual case related
o each rule.

A concrete example of the complete knowledge consolidation
orkflow is shown in Fig. 7. The various services involved in this
rocess are explained next, with a focus on describing our novel

ontributions.
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Fig. 5. Unstructured knowledge acquisition process flow.
Fig. 6. Physician’s knowledge workflow diagram for diabetes.
The knowledge controller acts as a mediator between knowl-
dge acquisition and knowledge consolidation modules. while the
irtual Case Factory (VCF) transforms an interpretable rule to a
ase or instance for RDR. Based on the factory software design
attern, the VCF identifies the minimum and maximum values
elated to each conditional part of the rule. An overview of these
onversions is shown in Table 3. In particular, the inequalities
nd the intervals are converted into their nearest, minimum, valid
qualities. As an example, the rule shown in Eq. (1) is converted
nto the case as shown in Eq. (2). The inference engine evaluates
he generated case of each rule with the underlying knowledge
odal and produces a recommendation. The human expert eval-
ates the system generated recommendation, and evolve the
nowledge via the knowledge evolution engine for unsatisfied
7

results.

∀ (FPG >= 126 & Symptom = Yes & previousFPG > 125)

→ DiabetesMellitus (1)

[FPG = 126, Symptom = Yes, previousFPG = 126] (2)

The created rules are then stored in the Knowledge Base (KB)
to support inference and evolution. In traditional RDR model,
rules are stored based on their acquisition, with nodes at lower
depth providing general recommendations and those at higher
depth providing specific recommendations. While this implemen-
tation is correct, but it does not achieve knowledge consolidation.
Instead, we updated the traditional RDR evolution model with
the algorithm shown in Algorithm 1, which also changes the
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able 3
verview of rule conditions conversion by virtual case factory.
Operator Conversion Example

= – Rule: IF Age = 30 THEN No Diabetes
Case: [Age = 30]

> Float: Increase by 0.1
Numeric: Increase by 1

Rule: IF Age > 60 AND HbA1c > 5.6
THEN Prediabetes
Case: [Age = 61, HbA1c = 5.7]

≥ Drop > Rule: IF Age ≥ 30 AND HbA1c ≥ 5.6
THEN Prediabetes
Case: [Age = 30, HbA1c = 5.6]

< Float: Decrease by 0.1
Numeric: Decrease by 1

Rule: IF Age < 60 AND HbA1c < 5.6
THEN No Diabetes
Case: [Age = 59, HbA1c = 5.5]

≤ Drop < Rule Age ≤ 60 AND HbA1c ≤ 5.6 THEN
No Diabetes
Case: [Age = 60, HbA1c = 5.6]

shape of the resulting RDR tree. The algorithm starts by first
creating a ChainedHash of generated rules (genRule) coming from
the knowledge acquisition module. This process, adds the hash
of conclusions from the genRule into the keys of the ‘‘recom-
mendations’’ (ChainedHash) data structure; the values of which
hold a one dimensional linked list of all genRules, having the
same conclusion. A triple loop then uses the conclusion value of
the ‘‘recommendations’’ data structure, and for each rule in its
associated linked list, looks up the conclusion value in the KB.
Through this process, the algorithm identifies all sub trees, which
hold the selected conclusion and the currently iterated genRule
is attached as a leaf node to these sub trees. Additionally, the
genRule is also added as a leaf to the default node of the KB, which
is the root node. In this manner, this extended implementation of
RDR for our consolidated KB holdsm rules with similar conclusion
in m subtrees, where the tree in the first subtree hold m children,
the tree in the second subtree hold m−1 children, and so on, until
he mth subtree holds only 1 child (leaf) node. For j conditions
hen the tree will have m ∗ j nodes at depth 0. The resulting
tree is spatially bigger than the traditional RDR but holds consoli-
dated rules with the highest encapsulation of probable conditions
producing a conclusion on the left and lower on the right.

Using the traditional RDR inference input case from Eq. (3) will
select the rule as highlighted in Fig. 8.

