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A B S T R A C T
Mirror object segmentation has been challenging due to their inapparent features, making them
difficult to extract compared to non-mirror objects. To address this challenge, inspired by the
success of foundation models (FMs) in numerous vision tasks, this work pioneers applying a
segmentation FM to segment mirror objects. Given our preliminary investigation that the recent
SAM families (powerful segmentation FMs) fail to accurately segment mirror objects, we propose
fine-tuning them on images with mirror objects. We identify that mirror-specific features tend to
lie in the mirror boundary, and we exploit these features via a gradient map to adapt the SAM to
enhance its mirror segmentation capability. Specifically, we utilize an effective gradient adapter
module with the SAM backbone frozen, allowing the model to fuse critical boundary cues from
gradient maps with the comprehensive knowledge of foundation models. Experimental results
demonstrate that our method, GMSM, achieves competitive performance against existing methods
on standard mirror segmentation benchmarks. Moreover, GMSM achieves notable efficiency,
requiring 2.24× fewer FLOPs, 4.03× fewer parameters, and running 4.27× faster than EBLNet,
making it well-suited for edge deployment.

1. Introduction
Mirror objects are widely used in daily facilities and pose safety risks for unmanned technologies (e.g., robots

and drones) [1]. Specifically, the existence of reflective surfaces in mirror objects may jeopardize the vision-based
navigation system as it tends to detect and segment objects reflected in the mirror instead of the mirror itself [2].
The mirrors’ inapparent features make them difficult to extract compared to non-mirror objects, making the mirror
segmentation challenging. Prior works have experimented with various techniques to learn these subtle features. One of
the most sought methods is to find the contextually contrasted information between the mirror and surrounding objects,
which is extracted hierarchically [3]. While this technique produces rich semantic representations, it still relies on the
conventional feature extractors pre-trained on relatively limited data, which may hinder the mining of more subtle
features in the mirror.

Foundation models (FMs), such as CLIP [4] and DINOv2 [5] have shown robust feature extraction capabilities
across a wide range of vision tasks by learning transferable features from large-scale and diverse data [6]. They have
been successfully applied to anomaly detection [7], video segmentation [8], and 3D scene understanding [9]. Inspired
by their success, we explore the use of segmentation foundation models (SAM, MobileSAM) [10, 11] and leverage
their powerful feature extraction capabilities to address the challenging task of mirror object segmentation.

Despite SAM’s proven capability across a wide range of segmentation tasks, we observe that its performance on
mirror objects remains unsatisfactory, often lagging behind traditional non-foundation model approaches. We attribute
this limitation to the unique properties of mirror objects, which exhibit strong reflective characteristics that can confuse
the model and make feature extraction more challenging. While it is common practice to address such issues through
fine-tuning on specific datasets [12], naive fine-tuning may fail to accurately capture the distinctive features of mirror
objects and can risk compromising the generalization ability of the foundation model [13]. To mitigate this issue, we
argue that we can fine-tune SAM on the mirror segmentation dataset using an adapter that supplies mirror-specific
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Figure 1: Comparison of IoU, FLOPs, and FPS between GMSM and other mirror object segmentation models on the MSD
benchmark. GMSM achieves state-of-the-art performance while offering significant advantages in computational efficiency
and inference speed.

representation to the frozen SAM’s backbone, integrating domain-specific information without jeopardizing SAM’s
already-rich representation. These mirror-specific features are particularly the boundary discontinuity that can be
extracted from the gradient map.

Unlike traditional edge-aware mechanisms that primarily detect sharp edges, mirror boundaries are more challenging
because they often exhibit subtle and smooth gradient transitions caused by reflections. These nuanced boundaries
are easily overlooked by conventional edge detectors. In contrast, gradient maps can capture gradual changes in pixel
intensity, providing richer and complementary boundary information. By integrating these informative gradient cues
with extensive knowledge embedded in the foundation model, our approach enables more accurate feature extraction
and segmentation of mirror objects.

Based on the above motivation, we propose the Gradient-based Mirror Segmentation Model (GMSM) that integrates
an image gradient learning module into the foundation model SAM. The framework of GMSM consists of a gradient
encoder and G-transformer adapters. The gradient encoder efficiently extracts the boundary discontinuity features
from the gradient map. The G-transformer adapter then supplies this information to the SAM’s frozen image encoder
to facilitate learning on both image and mirror features during training. We train our model with a joint weighted
intersection over union (IoU) loss and internal boundary loss to encourage learning on image features and the pixel
information influenced by local reflections around the internal mirror boundary. In practical implementation, considering
the model size and speed, we experiment with SAM two lightweight backbones: ViT-B (proposed in the original SAM
paper [10]) and TinyViT (proposed in MobileSAM [14]). As a result of our effective adapter design and the use of a
lightweight backbone, the proposed GMSM achieves a 4.1% improvement in IoU over previous methods, along with
a 4× speed-up in inference and a 2.24× reduction in FLOPs (see Figure 1). This combination of high accuracy and
efficiency is particularly valuable for mirror object segmentation tasks commonly employed on resource-constrained
platforms such as UAVs and robotics.

