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Abstract: Extracting clinical concepts, such as problems, diagnosis, and treatment, from unstructured
clinical narrative documents enables data-driven approaches such as machine and deep learning
to support advanced applications such as clinical decision-support systems, the assessment of
disease progression, and the intelligent analysis of treatment efficacy. Various tools such as cTAKES,
Sophia, MetaMap, and other rules-based approaches and algorithms have been used for automatic
concept extraction. Recently, machine- and deep-learning approaches have been used to extract,
classify, and accurately annotate terms and phrases. However, the requirement of an annotated
dataset, which is labor-intensive, impedes the success of data-driven approaches. A rule-based
mechanism could support the process of annotation, but existing rule-based approaches fail to
adequately capture contextual, syntactic, and semantic patterns. This study intends to introduce a
comprehensive rule-based system that automatically extracts clinical concepts from unstructured
narratives with higher accuracy and transparency. The proposed system is a pipelined approach,
capable of recognizing clinical concepts of three types, problem, treatment, and test, in the dataset
collected from a published repository as a part of the I2b2 challenge 2010. The system’s performance
is compared with that of three existing systems: Quick UMLS, BIO-CRF, and the Rules (i2b2) model.
Compared to the baseline systems, the average F1-score of 72.94% was found to be 13% better than
Quick UMLS, 3% better than BIO CRF, and 30.1% better than the Rules (i2b2) model. Individually, the
system performance was noticeably higher for problem-related concepts, with an F1-score of 80.45%,
followed by treatment-related concepts and test-related concepts, with F1-scores of 76.06% and
55.3%, respectively. The proposed methodology significantly improves the performance of concept
extraction from unstructured clinical narratives by exploiting the linguistic and lexical semantic
features. The approach can ease the automatic annotation process of clinical data, which ultimately
improves the performance of supervised data-driven applications trained with these data.

Keywords: clinical concept extraction; data annotation; lexical semantics; medical concept classifica-
tion; rule-based systems

1. Introduction

Entity and concept extraction from unstructured clinical documents are essential
processes in a health informatics system [1]. The automatic extraction of an entity, concepts,
and semantic relation from clinical documents enables a system designer to develop an ac-
curate Clinical Decision-Support System (CDSS). Recently, numerous tools and algorithms
such as QuickUMLS [1], Sophia [2], and cTAKES [3] have been broadly used in research
and industrial applications to extract medical entities and concepts from unstructured
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clinical documents. Named entity recognition (NER) has received significant attention
in the medical domain because it is a fundamental process for developing real-world
applications such as CDSS. It is a complex task to identify an appropriate name for things,
either conceptual or physical, from unstructured texts.

In the clinical domain, NER generally involves the extraction of concepts related
to the “problem,” which consists of subclasses (signs or symptoms, findings, disease or
syndrome, etc.), “treatment” (organic chemicals, diagnostic procedures, and/or pharma-
cological substances), and “test” (laboratory procedures and clinical attributes) [4]. These
related concepts play a significant role in event detection, answering questions, informa-
tion retrieval, and parsing tasks in the clinical domain. A knowledge-driven technique is
extensively used to extract medical concepts, using existing numerous health and biomedi-
cal dictionaries and vocabularies such as the Unified Medical Language System (UMLS)
Metathesaurus [5]. UMLS is a substantial medical knowledge source that consists of more
than 6M names counted on 100 terminologies, more than 1.5M concepts, and 8M relations.
A dictionary-based systems operation measures three aspects: (a) the size of vocabulary
within a dictionary, (b) the matching algorithm, and (c) the scalability [6]. Many have
focused on improving the precision and recall of information extraction systems, but less
attention has been paid to the accuracy of their concept extraction.

In the clinical domain, everyday data are generated in an unstructured and hetero-
geneous format. According to a survey conducted between 2002 and 2015, most research
has involved structured data rather than unstructured or clinical NLP data [7]. To acquire
meaningful information from the clinical text, numerous rule- and lexical-based approaches
have been practiced. Researchers have utilized rule-based methods, which have some
limitations that require an expert to define rules and results in a new type of data. The set
of rules usually numbers in the hundreds or thousands and is constructed by hand. We
have defined dictionaries that can be shrunk concerning data requirements to overcome
the limitations of rules-based data. Numerous clinical terminology and knowledge sources
such as UMLS [5], MetaMap [8], and cTAKES [3] are extensively utilized to identify medical
concepts. The selection of appropriate terminology or knowledge is also a challenge due
to the high variability of clinical concepts. Extraction of knowledge from textual data
and mapping them to some knowledge source is ongoing research in the biomedical and
clinical domain that involves some NLP and text-mining techniques.

The primary aim of this work is to develop a system that automatically extracts and
classifies clinical concepts, maintaining a high level of recall and precision, to contribute
to the community of NLP and enhance current research in BioNLP. The second goal is to
introduce a methodology representing standard concepts, semantic types, and entity types
for medical phrases, by processing unstructured clinical documents.

This paper proposes a system that automatically identifies standard and meaningful
clinical concepts from the UMLS Metathesaurus. We create rules that classify the extracted
concepts into three categories: problem, treatment, and test. We use three existing clinical
datasets to validate the proposed system: Beth Israel Deaconess Medical Center, i2b2 Test
data, and Partners Healthcare (which consists of discharge summaries) [4].

The structure of the remainder of the paper is as follows: In Section 2, related works are
discussed. In Section 3, the proposed methodology is presented. The experimental results
and a discussion of existing and proposed methodology for clinical concept extraction and
classification are given in Section 4. The conclusions and future work are discussed in
Section 5.

2. Related Work

In the clinical domain, various NLP shared task challenges have been introduced for
medical concept extraction, such as the i2b2 Challenge Shared Tasks [4] and ShARe/CLEF
e-health Shared Task [9,10]. Previously, various traditional rule-based methods have been
designed for NLP and text-mining research for unstructured clinical documents. Different
tools such as MetaMap were introduced to identify clinical concepts from unstructured
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clinical documents that utilized UMLS terminology [11]. MetaMap 2013v2 experimented
on the i2b2 2010 clinical dataset with the NLM 2013AB database and obtained low precision
(47.3%) and recall (36%) scores.

Besides rule-based, machine-learning, ensemble-learning [12], and hybrid algorithms [13]
have been introduced for concept extraction. However, we still identify some problems
and limitations related to word-boundary identification and concept detection, and clas-
sification is needed to improve the precision and recall of the system. Other NLP tools
and libraries such as Stanford parser [14], Lingpipe [15], c-TAKES [3], Splitter, Stanford
CoreNLP, tree tagger, SPECIALIST, and open NLP are also used for text preprocessing and
sentence- and word-boundary detection [16].