[FPG = 90, Symptom = Yes, PPG = 126] (3)

The consolidated knowledge-based system assists healthcare
experts in making appropriate clinical decisions. The quality of
8

Algorithm 1 Knowledge Consolidation Algorithm
Input: RuleSet, KB
Output: KB

1: ChainedHash recommendations;
2: for genRule in ruleSet do:
3: if !recommendations.hasKey(genRule.conclusion) then:
4: new recommendations[genRule.conclusion]
5: end if
6: recommendations[genRule.conclusion].add(genRule)
7: end for
8: for genRuleConclusion in recommendations do:
9: for genRule in recommendations[genRuleConclusion] do:

10: ArrayList conclusionGroupsInKB
11: for rdrRuleRef in KB do:
12: if rdrRuleRef.conclusion==genRuleConclusion then:
3: conclusionGroupsInKB.add(rdrRuleRef)
4: end if
5: end for
6: end for
7: for rdrRuleRef in conclusionGroupsInKB do:
8: rdrRuleRef.addLeaf(genRule)
9: end for
0: end for
1: KB.getRoot().addLeaf(genRule)
2: return KB

the generated recommendation is greatly affected by the quantity
and quality of the underlay knowledge model. Our proposed
system hides technical details and complexity from healthcare
experts by providing easy-to-use interfaces. The involvement of
experts is limited to knowledge validation and verification while
the system is in use at real practice. During real time usage of the
system, if experts found any inappropriate recommendation, they
need to provide correct recommendation along with key features
of the patient case that caused the update in the recommenda-
tion. By providing these two pieces of information, the system
implicitly evolves the underlying knowledge model to reflect the
change for further usage.

4.3. Output interfaces

The output interfaces for our knowledge consolidated sys-
tem includes a custom Electronic Health Record (EHR) man-
agement system, CDSS, and a Clinical Practice tool, provided
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Fig. 8. Example of RDR inferencing for input case shown in Eq. (3) (selected path and rule is highlighted in red).
hrough various services such as Patient Encounter Management
PEM), Inference, knowledge visualization, and verification and
alidation.
PEM provides the interfaces for collecting demographic and

linical data relating to a patient, during their encounter with a
hysician. Through this system, we collects the necessary data
or managing EHRs. In our prototype implementation the EHR
s stored in a relational database. Based on the recorded patient
ata in PEM, we apply RDR inferencing on our KB and provide
he most relevant recommendation. In case the physician agrees
ith the recommendation, it is stored in the EHR DB. On the
ther hand, if the generated recommendation is not correct, the
erification and validation services start up, which following the
bove mentioned Knowledge Evolution process can create new
ules or update existing ones in the KB. The same KB is used to
reate read only scenarios, whereby the user is presented with a
et of attributes, corresponding to a randomly selected KB rule.
he user can then use this interface to either provide the values,
eading a particular recommendation, or provide a recommenda-
ion, against randomly allocated values for the attributes, which
re evaluated against correct results. Through this process, the
ser can view the correct attribute values and recommendations
n the form of automatically generated visual trees (as shown in
ig. 8) but cannot update the existing rules. Further details of the
utput interfaces are beyond the scope of this manuscript and
ill be presented in the future.

. Results and discussion

.1. Structured knowledge acquisition

.1.1. Structured dataset description
A thorough evaluation of the presented framework necessi-

ates the application of a multipronged approach for data acquisi-
ion, rule formulation, and comprehensive evaluation. Following
his aim, we have utilized three datasets to cover the breadth of
nowledge acquisition. The first dataset, henceforth referred as
eoul St. Mary’s Dataset (SSM-DS), corresponds to the real patient
ata, collected from past records of Diabetes Mellitus (DM) eval-
ations performed at The Catholic University of Korea, Seoul St.
ary’s Hospital,2 South Korea. This dataset has been anonymized

at source and includes clinical test results for current and past
values of Fasting Plasma Glucose (FPG), Hemoglobin A1C (HbA1c),
Oral Glucose Tolerance Test (OGTT), Postprandial Plasma Glucose
(PPG), Sign and Symptoms (Sx), and Random Plasma Glucose
(RPG). Finally, it contains a status of DM recommendation such as
qualified as Diabetes, Pre-diabetes, and No Diabetes. The second
dataset, Pima Indian Diabetes dataset (PID-DS) [41] is a publicly
available corpus of DM diagnostics performed at the National