This work focuses on the mirror object segmentation task by utilizing a segmentation FM. Overall, we summarize
the contributions of our work as follows.

• We demonstrate that SAM families (segmentation FMs) fail in the mirror segmentation task due to the inability
to capture mirror-specific features, and we propose to solve this by fine-tuning with an effective adapter.

• Motivated by the observation that mirror-specific features are often concentrated along boundaries, we propose
to exploit the gradient map for adapting the SAM to mirror object segmentation.
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• Extensive experiments show that GMSM achieves state-of-the-art accuracy on mirror object segmentation
benchmarks, outperforming prior methods with a 4.1% improvement in IoU. Moreover, it is 4× faster and 2.24×
more efficient in FLOPs, making it highly suitable for real-time deployment on edge devices.

2. Related works
2.1. Mirror Object Segmentation

Mirror object segmentation is a task that involves recognizing mirror regions within a single RGB image. Yang et
al. [2] first perform the first method for automatic mirror object segmentation in RGB images by leveraging neural
network backbones to extract multi-level and contextual contrast information between regions inside and outside the
mirror. Lin et al. [3] gathered mirror images to establish a more rigorous PMD benchmark and introduced PMD-Net, a
deep network utilizing a refinement network to extract mirror regions based on relational contextual contrast features
and edge information. Guan et al. [15] propose a semantic side path to utilize semantic information to recognize mirror
object regions and employ neural network contextual relationships to segment mirror regions. Mei et al. [16] and Zhou
et al. [17] utilize additional depth information to assist in segmenting mirror objects from RGB images using neural
networks. Several advanced transformer-based [18] and diffusion-based segmentation methods [19] have been proposed,
but they often overlook the crucial boundary regions necessary for mirror object identification, leading to confusion
with reflected content.

In addition, boundary discontinuity is a crucial feature in recognizing mirror objects. He et al. [20] argue that
the inner object appearance of mirror objects and their surrounding backgrounds, as utilized in previous works, do
not significantly contribute to segmentation due to their inherent confounding nature; instead, they emphasize the
crucial importance of boundary information. Han et al. [21] find that mirror objects often accompany external boundary
features like a frame, differing from internal boundaries and thus design a network to utilize these features for mirror
object segmentation. While they both succeeded in automating mirror object detection [3], limitations in training data
and methods led to inaccurate extraction of object features and the inclusion of irrelevant contextual features, confusing
the training process. Furthermore, these methods [2] rely on large parameter neural networks to extract discontinuous
context and boundary features, which hinders their application in real scenarios where automatic mirror detection is
required, such as autonomous vehicles. In this work, we address these challenges by leveraging gradient map information,
which provides both abrupt and smooth transitions in intensity, providing a more comprehensive representation of
mirror boundaries than conventional edge-aware approaches. We further leverage extensive representation knowledge
from the foundation model, thereby inheriting its robust and precise feature extraction capability to accurately extract
features of challenging mirror objects.
2.2. Foundation Model and Fine-tuning Adaptation

Foundation models, which are trained on vast amounts of data and possess strong generalization capabilities, are
receiving widespread attention from researchers. Brown et al. [22] proposed GPT-3, which has been widely recognized
as one of the most prominent foundation models for natural language processing (NLP) and serves as a key component
behind the success of ChatGPT [23]. Radford et al. [4] introduced the foundation model Contrastive Language–Image
Pre-training (CLIP), which enables the generation of outputs based on textual instructions [24]. In the realm of vision,
Meta AI’s public vision foundation model SAM, which exhibits exceptional generalization capabilities for object
segmentation, has gained substantial attention [25]. Its remarkable capabilities have enabled its application in various
domains, including image editing [26], inpainting [27]. Recently, Ravi et al. [28] proposed the Segment Anything Model
2 (SAM 2), which is developed as a foundational video model for advanced visual segmentation. SAM 2 leverages a
data engine that improves performance through user interactions with the largest video segmentation dataset.

To enable efficient fine-tuning of large pre-trained models with only a small number of additional parameters,
Houlsby et al. [29] first introduced adapters for NLP tasks. Pan et al. [30] propose ST-Adapter for efficient fine-tuning
in video tasks, enabling pre-trained image models to handle dynamic video content with minimal parameter overhead.
Stickland et al. [31] investigated multi-task learning using a shared BERT model combined with adapters specific to
each task. Gao et al. [32] introduce CLIP-Adapter, a method for enhancing vision-language models through feature
adapters and residual-style blending, offering an alternative to prompt tuning. Wu et al. [33] propose the Medical SAM
Adapter (Med-SA), which integrates domain-specific medical knowledge into the foundation model for application in
the field of medical image segmentation. Recently, it has been found that upsampling and downsampling modules can
serve as components of plain ViT for object detection [34] and Video Depth Estimation [35]. The adapter, a lightweight
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Table 1
Qualitative results of various SAM families in the MSD benchmark.

