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Abstract. Advanced analysis of data for extracting useful knowledge is the next 
natural step in the world of ubiquitous computing. So far, most of the 
ubiquitous systems process knowledge in problem-specific or domain-specific 
manners. This article introduces the concept of context knowledge discovery 
process, and presents a middleware architecture which eases the task of 
ubiquitous computing developers, while supporting data mining and machine 
learning techniques. We show how the middleware architecture supports 
building ubiquitous systems which are able to “learn” and “think” by 
introducing some learning – reasoning combination mechanisms, such as the 
context recognition and prediction, or the deductive rule learning and reasoning 
process. 1 

1   Introduction 

Context-aware ubiquitous computing emphasizes on using context of users, devices, 
etc. to provide services appropriate to particular person, space, and time. Every 
computing system dealing with the user should take into account human behavior in 
one way or the other to materialize ubiquitous computing experiences for him. As we 
all know that the role of middleware is to ease the task of designing, programming 
and managing distributed applications by providing a simple, consistent and 
integrated distributed programming environment; such middleware-based approach is 
quite appealing in context-aware ubiquitous computing [1].  

A lot of work has been done in the area of context-aware computing, in which most 
of them are only concerned with one or more aspects in an ad hoc manner. Context 
Toolkit [2] uses the concept of widget to obtain raw contextual information from 
sensors and passes them either to interpreters or to servers for aggregation. 
Interpreters and servers use simple HTTP protocol for communication and the XML 
(name-value pairs only) as the language model for the context. In [3], graph based 
model for context aggregation and dissemination is proposed where contextual 
information sources are modeled as event publishers, while context-aware 
applications as event subscribers. Context Fabric [1] provides a distributed context-
aware infrastructure to support the acquisition and retrieval of context data using an 
entity-relation style logical context data model, encoding data in XML and utilizing 
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XPath as the query language. Gaia [4] is also a distributed middleware infrastructure 
supporting context-aware agents in smart spaces. It adopted a predicate model of 
context data encoded in DAML ontologies, and proposed that different logic 
reasoning and machine learning techniques can be adopted to support context 
inference. 

Based on our knowledge, we have come up with a set of key issues [5]; a context-
aware ubiquitous computing system should tackle in order to successfully deploy in 
real life, namely unified sensing framework, formalized modeling and representation, 
supporting multiple reasoning approaches, and finally delivering the context to 
applications on semantic matchmaking basis. And the heart of those intelligent 
systems is the reasoning and learning capability. Consider a Smart Home scenario, 
when a user enters his home, the system should be able to recognize who the user is, 
what he is doing, “guess” what he intends to do, and how he desires the system to 
assist him. A good reasoning engine can help the system reason properly, but how to 
build that good reasoning engine turns out to be a difficult question.  

Many current Ubiquitous systems are using reasoning engines to infer high-level 
information from the low-level context data. However, the performance is limited due 
to the complications in composing rules for the rule-based reasoners, or calculating 
the uncertainty in probabilistic reasoners. If we can extract some useful rules from the 
database e.g. “If Bilbo is on bed and it is Bilbo’s sleeping time then the probability of 
Bilbo being sleeping is 85%”, then those rules can be used to automatically construct 
rule-based reasoners. Hence knowledge discovery and data mining come into play. 
Knowledge discovery and data mining (KDD) deal with the problem of extracting 
interesting associations, classifiers, clusters, and other patterns from data [10]. KDD 
is playing an increasingly important role in business, scientific, and engineering 
applications. In ubiquitous computing environments where large quantity of data is 
available, advanced analysis of data for extracting useful knowledge becomes the next 
natural step.  

In this paper we propose a middleware architecture for discovering the valuable 
knowledge from large and heterogeneous amount of context data. We have built and 
deployed context knowledge discovery architecture as a central part of CAMUS [5] - 
a middleware infrastructure for context-aware ubiquitous systems.  