2 https://www.cmcseoul.or.kr/en.common.main.main.sp.
9

Institute of Diabetes and Digestive and Kidney Diseases. This
dataset contains 768 evaluations performed on female patients
of Pima Indian heritage. It uses general wellness terms to identify
the correlation between DM and other factors, including pregnan-
cies, Glucose, Blood Pressure (BP), Skin Thickness, Insulin, BMI,
Diabetes Pedigree Function (corresponding to the family history
of DM), Age, and Outcome (state of diabetes corresponding to yes
or no). For the third dataset, the Coronary heart disease dataset
(CHD-DS) we have switched the domain to include coronary heart
disease (CHD) patient data publicly available on Kaggle [42]. The
CHD-DS consists of 462 instances evaluated for CHD diagnosis.
The factor considered for taking CHD diagnosis decisions includes
patients systolic blood pressure (SBP), tobacco use per year in
kilogram, low density lipoprotein (ldl), adiposity, family history,
type A personality score (typea), obesity measure via body mass
index, alcohol usage, and age of the patient. The detail of the
datasets is shown in Table 4

5.1.2. Dataset correlation analysis
Datasets correlation analysis is used to understand the rela-

tionship among various attributes and assist in predicting one
attribute from another. A comparative view of the various at-
tributes and their correlation analysis, within these three datasets
are shown in Fig. 9. In SSM-DS, an increased correlation was
observed between recommendations and previous values of PPG,
HbA1c, and FPG. On the other hand, current evaluation of RPG has
a higher impact of 0.49. OGTT shows very small correlation to the
factor of −0.07 for previous results and −0.01 for current ones.
The highest correlation was observed between previous values of
PPG and the recommendation. This indicates that at this stage
(before the application of SKA process) and with a threshold of
0.7, DM recommendation can be based on previous PPG values
followed by previous HbA1c results.

For PID-DS, the correlation heatmap shows factors such as BP
and Skin Thickness having the lowest impact at 0.07, while the
highest impact is observed between outcomes and Glucose at
0.47. Therefore, intuitive analysis with a threshold value at 0.7,
would not select any attribute from this dataset. Yet, it is clear
from the dataset, that these variables have been used by medical
experts to evaluate DM status. While in CHD-DS, age has shown
the highest correction of 0.37 with CHD, and the lowest correction
of 0.10 was observed for typea, and obesity factors. Attributes that
have high correlation are more important than others and the
knowledge extraction should consider these attributes compare
to attributes having less correlation.

5.1.3. Knowledge extraction
In order to acquire knowledge from structured data, our

methodology, as presented in Section 4.1, utilizes tree and list
based decision algorithms such as Decision Trees, Random For-
est, PART, C4.5, CART, and Ripper. An overview of the accu-
racy achieved by independent application of these algorithms is

shown in Fig. 10.

https://www.cmcseoul.or.kr/en.common.main.main.sp


M. Hussain, F.A. Satti, S.I. Ali et al. Knowledge-Based Systems 234 (2021) 107578

T
D

e
s
F
t
D
C
p
P
p
d
c
s
t
r
p
p

able 4
etails of the datasets.
Datasets Total features Class labels Instance ratio Total instances

Seoul St. Mary’s (SSM-DS) 12 4 (No DM, Recheck, Pre DM, DM) 63:49:60:130 302
Pima Indian Diabetes (PID-DS) 8 2 (Yes, No) 268:500 768
Coronary Heart Disease (CHD-DS) 9 2 (0 = No 1 = Yes) 302:160 462
Fig. 9. Datasets correlation analysis.
Fig. 10. Accuracy of executing algorithms for structured knowledge acquisition.
On the SSM-DS dataset, shown in Fig. 10(a), Random For-
st, produces the highest accuracy at 89.04%, followed by Deci-
ion Tree with an accuracy of 83.72%. For the PID-DS, shown in
ig. 10(b), the resultant accuracy of all algorithms are very close
o each other, with a 2.6 percentage point difference between
ecision Tree (at 71.61%), and C4.5 (at 74.27%). Similarly, the
HD-DS results, shown in Fig. 10(c), the maximum percentage
oint difference of 6.47% is evident between Decision Tree and
ART. While these results are far from the state-of-the-art, inde-
endently they can only moderately identify the set of implicit
ata rules, which can classify each of these datasets with 10-fold
ross validation. It is also pertinent to note that algorithm families
uch as deep learning and probabilistic can be utilized to improve
his learning accuracy but they lack the transparency, which is
equired for this research work. In fact, the knowledge acquisition
rocess is logically different from the traditional classification