Methods Backbone IoU ↑ 𝐹𝛽 ↑ Accuracy ↑ MAE ↓
MobileSAM TinyViT 42.93 0.7705 85.59 0.14409

SAM ViT-B 35.54 0.7128 84.20 0.15801
SAM ViT-H 51.57 0.8176 81.74 0.12418

module, modifies the features extracted by models trained on large datasets to make them suitable for downstream tasks.
We utilize lightweight adapter modules to effectively fuse mirror-specific features into the well-established segmentation
representations of the foundation model.

3. Method

Figure 2: Visualization of SAM predicted results with mirror object images. Highlighted points and regions indicate the
SAM-predicted mask and the prompt area, respectively.

3.1. SAM for Mirror Object Segmentation Without Adaptation
SAM, as a segmentation foundation model, is not capable of handling mirror object segmentation. We conduct an

initial experiment to prove this limitation. Specifically, we select a number of images with mirrors present and supply
them to the SAM together with five high-quality prompts at different positions. In the predicted output masks (Figure 2),
we notice that SAM prefers to segment the objects being reflected in the mirror, but not the mirror itself. We conjecture
that this is largely caused by the reflective nature of the mirror, which makes the extraction of the subtle true mirror
feature challenging. This qualitative evidence is further supported by the IoU evaluation metric, which employs huge
ViT-H as its backbone and only yields IoU of 51.57 (Table 1), indicating its poor proficiency in mirror segmentation.
3.2. Gradient-based Adaptation

Based on previous investigations, the SAM has unsatisfactory performance for segmenting mirror objects. Based on
the above finding, we propose a Gradient-based Mirror Segmentation Model (GMSM) that adapts a well-trained SAM
with a gradient adapter. The GMSM modifies the image encoder of the foundation model by coupling both transformer
adapters [36] and gradient adapters into it. Figure 3 illustrates the construction of GMSM.
3.2.1. Gradient Encoder

The gradient encoder extracts the boundary discontinuity (Figure 4) information from the gradient map. Specifically,
given an input image 𝐼 , we generate the gradient map and supply it as an input to the gradient encoder. The gradient
map refers to the differences between adjacent pixels that we calculate with the following formula.

∇𝐼𝑥(𝐱) = 𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥 − 1, 𝑦),
∇𝐼𝑦(𝐱) = 𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦 − 1),
𝐺(𝐼) = ‖(∇𝐼𝑥(𝐱),∇𝐼𝑦(𝐱))‖2,

(1)

where 𝐺(𝐼) denotes the extraction function with its elements representing the magnitudes of gradients for pixels located
at coordinates (𝑥, 𝑦).
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Figure 3: Overview of our proposed method. We employ a lightweight foundation model as the backbone, fine-tuning the
G-Transformer, gradient encoder, and MobileSAM mask decoder, while keeping the remaining modules frozen.

(a) Image (b) Gradient Map

Figure 4: (a) The original image containing a mirror object. (b) The corresponding gradient map, with zoomed-in details
of the boundary region. The zoomed-in areas of the gradient map reveal high values and display chaotic, discontinuous
features, especially along the mirror’s boundary.

Our gradient encoder consists of a gradient extractor block and an upsampling depth-wise convolution block. On
the extractor block, we use 3 × 3 convolution layers, the same as the patch embedding on the image feature extractor
route, while we halve the channel dimension of its output. To match the dimension of the patch embedding output, we
design our upsampling depthwise convolution to comprise a GELU activation layer and a 1 × 1 convolution layer. Then,
we represent our gradient encoder as follows:

𝐹𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 = Conv3×3
(GELU (Conv3×3 (𝐺(𝐼))

))

,

𝐹𝑔 = Conv𝑖1×1
(GELU (

𝐹𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔
))

.
(2)

Finally, we add the boundary discontinuity feature, 𝐹𝑔 , to the output of the patch embedding and supply it as input to
the image encoder. The specific network structure of our gradient encoder is illustrated in Figure ??. The input image is
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first processed to compute gradients along its three channels, capturing pixel value changes. These gradient features, 𝐹𝑔 ,
are then passed through two convolutional layers to increase the feature dimension to 96. Subsequently, we employ an
MBConv layer and use interpolation to align both the channel dimension and spatial resolution with those required by
the corresponding backbone module.
3.2.2. G-Transformer Adapter