The rest of this paper is organized as follows: after a brief explanation of context 
knowledge discovery process in section 2, we present the architecture of CAMUS – 
our Context-Aware Middleware for Ubiquitous Systems in section 3. In section 4, we 
give a detailed description of our idea of applying data mining into ubiquitous 
computing by discussing the rule learning and context recognition mechanism. We 
conclude our paper with a summary and outlook in section 5. 

2   Context Knowledge Discovery 

2.1   What is Context Data 

Context has been defined by Dey [6] as any information that can be used to 
characterize the situation of an entity, where an entity can be a person, place, or a 
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physical or computational object which we adopt in this article. A good overview on 
different definitions of context can be found in [7]. 

The amount of context data maintained in the system is huge, due to the large 
number of data sources and from the context history. Since the main task of Data 
Mining is to extract valuable knowledge from a large amount of data, it is a 
fundamental requirement for applying data mining in ubiquitous system.  

What can we mine from context data? Currently in CAMUS we mine the deductive 
rules which are used to build rule-based reasoning engines (those reasoning engines 
then will be used to infer high-level context data from low-level context). We also use 
clustering technique to discretize the time value and find out the common activities of 
users. While other systems label the activities in advance, in our system we identify 
activities by finding clusters of common place, time, environment parameters, and 
device status. Next section shows the context data mining process, which are 
somehow different from “traditional” transactional data mining.  

2.2   Context Knowledge Discovery Process  

Fig. 1 illustrates the context knowledge discovery process and its position in the 
ubiquitous data inquiry and knowledge management process.  

 

Fig. 1. Context knowledge discovery process and its position in the ubiquitous data inquiry and 
knowledge management process 

Data inquiry and preprocessing at sensor layer: Low-level context data acquired 
from various sensors is preprocessed by the Feature Extraction Agents (described in 
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section 3) before sending into Context Repository. This preprocessing step at sensor 
layer includes feature extraction, data fusion, quantization and encapsulation of 
sensing data. For example, 3 wireless LAN access points deployed in one area can act 
as location sensors by extracting and fusing the signal strength. At this step, some 
features are further quantized into nominal values, for instance the light intensity can 
have 5 levels of quantized value: dark, dim, normal, bright, very bright. 

The extracted features from sensor layer are then forwarded to context data mining 
process including 4 main steps: 
 
i) Context data preprocessing (in data layer)  
One important task of this step is gathering relevant context data into data cubes. A 
context data cube may have multi dimensions: time, location, user, environment 
parameters (light intensity, sound level, temperature, etc.), device status (television, 
air conditioner, door status, computer running programs, etc.). The context data has to 
be user centric; i.e. the environment parameters and device statuses are of the 
environment where user is currently located in. In order to have a uniform 
representation of the disparate features, they are further summarized, quantized or 
discretized, and normalized. 

When mining the user preferences or user behavioral habits, user commands to 
control the devices and appliances are aggregated. Current or scheduled activities are 
also included into the data cube if available.  
 
ii) User identification and context recognition 
Recently, user identification has become an easy task with the advance of 
identification techniques such as RFID tag, or just simply base on devices associated 
with the user such as PDA, mobile phones, computer logging on, and the like..  

Meanwhile, context recognition remains difficult. Many systems are working on 
context recognition following different approaches such as using neural network, 
Bayesian network, etc [17]. Each approach has its pros and cons. In the context data 
mining process of CAMUS, we use clustering and classification techniques to 
recognize the context (current activity) of user. The detail of these techniques will be 
discussed in section 4.  
 
iii) Context data mining 
Using data mining techniques to mine context data, this module produces the 
association rules, classification rule sets and clusters. Output of this module is the 
input of learning module.  

 
iv) Learning module 
This module is an interface between data mining module and the rest of context 
discovery process. It evaluates the rules and decides which one can be used for 
reasoning, parses the clusters into classes, maps the rules into the right format (the 
rule format of the reasoning engine; for example, if we use Jena generic rule 
reasoners, the rules must have Jena rule format [16]). It also works as a manager to 
request for new rules, manage the rules and rule mining process, insert or update rule 
sets of reasoning engines, and so on. The learning module output is used to support all 
other context data discovery steps: to preprocess data, recognize user context, or 
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supervise the context data mining. The function of this module will be illustrated by 
rule learning mechanism in section 4.  