rocess in terms of feature selection and model generation. In

10
order to support the classification process, most interpretable
machine learning algorithms rely on the compactness of the
model, with the shortest paths required to go from source (data)
to target (labels/classes/information). As a result, the decision
making process in identifying the individual total functions for
producing such path ways ignores the alternatives and reduces
the information available for the decision maker to extract im-
portant information. Ensemble learning can provide a solution to
this problem by expanding the set of possible pathways produced
from various algorithms and then limiting them based on some
sort of voting strategy, which in our case is majority based.
The expanded set of pathways provides a better cover for the
rules and their alternatives, which are essential for producing
knowledge.

The results for majority voting based ensemble learning, em-
ploying Decision Trees, Random Forest, PART, C4.5, CART, and

Ripper, is shown in Fig. 11. The SSM-DS, showed the correct
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classification at 89%, which is same as the best case achieved for
independent application of Random Forest. The PID-DS, achieved
an accuracy of 75%, while CHD-DS achieved 71%. The results of
PID-DS, shown in Fig. 11(b), are little improved from the highest
accuracy achieved by the independent application of C4.5, while
CHD-DS, shown in Fig. 11(c), is dropped to 70% against the best
accuracy achieved by PART at 71.44%. However, as discussed
above, the impact of these classification results is somewhat
limited and of particular importance to this research work, is the
number and precision of the generated rules.

5.2. Unstructured knowledge acquisition

5.2.1. Dataset description
In order to evaluate the unstructured knowledge acquisition

process, unstructured textual corpus in the form CPGs were used.
We selected three recent CPGs which provide a state-of-the-art
scaffolding for augmenting the theoretical and practical profi-
ciency of Endocrinologists. In guideline [43] (G1), the American
Diabetes Association (ADA), provides the characteristics and ap-
plicable methodologies for diagnosing and managing diabetic
patients. In guideline [44] (G2) the National Institute for Health
and Care Excellence (NICE), provides a detailed quality standard
for diabetes management, focusing primarily on the prevention,
education, and treatment of type 1 and 2 diabetes. Finally, guide-
line [45] (G3), the Scottish Intercollegiate Guidelines Network
(SIGN), provided a detailed guideline for not only diagnosing and
managing type 1 and 2 diabetic patients, but also comorbidities,
such as kidney diseases, cardiovascular disease, and pregnancy.

5.2.2. Knowledge extraction
The clinical corpus described above was fed to our unstruc-

tured knowledge acquisition process flow to extract knowledge in
the form of interpretable rules. Using the trained model from [37]
with 72,359 total triples, we evaluated each guideline in our cor-
pus to extract <Noun, Verb, Noun> triples, after POS tagging each
sentence. As shown in Table 5, from G1, the total 1731 triples
were extracted, while G2 produced 1142 triples, and G3 10,226.
Unique triples from G1 are 1602, from G2 are 948, and from G3
8872, were produced. This was followed by a lookup from UMLS
to further remove those triples, where any of the Noun phrase
is not recognized. The reduced set of triples produced then are
marked as medical triples, where by, the associated Noun phrases
are present in UMLS as a concept. In this step, G1 triples were
reduced to 1267, G2 to 831, and G3 to 7765. Finally, the total
causal triples were evaluated after comparing these embeddings
with our trained model, causing the total causal triples by G1
to further reduced to 541, by G2 to 320, and by G3 to 3215.
These causal triples are then converted into interpretable rules,
by converting the cause noun phrase, along with any qualitative
semantic type into a conditional term, corresponding to the ‘‘IF’’
part of the rule. The effect term is converted into the action term,

corresponding to the ‘‘THEN’’ part of the rule. The final count b

11
Table 5
Details of unstructured knowledge extraction.
Process Guideline

1 (G1)
Guideline
2 (G2)

Guideline
3 (G3)

Total

Extracted triples 1731 1142 10226 13,099
Unique triples 1602 948 8872 11422
Medical triples 1267 831 7765 9863
Causal triples 541 320 7765 3215
Extracted rules 29 7 13 49

