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Abstract. Ontology is a promising tool to model and reason about context in-
formation in pervasive computing environment. However, ontology does not 
support representation and reasoning about uncertainty. Besides, the underlying 
rule-based reasoning mechanism of current context-aware systems obviously 
can not reason about ambiguity and vagueness in context information. In this 
paper, we present an ongoing research on context modeling which follows the 
ontology-based approach while supports representation and reasoning about 
uncertain context. This unified context model then is used as a framework in 
our implementation of the context management and reasoning module of our 
context-aware middleware for ubiquitous systems. 

1   Introduction 

Most of the current proposed pervasive context-aware systems use sensors as the ma-
jor source for providing data to applications. However, the data sensed, or raw data, is 
always imperfect and incomplete due to the sensing technologies. This result in the 
inaccurateness of the high-level information deduced from raw data. For example, it is 
difficult to infer that the user is sleeping based on the sensing data such as his location 
(in-bed), the room light (dark) and the sound (quiet). Furthermore the underlying 
logical, rule-based reasoning mechanism of current systems obviously does not sup-
port reason about uncertainty. Hence, dealing with uncertainty is the most challenge in 
context-aware computing research community. 

Since its appearance, probabilistic model or Bayesian networks technique has 
showed to be a very powerful tool for the representation and reasoning about the un-
certainty. In particular, a Bayesian network represents a full joint distribution over a 
set of random variables. It can answer queries about any of its variables given any 
evidence. Besides, Bayesian network provides different forms of reasoning including: 
prediction (reasoning from cause to result), abduction (inferring cause from result) and 
finally, explaining away (the evidence of one cause reduces the possibility of another 
cause given the evidence of their common results) which is especially difficult to 
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model in rule-based systems [4]. Nevertheless, a fundamental limitation of using 
Bayesian network for knowledge representation is that it can not represent the struc-
tural and relational information. Also, the applicability of a Bayesian network is 
largely limited to the situation which is encoded, in advance, using a set of fixed vari-
ables. Thus, it is not suitable for representation of contextual data which is highly 
interrelated and dynamic in pervasive computing environment [5]. 

In this paper, we present a unified context model which inherits the advantages 
from both the probabilistic model and ontology. It can be considered as the glue which 
connects and integrates these two techniques. Given the unified context model, we can 
build a unified context ontology which captures both structural and probabilistic 
knowledge of a domain. Given the unified context ontology, Bayesian networks are 
constructed autonomously and used for reasoning about uncertainty. 

The rest of paper is organized as follows. Section 2 discusses on the related work. 
Section 3 presents a scenario which will be used through this paper for illustrating of 
our approach. In section 4, we present our unified context model in detail. The unified 
context-ontology paradigm is introduced in section 5. Section 6 introduces three types 
of reasoning supported given the context ontology defined based on our context 
model. Finally, the paper ends with discussions and conclusions in section 7. 

2   Related Work 

A lot of research has addressed the issue of uncertainty in context aware computing. 
First efforts tried to modeling the uncertainty of context information using various 
terms such as "imperfectness" [8], "confidence" [9], "accuracy" [10], etc. Neverthe-
less, those approaches lack of expressiveness to capture rich types of context informa-
tion and they do not support the reasoning mechanism. 

Recently, some research approaches have used Bayesian networks to model and 
reason about the uncertain context. Firstly, Ranganathan et al. [2] used Microsoft's 
Belief Network (MSBN) [12] software to create the Bayesian networks structure. The 
Bayesian network is defined by knowledge experts and is mapped to predicates in the 
ontology by developers. Each predicate is attached with a confidence value for repre-
senting its value's uncertainty. Secondly, Tao Gu et. al. [11] mapped each context 
predicate into a node in the Bayesian network. Then, an arc is drawn between two 
nodes if and only if a dependency relation exists between two context predicates. 
Thus, a RDF graph with dependency markup is translated into a Bayesian network. 

These two approaches have solved the problem of dealing with uncertainty. How-
ever, their support of uncertain reasoning is application-specific. In both approaches, 
developing a new application needs to redefine a new Bayesian network even if the 
domains are similar. Also, the mapping between the Bayesian network and the ontol-
ogy is done manually by developers in both approaches. Even when the probabilistic 
data in form of Bayesian networks is integrated into the context ontology in [11], it is 
still unable to be reused for a similar domain. The reason is that it is defined over the 
instances data. In summary, both approaches provide no systematical method to sup-
port the uncertain reasoning mechanism. 