Our CAMUS middleware architecture provides maximum support for this context 
data mining process.  

3   CAMUS - Middleware Architecture for Ubiquitous Systems 

The knowledge discovery process presented in this paper is the crucial part of our 
CAMUS architecture, a unified middleware framework for context-aware ubiquitous 
computing. Here we briefly describe the core functional components of CAMUS as 
depicted in Fig.2, more details can be found in [5].  

3.1   Feature Extraction Agents 

Feature Extraction Agents (FX Agents), or wrappers of sensors, extract the most 
descriptive features for deducing contexts in upper layers, sometimes attached with 
their semantic meanings and uncertainties. Then, Feature - Context mapping layer 
will perform the mapping required to convert a given feature into elementary context. 
This module handles the sensor layer pre-processing step in CKDD. 

 

 

Fig. 2. The correlation between CAMUS architecture and CKDD process 

3.2   Knowledge Processing Layer 

This module handles the main steps of CKDD process. 
Context Repository provides the basic storage services in a scalable and reliable 

fashion and contains the domain ontology (concepts and properties), contextual 
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information (including both elementary and composite contexts), and meta-
information such as the meta-information about the input, output and capabilities of 
pluggable reasoning modules.  

The Context Repository consists of two databases: the main database which 
contains all current context data, and the history database. Whenever a new context 
data comes, the corresponding old context data will be moved into history database. 
In this way, the size of main database is reduced; consequently it maintains good 
performance in context query processing. 

Reasoning Engine is a collection of various pluggable reasoning modules to handle 
the facts present in the repository as well as to produce composite contexts. Since not 
all information can be gathered from sensors, and sometimes the most interesting 
kinds of context are those that humans do not explicitly provide, context reasoning 
mechanisms are needed. For instance, the current activity of a user could be inferred 
based on a combination of many other contexts, e.g. his location, his gestures, time of 
the day, environment status, etc [5]. Each reasoning mechanism has its own 
expressiveness, for example Description Logics (DL) is suitable for specifying 
terminological hierarchies while Spatio-temporal Logic is suitable concerning spatial-
temporal sequence in which various events occur, and Bayesian Networks [8] are 
appropriate for learning the conditional probabilities of different events. Thus a 
middleware infrastructure needs to provide support for incorporating different 
reasoning mechanisms into the system, as well as specifying the appropriate 
mechanism for each context. This will facilitate not only the system internal modules 
to infer high-level context from low-level or predefined context, but also the 
applications to reason for their own application-specific context. 

To provide more help to developers so that they can concentrate on developing 
rules or networks for reasoning and not be burdened with the low-level details, our 
middleware infrastructure defines wrappers for each Reasoner type. For example, a 
wrapper of Jena generic rule Reasoner allows the developer to easily add a new 
Reasoner just by declaring the rule file name and some namespace abbreviations. The 
following piece of code illustrates how to add and invoke a rule-based reasoner: 

 
/* add a new reasoner providing the rule file */ 
ContextReasonerManager.addReasoner("Location", 

ReasonerType.GENERIC_REASONER, "etc/contel.rules"); 
 
/* declare some statements */ 
sms = new ContextStatement[] {PastLocationDescription, hasLocation}; 
 
/* invoke the reasoner to do reasoning, providing the reasoner name, the context data name 

and the required statements */ 
cdm.invokeReasoning("Location", "Data", sms); 
 
To help constructing the reasoning engine, Machine Learning Modules utilize 

many machine learning and data mining techniques to learn the logic, model (such as 
user preference model), or train the Bayesian networks and neural networks, using 
historical context data as training data.  
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3.3   Context Delivery and Aggregator Services 

In our middleware framework, each context aggregator (analogous to web service) 
specifies the context it provides, by utilizing the concepts defined in the ontology 
repository. This standard schema sharing allows different kinds of entities to be 
described and utilized by delivery service to find useful services needed by the 
applications, thus, allowing a flexible mechanism for exchanging descriptive 
information of various entities. 

