
L.T. Yang et al. (Eds.): EUC 2005, LNCS 3824, pp. 1177 – 1188, 2005.
© IFIP International Federation for Information Processing 2005

Middleware Architecture for Context Knowledge
Discovery in Ubiquitous Computing

Kim Anh Ngoc Pham, Young Koo Lee, and Sung Young Lee

Department of Computer Engineering, Kyung Hee University, Korea
anhpnk@oslab.khu.ac.kr, yklee@khu.ac.kr, sylee@oslab.khu.ac.kr

Abstract. Advanced analysis of data for extracting useful knowledge is the next
natural step in the world of ubiquitous computing. So far, most of the
ubiquitous systems process knowledge in problem-specific or domain-specific
manners. This article introduces the concept of context knowledge discovery
process, and presents a middleware architecture which eases the task of
ubiquitous computing developers, while supporting data mining and machine
learning techniques. We show how the middleware architecture supports
building ubiquitous systems which are able to “learn” and “think” by
introducing some learning – reasoning combination mechanisms, such as the
context recognition and prediction, or the deductive rule learning and reasoning
process. 1

1 Introduction

Context-aware ubiquitous computing emphasizes on using context of users, devices,
etc. to provide services appropriate to particular person, space, and time. Every
computing system dealing with the user should take into account human behavior in
one way or the other to materialize ubiquitous computing experiences for him. As we
all know that the role of middleware is to ease the task of designing, programming
and managing distributed applications by providing a simple, consistent and
integrated distributed programming environment; such middleware-based approach is
quite appealing in context-aware ubiquitous computing [1].

A lot of work has been done in the area of context-aware computing, in which most
of them are only concerned with one or more aspects in an ad hoc manner. Context
Toolkit [2] uses the concept of widget to obtain raw contextual information from
sensors and passes them either to interpreters or to servers for aggregation.
Interpreters and servers use simple HTTP protocol for communication and the XML
(name-value pairs only) as the language model for the context. In [3], graph based
model for context aggregation and dissemination is proposed where contextual
information sources are modeled as event publishers, while context-aware
applications as event subscribers. Context Fabric [1] provides a distributed context-
aware infrastructure to support the acquisition and retrieval of context data using an
entity-relation style logical context data model, encoding data in XML and utilizing

1 This work was supported by MIC Korea. Dr. S.Y.Lee is the corresponding author.

1178 K.A. Ngoc Pham, Y.K. Lee, and S.Y. Lee

XPath as the query language. Gaia [4] is also a distributed middleware infrastructure
supporting context-aware agents in smart spaces. It adopted a predicate model of
context data encoded in DAML ontologies, and proposed that different logic
reasoning and machine learning techniques can be adopted to support context
inference.

Based on our knowledge, we have come up with a set of key issues [5]; a context-
aware ubiquitous computing system should tackle in order to successfully deploy in
real life, namely unified sensing framework, formalized modeling and representation,
supporting multiple reasoning approaches, and finally delivering the context to
applications on semantic matchmaking basis. And the heart of those intelligent
systems is the reasoning and learning capability. Consider a Smart Home scenario,
when a user enters his home, the system should be able to recognize who the user is,
what he is doing, “guess” what he intends to do, and how he desires the system to
assist him. A good reasoning engine can help the system reason properly, but how to
build that good reasoning engine turns out to be a difficult question.

Many current Ubiquitous systems are using reasoning engines to infer high-level
information from the low-level context data. However, the performance is limited due
to the complications in composing rules for the rule-based reasoners, or calculating
the uncertainty in probabilistic reasoners. If we can extract some useful rules from the
database e.g. “If Bilbo is on bed and it is Bilbo’s sleeping time then the probability of
Bilbo being sleeping is 85%”, then those rules can be used to automatically construct
rule-based reasoners. Hence knowledge discovery and data mining come into play.
Knowledge discovery and data mining (KDD) deal with the problem of extracting
interesting associations, classifiers, clusters, and other patterns from data [10]. KDD
is playing an increasingly important role in business, scientific, and engineering
applications. In ubiquitous computing environments where large quantity of data is
available, advanced analysis of data for extracting useful knowledge becomes the next
natural step.