3 A Smart-Home Scenario 

In this section, we describe a smart home scenario which will be used for illustrating 
our proposed context model. Our sample scenario is a smart automated home that can 
proactively control the environmental conditions to reduce resource consumption. The 
windows and blinds can be controlled automatically according to the situations to 
provide optimal cooling or heating process or to create a fresh air breeze. For in-
stance, on a day when the temperature is shifted from cool to warm, the home might 
determine that the optimal warming strategy is to open the windows and blinds so that 
the warm air can go inside. This scenario seems to be very simple but it is practically 
more complicated in the real situation. For example: the outside is so noisy while there 
are people reading inside the room; someone does not want the blinds open because 
he/she is sleeping; the air outside is polluted by dust and smoke, and so on. The deci-
sion of open the windows and blinds is depended on many elements in the situation. 
Such dependencies are also changed from situation to situation.  

In the next section, we will show how to model this smart-home domain based upon 
our proposed unified context model 

4 The Unified Context Model 

Our context model is influenced mainly by the Probabilistic Relational Model de-
veloped by Friedman et al. in [8] and the Probabilistic Frame-based systems of Koller 
et al. in [9]. We made some modifications in compare with the original PRM to make 
the model simple and suitable to our requirements. 

The unified context model consists of two parts: 
• The relational schema which represents the structural and organizational informa-

tion in forms of class, binary relations, relation chains and properties. 
• The probabilistic models which annotate the conditional probabilistic dependency 

relationship between properties of classes. 

Fig. 1. (a) The relational schema and (b) the probabilistic model for the scenario 



4.1 The Relational Schema 

The basic unit of our context model is a class X. A class may be a sub-class of another 
(its super class). A class includes a set of relations R1,…,Rn and a set of properties 
P1,…,Pn with associated restrictions (or facet).  A relation Ri specifies a binary rela-
tion between two classes X and Y. All relations are typed appropriately. The binary 
relation X.R(Y) can be considered as an object-property of class X which has the 
value-type of class Y. In Figure 1, the binary relation hasWindow defines the relation-
ship between the class Room and the class Window. 

A relation-chain is a sequence of binary relations separated by period. It creates an 
implicit relational link between two classes in a relational domain. A relation-chain 
X.R1.R2…Rn refers to the final class which is the type of the final relation in the chain. 
Each relation Ri in the chain must be correctly typed. In Figure 1, the chain ofWin-
dow.ofRoom creates an indirect relation between class WindowAgent and class 
Room.  Similarly, a property-chain is formed by appending a relation-chain with a 
property of the referenced class. It specifies a reference from a class to a property, 
which can be its property or other class property.  

4.2 A Modified Probabilistic Relational Model 

We use probability for representing the uncertainty within a domain. A class which 
consists of probabilistic information is annotated with the local probabilistic model. 
This type of class is called p-class. A p-class, similarly to the normal class, has proper-
ties, relations and restrictions. 

We call the property which contains probabilistic information a p-property. A p-
property is either simple or complex. A p-class may also have other properties that do 
not participate in the probabilistic model, whose type is neither of the above. This 
feature allows existing knowledge bases to be annotated with probabilistic information 
without requiring a complete redesign of the ontology. 

A simple p-property corresponds with a root node in Bayesian network. A simple 
p-property has two restrictions: hasValue and hasPD. The restriction hasValue is 
an explicitly enumerated list of possible values for the p-property. The restriction 
hasPD specifies the probability distribution over the values listed in the hasValue 
restriction. For example, the p-property hasTemperature of the class Room may 
have the restriction hasValue as {Hot, Warm, Cool, Cold} and the restriction 
hasPD as {0.3, 0.25, 0.25, 0.3}. The sum of all probability values listed in a 
restriction hasPD must be equal to 1 to satisfy the probability axioms.  