In the medical domain, various knowledge sources play a significant role in medical
term matching and semantic-types mapping. UMLS is a versatile knowledge source,
utilized for semantic-based concept mapping. The GENIA and i2b2 2010 datasets are
extensively evaluated for unsupervised clinical NER [17]. Data heterogeneity in the clinical
domain, clinical concept extraction, and classification are challenging and complex. In
NLP research, common challenges and issues such as single or adjacent word-boundary
identification have focused on assisting a CDSS system.

In the following subsections, we discuss the strong and weak points of various clinical
tools, approaches, and terminologies used for clinical concept extraction.

2.1. Information Extraction Clinical Tools

In the clinical domain, for clinical information extraction, the cTAKES [3], MetaMap [8],
and MedLEE [18] tools are frequently utilized. cTAKES was developed by the Mayo Clinic
but later became part of the Apache project. It was built on the UIMA (Apache Unstructured
Information Management Architecture) framework and Apache OpenNLP toolkit open-
source projects. It performs various linguistics and clinical tasks based on various analysis
engines such as sentence tokenization, concept identification, NER, POS tagging, and
normalization. cTAKES has played an essential role in the extraction of temporal relation
discovery, patient smoking status, adverse drug events, and risk-factor identification
utilizing EHRs data. However, the cTAKES installation process is complicated and needs
additional effort to run.

The MetaMap tool was developed by the National Library of Medicine (NLM) and
maps biomedical text exploiting UMLS services. MetaMap tool construction aims to en-
hance the biomedical-associated document retrieval operation from MEDLINE/PubMed.
Subsequently, MetaMap was upgraded to deal with clinical text [19]. MetaMap has been
employed in the literature review to support the emergency department, examine drug–
disease treatment relationships, and aid with phenotype extraction and fragment iden-
tification by employing clinical documents, pharmacovigilance, and patient-associated
characteristics extraction and it is known to be one of the primitive clinical NLP systems [20].
Kim et al. [21] used MetaMap 2013v2 to experiment on the i2b2 2010 clinical dataset with
the NLM 2013AB database. It achieved low scores due to the concept and phrase-boundary
definitions of MetaMap semantic categories not being thoroughly adjusted to the i2b2
concept definitions and being more sensitive to the lack of syntactic structure and the use
of abbreviations [1].

Many other clinical tools such as OpenNLP [22] and NLTK [23] are available that
focus on particular preprocessing tasks such as boundary detection, tokenization, and POS
tagging. Our study utilized NLTK tools because the database is too straightforward for
various NLP tasks. It is easy for users familiar with Python and can be a platform for
developing research prototypes [24].

2.2. Clinical Information Classification and Extraction Methods

Recently, in the clinical domain, rule-based and machine-learning-based methods
have been exploited to extract medical concepts and information.
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2.2.1. Rule-Based Approach

The main ingredient of a rule-based system is knowledge-based, relying on rules
created by domain experts, and is considered highly efficient in exploiting language-related
knowledge characteristics [25]. The previous research work has utilized the rule-based
methods, which have some limitations like required knowledge expert to define rules and
challenges like rule-based method effect results with a new type of data and time consumed
building rule by hand which is often in hundred or thousand.

Recently, rule-based systems have been developed to identify peripheral arterial
disease (PAD) by building regular expressions [26]. If the predesigned patterns match,
PAD will be positively identified. Take the case of the diagnosis “severe atherosclerosis,”
where “severe” results from a list of modifiers associated with positive signs of PAD, and
“atherosclerosis” is from a personalized vocabulary constructed explicitly for the PAD
task. Another rule-based system was introduced to expedite smoking status classifica-
tion [27]. Early on, the researchers extracted the smoking status from each sentence and
then identified the smoking status at the document level, employing precedence logic rules.
The score of current smokers was significant, seek by a former smoker, nonsmoker and
anonymous. For example, if a current smoker is extracted in a document from any sentence,
the document will be labeled as a current smoker. The same logic rules are employed for the
final patient smoking level status, i.e., classifying the patient as a current or former smoker.
There are two approaches to constructing the rules, manual knowledge engineering or a
hybrid system. A physician or expert must construct the rules in the manual knowledge
engineering approach, which is time-consuming. A successful and highly accurate system
can be designed by employing a knowledge engineering-based approach. Knowledge
engineering stores and maintains a knowledge base in a structured database format such
as UMLS [6]. The rule-based methodology in [28] has been introduced for three types of
medical concept extraction: problem, treatment, and test. MetaMap, a medical terminology,
has been utilized to extract the semantic features of a concept and then map it, employing
rules. This methodology produces a very low precision score of 17%, with recall 18% for
concept extraction. A rule-based methodology has been proposed for medical concept
extraction from unstructured clinical notes utilizing UMLS. This methodology employs
an exact match of the term to the UMLS to extract semantic information on the concept.
Rules have been defined to map semantic information for concept classification. This
methodology gains a precision score of 70% and an average recall of 60% [11], but the recall
still needs to be improved to avoid missing information. A set of rules was constructed
in [22] by extracting medical concepts from annotated training data. To extract and classify
the medical concept, the author utilized a statistical technique. This technique yielded a
minimal performance improvement, with accuracy, recall, and F1-Scores of 38.5%, 48.4%,
and 42.9%, respectively. Instead of unstructured documents, the technique used structured
annotated documents.

2.2.2. Medical-Related Terminology

Medical terminology is a fundamental part of clinical text mining. In the healthcare
domain, medical terminology is used to classify or extract information from clinical docu-
ments related to medication, treatment, disease, etc. There are many medical dictionaries
available such as UMLS, LOINC, and SNOMED CT. The UMLS terminology thesaurus
is mainly used in the literature in the clinical domain, for classification and extraction of
information from clinical documents. A smartphone-based application has been developed
that automatically extracts medical concepts, semantic-, and entity-type information from
a medical text image utilizing UMLS. The medical text comprises a health report, a clinical
case, and other kinds of medical-related texts. The limitation of this application is that it
only extracts the concept and its semantic information using UMLS but does not classify
concepts such as problem, treatment, or test [29].

The current version of UMLS contains more than 1 million concepts, 135 semantic
types, and 54 relationships for concept categorization [30,31]. UMLS is a collection of
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distinct resource vocabularies such as Mesh, ICD-10, and SNOMED CT. UMLS is also
employed to distribute and organize key terminology, coding standards, classification, and
associated resources to construct more capable and interoperable biomedical information
systems and services.