Context delivery provides the services (context aggregators) with the registration 
interface to make their information known to the applications. The matchmaking 
module matches the appropriate service with the client provided the access control 
policies are not violated.  

4   Application of Data Mining Techniques in Ubiquitous System 

4.1   Learning the Rules for Context Reasoning  

Rule based reasoning is currently the most common form of knowledge processing. 
Especially in the field of context-awareness, many systems are using semantic 
knowledge base which fully supports rule-based reasoning engines such as in [4]. 
However, most developers find building the rules the most difficult task in building 
ubiquitous computing systems.  

In order to minimize the burden for developer in building context-aware 
applications, our middleware architecture provide support to learn the inference rules 
from context data and build reasoning engines using those rules, as depicted in Fig. 3.  

 

Fig. 3. Rule learning mechanism in CAMUS 

To explain the rule learning mechanism in detail, we will first describe a simplified 
Smart home scenario (only relates to user preference) and how a developer can make 
use of the rule learning architecture of CAMUS to build a rule-based reasoner which 
can infer the user preference from context data.  
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4.1.1   The Simplified Smart Home Scenario 
In a Smart Home environment, computing devices are spread throughout the 
environment, present everywhere in the house to provide services and convenience to 
the people living inside. The context of user and the status of home environment are 
sensed by various kinds of sensors, e.g. light sensor, temperature sensor, fire sensor, 
etc. There are also a set of software agents which control the home devices and 
provide services to the user seamlessly and invisibly without any explicit user 
intervention. The following use case is designed focusing on how the Smart Home 
system adapts to user desire:  

Bilbo is sleeping in his bed room an early morning. Since he prefers darkness 
while sleeping, the system maintains a Dark light intensity level by automatically 
dimming down the light and rolling down the curtain when the outside becomes 
brighter. Because normally Bilbo wakes up at around 7:30, at that time the system 
decides to wake him up and fire the alarm clock. 

When Bilbo finishes washing and enters dining room, the television is turned on. 
Recently he likes to watch the Sport News in the morning, so the system automatically 
selects the channel which is providing Sport News.  

4.1.2   Learning User Preference as Rules  
In this scenario, the user preference is learned through user control commands and 
responses to the messages from system. User can control the home devices by remote 
controls, or send command messages through some computer software interfaces. The 
commands are stored in the historical database together with relevant information i.e. 
user location, timestamp, current activity, environment state. The tuple {user=Bilbo; 
place=DiningRoom; timestamp = 2005/04/01 8:40; currentActivity=WatchingTV; 
command= TV.SelectChannel; parameter=SportNews} is an example.  

Using this kind of information as the training data, the system can generate rules 
like:  

 
personName=Bilbo; currenttime=[8:40-8:50]; currentActivity=WatchingTV  
⇒ command=TV. SelectChannel; parameter=SportNews (Utility=0.86) 
 
The rules can then be converted into suitable format for the reasoning engine 

which are used. In our prototype system, because we use Jena generic rule reasoner to 
reason over OWL[15] format data, the final rule has Jena rule format[16]:  

 
[r1:  (?user agt:personName “Bilbo”), (?x time:currentTime ?t), 

(?user act:currentActivity ?curact), (?curact rdf:type act:WatchingTV) 
AND 520 <=?t AND ?t <= 530  
--> [(?pref agt:hasValue “TV.SelectChannel”), (?pref agt:hasPara “SportNews”) 