Table 6
Example rules generated from triples.
S.No Triple Rule

1 ⟨HbA1c, is, Diabetes⟩ IF HbA1c ≥ 6.5 THEN Diabetes
2 ⟨FPG, be, Diabetes⟩ IF FPG > 126 THEN Diabetes
3 ⟨Greater RPG, leads to, Diabetes⟩ IF RPG ≥ 200 THEN Diabetes
4 ⟨FPG, be, Prediabetes⟩ IF FPG 100–125 THEN Prediabetes
5 ⟨HbA1c, is Prediabetes⟩ IF A1C 5.7–6.4 THEN Prediabetes

of rules by the unstructured knowledge acquisition service for
G1 is 29, G2 is 7, and G3 is 13. Table 6 shows five causal
triples in their corresponding interpretable rule form, produced
by the application of our methodology. As an example the triple
<HbA1c, is, Diabetes> is converted into ‘‘IF HbA1c >= 6.5 THEN
iabetes’’, where HbA1c and Diabetes are the Noun Phrases in the
riple, relating to cause and effect respectively. The verb ‘‘is’’ rep-
esents the causal phrase between these terms, while 6.5 is the
ualitative term picked from the text using proximity matching,
ithin the sentence. Multiple qualitative terms in the sentence,

f they appear, are converted into ranges for the associated cause
hrase, as shown by examples 4 and 5 in Table 6.
The evaluation of the extracted rules on SSM-DS is shown

n Fig. 12. The rules 71.79% correctly predicted the true class
f instances. The primary reason for the low accuracy could be
he ‘‘Recheck’’ class. The extracted rules did not assigned the
‘Recheck’’ class to any instance, while the expert has annotated
6.83% of the patients with this label. This is because the guide-
ines provide a concrete decision, while in real practice some of
he patients may not be assigned a particular class and need to
e-revalue after some specific time, as evident by the experts
rovided label in the SSM-DS. Also, there is 6.93%, 3.3%, and 3.96%
ifference between expert provided labels and predicted labels
or ‘‘DM’’, ‘‘Prediabetes’’ and ‘‘No Diabetes’’, respectively.

.3. Knowledge combination and consolidation

A statistical overview of the rules extracted from each of the
forementioned methods and their datasets is shown in Table 7.
imple summation of the rules, yield 274 instances, which are
educed to 271, after removing 3 duplicates. We then removed
he conflicts among the extracted rules, which are based on 13
efault conditions, which produce a default conclusion (preset

y the knowledge acquisition process, such as if no rule matches
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Fig. 12. Unstructured rules evaluation on SSM-DS.
Table 7
Details of extracted rules using our method and datasets.
S. No. Dataset name Dataset type Extracted rules

1. SSM-DS Structured data 93
2. PID-DS Structured data 86
3. CHD Structured data 46
4. G1 Unstructured data 29
5. G2 Unstructured data 7
6. G3 Unstructured data 13
7. Expert Expert driven 28

Total extracted rules 274
Total rules without duplicates 271
Total rules without conflicts 258
Consolidated rules 266

Table 8
Confusion matrix of expert source rules.

Class 1 Class 2 Class 3 Class 4 Precision

Class 1 54 6 0 0 90%
Class 2 0 41 1 16 70.69%
Class 3 9 2 59 8 75.641%
Class 4 0 0 0 106 100%
Recall 85.714% 83.673% 98.333% 81.538% –

then it may result prediabetes, or no diabetes). Finally, we got
258 rules, without applying consolidation process. The consoli-
dation process, which relies on the RDR methodology and expert
intervention, yields 266 rules, including the default true rule. A
partial view of the RDR tree with some of the initial nodes are
shown in Fig. 13. Each node contains the condition of the rule,
its conclusion, and a source providing backward linkage of the
rule with its knowledge source. Since a rule can be sourced from
multiple sources, for simplicity we have used random selection.