An algorithm has been designed that automatically extracts medical concepts from
unstructured clinical documents [32]. This algorithm presents a way to exploit UMLS to
extract the standard concept and how its semantic information could be used efficiently in
data-driven approaches. This algorithm merely classifies the concept into semantic and
entity information in broad categories instead of a specific domain, or a clinical domain
such as SOAP (Subjective, Objective, Assessment, Plan) or PICO (Problem, Intervention,
Comparison, Outcomes). In the study by Campillos et al. [33], a harmonized methodology
was introduced that automatically provides a semantic annotation to French clinical text
utilizing UMLS. These tools produce semantic annotation data only for the French Lan-
guage clinical corpus. Soldaini and Goharian [1] presents QuickUMLS tools for medical
concept extraction, with an approximation term matching the UMLS method. They uti-
lized a quantitative approach with a threshold value of 0.6–1.0 to choose an acceptable
medical concept from a list of UMLS concepts. For huge-data scalability, QuickUMLS is
the ideal option.

UMLS consists of three essential knowledge sources: Metathesaurus, Semantic Net-
work, and Lexical Tools. UMLS provides a web browser, local installation, and UMLS
Terminology Services (UTS) facility for a user to approach. The SPECIALIST Lexicon tool
is employed to deal with NLP data. In the study by Liu et al. [34], a set of 163,666 abbrevia-
tions was extracted in more complete form pairs from UMLS.

3. Proposed Methodology

We employed exact and approximate word matching to the UMLS Metathesaurus
approach for semantic breakdown. The UMLS Metathesaurus is accessed using three
variants: (a) directly, through a web browser, (b) by downloading the repositories for
local use, or (c) by using the third-party web service API. Our study implemented the
web service API, provided by the UMLS Terminology Service (UTS) [30] to access the
concepts in the Metathesaurus. The proposed method consisted of three steps in a pipelined
process involving preprocessing as the first step, concept extraction as the second step, and
identifying the correct type of concept in the third step, as shown in Figure 1.
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3.1. Document Preprocessing

A preprocessing operation such as tokenization, stop word removal, lemmatization,
n-gram, or part-of-speech (POS) tagging is employed to improve the noisy data quality
retrieved from unstructured narratives. Here, is a brief introduction to the notations used
in the preprocessing step.

Let D = {d1, d2, d3 . . . . . . dm} denote the set of clinical documents, where dm denotes
the mth clinical document, W = {w1, w2, w3 . . . . . . wn} denotes the set of words in a
document, and wn represents the nth word.

(a) Tokenization: Sentences are tokenized in each document into a set of words wi. All
the stop words that convey no meaning, such as “the”, “this”, “from”, “on”, “off”, etc.
are removed from the set W.

(b) Lemmatization: Words’ lemmas are identified to improve performance on ambiguous
and invisible words. Lemmatization is preferred as it produces more accurate output
compared to stemming in some instances, such as lemmatizing the word ‘caring’, it
returns ‘care’, while stemming returns’ car’, and this is erroneous. We utilized the
NLTK [23] WordNetLemmatizer package that provides a comprehensive and robust
word-lemmatization solution.

(c) N-gramming: A word of n-gram is applied to represent a set of co-occurring words in
a sentence, as described by Equation (1):

n = x ∼ (N – 1) (1)

where ~ represents the subtraction of a scalar (N − 1) from each element of the vector
x = ∑n

k=0 Wk. Wk expresses the number of words in a sentence. We utilize four
n-gram parameters because a medical concept can be a compound word such as
“overall left ventricular systolic function”.

(d) Deduplication: Duplicate words are removed to reduce the data dimensionality and
avoid ambiguity. We utilized a set of built-in data type functions with characteristics
to store data in an unordered and unchangeable way that would not allow duplicate
values.

(e) POS tagging: The part of speech (POS) tagging using NLTK NLP library was em-
ployed and then we constructed a regular expression pattern to filter only meaningful
information such as nouns, adjectives, and adverbs from a list of words, as shown in
Equation (2). <NN*> denotes all the noun phrases, “<JJ*>” represents all the adjec-
tives, and “<RB*> shows the adverb phrases from X, where X represents the “bag of
words” list attained through regular expression.

X = Bag of words = “< NN∗ >< JJ∗ >< RB∗ >” (2)

Word Boundary Detection

In the clinical domain, word boundary detection is a process of detecting single or
multiple adjacent words that indicate a clinical concept. Multiple adjacent words can be a
mixture of stop words, punctuations, and digits representing a clinical concept, making it
challenging in the information extraction domain. We developed a procedure, illustrated
in Figure 2, to smoothly identify the boundary of a single or multiple adjacent words of a
clinical concept by employing rules and regular expressions.

(a) Preprocessing: A preProcessing procedure is created that accepts an unstructured
clinical document as an input ingredient to preprocess. Subsequently, this is applied
to preprocessing steps such as tokenization, lemmatization, etc. We obtained a bag of
words with a size of n-gram-4, as described in Section 3.1.

(b) Stop-words removal: In the preprocessing step in Section 3.1, we did not apply the
stop-word removal operation because multiple adjacent word concepts also contained
stop words such as “a pelvic fracture,” where “a” is a stop word. In the second step, we
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removed stop words of n-gram from the list of n-gram words such as “is the”, “did
have of”, etc.

(c) Stop words and POS filtering: A word that appears with a combination of stop word,
verb, adjective, and adverb that does not convey a domain knowledge discarded such
as “of atrial”, “good effect”, or “very good effect”, as described in Algorithm 1, step 9.

(d) Detected words boundary: We retained a list of alternate words that contains either
stop words or not, such as “have burst”, “burst of atrial”, etc., because these words
convey a domain of knowledge related to a heart problem. In another method, we
identified noun phrases and eliminated all other phrases.

(e) Word mapping to UMLS: Finally, we mapped each word to the UMLS to extract
semantic information, practicing exact and approximate word matching.

Figure 2. Concept word-boundary identification methodology:identify the word boundary applying to the preprocessing;
and map each word to the UMLS.

Algorithm 1: Clinical concepts—word-boundary identification.

Input: Unstructured Clinical Document2.
Output: Word boundary identification

1. wordList← new ArrayList< >
2. wordSet← new ArrayList< >
3. Doc: Read Document
4. bagOfWords← preProcessing(Doc)
5. for each word in bagOfWords, do
6. if word Not Equal to Null, do
7. for each word_2 in word.split(), do
8. w_tag← pos_tag(word_2)
9. if word_2 in (stopWords) OR w_tag == (Verb, Adjective, Adverb), do
10. wordSet← word_2
11. end if
12. end for
13. if len(wordSet) Not Equal to len(word.split()), do
14. wordList← word
15. wordSet.clear()
16. end if
17. end if
18. end for
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3.2. Clinical Concept Extraction

The semantic breakdown is achieved by utilizing the UMLS Metathesaurus for concept
categorization and standard concept extraction. Clinical concept extraction is a multistep
process that includes finding terms, concept identification, semantic-type extraction, and
entity-type extraction.

3.2.1. Finding Terms

Each word in Xi (bag of words) is mapped to the UMLS Metathesaurus. As described
in Equation (3), if a match is found in the UMLS, a sequence of terms is stored in term list
T; otherwise, Xi is omitted from the list.