In this paper we propose a middleware architecture for discovering the valuable
knowledge from large and heterogeneous amount of context data. We have built and
deployed context knowledge discovery architecture as a central part of CAMUS [5] -
a middleware infrastructure for context-aware ubiquitous systems.

The rest of this paper is organized as follows: after a brief explanation of context
knowledge discovery process in section 2, we present the architecture of CAMUS –
our Context-Aware Middleware for Ubiquitous Systems in section 3. In section 4, we
give a detailed description of our idea of applying data mining into ubiquitous
computing by discussing the rule learning and context recognition mechanism. We
conclude our paper with a summary and outlook in section 5.

2 Context Knowledge Discovery

2.1 What is Context Data

Context has been defined by Dey [6] as any information that can be used to
characterize the situation of an entity, where an entity can be a person, place, or a

 Middleware Architecture for Context Knowledge Discovery in Ubiquitous Computing 1179

physical or computational object which we adopt in this article. A good overview on
different definitions of context can be found in [7].

The amount of context data maintained in the system is huge, due to the large
number of data sources and from the context history. Since the main task of Data
Mining is to extract valuable knowledge from a large amount of data, it is a
fundamental requirement for applying data mining in ubiquitous system.

What can we mine from context data? Currently in CAMUS we mine the deductive
rules which are used to build rule-based reasoning engines (those reasoning engines
then will be used to infer high-level context data from low-level context). We also use
clustering technique to discretize the time value and find out the common activities of
users. While other systems label the activities in advance, in our system we identify
activities by finding clusters of common place, time, environment parameters, and
device status. Next section shows the context data mining process, which are
somehow different from “traditional” transactional data mining.

2.2 Context Knowledge Discovery Process

Fig. 1 illustrates the context knowledge discovery process and its position in the
ubiquitous data inquiry and knowledge management process.

Fig. 1. Context knowledge discovery process and its position in the ubiquitous data inquiry and
knowledge management process

Data inquiry and preprocessing at sensor layer: Low-level context data acquired
from various sensors is preprocessed by the Feature Extraction Agents (described in

1180 K.A. Ngoc Pham, Y.K. Lee, and S.Y. Lee

section 3) before sending into Context Repository. This preprocessing step at sensor
layer includes feature extraction, data fusion, quantization and encapsulation of
sensing data. For example, 3 wireless LAN access points deployed in one area can act
as location sensors by extracting and fusing the signal strength. At this step, some
features are further quantized into nominal values, for instance the light intensity can
have 5 levels of quantized value: dark, dim, normal, bright, very bright.

The extracted features from sensor layer are then forwarded to context data mining
process including 4 main steps:

i) Context data preprocessing (in data layer)
One important task of this step is gathering relevant context data into data cubes. A
context data cube may have multi dimensions: time, location, user, environment
parameters (light intensity, sound level, temperature, etc.), device status (television,
air conditioner, door status, computer running programs, etc.). The context data has to
be user centric; i.e. the environment parameters and device statuses are of the
environment where user is currently located in. In order to have a uniform
representation of the disparate features, they are further summarized, quantized or
discretized, and normalized.

When mining the user preferences or user behavioral habits, user commands to
control the devices and appliances are aggregated. Current or scheduled activities are
also included into the data cube if available.

ii) User identification and context recognition
Recently, user identification has become an easy task with the advance of
identification techniques such as RFID tag, or just simply base on devices associated
with the user such as PDA, mobile phones, computer logging on, and the like..