A complex p-property corresponds with a Bayesian network's node which has a set 
of parent nodes. Beside the two restrictions, hasValue and hasPD, a complex p-
property has two other restrictions, hasParents and hasCPT, which specify the 
conditional probabilistic dependencies on other p-properties. The hasParents re-
striction of the complex p-property P specifies a list of property-chains on which the 
value of this property depends. Each property-chain refers to one property of other 
class. For example, in the WindowAgent class, the parent of the p-property Open-
Window may be the property-chain ofWindow.ofRoom.hasTemperature. The 



hasCPT restriction specifies the conditional probability distribution over the values of 
the property given values of its parents, which are listed by the hasParents restric-
tion. The conditional probability distribution is represented by using a conditional 
probability table (CPT) as in Bayesian networks. For each combination of values of its 
parents, the CPT provides a probability distribution over values of the property given 
its parents. For simplicity, we assume that the CPTs are represented as fully specified 
functions of parent values. 

5 The Unified Context Ontology 

Based on the proposed unified context model, we build a unified context ontology 
to capture the knowledge of the smart home domain as described in section 2. The p-
class can be used just like any other normal class. We can create instances of class, 
which inherit all of its template properties and restrictions. In particular, the probabil-
ity distribution over values of properties of the instance will be described in the p-
class. Similarly, the inheritance mechanism can be used to make one p-class a subclass 
of another. A subclass can extend the definition of the super-class as well as over-
writes parts of it. It can redefine the probabilistic model of one or more p-property. 

The unified context ontology should be able to captures all the characteristics of 
context information. We classify the pervasive computing domain into a collection of 
sub-domains such as smart-home domain, smart-office domain, smart-university do-
main, etc. It would be easy to specify the context in one domain in which a specific 
range of context is of interest. The separation of domains can also reduce the burden 
of context processing. 

Fig. 2.  A two-layer context ontology for relational and probabilistic knowledge 



Our unified context ontology is divided into two layers including a generic ontol-
ogy layer and a domain-specific ontologies layer as follows: 

o The generic ontology is a high level ontology which captures general context 
knowledge about physical world in pervasive computing environment.  

o The domain-specific ontologies are a collection of low-level ontologies which 
defines the details of concepts and properties in each sub-domain. A low-level 
ontology of a sub-domain consists of two parts: (1) relational schema which 
specifies relations and relation-chains of the sub-domain; and (2) probabilistic 
models which represent conditional probabilistic dependencies between prop-
erties in that sub-domain. 

In Figure 2, the generic ontology defines basic concepts of CompEntity, Location, 
Person, Activity, etc. The details of each generic concept, such as relations, relation-
chains, conditional probabilistic dependences, are redefined in domain-specific on-
tologies which may vary from one domain to another. 

 

 
Fig. 3 Example of the OWL-based probabilistic dependency relation 

We also use the Web Ontology Language (OWL) [13] for representing context. 
However, we augmented new language elements to model new concepts such as rela-
tion-chain, property-chain and probabilistic dependency. We called this language 
PROWL (Probabilistic annotated OWL). Figure 3 is an example of the PROWL-based 
ontology in which we use new markup elements. 

<owl:Restriction> 
  <owl:onProperty> 
   <owl:ObjectProperty rdf:resource="#OpenBlind"/> 
  </owl:onProperty> 
  <rdf:hasParents>  
   <rdf:List> 
    <rdf:first rdf:resources="#PC-ofWindow.ofRoom.hasLightStatus">/>  
    <rdf:rest> <rdf:List> 
      <rdf:first rdf:resources="#PC-ofWindow.ofRoom.- 
        hasOutdoorPlace.hasLightStatus"/>  
      <rdf:rest rdf:resource="&rdf;nil" />        
    </rdf:List> </rdf:rest>  
   </rdf:List> 
  </rdf:hasParents> 
  <rdf:hasCPT> 
   <rdf:List> 
    <rdf:first rdf:datatype="&xsd;integer">0.3</rdf:first><rdf:rest>  
     <rdf:List> 
      <rdf:first rdf:datatype="&xsd;integer">0.9</rdf:first><rdf:rest> 
       <rdf:List>  
        <rdf:first rdf:datatype="&xsd;integer">0.6</rdf:first>  
         <rdf:rest> 
          <rdf:List>  
           <rdf:first rdf:datatype="&xsd;integer">0.4</rdf:first>  
           <rdf:rest rdf:resource="&rdf;nil" />        
          </rdf:List>  
         </rdf:rest>  
       </rdf:List> </rdf:rest>  
     </rdf:List> </rdf:rest>  
   </rdf:List> 
  </rdf:hasCPT> 
 </owl:Restriction> 



6   Reasoning about Context 

Based on the context ontology supports representation of both ontological and 
probabilistic knowledge, we could construct a knowledge base for a new application-
domain. We support three reasoning types: rule-based reasoning, ontological reason-
ing and Bayesian reasoning. 