Xi ∈ UMLS ? T ← Xi : pop(Xi) (3)

3.2.2. Concept Identification

In the UMLS Metathesaurus, a concept demonstrates the meaning of medical terms
by various names. The importance of the Metathesaurus is to illustrate the predefined
meaning of each name and associate all the names from the entire source vocabularies that
provide similar meaning, called synonyms. Each concept in the Metathesaurus occupied
a permanent and unique concept identifier represented as “name,”, e.g., “Coronary Arte-
riosclerosis”. When a new concept is added into the Metathesaurus structure, each concept
is attached with a unique identifier (“ui”) value such as “C0010054”. In the Metathesaurus,
there is a single concept or a list of concepts available for each term, as shown in Box 1.

Box 1. Entity-type extraction from UMLS Metathesaurus.

“Input” −−−−−−−−−−→ Coronary artery disease (Term) [
{
“ui”: “ C0010054 ”, (Concept ID)
"rootSource": "MTH",
"uri":"https://utsws.nlm.nih.gov/rest/content/2019AB/CUI/C0010054 ",
"name": "Coronary Arteriosclerosis" (Concept Name) },
]

A stepwise process of concept identification from UMLS is presented in Algorithm 2.
The input ingredients of Algorithm 2 are a set of clinical documents represented by D,
and the algorithm output is a set of terms and concepts. We read the documents (Doc),
subsequently applied to preprocess, and Algorithm 1 produces a list of words that will be
obtained and stored in a wordList array. A loop is applied to read each word as a term from
a wordlist array. For each term, we identified a correspondent concept ID and a concept
name from UMLS and stored it into cui, and a concept variable for the given term is set as a
parameter in the searchConceptUMLS method. If the length of cui is not zero, we applied a
check, mapped the term, cui, and concept into conceptMap and cuiList array, and read the next
term. If the length of cui was null, the next term should be read. The loop was continued
until the entire wordList was read.

3.2.3. Semantic-Type Identification

Semantic type plays a crucial role in concept categorization, such as medical problems,
medical treatment, and medical tests [15], as it gives an interpreted and obvious meaning
to Metathesaurus concepts [30,35]. For instance, for the general term “Trout”, the semantic
type is “fish”, but not “animal”—why? Because “fish” conveys a closer meaning to the
concept “trout” than “animal”. Each concept has at least one semantic type (STY) in the
Metathesaurus and a maximum of five semantic types [30,36]. A multifarious or inherently
vague concept consists of more than one STY, such as “Febrile Convulsion,” which is a
concept of “Finding” as well as “Disease or Syndrome” [35]. In the example shown in
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Box 2, semantic types acquired from UMLS are based on the “Concept ID” or “ui” for the
term “Trout”.

Algorithm 2: Concept Identification from UMLS.

Input: Clinical Document D← {d1, d2, d3.... dn} # set of documents di
Output: set of Terms and Concepts
1. wordlist← newArrayList<>
2. conceptMap← newMultiMap<term, concept >
3. Doc: Read Document
4. wordList← Pre-Processing(Doc)
5. for each term in wordList, do
6. String: cui, concept← searchConceptUMLS (parameter: term)
7. If size(cui) > 0, do
8. conceptMap<k, v>← term, concept
9. cuiList← cui
10. Next term
11. end if
12. end for

Box 2. Semantic-type extraction from the UMLS Metathesaurus.

“Input": −−−−−−−−−−→ Trout (Term)
{
"classType": "Concept",
“ui”: “C0041200”, (Concept ID)
“semanticTypes”: [ {
“name”: “Fish”, (Semantic Types)
“uri”: “https://uts-ws.nlm.nih.gov/rest/semantic-network/2019AB/TUI/T013” (Semantic Type
ID)
} ],
“name”: “Salmo trutta” (Concept Name)
}

The semantic-type extraction process for each clinical concept is presented in
Algorithm 3, where the input information is a list of concepts IDs extracted through
Algorithm 2 and the output is a set of semantic types corresponding to each concept. Each
concept ID is interpreted as cui from a cuiList, used afterward in the searchSemanticType-
UMLS method to retrieve the concept name and the semantic type. Concept names and
semantic types are stored in the data-collection arrays, represented as semanticTypeMap and
SemanticTypeList. The next cui is read until the entire cuiList is processed.

Algorithm 3: Semantic-Type Identification from UMLS.

Input: List of Concepts ID’s C← {c1, c2, c3 . . . cn}
Output: set of Concepts ID’s (cui) and Semantic types
1. semanticTypeMap← new MultiMap<conceptID, sematnicType >
2. semanticTypleList← new ArrayList<>
3. cuiList: Read cuiList from Algorithm.2
4. for each cui in cuiList, do
5. String: conceptName, semanticType← searchSemanticTypeUMLS (parameter: cui)
6. semanticTypeMap<k, v>← conceptName, semanticType
7. semanticTypeList← semanticType
8. Next: cui
9. end

3.2.4. Entity-Type Identification

An entity type demonstrates the parent relation for a concept. In contrast to the
semantic type, entity types represent the meaning of the concepts in a more standard,
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explicit, and precise form [30]. In a Metathesaurus, each concept has only one entity type.
In the example shown in Box 3, using semantic type ID “ui”, the entity type is extracted
from the Metathesaurus and presented as “expandedForm” along with other information
such as “definition” and “abbreviation”.

Box 3. Entity-type extraction from UMLS Metathesaurus.

{“Input": −−−−−−−−−−→ Fish (Semantic Type) {
"ui": "T013", (Semantic Type ID)
"definition": "A cold-blooded aquatic vertebrate characterized by fins and breathing by gills. Included here
are fishes having either a bony skeleton, such as a perch, or a cartilaginous skeleton, such as a shark, or those
lacking a jaw, such as lamprey or hagfish",
"semanticTypeGroup": {
"abbreviation": "LIVB",
"expandedForm": "Living Beings", (Entity Type)
},
"name": "Fish" }}

Algorithm 4 is designed to describe the entity-type identification process from UMLS.
The input ingredients for the algorithm are a list of semantic types S (the output of
Algorithm 3), and the output is a set of entity types for corresponding semantic types. A
loop is applied to read each semantic type from a semanticTypeList array and extract the
entity type as entityType from UMLS for the corresponding semantic type. The semanticType
and entityType are mapped into the entityTypeMap array list. The loop continues until the
entire semanticTypeList is finished reading.

Algorithm 4: Entity-Type Identification from UMLS.