The main goal of the G-Transformer adapter is to improve the capacity of SAM’s image encoder to learn mirror-
specific features alongside the overall image features by integrating the boundary discontinuity features 𝐹𝑔 with the
image features. G-Transformer adapters replace the transformer blocks in the image encoder at every stage. The
construction of the G-Transformer adapter follows the basic transformer adapter, coupled with the gradient adapter.
The basic transformer adapter comprises basic attention and multilayer perceptrons (MLPs), which are inspired by the
transformer’s multi-head attention and MLPs that adjust the feature maps’ sparsity and channel dimensions. On the
other hand, the gradient adapter consists of a sequence of channel fusion depth-wise convolution layers, downsampling
MLP, GELU activation layer, upsampling MLP, and residual connection. We concatenate the output of the transformer
adapter 𝐹𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 with that of the gradient encoder 𝐹𝑔 in the channel fusion and generate fusion features 𝐹𝑓𝑢𝑠𝑖𝑜𝑛. We
further reduce the dimension of 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 with a 1 × 1 convolution layer and batch normalization. Subsequently, we send
the 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 to the sequence of downsampling MLP, GELU layer, and upsampling MLP to produce the final output
features 𝐹𝑜𝑢𝑡. We employ simple MLP layers to do this final processing to ensure lightweight parameterization while
also learning the dimensional features. Overall, we express the operations mentioned above as follows.

𝐹𝑓𝑢𝑠𝑖𝑜𝑛 = Conv𝑖1×1
(Concat (𝐹𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛, 𝐹𝑔

))

,

𝐹𝑜𝑢𝑡 = 𝛼 ⋅ MLP𝑖
𝑢𝑝
(GELU (MLP𝑖

𝑑𝑜𝑤𝑛
(

𝐹𝑓𝑢𝑠𝑖𝑜𝑛
)))

,
(3)

with 𝑖 representing the 𝑖-th block of transformers in each stage and the MLP𝑑𝑜𝑤𝑛 and MLP𝑢𝑝 respectively performing
downsampling and upsampling by a factor of two. We set the hyperparameter 𝛼 to 0.2. Note that we freeze all parameters
of the image encoder during the optimization of the gradient encoder and adapter. The network consists of three
G-Transformer Adapter blocks, with embedding dimensions of 𝑁 ∈ 64, 128, 160 at each block, respectively. At every
block, the spatial resolution of the feature map is reduced by half, for example, from 256 at the input to 64 at the final
stage. In each block, we concatenate the feature gradient 𝐹𝑔 with the input embedding, and use a convolutional layer to
reduce the combined dimension from 𝑁 + 64 to 𝑁 . This is followed by two MLP layers: the first reduces the dimension
by half, and the second restores it to 𝑁 before producing the final output.
3.2.3. Total Loss Function

The complete objective function for segmenting mirror objects is the combination of learning the global extremities
of all objects and the local internal boundary of the mirror in an image.

The internal boundary loss 𝐿𝑖𝑛𝐵𝐶𝐸 is designed to make the network focus more on learning the boundary pixels,
with particular emphasis on the internal boundaries of mirrors where reflections cause prominent discontinuities. These
boundary pixels, although important, constitute a small portion of the image and are underemphasized during the
learning process, especially in pixel-wise binary classification tasks. To address this, we introduce a spatial weight map
𝑊 𝐶 within the cross-entropy loss, which assigns higher weights to pixels in the mirror’s internal regions. The spatial
weight map is defined as follows:

𝑊 𝐶 = 2 − 𝐺𝑡ℎ
𝐼𝑛 ⊙ Gaussian(𝐺𝑡ℎ

𝐼𝑛), (4)
where 𝐺𝑡ℎ represents the ground truth mirror region. The map is generated by applying a Gaussian smoothing filter with
a kernel size of 11 and a sigma of 7, resulting in 𝑊 𝐶 values ranging from just above 1 to less than 2, with higher values
at the boundaries. Incorporating 𝑊 𝐶 into the binary cross-entropy (BCE) loss gives us the internal boundary loss:

𝐿𝑖𝑛𝐵𝐶𝐸 = −
∑

𝑥,𝑦
𝑊 𝐶 (𝑥, 𝑦) ⋅ (𝑃 (𝑥, 𝑦) ⋅ log𝐺𝑡ℎ(𝑥, 𝑦)

+(1 − 𝑃 (𝑥, 𝑦)) ⋅ log(1 − 𝐺𝑡ℎ(𝑥, 𝑦))),
(5)

where (𝑥, 𝑦) represents the pixel coordinates and 𝑃 is the predicted map. This approach ensures that the network gives
appropriate attention to the boundary pixels during training.
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Moreover, IoU loss functions, widely used in semantic segmentation, provide macro-level supervision by focusing
on foreground regions to ensure complete and accurate segmentation results. We formulate the IoU loss as follows,