 

 
Fig. 4 Three supported reasoning mechanisms 

6.1 Rule-based and Ontological Reasoner 

The rule-based reasoner is support by default given context ontology. However, 
there are differences when applying rules to a property of a p-class. The rule should 
update both the value of the property and the probability distribution over all values to 
satisfy the probability axioms.  

For example, in our scenario, the context WindowAgent.OpenBlind can be de-
duced from the sensed, primary context {OutdoorPlace.hasLightStatus, 
Room.hasLightStatus} as follows: 

Prob(hasLightStatus(OutdoorPlace, Bright), 1.0) ^ 
Prob(hasLightStatus(Room, Dim), 1.0) ^ 
Prob(Activity(Binh, Sleeping) , 1.0) 
� Prob(OpenBlind(WindowAgent, Open), 1.0) 
The ontological reasoner can be described as an instance of the rule-based rea-

soner. However, it has a rule-base which consists of predefined rules to implement the 
language PROWL. In particular, the ontological reasoner can reason about OWL 
vocabularies and new concepts like relation-chain, property-chain. For example, if the 
class WindowAgent has a relation chain ofWindow.ofRoom which has type of the 
class Room, the relation chain ofWindow.ofRoom of the instance A of class Win-
dowAgent will refer to an instance B of class Room so that the relation-chain ofWin-
dow.ofRoom satisfies. 

 



Fig. 5.  An example of the context ontology for the scenario 
 

 

 
Fig. 6. A derived Bayesian network given the unified context ontology 

6.2 Bayesian Reasoning 

Before the standard Bayesian network inference can be used to answer queries 
about values of properties of instances, a Bayesian network is constructed from the 
context ontology. Depending on the domain, there may be more than one derived 
Bayesian network corresponding to each probabilistic relational model in the context 
ontology. 

The algorithm Construct-BN [8] for deriving a Bayesian network is described as 
follows. Each node in the Bayesian net B has the form I.P where I is an instance of a 
p-class and P is a property. The algorithm maintains a list L of nodes to be processed. 
Initially, L contains only the simple properties of named instances. In each iteration, 



the algorithm removes a node from L and processes it. The removed node I.P is 
processed as follows. For each parent I.RC.Pi, which refers to a property of another 
instance, an edge is added form I.RC.Pi to I.P; If I.RC.Pi is not already in B, we 
add I.RC.Pi into B and L; when all parents of I.P have been added, the CPT is 
constructed from the has-CPT restriction of I.P. 

Since the Bayesian network is available, the standard Bayesian reasoner can use 
that network to infer about the probabilities of all nodes. Then, the probability of each 
node is updated directly to the property of instances the ontology.  

We implemented the Bayesian reasoner based on the API of Microsoft Belief Net-
work software [12]. The ontological and rule-based reasoners are developed based on 
the JenaAPI [14]. The mapping module for deriving Bayesian networks from the con-
text ontology (implementing the Construct-BN algorithm) and updating new probabil-
ity values to the ontology is also implemented based on Jena. 