Input: List of Semantic Types S← {s1, s2, s3 . . . sn}
Output: set of Semantic Types (STY’s) and Entity types
1. entityTypeMap← new MultiMap<semanticType, entityType >
2. semanticTypeList: Read semanticTypeList from Algorithm.3
3. for each type in semanticTypeList, do
4. String: sematnicType, entityType← searchEntityTypeUMLS (parameter: type)
5. entityTypeMap<k, v>← semanticType, entityType
6. Next: type
7. end

3.2.5. Example Case Study

An example case study is demonstrated in hierarchal tree form, as shown in Figure 3,
for enabling the proposed algorithms to extract standard forms of the terms from UMLS
Metathesaurus. The medical term “Stress” is taken as an example to demonstrate the
process of identification and extraction. First, the term “Stress” is submitted to the UMLS
Metathesaurus to identify the related concepts. The Metathesaurus acknowledges a list of
concept IDs as “ui” and concept names as “name”, along with other information such as “root
resource” and “uri”. As shown in Figure 3, the term “Stress” was divided into four concepts
(names and identifiers) in the UMLS Metathesaurus. The concept ID’s Metathesaurus
caters for semantic types and gives a set of helpful information for each concept. Each
concept has only one semantic type, while the concept “Stress bismuth subsalicylate” consists
of two semantic types “organic chemical” and “pharmacological substance”. The semantic type
IDs associated with each semantic type are utilized to find the entity type, which delivers
more standard and interpreted context for a medical concept.
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3.3. Clinical Concept Classification

Concept extraction and classification have been adopted to extract and classify clinical
information from a text for a wide range of applications, ranging from supporting clinical
decision making to improving the quality of care. A rule has been constructed to map the
semantic information of medical phrases to semantic dictionaries, as shown in Table 1.

Table 1. Medical concept semantic-type dictionaries for concept classification.

Clinical Domain Semantic Type

Problem

“Disease or Syndrome, Sign or Symptom,
Finding, Pathologic Function, Mental or
Behavioral Dysfunction, Injury or Poisoning,
Cell or Molecular Dysfunction, Congenital
Abnormality, Acquired Abnormality,
Neoplastic Process, Anatomic Abnormality,
virus/bacterium.”

Treatment

“Therapeutic or Preventive Procedure, Organic
Chemical, Pharmacologic Substance,
Biomedical and Dental material, Antibiotic,
Clinical Drug, Steroid, Drug Delivery Device,
Medical Device.”

Test
“Tissue, Cell, Laboratory or Test Result,
Laboratory Procedure, diagnostic procedure,
Clinical Attribute, Body Substance.”

A set of semantic-type mapping rules is constructed for medical terms to classify them
into explicit categories. The mapping dictionaries are enriched with semantic type for three
domains: problem, treatment, and testing.

Three dictionaries, as shown in Table 1, i.e., PRB ← Problem Dictionary, TRT ←
Treatment Dictionary, and TST← Test Dictionary, are searched for semantic types.

While searching for a term, several concepts are returned from the Metathesaurus,
and approximate string matching is employed to reach the final decision. The first eight
concepts, along with their semantic type, were selected and labeled in the retrieved concept
list. We selected the first eight concepts because the Metathesaurus reflects and preserves
the meanings, concept names, and relationships from its source vocabularies. It does not
represent a comprehensive NLM-authored ontology of biomedicine or a single, consistent
view of the world. It stores all the meanings and content of its source vocabulary in a
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single common format. The native format of each vocabulary is carefully studied and
then inverted into the common Metathesaurus format. For some vocabulary, this involves
representing implied information in a more explicit format. For example, if a source
vocabulary stores its preferred concept name as the first occurrence in a list of alternative
concept names, that first name is explicitly tagged as the preferred name for that source.
Eight is chosen as a threshold value after the evaluation on three datasets with concepts
retrieved from UMLS, as shown in Figure 4, where the accuracy reaches the peak value
and remains stable afterward. We evaluated gold datasets provided by the i2b2 National
Center, Partners Healthcare, and Beth Israel Deaconess Medical Center [4] to identify the
threshold value for concept retrieval. A precision and recall protocol was used to measure
the accuracy against each threshold value in the range between 1 and 10 in the x-axis and
the level of accuracy is shown on the y-axis in Figure 4. Subsequently, in semantic labeling,
these concepts are categorized into a Problem, Treatment, or Test, using the rules described
in Tables 2–4. In case of an overlapping situation where a concept could be mapped to
more than one category, we implemented a majority voting technique. Equation (4) shows
the concept identification with the highest frequency for each category.

Figure 4. Appropriate threshold-value identification employs an approximate term matching ap-
proach to UMLS.

Table 2. The implementation scenario of Rule 1.

Process Name Processes

Clinical Term beta blockers

Semantic Breakdown

beta blockers = [‘Pharmacologic Substance’,
‘Organic Chemical’,
‘Pathologic Function’, ‘Organic Chemical’,
‘Clinical Attribute’, ‘Injury or Poisoning’,
‘Pharmacologic Substance’]

Semantic-Based Concept Annotation
beta blockers = [‘Treatment’, ‘Treatment’,
‘Problem’, ‘Treatment’, ‘Test’, ‘Problem’,
‘Treatment’]

Majority Voting beta blockers = argmax (‘Treatment’ = 4,
‘Problem’ = 2, ‘Test’ = 1)

Classification beta blockers⇔ Treatment
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Table 3. The implementation scenario of Rule 2.

Process Name Processes

Clinical Term heart rate

Semantic Breakdown
heart rate = [‘Clinical Attribute’, ‘Clinical
Attribute’, ‘Finding’, ‘Finding’, ‘Medical
Device’, ‘Medical Device’]

Semantic-Based Concept Annotation heart rate = [‘Test,’ Test’, ‘Problem’, ‘Problem’,
‘Treatment’, “Treatment’]

Majority Voting heart rate = argmax (‘Test’ = 2, ‘Problem’ = 2,
‘Treatment’ = 2)

Classification heart rate⇔ Test

Table 4. Present the implementation scenario of Rule 3.

Process Name Processes

Clinical Term increased heart rate

Semantic Breakdown

increased heart rate = [“Finding’, ‘Finding’,
‘Clinical Attribute’, ‘Clinical Attribute’,
‘Finding’, ‘Clinical Attribute’, ‘Finding’,
‘Clinical Attribute’, ‘NONE’, ‘NONE’]

Semantic-Based Concept Annotation increased heart rate = [‘Problem’, ‘Problem’,
‘Test’, ‘Test’, Problem’, ‘Test’, ‘Problem’, ‘Test’]

Majority Voting increased heart rate = argmax (‘Problem’ = 4,
‘Test’ = 4, ‘Treatment’ = 0)

Classification Increased heart rate⇔ Problem

For instance, the concept “stress” maps to [“problem”, “problem”, “test”, “treatment”].
The argmax function assigns “problem” to T.