The evaluation and comparison of expert source rules, com-
ined rules, and consolidated rules provides the basis for estab-
ishing the novelty with high accuracy of our proposed method-
logy. The evaluation was performed on the SSM-DS due to its
horoughness and measure-ability, in terms of standardized med-
cal terminologies usage and the width of conclusions (covering
cenarios with No diabetes, prediabetes, recheck, and diabetes).
hrough expert intervention, (expert rules) was able to correctly
dentify 54 instances of No diabetes (class 1), 41 of recheck (class
), 59 of pre-diabetes (class 3), and 106 of diabetes (class 4).
ere the precision for class 1 is 90%, class 2 is 70.96%, class 3
s 75.641%, and class 4 is 100%. The recall here for class 1–4 is
5.714%, 83.673%, 98.333%, and 81.538%, respectively as shown
n Table 8. The overall accuracy for M0 is 86.093%.
12
Table 9
Confusion matrix of combined rules.

Class 1 Class 2 Class 3 Class 4 Precision

Class 1 0 0 0 0 –
Class 2 0 41 1 16 70.69%
Class 3 57 8 59 0 47.581%
Class 4 0 0 0 114 95%
Recall 0% 83.673% 98.333% 87.692% –

Table 10
Confusion matrix of consolidated rules.

Class 1 Class 2 Class 3 Class 4 Precision

Class 1 55 0 0 0 100%
Class 2 0 41 1 2 93.182%
Class 3 8 2 59 5 79.73%
Class 4 0 6 0 123 95.349%
Recall 87.302% 83.673% 98.333% 94.615% –

On the other hand, combined rules were unable to classify any
instance as class 1. However, for class 2, 41 instances were clas-
sified, with a precision rate of 70.69% and recall rate of 83.673%.
59 instances were classified as class 3, with precision rate of
47.581% and a recall of 98.33%. Finally for class 4, 114 instances
were correctly classified with a precision rate of 95% and a re-
call of 87.692%, as shown in Table 9. The overall accuracy for
the combined rules is 70.861%. In general, these results indicate
that a simple combination of the expert and machine generated
rules can diminish the performance of the knowledge application
process. It is also pertinent to note here, that in this particular
case, the greatest impact to the loss of overall accuracy is from
class 1 having 0 classified instances thereby leading to a complete
absence of ‘‘no diabetes’’ as a probable medical condition. This is a
direct consequence of the unbridled production and accumulation
of widely-applicable, machine generated rules, which have not
been verified by the expert.

Consolidated rules, identified 55 instance as class 1, with 100%
precision and 87.302% recall, 41 as class 2 with 93.182% precision
and 83.673% recall, 59 as class 3 with 79.73% precision and 100%
recall, and 123 instances as class 4 with 95.349% precision and
94.615% recall, as shown in Table 10. The overall accuracy of
the consolidated knowledge is 92.053%. In short, the consolidated
rules have achieved an increase of 5.96%, as compared with expert
evaluation, and 21.192% from evaluations done by a simple union
of multi-sourced rules.

Fig. 14 shows the evaluation and comparison of accuracy
achieved by experts’ rules, combined rules, and consolidated

rules. As a consequence of our earlier discussion on the breadth of
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Fig. 13. Consolidated knowledge partial model.
Fig. 14. Evaluation of experts’ rules, combined rules and consolidated rules on SSM-DS.
onclusions maintained by a naive combination of rules, leading
o 0 classifications of class 1, shows the lowest accuracy of
ll compared models, while the highest accuracy of 92.05% is
chieved by the proposed knowledge consolidation. The consol-
dated knowledge is initialized by the expert and then extended
y consolidating knowledge from various sources. Also, it has
he ability to adopt new knowledge which keeps the knowledge
odel alive and improves its performance over time.

.4. Comparative analysis

To compare the result of our proposed knowledge consol-
dation system with the state-of-the-art black-box algorithms,
e have used Rapid Miner’s auto model feature on SSM-DS.
he results achieved by Logistic Regression, Naive Bayes, and
eep Learning compared to our proposed system are shown in
ig. 15. The logistic regression performed verse with an accuracy
f 61.20% while Naive Bayes achieved an accuracy of 69.70%, Deep
earning 78.20% compare to our proposed system at 92.05%. The
13
primary reason could be the nature and the size of the dataset.
Algorithms like deep learning and others are data-hungry models
while in real scenarios the patient data may not be enough for
these models. Also, the decision logic is not known to the expert
which may reduce the confidence level of human experts on
the system-generated recommendation. While application of the
improved knowledge base with the ability to improve itself over
time like the proposed one best suit the expectation of healthcare
service providers and can move towards Artificial Wisdom.