𝐿𝐼𝑜𝑈 = 1 −

𝐻
∑

𝑥=1

𝑊
∑

𝑦=1
𝑃 (𝑥, 𝑦)𝐺(𝑥, 𝑦)

𝐻
∑

𝑥=1

𝑊
∑

𝑦=1
[𝑃 (𝑥, 𝑦) + 𝐺(𝑥, 𝑦) − 𝑃 (𝑥, 𝑦)𝐺(𝑥, 𝑦)]

. (6)

Here, 𝑃 (𝑥, 𝑦) and 𝐺(𝑥, 𝑦) represent the predicted and ground truth values at pixel (𝑥, 𝑦), respectively.
Comprising of internal boundary loss 𝐿𝑖𝑛𝐵𝐶𝐸 and IoU loss 𝐿𝐼𝑜𝑈 , our hybrid loss function is shown as follows:

Lℎ𝑦𝑏𝑖𝑟𝑑 = 𝛽L𝐼𝑜𝑈 + 𝜆L𝑖𝑛𝐵𝐶𝐸 , (7)
where the balancing weights 𝛽 and 𝜆 are set to 3 and 1, respectively.
3.3. Backbone Choice in Practical Implementation

Our proposed GMSM adopts the image encoder in SAM as the backbone. In practice, mirror segmentation methods
are mainly used in unmanned technologies such as robots, drones, and autonomous vehicles [1], thus requiring these
methods to be lightweight and real-time. The SAM family provides a wide variety of image encoders with different sizes.
Specifically, the original SAM paper introduces three image encoders, out of which we experiment with ViT-b (the most
lightweight one). In addition, MobileSAM [14] is one of the pioneering frameworks that improve the efficiency of SAM
by distilling its image encoder into the lightweight TinyViT [37]. To this end, we further experiment with its image
encoder TinyViT, which includes a downsampling module with patch embedding and three-stage blocks comprising
MBConv [38] blocks followed by a transformer [39] block, as depicted in Figure 3. The neck block, positioned at the
end of the image encoder, adjusts the input dimensions to align with those required by the mask decoder. As shown in
Table 2, TinyViT from MobileSAM is empirically found to be more effective than ViT-b from the original SAM in our
investigation. Considering its effectiveness and efficiency, we choose the TinyViT image encoder as the final backbone.
We leave the search for the optimal image encoder to future work. It is worth mentioning that we also use the mask
decoder in the SAM family to inherit the robust decoding capability provided by SAM. We discard the prompt encoder
since GMSM employs an automatic segmentation mode,

4. Experiments
4.1. Experimental setup
4.1.1. Dataset

We experiment on two mirror segmentation datasets, MSD [2] and PMD [3]. MSD contains 3,063 training and
955 test images with mirrors occupying large pixel regions, as the pictures were taken close to the mirror. The scenes
captured in MSD are of common daily life, which pose fewer challenges for the network to learn. PMD consists of
5,095 training and 571 test images of mirrors in diverse indoor and outdoor scenes.
4.1.2. Evaluation Metrics

We evaluate our results on mirror segmentation using four common evaluation metrics: intersection over union
(IoU), pixel accuracy (Acc), weighted 𝐹𝛽 [48], and mean absolute error (MAE). 𝐹𝛽 is a harmonic mean of average
precision and average recall defined as follows.

F𝛽 =
(1 + 𝛽2)(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝛽2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
, (8)

where 𝛽2 is set to 0.3 [49]. MAE is commonly used in foreground-background segmentation tasks to calculate the
average pixel-wise error between the predicted mask 𝑃 and the ground truth mask 𝐺.

MAE = 1
𝐻 ×𝑊

𝐻
∑

𝑖=1

𝑊
∑

𝑗=1
∣ 𝑃 (𝑖, 𝑗) − 𝐺(𝑖, 𝑗) ∣, (9)

where 𝑃 (𝑖, 𝑗) indicates predicted probability at location (𝑖, 𝑗).
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Table 2
A comparison of various methods on the MSD dataset, with ∗ indicating adaptations for derivative models of SAM. The
best results are indicated in bold, and dashed lines separate methods from different task domains.

Method Public. Year IoU ↑ 𝐹𝛽 ↑ Accuracy ↑ MAE ↓
Semantic segmentation

CPNet [40] CVPR2020 69.86 0.8314 92.44 0.07603
GloRe [41] CVPR2019 71.95 0.8406 92.33 0.06957

PSPNet [42] CVPR2017 67.99 0.8459 91.29 0.07875
Camouflage object and shadow segmentation

BDRAR [43] CVPR2018 75.37 0.8619 93.50 0.06510
DSC [44] ECCV2018 75.36 0.8479 92.82 0.07206

Salient object segmentation
MINet [45] CVPR2020 66.42 0.8172 92.78 0.08842
VST [46] ICCV2021 79.57 0.8772 93.89 0.05421