T ← argmax[
N

∑
i=1

Ci] (4)

Suppose we have classes: c1 = “Problem”, c2 = “Treatment”, c3 = “Test” and T =
“Term”. Then:

Rule 1: If the number of any concept type (c1, c2, c3) is greater for the term T, then classify
the term with the majority-threshold concept. For instance, if c1 > c2 AND c1 > c3 then T
← c1, else if c2 > c1 AND c2 > c3 then T← c2 else if c3 > c1 AND c3 > c2 then T← c3.

Rule 2: If the number of any concept type (c1, c2, c3) is similar for term T, then presume a
first-class (c1) as a majority threshold. Such as: IF frequency of c1 == c2 == c3 then T← c1
OR c2 OR c3, which means that the class that is on the first index in a list will be selected
as a perfect class for a concept.

Rule 3: If the number of two concept types (c1, c2) is similar, we ignored the third concept
type (c3) and assigned the first concept type(c1) to the term between two similar concept
types (c1, c2). Such as: IF number of c1 == c2 AND c3 < c1 AND c2, ignore c3 and assigned
T← c1 OR c2, else if number of c2 == c3 AND c1 < c2 AND c3, ignore c1 and assigned
T← c2 OR c3, else if number of c1 == c3 AND c2 < c1 AND c3, ignore c2 and assigned
T← c1 OR c3.

Figure 5 demonstrates the stepwise process of classification for the clinical term
“coronary artery disease”. After preprocessing and boundary identification, a list of
entity types was obtained through a semantic breakdown process. Each entity type was
mapped to a corresponding clinical domain (problem, treatment, and test) using the
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PRB, TRT, and TST dictionaries, as discussed in Section 3.3. The number of entries was
counted in each domain, and through the majority voting technique, the final category was
chosen. As described in Figure 5, the term “coronary artery disease” was classified into
the “problem” domain because its maximum score (argmax: 3) was greater than that of the
other two domains.

Figure 5. A step-by-step process of medical concept classification using majority voting.

4. Results and Discussion

The empirical analysis of the proposed system methodology involved evaluating
unstructured clinical documents provided by the i2b2 National Center in 2010 NLP chal-
lenges. We utilized the NLTK library for NLP and the text-mining process in the Python
programming language environment; the source code is available on GitHub for research
purposes (https://github.com/TuriAsim/Medical-Concept-Extraction-and-Classification)
(accessed 1 September 2021).

4.1. Performance Measures

To measure and compare system performance, generally, three indexes are used for
information retrieval and extraction: precision, recall, and F1-score. Precision measures the
number of valid instances in the set of all retrieved instances. Recall measures the number
of valid instances in the intended class of instances. F1-score is the harmonic mean between
precision and recall, with β = 1 used to obtain the adjusted F-score. The measures can be
computed through the following equations for a balanced dataset:

F1− score = 2 ∗ Precision ∗ Recall
Precision + Recall

(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

4.2. Datasets

We evaluated three unstructured clinical datasets provided by i2b2 National Center,
Partners Healthcare, and Beth Israel Deaconess Medical Center to measure the system
performance. The clinical dataset consisted of discharge summaries that were annotated
manually for three types of clinical concepts (problem, treatment, test) according to the
instructions of the i2b2/VA challenge organizers [4]. Partners Healthcare contains 97
annotated notes, Beth Israel Deaconess Medical Center contains 73 annotated notes, and

https://github.com/TuriAsim/Medical-Concept-Extraction-and-Classification
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the test dataset provided by i2b2 National center for system evaluation contains 256
annotated notes. We utilized both training and test annotated notes for experimental
purposes, and the gold dataset was used for the evaluation as shown in Table 5.

Table 5. All the datasets and their details, provided by i2b2 National Center.

Data Source Golden
Datasets

Number of Concepts

Problem Treatment Test Total

Beth Medical
Center 73 4187 3073 3036 10,296

Partners
Healthcare 97 2886 1771 1572 6229

i2b2 Test
dataset 256 12,592 9343 9226 31161

Total 426 19,665 14,187 13,834 47,686

4.3. Word-Boundary Identification Algorithm Performance

To calculate the efficiency and accuracy of the boundary identification algorithm in
measuring index sensitivity, we utilized a gold dataset provided by i2b2. We selected 20
unstructured documents from each of the three test datasets (Beth medical center, Partner
healthcare, and i2b2 test dataset) and processed them through the proposed algorithm. The
average performance of the algorithm on the datasets, in terms of the sensitivity score, was
97.14% as shown in Table 6.

Sensitivity =
Number o f true positives

(Number o f true positive + Number o f f alse negatives)
(8)

Table 6. Overall datasets and individual performance on the i2b2 datasets for word-boundary
identification algorithm.

Datasets True Positive False Negative Sensitivity

Beth Medical Center 255 7 97.33%
Partners Healthcare 162 5 97%

i2b2 Test Dataset 400 13 96.85%
Overall Results 817 24 97.14%

4.4. Semantic Breaking

We performed the semantic breakdown analysis using n-gram combinations. We
picked up 10 unstructured clinical notes from the i2b2 dataset for experimental purposes
after preprocessing a bag of words obtained in the range of n-gram-4. Each word was
mapped to UMLS, and information was extracted such as concepts, semantic types, and
entity types. In a subsequent analysis, we found that the UMLS Metathesaurus identifies
medical terms using n-gram-1 quantitatively better than n-gram-2, n-gram-3, and n-gram-4.
However, the terms with n-gram > 1 deliver extra meaningful and coherent information
for the user. For example, “blood pressure,” “coronary artery disease,” and “liver function
test normal” are more meaningful terms as compared to a single term such as “pressure,”
“blood,” “coronary,”, etc. As the n-gram word size increases, the matching accuracy of
composite terms to the Metathesaurus decreases, as shown in Figure 6.
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Figure 6. UMLS semantic breakdown using n-gramming strategies with n = 1–4.

4.4.1. System Performance Comparison with Competitors

We compared our proposed system’s performance with that of three related systems:
QuickUMLS [1], BIO-CRF [28], and the Rules (i2b2) model [22]. The three systems were
tested against the i2b2 2010 dataset for three types of concept category extraction (problem,
treatment, and test).

Quick UMLS employed an approximate dictionary matching approach for medical
concept extraction. It required a threshold value between 0.6 to 1.0 to select an acceptable
medical concept from a collection of UMLS concepts. We used both approximate dictionary
matching and exact word matching in the suggested methodology, which resulted in 25%
greater accuracy and 12% higher recall when compared to Quick UMLS. In addition, Quick
UMLS had 4% greater recall compared to the proposed methodology.

The rules (i2b2) model created a simple set of rules by harvesting information from
the annotated training data. This rule-based algorithm used a statistical method to catego-
rize and extract concepts from structured and annotated data. Our suggested rules-based
methodology used a majority vote mechanism to identify and extract concepts from unstruc-
tured clinical data. When compared to the rules (i2b2) model, the proposed methodology
yielded higher precision, recall, and F1-score, as shown in Figure 7.