5.5. A step towards wisdom

In order to close the loop and apply the foundational results
presented above in practice, we have designed a web based
application to allow the medical experts to add patient records
and to evaluate these records using our consolidated knowledge
in the form of RDR tree. While the details of this system are
beyond the scope of this paper, the system utilizes a large stack
of technologies to curate data, information, and knowledge at
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Fig. 15. Comparative Analysis of knowledge consolidation with other methods on SSM-DS.
Fig. 16. Patient encounter interface.
various abstractions. While the system is generic enough to deal
with any domain, provided the appropriate knowledge repository
in the form of RDR is first built through expert intervention, we
have restricted its use to the domain of diabetes and chronic
heart disease, in this research work. An additional feature of
this application is to maintain and extend its knowledge base by
utilizing our customized RDR implementation, which provides a
feedback loop for actively learning from new rule sources. The
in-memory, RDR tree adds new rules at appropriate places and
in real-time can extend its inference to include these rules.

Fig. 16 shows a screenshot of the patient encounter creation
interface, where the medical expert can add a patient’s record.
This is followed by Fig. 17, which shows the result of classifica-
tion from inference on currently available nodes in RDR. In case
the classification is incorrect, the expert can then move to the
knowledge evolution interface shown in Fig. 18 to add a new
rule corresponding to the conditions available in the patient’s
14
encounter. Here the expert can modify conditions, conclusions,
and other metadata for the new rule, which is immediately made
available for future inferencing. These screens are designed with
the consensus and feedback of our collaborative hospital’s physi-
cians (The Catholic University of Korea, Seoul St. Mary’s Hospital,
South Korea) to hide the complexity from experts and simplify
the knowledge acquisition, consolidation, and inferencing. For
inferencing, the expert needs to provide patient conditions, while
the system generates recommendations using RDR inferencing
techniques and presents the expert with a result along with
RDR Knowledge as evidence as shown in Fig. 17. Similarly, the
complex process of knowledge evolution is simplified enough
so that experts can evolve knowledge with minimum effort and
time.
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Fig. 17. System generated recommendation interface.
Fig. 18. Knowledge evolution interface.
6. Conclusions

Advancements in Information and Communication Technolo-
gies (ICT) in general and AI in particular, is transitioning towards
creating an intelligent system, that can surpass human wisdom by
making accurate and transparent decisions. Towards this end, in
this paper, we present an important aspect of this process, which
aims to consolidate knowledge from various sources and pro-
vides long term maintenance and evolution supporting services,
through the use of RDR. While the generality of this frame-
work can enable its universal applicability, for practical purposes,
we have evaluated the same in the healthcare domain, further
confined within the field of diabetes diagnostics.

A more general solution also necessitates the resolution of var-
ious other challenges, such as knowledge interoperability, iden-
tification and maintenance of its context, peer validation, and
self-learning solutions. In particular, identifying the various for-
mats in which knowledge is acquired and stored is only the first
15
step. Heterogeneously formatted knowledge then has to be trans-
formed into RDR compliant form, to take benefit of our proposed
framework. Similarly, conversion of the RDR into a knowledge
format, which can be consumed by existing applications would
ensure their extensibility. Additionally, it is important to identify
the context in which knowledge was acquired. In a multi-domain
setting, the acquisition context and its usage in inference is all
the more important, considering how various devices, measure-
ments, and tools are used in different settings. As an example, if
the knowledge base pertains to the manufacturing domain and
healthcare, a context-less inference of the rules using ‘‘tempera-
ture’’ measurement could cause severe harm to a patient, human
workers, or machinery. The same effect may also result from
malicious rules or unintentional mistakes from the human expert.
In order to reduce the chances and/or effects of such knowledge
poisoning, block chain solutions, such as smart contracts and
multi-peer verification and validation of knowledge is neces-
sary. Finally, the incorporation of self-learning techniques, once
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hey have matured enough, would further reduce the human ex-
ert involvement in knowledge acquisition. The challenges listed
bove are not exhaustive, however these provide the direction
n which we shall focus our future research and development
fforts.
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