<-- (makeInstance(?user,agt:hasPreference, agt:Command, ?pref) ]] 
 

with agt, time, act, rdf, act are the aliases for the namespaces of ontologies which are 
currently used to define to data model of our context aware system.  
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4.1.3   Initiate Rule Learning Process 
Because the purpose of rule learning is to supply rule sets for reasoning engines, we 
first take a look at the information needed to define a rule-based reasoner. Even when 
the rule set will be learn automatically, the developer must figure out the set of data 
on which the reasoner will do its reasoning. For example, in this smart home scenario, 
user preference is learn based on user, time, location, environment parameters, user 
control commands, user activities. Therefore the developer should first define the set 
of concepts which will be included in the data supplied to the future reasoning engine.  

The developer can also define desired outputs of the desired reasoning engines. 
However, the indication of output is optional, because in some cases we don’t know 
exactly the desired output. For example, from activity and other information, we can 
infer the intended control commands, but also we can base on the user control 
commands to guess the current activity. In the above scenario, the desired output is 
user preference. 

The Reasoning Engine Manager then sends request to Rule Manager with the 
required data and/or output of the rules. The learning module will send data request to 
the query module (part of Data layer Preprocessing module) to get the data needed for 
mining such rules. Query module responses to learning module with the data cubes.  

4.1.4   Rule Mining Algorithm 
In ubiquitous systems, a rule mining algorithm has to fulfill following requirements: 
online (learning has to be done continuously in time domain),  adaptive (as user 
behaviors change over time, rule sets must be adapt to new input data), rules have 
high accuracy but not necessarily high coverage (For example, every Sunday the user 
will see a special program on television; the coverage of the control command to 
select this program is low, but the related rule is highly accurate). 

If the output is defined, we use the Sequential-Covering algorithm [9] to learn the 
first rule sets from example data set. Otherwise, Apriori association rule mining 
algorithm [10] is more suitable. After learning one rule, the examples covered by the 
rule will be removed, and then the learning process repeats until no positive example 
is left.  

At this step, a question is raised: How can we select the “right” rules among a large 
number of learned rules? To address this problem, we assign a utility function to 
calculate the value of each rule based on confidence and support.  

( ) ( ) ( )rSuprConfrUtility .. βα +=                                      (1) 

With Conf(r) is the confidence Sup(r) is the support of the rule.  
The α and β coefficients are related to each other by α + β = 1, and define the type 

of rule which is more interested. Normally α = 1 and β = 0, showing that a rule which 
has high confidence will be chosen even if it rarely happens.  

Among a large number of rules mined, only the rules with high utility will be 
selected. Those rules are inserted into rule table, and supplied to Reasoning Engine 
Manager to be added into the rule set of the reasoning engine.  

Whenever a reasoning engine is invoked, some rules will be fired. The utility of 
those fired rules can be increased or decreased depending on the feedback from the 
application after receiving new inferred information is positive or negative. In case of 
Smart Home system, there are two common types of rule: decision rules and 
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prediction rules. Decision rule leads to a control command decision, such as turn on 
the light or adjust the temperature. After the control command is executed, there are 
two types of response from user:  

- If the user satisfies with the automatic command, he will do nothing.  
- If the user does not satisfy, he himself will give a control command to adjust the 

environment as to his desire.  

In case of prediction rules, by observing the user, the system can know whether the 
prediction is right or wrong.  

According to the feedback from application, the rules in rule set can be divided 
into 3 groups: the “right” rules (which generate right prediction or right commands), 
the “wrong” rules (which generate wrong prediction or unsatisfying commands) and 
the rules which are not fired. 