BIO-CRF is a medical concept extraction approach based on machine learning. It aims
to automatically identify the concept boundary and assign the concept type to them.

For each medical concept, word-level and orthographic-level features were retrieved
to train the BIO-CRF model. At the individual concept and dataset level, we compared
the performance of the proposed approach with BIO-CRF. The proposed methodology
achieved 75.76% precision and a 72.94% F1-score, which are approximately 6% and 2%
higher than the BIO-CRF system, respectively, while BIO-CRF achieved approximately 4%
higher recall than the proposed system. Overall, the proposed system performed better
than the QuickUMLS, BIO-CRF, and Rules (i2b2) models, as shown in Figure 7.



Int. J. Environ. Res. Public Health 2021, 18, 10564 17 of 24Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 17 of 24 
 

 

 
Figure 7. Performance comparison of the proposed system with the QuickUMLS, BIO-CRF, and 
Rules (i2b2) models. 

4.4.2. Performance Comparison on Individual Concept Extraction 
We measured the proposed system performance on individual concept extraction 

and compared it with that of the runner-up system, BIO-CRF [4]. As described in Table 7, 
the precision score was similar for the proposed and BIO-CRF systems in the “problem” 
category. However, the proposed system showed better performance in terms of 
increased recall of 14% and an F1-score 7% higher. Measuring the performance for 
“treatment” concepts, we found that the BIO-CRF performance was better, with 11% 
higher precision than the proposed system, but the proposed system outperformed the 
counterpart in terms of recall with a 17% increase and with an F1-score 2% higher. 

The proposed system and BIO-CRF produced similar precision results of 80%, but 
BIO-CRF performed better in terms of recall, with a 25% increase, and the F1-score 
increased by 18% for individual concepts in the “test” category. 

Table 7. Individual concepts’ performance measurements: proposed system vs. BIO-CRF model. 

Systems Category Precision (%) Recall (%) F1-Score (%) 

BIO-CRF 
Problem 79% 69% 74% 

Treatment 79% 70% 74% 
Test 80% 67% 73% 

Proposed System 
Problem 79% 83% 81% 

Treatment 68% 87% 76% 
Test 80% 42% 55% 

4.4.3. Independent System Performance 
We also calculated the results of individual systems for three functions: exact match, 

approximate match, and exact-plus-approximate match, and calculated the average 
precision, recall, and F-score. For this experiment, we used an imbalanced dataset. 
Imbalance means that the number of concepts available for three categories (problem, 
treatment, and test) is different in a single clinical note. For example, if the number of 
problems is 30, treatments is 20, and tests is 15, we can say that the dataset is imbalanced.   

Figure 7. Performance comparison of the proposed system with the QuickUMLS, BIO-CRF, and
Rules (i2b2) models.

4.4.2. Performance Comparison on Individual Concept Extraction

We measured the proposed system performance on individual concept extraction
and compared it with that of the runner-up system, BIO-CRF [4]. As described in Table 7,
the precision score was similar for the proposed and BIO-CRF systems in the “problem”
category. However, the proposed system showed better performance in terms of increased
recall of 14% and an F1-score 7% higher. Measuring the performance for “treatment”
concepts, we found that the BIO-CRF performance was better, with 11% higher precision
than the proposed system, but the proposed system outperformed the counterpart in terms
of recall with a 17% increase and with an F1-score 2% higher.

Table 7. Individual concepts’ performance measurements: proposed system vs. BIO-CRF model.

Systems Category Precision (%) Recall (%) F1-Score (%)

BIO-CRF
Problem 79% 69% 74%

Treatment 79% 70% 74%
Test 80% 67% 73%

Proposed
System

Problem 79% 83% 81%
Treatment 68% 87% 76%

Test 80% 42% 55%

The proposed system and BIO-CRF produced similar precision results of 80%, but BIO-
CRF performed better in terms of recall, with a 25% increase, and the F1-score increased by
18% for individual concepts in the “test” category.

4.4.3. Independent System Performance

We also calculated the results of individual systems for three functions: exact match,
approximate match, and exact-plus-approximate match, and calculated the average preci-
sion, recall, and F-score. For this experiment, we used an imbalanced dataset. Imbalance
means that the number of concepts available for three categories (problem, treatment, and
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test) is different in a single clinical note. For example, if the number of problems is 30,
treatments is 20, and tests is 15, we can say that the dataset is imbalanced.

Average Precision f (P) =
1
N

N

∑
i=1

TPi
TIi

(9)

Average Recall f (R) =
1
N

N

∑
i=1

TPi
TTi

(10)

Average F− Score f(fscore) = 2 ∗ f (P) ∗ f (R)
f (P + f (R)

(11)

where N represents the number of classes, TI is the total number of inferred labels, and TT
is the ground truth label.

Subsequently analyzing the results of exact and approximate term matches to UMLS
individually, we discovered that much information was missing when employing exact
term matching to UMLS with a precision of 87.66%, recall of 44.62%, and F1-score of 59.14%.
Later, we added approximate term matching to the UMLS approach. We acquired a lower
precision (71.53%) then with exact matching but had an improved recall of 63.53% and F1-
score of 67.29% then exact term matching. Therefore, we concluded that precision and recall
needed to be improved. We employed a hybrid methodology that merged the exact and
approximate term-matching mechanisms to UMLS. After preprocessing, word boundary
detection was employed to extract a list of terms obtained. Each term was matched to
the UMLS by two approaches, an exact match and an approximate match. When the
exact match approach was used, matched terms were listed. Again, the approximate
match approach was used on the other unmatched terms. In the end, these two lists were
combined from the exact and approximate matching of terms, and rules were applied as
discussed in Section 3.3.

We found that the hybrid methodology produced a dramatic increase in results, with
high precision of 75.75%, recall of 70.32%, and F1-score of 72.94%, as shown in Figure 8.

Figure 8. Individual system performance for exact, approximate, and exact-plus-approximate term
matching to UMLS mechanism.
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The individual datasets and concept wise results is attached in appendix for further
deep analysis and discussion as shown in Appendices A.1–A.3.

5. Conclusions

We proposed an extensive rule-based system that automatically identifies clinical
concept word boundaries and extracts and classifies clinical concepts by exploiting UMLS.
We measured the system performance in various ways, such as individual concept-wise,
dataset-wise, and system-wise, and compared the proposed system results with other
existing systems and methodologies in the same domain, such as QuickUMLS, BIO-CRF,
and the Rules (i2b2) model. The overall proposed system performed better than the
QuickUMLS, BIO-CRF, and Rules (i2b2) models, achieving high precision of 76.76%, recall
of 70.32%, and F1-score of 72.94% for individual concepts. We also constructed results for
concept word-boundary identification and achieved a sensitivity score of 97.14%. Rules are
generalized instead of domain-dependent regardless of the semantics of the statement. The
proposed system utilized UMLS to identify and extract standard and semantic information.
This study can play an essential role in automatically extracting, classifying, and annotating
or labeling medical data for data-driven approaches such as deep learning and machine
learning. We did not employ a machine-learning algorithm; therefore, the performance is
documented and size-independent.