Meanwhile, context recognition remains difficult. Many systems are working on
context recognition following different approaches such as using neural network,
Bayesian network, etc [17]. Each approach has its pros and cons. In the context data
mining process of CAMUS, we use clustering and classification techniques to
recognize the context (current activity) of user. The detail of these techniques will be
discussed in section 4.

iii) Context data mining
Using data mining techniques to mine context data, this module produces the
association rules, classification rule sets and clusters. Output of this module is the
input of learning module.

iv) Learning module
This module is an interface between data mining module and the rest of context
discovery process. It evaluates the rules and decides which one can be used for
reasoning, parses the clusters into classes, maps the rules into the right format (the
rule format of the reasoning engine; for example, if we use Jena generic rule
reasoners, the rules must have Jena rule format [16]). It also works as a manager to
request for new rules, manage the rules and rule mining process, insert or update rule
sets of reasoning engines, and so on. The learning module output is used to support all
other context data discovery steps: to preprocess data, recognize user context, or

 Middleware Architecture for Context Knowledge Discovery in Ubiquitous Computing 1181

supervise the context data mining. The function of this module will be illustrated by
rule learning mechanism in section 4.

Our CAMUS middleware architecture provides maximum support for this context
data mining process.

3 CAMUS - Middleware Architecture for Ubiquitous Systems

The knowledge discovery process presented in this paper is the crucial part of our
CAMUS architecture, a unified middleware framework for context-aware ubiquitous
computing. Here we briefly describe the core functional components of CAMUS as
depicted in Fig.2, more details can be found in [5].

3.1 Feature Extraction Agents

Feature Extraction Agents (FX Agents), or wrappers of sensors, extract the most
descriptive features for deducing contexts in upper layers, sometimes attached with
their semantic meanings and uncertainties. Then, Feature - Context mapping layer
will perform the mapping required to convert a given feature into elementary context.
This module handles the sensor layer pre-processing step in CKDD.

Fig. 2. The correlation between CAMUS architecture and CKDD process

3.2 Knowledge Processing Layer

This module handles the main steps of CKDD process.
Context Repository provides the basic storage services in a scalable and reliable

fashion and contains the domain ontology (concepts and properties), contextual

1182 K.A. Ngoc Pham, Y.K. Lee, and S.Y. Lee

information (including both elementary and composite contexts), and meta-
information such as the meta-information about the input, output and capabilities of
pluggable reasoning modules.

The Context Repository consists of two databases: the main database which
contains all current context data, and the history database. Whenever a new context
data comes, the corresponding old context data will be moved into history database.
In this way, the size of main database is reduced; consequently it maintains good
performance in context query processing.

Reasoning Engine is a collection of various pluggable reasoning modules to handle
the facts present in the repository as well as to produce composite contexts. Since not
all information can be gathered from sensors, and sometimes the most interesting
kinds of context are those that humans do not explicitly provide, context reasoning
mechanisms are needed. For instance, the current activity of a user could be inferred
based on a combination of many other contexts, e.g. his location, his gestures, time of
the day, environment status, etc [5]. Each reasoning mechanism has its own
expressiveness, for example Description Logics (DL) is suitable for specifying
terminological hierarchies while Spatio-temporal Logic is suitable concerning spatial-
temporal sequence in which various events occur, and Bayesian Networks [8] are
appropriate for learning the conditional probabilities of different events. Thus a
middleware infrastructure needs to provide support for incorporating different
reasoning mechanisms into the system, as well as specifying the appropriate
mechanism for each context. This will facilitate not only the system internal modules
to infer high-level context from low-level or predefined context, but also the
applications to reason for their own application-specific context.