The utility of those rules then be updated: 

( ) ( ) ( )rrr rUtilityrUtilityrUtility −×+= 1(γ                                   (2) 

( ) ( ) ( )www rUtilityrUtilityrUtility ×−= γ                                         (3) 

( ) ( ) ( )uuu rUtilityrUtilityrUtility ×−= ε                                         (4) 

Where rr denote the “right” rule, rw denotes the “wrong” rule and ru denotes the 
unfired rule. γ and ε are the coefficients to tune the speed of changing the utility of 
rules after each time the reasoning engines are invoked. If ε is set to 0, the utility of 
unfired rules is maintained.  

The rules which have utility below a threshold will be removed from reasoning 
engine’s rule set.  

User preference and behavior changes quickly, so the new data plays more 
important role in the training data set than the old data. To maintain a high learning 
performance, we can restrict the number of training data set. Only N newest history 
data records will be retrieved. In that case, whenever new context info comes into the 
history database and makes the training data set change, the utility of the rules in rule 
table is updated: 

( ) ( ) ( )
1+
+×

=
N

rUtilityNrUtility
rUtility newold                               (5) 

Where ( )rUtilityold  is the current utility of the rule and ( )rUtilitynew  is the new utility 

of the rule calculated by the new training data. 
Then the examples covered current rules are removed and new rules are mined. 

4.2   Context Recognition Using Clustering  

In section 2, we briefly described the context recognition step. This section discusses 
it in detail.  

The task of this step is to identify the context (or activity, situation, etc.) of user, 
based on the low-level contexts from sensors. After preprocessing, the sensor data is 
gathered in context data cube, including user, time, location, environment parameters 
and device statuses. To know the context of user, this step handles two tasks:  
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determining the common contexts of user using clustering over history context data 
and identifying the current context of user based on sensed data.  

4.2.1   Clustering Common User Contexts 
Ideally, an algorithm for context recognition must be online and thus unsupervised 
and must have a variable network topology to cope with changing sensor data cube 
(changing sensor configurations). The clustering algorithm must not be hard 
competitive to allow multiple active contexts and it has to be designed for life long 
learning to not forget or overwrite already learned clusters over time (which is known 
as the plasticity-stability dilemma [11] in neural networks and clustering literature). 
Among the most common online clustering algorithms, LLGNG [12] – a modification 
of GNG algorithm [13] to cope with continuously changing environments and life-
long learning - seems to provide most flexibility for context clustering in ubiquitous 
environment. After the clustering step, the system can label the clusters by itself, or 
ask user to give some meaningful names, such as “working”, “watching TV”, 
“cooking” and the like for the clusters. This is theoretically an optional step, because 
the machine considers the meaningful and non-meaningful labels the same. However, 
in practice, while naming the clusters, user can give same name for many clusters, or 
split a cluster into many different contexts; and hence improve the result of context 
recognition.  

4.2.2   Identify Current Context 
This is not the task of data mining but machine learning. Having the result clusters as 
the context classes, we can apply different machine learning methods to infer the 
current context/activity/situation of user, base on the time, location, environment and 
other low-level context data.  

Selecting the learning mechanism is up to developer. Our middleware provides the 
possibility of plugging in different reasoning engines and learning modules. We also 
provide advance support for the common reasoning engines, such as rule-based 
reasoning engines (as described above). Another supported approach is Bayesian 
network, which gains an advantage in the uncertain environment.  

CAMUS support Bayesian network by: First, associating each context with a 
probability attribute; Second, enhancing the context data ontology (implemented in 
OWL) to represent some concepts which support creating and maintaining Bayesian 
network, such as relation chain, probabilistic dependencies, etc. [14]; Finally, 
introducing a Construct-BN algorithm [14] to derive a Bayesian network from the 
domain ontology.  

5   Summary and Outlook 

In this paper, we have presented a novel middleware architecture which addresses the 
key challenges in ubiquitous computing systems, including supports for a context 
knowledge discovery process. Our CAMUS prototype proves the feasibility of 
building intelligent ubiquitous environments with lesser workload on the developers.  

Our next steps include the effort to make the interface between learning and 
reasoning more transparent and make more use of data mining techniques.  
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