Although the proposed system’s reliability and accuracy have been proven by this
research outcome, there were also some limitations to the research. A strict word bound-
ary and composite word detection were challenges for a well-defined concept such as
“saphenous vein graft -> posterior descending artery.” These errors can be resolved in
the future by employing some regular expression patterns and deep-learning algorithms
such as word embedding. Due to the homogeneous structure of the clinical documents
and the huge dataset, the system processing time was increased. Some computational
preprocessing needs to be performed to clean the data and convert them into a structured
database format. The system processing time and efficiency will be boosted and measured
in the future to expedite the processing of massive datasets.
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Appendix A

Appendix A.1. Performance on Individual Datasets Using Exact Matching

We also evaluated the proposed system on different datasets, employed an exact term
matching approach, and achieved an overall recall below 50% for all datasets, which means
that more than 50% of concepts missed and did not match UMLS. Employing an exact
matching mechanism is obligatory to see improvement. The proposed system had a higher
precision of 90.05% for Partner datasets than the Beth and test datasets, while it achieved a
higher F1-score of 62.38% for Beth compared to Partner and Test data (see Figure A1).

We also computed the individual concept-wise performance for each dataset by
employing the exact word-matching approach shown in Table A1. Comparable precision
of 94% was produced for problems evaluating the Beth, Partner, and Test datasets. Less
than 50% recall was measured for the Problem concept in all three types of datasets, but
we calculated a higher F1-score of 65% in the Beth dataset for the Problem concept. High
precision of 93.91% was determined for the Treatment concept in Partner data. An almost
equal recall of 56% was found in the Beth, Partner, and Test data, with a high F1-score of
70.46% noted in Partner data for the individual concept treatment. A comparable precision
of 89% was noted for the Beth and Partner data, while the overall recall was found to be
below 50% for the three types of dataset for the Test concept, and a high F1-score of 56.19%
was calculated for the Beth data for the Test concept.
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Table A1. Individual concepts’ performance measures for the Beth, Partner, and Test datasets,
employing exact term matching to UMLS.

Datasets Categories Precision (%) Recall (%) F1-Score (%)

Beth Medical
Center

Problem 94.83% 49.55% 65.09%
Treatment 78.13% 54.95% 64.52%

Test 89.27% 40.99% 56.19%

Partners
Healthcare

Problem 93.33% 47.93% 63.34%
Treatment 93.91% 56.37% 70.46%

Test 88.89% 33.33% 48.48%

i2b2 Test Data
set

Problem 93.33% 36.27% 54.24%
Treatment 71.80% 56.57% 63.28%

Test 85.41% 25.63% 39.43%

Appendix A.2. Individual Datasets and Concept-Wise Performance Approximate Matching

As discussed in Section 4.4.3, the recall for concept extraction needs to be improved
by exploiting approximate term matching to UMLS. Several concepts have been missed
due to imprecise composite word-boundary identifications or concepts not being precisely
matched to UMLS when employing exact term matching.

An approximate term matching using UMLS for medical concept matching was
employed to improve recall and precision. We analyzed the results of the proposed system
for approximate matching and performed experiments for individual datasets and concepts.
We achieved a precision of 78.15% and recall of 70.3% for Partner data, which was higher
than for Beth and Test data, but obtained a 66.07% recall for Beth data, which was higher
than for Partner and Test data, as shown in Figure A2. We also measured the individual
concept-wise performance for all three types of datasets. Overall, the Partner dataset
obtained the highest precision of 84.46% and 75%, recall of 86.23% and 94.29%, and F1-
score of 85.34% and 83.55% for an individual concept’s problem and treatment, which was
better than the performance of the Beth and i2b2 Test datasets. Beth data achieved the
highest precision of 85%, recall of 39.08%, and F1-score of 53.54% for the individual concept
test, being overall better than the Partner and Test data for every concept (see Table A2).
The overall i2b2 test dataset returned low scores for precision, recall, and F1-score for all
the individual concepts in problem, treatment, and test.
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Table A2. Individual concepts’ performance measures for the Beth, Partner, and Test datasets,
employing approximate term matching to UMLS.

Datasets Categories Precision (%) Recall (%) F1-Score (5)

Beth Medical
Center

Problem 62.73% 83.47% 71.63%
Treatment 71.31% 75.65% 73.42%

Test 85% 39.08% 53.54%

Partners
Healthcare

Problem 84.46% 86.23% 85.34%
Treatment 75% 94.29% 83.55%

Test 75% 11.11% 19.35%

i2b2 Test Dataset
Problem 67.05% 78.28% 72.23%

Treatment 50.81% 77.04% 61.23%
Test 72.41% 26.58% 38.89%

Appendix A.3. Individual Datasets and Concept-Wise Performance: Exact-Plus-Approximate
Matching

We computed the results, individual dataset-wise and concept-wise, utilizing the Beth,
Partner, and Test datasets. As a result, high precision of 83.31%, recall of 75.51%, and
F1-score of 79.22% were measured for the Partner dataset, which was better than for the
Beth and Test data when combining exact and approximate term-matching approaches in
UMLS. An overall low score was calculated for the Test dataset with a precision of 69.46%,
recall 65.66%, and F1-score of 67.5%, as shown in Figure A3. We also computed results for
individual datasets concept-wise, followed by exact-plus-approximate concept matching
in UMLS. We performed the analysis in each dataset for the individual concept, noting
higher precision of 91.67% and 78.26%, recall of 86.52% and 100%, and F1-scores of 89.02%
and 87.80% for problem and treatment in the Partner dataset compared with the Beth and
Test dataset. Individual concept Test gained a higher precision of 85.42% in Test datasets
and achieved a high recall of 44.26% in the Beth dataset. An equal F1-score of 56% was
calculated for the Test concept in the Beth dataset and the Test data, as shown in Table A3.
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Table A3. Individual concepts performance measures for the Beth, Partner, and Test datasets,
employing exact-plus-approximate (hybridized) term matching to UMLS.

Datasets Categories Precision (%) Recall (%) F1-Score (5)

Beth Medical
Center

Problem 73.81% 83.78% 78.48%
Treatment 72.55% 81.32% 76.68%

Test 77.14% 44.26% 56.25%

Partners
Healthcare

Problem 91.67% 86.52% 89.02%
Treatment 78.26% 100% 87.80%

Test 80% 40% 53.33%

i2b2 Test Dataset
Problem 70.15% 77.05% 73.44%

Treatment 52.81% 78.12% 63.03%
Test 85.42% 41.79% 56.12%
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