EGNet [47] ICCV2019 69.61 0.8238 91.54 0.08479
Mirror segmentation

MirrorNet [2] CVPR2020 78.93 0.8597 93.55 0.07257
PMD-Net [3] CVPR2020 76.94 0.8691 93.94 0.06130
EBLNet [20] ICCV2021 80.33 0.8839 93.64 0.04953

LSA [15] CVPR2022 79.85 0.8887 94.63 0.05421
IEBAF [21] Pub. 2023 81.48 0.8990 95.27 0.04733

Segmentation foundation models
SAM [10] ICCV2023 35.54 0.7128 84.20 0.15801

MobileSAM [11] Pub. 2023 42.93 0.7705 85.59 0.14409
GMSM (SAM*) - 84.62 0.9198 95.72 0.04520

GMSM (MobileSAM*) - 85.67 0.9244 96.28 0.04401

4.2. Main Results
4.2.1. Performance Comparison

We validate our method by comparing it with 18 methods from related fields, including semantic segmentation,
salient object segmentation, camouflage object and shadow segmentation, mirror segmentation, and segmentation
foundation models. To ensure a fair comparison, we use either their publicly available codes or implementations with
recommended parameter settings. Except for the zero-shot foundation models, all models are retrained on their respective
training sets as described in their papers, and all prediction maps are evaluated using the same code.

Table 2 presents these results on the MSD dataset and Table 3 on the PMD dataset. Our method consistently
outperforms all compared approaches. In particular, it achieves improvements of 4.19% in IoU, 0.0323 in 𝐹𝛽 , 1.01% in
accuracy, and a reduction of 0.0033 in MAE compared to the previous best method, IEBAF, on the MSD dataset. In
addition, compared to MobileSAM, our GMSM (MobileSAM*) significantly enhances performance on mirror object
segmentation. It achieves a 42.74% improvement in IoU, a 0.1539 increase in 𝐹𝛽 , a 10.69% boost in accuracy, and
a 0.1001 reduction in MAE. These results confirm the effectiveness of our gradient-guided adaptation in enhancing
segmentation quality while retaining the lightweight efficiency of SAM. Moreover, compared with models designed for
related tasks such as camouflage, shadow, and salient object segmentation, GMSM demonstrates superior performance.
This advantage stems not only from leveraging the broad visual knowledge of foundation models (FMs), but also
from the use of gradient maps, which effectively emphasize boundary information crucial for accurate mirror object
recognition.
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Figure 5: Qualitative comparison results on MSD and PMD benchmark.

4.2.2. Efficiency Comparison
To evaluate the efficiency of GMSM, we conduct a comprehensive comparison of FLOPs (computational complexity),

FPS (frames per second), and model parameters with nine state-of-the-art methods, including both mirror detection and
classical salient object detection approaches, as shown in Table 4. To ensure fairness, all experiments are conducted
on the same device, as the hardware environment influences FPS, and each method is run 100 times to calculate the
average.

Despite our method having a significantly larger image input compared to other methods, it surpasses others in both
FPS and the number of parameters, making it suitable for deployment on edge devices. This also indicates that our
method can potentially be applied in real-time detection for unmanned technologies.
4.2.3. Qualitative Results

Figure 5 shows the qualitative evaluation of GMSM on MSD and PMD datasets. Overall, compared to other methods,
our approach accurately identifies mirror regions. The first four rows present close-up images with large mirror regions,
resulting in rich and complex reflections. In these cases, our method correctly detects the mirrors, whereas other methods
are affected by the reflections. The last two rows show distant mirrors occupying smaller regions in the images. In
such scenarios, both the human eye and other methods struggle to recognize mirror regions, but our method excels in
accurately identifying them, outperforming other approaches.
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Table 3
Comparison of different methods on PMD Dataset, with ∗ indicating adaptations for derivative models of SAM. The best
results are indicated in bold, and dashed lines separate methods from different task domains.

Method IoU ↑ MAE ↓ Acc ↑

CPNet [40] 56.36 0.051 94.85
GloRe [50] 61.25 0.044 95.61

PSPNet [42] 60.44 0.039 96.13
BDRAR[43] 58.43 0.043 95.66
MirrorNet [2] 62.50 0.041 96.27
PMD-Net [3] 62.40 0.055 96.80

LSA [15] 66.84 0.049 96.82
EBLNet [20] 67.15 0.042 96.21

MobileSAM [11] 56.25 0.072 93.15
SAM [10] 64.75 0.053 94.75

GMSM (ours) 67.79 0.031 96.87

Table 4
Quantitative comparison of efficiency. We compare our model with relevant state-of-the-art models in terms of the number
of parameters (Param.), FLOPs, and FPS.