7   Discussions and Conclusions 

The major characteristic in our approach is that we define the probabilistic informa-
tion at the level of concepts. We not only specify the uncertainty of concept's value  
(property's value) but also specify the probabilistic or uncertain relationships between 
concepts.  Since ontology mainly deals with concepts within a domain, our context 
model can easily extend the current ontology-based modeling approach. Based on our 
unified context model, we can easily define a unified, domain-oriented context ontol-
ogy which captures both logical or relational and probabilistic knowledge. Given that 
unified context ontology, we can build several knowledge bases for similar applica-
tions. For example, we can model a smart-home domain and build the smart-home 
ontology. For every new smart-home applications, we only need to specify the in-
stances given that predefined smart-home ontology without redefine or construct a 
new one. Besides, we can add probabilistic information into an existing ontology by 
adding relations, relation chains and restrictions without construct a new one from the 
scratch. Thus, our work in context modeling supports scalability and knowledge reus-
ability. Since the mapping-relations between nodes in Bayesian networks and proper-
ties of classes are implicitly defined in the ontology, the mapping process can be pro-
grammed to run automatically. This feature reduces much burden on knowledge ex-
perts and developers in comparison with previous works [2], [11]. Finally, since prob-
abilistic reasoning is supported, we can easily extend from reasoning to learning about 
uncertain context, which is simply learning about the parameters of Bayesian net-
works. The learning makes the Bayesian reasoning more robust and adaptive in highly 
dynamic and variable environments. 

This paper describes our approach of representing and reasoning about uncertain 
context. Our study in this paper shows that the proposed context model is feasible and 
necessary for supporting context modeling and reasoning in pervasive computing. Our 
work is part of an ongoing research on Context Aware Middleware for Ubiquitous 
System (CAMUS), which attempts to provide an easy, reusable infrastructure to de-
velop ubiquitous context-aware applications. We are exploring methods to integrate 



multiple reasoning methods from AI area and their supported representation mecha-
nism into the context reasoning and management layer.  

References 

[1] Satyanarayanan, M, "Coping with uncertainty", IEEE Pervasive Computing, page 2, 
Volume 2,  Issue 3,  July-Sept. 2003  

[2] Anand Ranganathan, Jalal Al-Muhtadi, Roy H. Campbell, "Reasoning about Uncertain 
Contexts in Pervasive Computing Environments", IEEE Pervasive Computing, pp 62-70 
(Vol.3, No 2) , Apr-June 2004. 

[3] Abdelsalam, W.; Ebrahim, Y., " Managing uncertainty: modeling users in location-tracking 
applications", IEEE Pervasive Computing, pages 60-65, Volume 3,  Issue 3,  July-Sept. 
2004  

[4] J. Pearl, "Belief Networks Revisited". In Artificial intelligence in perspective, pages 49-56, 
1994 

[5] Henricksen, Karen and Indulska, Jadwiga and Rakotonirainy, Andry,. "Modeling Context 
Information in Pervasive Computing Systems". First International Conference on Pervasive 
Computing, Pervasive'2002, LNCS(2414), pages 167-180, Zurich, August 2002. 

[6] Nir Friedman , Lise Getoor , Daphne Koller and Avi Pfeffer, "Learning Probabilistic Rela-
tional Models", Proceedings of the 16th International Joint Conference on Artificial Intelli-
gence (pp. 1300-1307), Stockholm, Sweden, August 1999. 

[7] Daphne Koller andAvi Pfeffer, "Probabilistic frame-based systems", Proceeding of the 15th 
National Conference on Artificial Intelligence (pp. 580-587), Madison, Wilconsin, July 
1998. 

 [8] Gregory D. Abowd and Anind K. Dey, "Towards a Better Understanding of Context and 
Context-Awareness", Workshop on the what, who, where, when and how of context-
awareness at CHI 2000, April 2000. 

[9] Hui Lei, Daby M. Sow, John S. Davis, II, Guruduth Banavar and Maria R. Ebling, "The 
design and applications of a context service", ACM SIGMOBILE Mobile Computing and 
Communications Review, vol 6, no. 4, pp 44-55, 2002. 

[10] Gray, P., Salber, D. "Modeling and using sensed context in the design of interactive appli-
cations", In Proceedings of 8th IFIP Conference on Engineering for Human-Computer In-
teraction, Toronto, 2001. 

[11] Tao Gu1, Hung Keng Pung and Da Qing Zhang, "A Bayesian approach for dealing with 
uncertain contexts", Proceedings of the Second International Conference on Pervasive 
Computing (Pervasive 2004),  Vienna, Austria, April 2004. 

[12]  Microsoft Belief Network software, http://research.microsoft.com/adapt/MSBNx/ 
[13] W3C, "Web Ontology Language (OWL)", http://www.w3.org/2004/OWL/ 
[14] Jena, "A Semantic Web Framework for Java", http://jena.sourceforge.net/ 
 