Method FLOPs↓ Param.↓ FPS↑
EGNet [47] 156.27 111.64 10.76
MINet [45] 89.12 162.38 3.55
VST [46] 25.88 44.48 6.05

MirrorNet [2] 78.48 121.77 7.82
PMD-Net [3] 101.54 147.66 7.41

LSA [15] 67.23 104.80 8.53
EBLNet [20] 53.31 46.21 9.86
IEBAF [21] 61.91 65.43 8.53

GMSM (ours) 23.81 11.47 42.12

4.3. Ablation Study
To analyze the importance of each component and loss function in our method, we conduct an ablation study on the

MSD benchmark.
4.3.1. Attaching Adapter and Freezing Image Encoder

In this ablation study, we would like to learn the effect of the combination of attaching an adapter and choosing
whether or not to freeze the image encoder. Consequently, we devise three scenarios as follows:

• “MobileSAM” refers to fine-tuning all MobileSAM image encoders’ parameters based on the pre-trained
checkpoint.

• “MobileSAM + A” refers to performing the same action as the above scenario and attaching adapters.
• “MobileSAM* + A” refers to freezing the MobileSAM’s image encoder and attaching adapters.
Table 5 shows that attaching the adapter module improves the performance of the standalone foundation model.

Specifically, IoU, 𝐹𝛽 , Acc, and MAE improve by 0.97, 0.016, 0.8, and 0.0087, respectively. This improvement proves
that our proposed adapter-based network is helpful for the segmentation foundation model to learn the subtle mirror
features from an input image. Further, we found that in addition to attaching the adapter, freezing MobileSAM’s image
encoder during training further improves the performance indicated by IoU, 𝐹𝛽 , Acc, and MAE, which improve by
2.19, 0.021, 2.31, 0.0143, respectively. Note that the scale of improvements is noticeably larger than solely attaching
an adapter to a non-frozen image encoder. We conclude that this result is primarily caused by preserving the existing
formidable segmentation knowledge from the foundation model.
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(a) Image (b) GT (c) TinyViT-5M (d) TinyViT-11M (e) TinyViT-21M

Figure 6: Qualitative results of more challenging images with different image encoders as backbone.

Table 5
Effect of attaching adapters and freezing the image encoder. Here, * indicates that the MobileSAM image encoder is frozen
during training, A denotes adapter-based fine-tuning, and G refers to gradient features.

IoU↑ 𝐹𝛽↑ Acc↑ MAE↓
MobileSAM 79.96 0.8721 92.87 0.07231

MobileSAM + A 80.93 0.888 93.67 0.06360
MobileSAM* + A 83.12 0.909 95.98 0.04932

MobileSAM* + A + G 85.67 0.9244 96.28 0.04401

4.3.2. Effectiveness of Gradient Encoder
We verify the effectiveness of the gradient encoder in GMSM that supplies the boundary discontinuity features

needed for learning. We experiment by removing the gradient encoder from GMSM so that we force our model to
extract the subtle mirror-specific features from only the RGB input image during training. As shown in Table 5, all
learning scenarios without gradient encoder are capped by the scenario with gradient encoder (“MobileSAM* + A
+ G”). The presence of a gradient encoder improves the best scenario from the previous ablation study in IoU, 𝐹𝛽 ,
Acc, and MAE by 2.55, 0.0154, 0.3, and 0.005, respectively. The largest improvement in IoU indicates that boundary
discontinuity features extracted from the gradient map are indeed a substantial piece of information for the mirror
segmentation task, as the reflections presented by mirrors only add to the confusion.
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Table 6
Effect of different loss terms on MSD.

IoU↑ 𝐹𝛽↑ Acc↑ MAE↓ BF ↑
𝐿𝐵𝐶𝐸 81.28 0.9073 95.17 0.04976 0.8071

𝐿𝐵𝐶𝐸 + 𝐿𝐼𝑜𝑈 84.78 0.9113 95.98 0.04803 0.8322
𝐿𝑖𝑛𝐵𝐶𝐸 + 𝐿𝐼𝑜𝑈 85.67 0.9244 96.28 0.04401 0.8418

Table 7
Comparison on different backbone image encoders on the MSD benchmark.

Backbone IoU↑ 𝐹𝛽↑ Acc↑ MAE↓
TinyViT-5M 85.67 0.9244 96.28 0.04401
TinyViT-11M 86.97 0.9289 96.57 0.03821
TinyViT-21M 88.21 0.9353 96.75 0.03329

4.3.3. Effectiveness of Joint Loss Function
We explore the impact of the joint loss function 𝐿𝑗𝑜𝑖𝑛𝑡 by incrementally fixing individual elements starting from

the classic BCE 𝐿𝐵𝐶𝐸 . In the second scenario, we couple it with the IoU loss 𝐿𝐼𝑜𝑈 where we achieve a gain of 3.5 in
IoU. Next, we fix the spatial weight map into the BCE to produce the internal boundary loss 𝐿𝑖𝑛𝐵𝐶𝐸 as presented in
Equation 5. Thus, in the third scenario, we apply the complete joint loss function as formulated in Equation 7. This
setup yields a gain of 0.89 in IoU compared to the second scenario, which supports our conjecture that giving more
attention to the subtle mirror features helps to balance how the model treats all pixels in the image during learning for
the specific mirror segmentation task. Furthermore, we report the Boundary F1-score (BF score) in our experiments.
The results demonstrate that our proposed 𝐿𝑖𝑛𝐵𝐶𝐸 loss significantly improves boundary accuracy compared to baseline
methods, further highlighting the effectiveness of 𝐿𝑖𝑛𝐵𝐶𝐸 in enhancing edge-aware segmentation. We summarise these
results in Table 6.
4.3.4. Choice on Backbone Image Encoder

We conduct experiments using various types of image encoders provided by MobileSAM, including TinyViT-11M
and TinyViT-21M. These image encoders inherit the knowledge of the foundation model through knowledge distillation,
with the main difference being the embedding dimensions for each stage of convolution. Specifically, TinyViT-5M,
TinyViT-11M, TinyViT-21M have embedding dimension of {64, 128, 160, 320}, {64, 128, 256, 448}, and {96, 192, 384,
576}, respectively. Larger embedding dimensions can enhance the model’s ability to extract object features effectively
as shown in Table 7. Notice that as the embedding dimensions increase, the resulting IoU also improves. We further
validate this performance by handpicking challenging images where mirrors are occluded. Qualitative results in Figure 6
show that image encoders with more parameters provide better mask predictions and are less affected by reflective
patterns and object occlusions. Although this improvement comes with an increase in model parameters and a reduction
in FPS, we argue that our lightweight architecture can still meet the requirement of low-latency mirror segmentation
when deployed on edge devices.
4.4. Ablation Study of Model Hyperparameters

We conduct an ablation study to investigate the effects of key model parameters, including the loss function kernel
size 𝜎, as well as the hyperparameters 𝛽 and 𝜆, which control the relative contributions of individual loss components.
As shown in Table 8, the choice of these parameters significantly affects the model’s performance. Based on the results,
we set the kernel size, 𝛽, and 𝜆 to 7, 3, and 1, respectively, for all subsequent experiments. As illustrated by the results,
an excessively large 𝜆 causes the model to focus too much on fine details while neglecting the global structure, whereas
an overly large 𝛽 leads the model to ignore important details. Additionally, a large kernel size results in a significant
amount of non-boundary information being included in the loss computation, which can negatively impact segmentation
accuracy.

5. Discussion
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Table 8
Sensitivity analysis of kernel size, 𝛽, and 𝜆. The numbers in parentheses indicate the corresponding hyperparameter values.

Parameter Value 1 Value 2 Value 3
Kernel size 84.12 (5) 85.67 (7) 84.55 (9)

𝛽 85.17 (2) 85.67 (3) 85.46 (4)
𝜆 85.67 (1) 85.03 (2) 84.92 (3)

(a) w gradient adapter (b) w/o gradient adapter

Figure 7: Visualization of principal components in feature maps with and without gradient adapter fine-tuning.

The superior performance of GMSM can be attributed to its ability to guide the foundation model (e.g., SAM)
toward mirror-specific visual cues. Mirror objects pose unique challenges such as internal reflections and ambiguous
textures, which often confuse general-purpose segmentation models. By introducing a gradient map as an auxiliary
supervisory signal, GMSM explicitly encourages the model to focus on boundary regions rather than misleading
reflective appearances. To further support our analysis, we conduct principal component analysis (PCA) and visualize
the feature space before and after fine-tuning with our method. The results shown in Figure 7, GMSM effectively guides
the model to extract more discriminative, mirror-specific features, highlighting the benefits of our adaptation strategy.
Moreover, our results demonstrate that while foundation models are powerful, they may overlook subtle yet critical
low-level features in domain-specific tasks. GMSM bridges this gap through a lightweight, gradient-based adaptation,
resulting in consistent performance improvements across multiple benchmarks.

6. Conclusion
Our work is the first to adapt segmentation foundation models (e.g., SAM) for mirror object segmentation and

reveals their limitations on this challenging task. To address this, we propose GMSM, a lightweight adapter that
incorporates gradient-based boundary information to enhance mirror-specific representations. Extensive experiments
on two benchmark datasets demonstrate that GMSM achieves state-of-the-art performance with significantly reduced
computational complexity (2×), faster inference speed (4×), and fewer parameters (4×). Comprehensive ablation studies
further validate the effectiveness of key components, including the frozen image encoder, the gradient-guided adapter,
and the hybrid loss. This study opens a new direction for applying foundation models to mirror segmentation, and future
work may explore additional mirror-specific priors to further improve adaptation.
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