To provide more help to developers so that they can concentrate on developing
rules or networks for reasoning and not be burdened with the low-level details, our
middleware infrastructure defines wrappers for each Reasoner type. For example, a
wrapper of Jena generic rule Reasoner allows the developer to easily add a new
Reasoner just by declaring the rule file name and some namespace abbreviations. The
following piece of code illustrates how to add and invoke a rule-based reasoner:

/* add a new reasoner providing the rule file */
ContextReasonerManager.addReasoner("Location",

ReasonerType.GENERIC_REASONER, "etc/contel.rules");

/* declare some statements */
sms = new ContextStatement[] {PastLocationDescription, hasLocation};

/* invoke the reasoner to do reasoning, providing the reasoner name, the context data name

and the required statements */
cdm.invokeReasoning("Location", "Data", sms);

To help constructing the reasoning engine, Machine Learning Modules utilize

many machine learning and data mining techniques to learn the logic, model (such as
user preference model), or train the Bayesian networks and neural networks, using
historical context data as training data.

 Middleware Architecture for Context Knowledge Discovery in Ubiquitous Computing 1183

3.3 Context Delivery and Aggregator Services

In our middleware framework, each context aggregator (analogous to web service)
specifies the context it provides, by utilizing the concepts defined in the ontology
repository. This standard schema sharing allows different kinds of entities to be
described and utilized by delivery service to find useful services needed by the
applications, thus, allowing a flexible mechanism for exchanging descriptive
information of various entities.

Context delivery provides the services (context aggregators) with the registration
interface to make their information known to the applications. The matchmaking
module matches the appropriate service with the client provided the access control
policies are not violated.

4 Application of Data Mining Techniques in Ubiquitous System

4.1 Learning the Rules for Context Reasoning

Rule based reasoning is currently the most common form of knowledge processing.
Especially in the field of context-awareness, many systems are using semantic
knowledge base which fully supports rule-based reasoning engines such as in [4].
However, most developers find building the rules the most difficult task in building
ubiquitous computing systems.

In order to minimize the burden for developer in building context-aware
applications, our middleware architecture provide support to learn the inference rules
from context data and build reasoning engines using those rules, as depicted in Fig. 3.

Fig. 3. Rule learning mechanism in CAMUS

To explain the rule learning mechanism in detail, we will first describe a simplified
Smart home scenario (only relates to user preference) and how a developer can make
use of the rule learning architecture of CAMUS to build a rule-based reasoner which
can infer the user preference from context data.

1184 K.A. Ngoc Pham, Y.K. Lee, and S.Y. Lee

4.1.1 The Simplified Smart Home Scenario
In a Smart Home environment, computing devices are spread throughout the
environment, present everywhere in the house to provide services and convenience to
the people living inside. The context of user and the status of home environment are
sensed by various kinds of sensors, e.g. light sensor, temperature sensor, fire sensor,
etc. There are also a set of software agents which control the home devices and
provide services to the user seamlessly and invisibly without any explicit user
intervention. The following use case is designed focusing on how the Smart Home
system adapts to user desire:

Bilbo is sleeping in his bed room an early morning. Since he prefers darkness
while sleeping, the system maintains a Dark light intensity level by automatically
dimming down the light and rolling down the curtain when the outside becomes
brighter. Because normally Bilbo wakes up at around 7:30, at that time the system
decides to wake him up and fire the alarm clock.

When Bilbo finishes washing and enters dining room, the television is turned on.
Recently he likes to watch the Sport News in the morning, so the system automatically
selects the channel which is providing Sport News.

4.1.2 Learning User Preference as Rules
In this scenario, the user preference is learned through user control commands and
responses to the messages from system. User can control the home devices by remote
controls, or send command messages through some computer software interfaces. The
commands are stored in the historical database together with relevant information i.e.
user location, timestamp, current activity, environment state. The tuple {user=Bilbo;
place=DiningRoom; timestamp = 2005/04/01 8:40; currentActivity=WatchingTV;
command= TV.SelectChannel; parameter=SportNews} is an example.

Using this kind of information as the training data, the system can generate rules
like:

personName=Bilbo; currenttime=[8:40-8:50]; currentActivity=WatchingTV
⇒ command=TV. SelectChannel; parameter=SportNews (Utility=0.86)

The rules can then be converted into suitable format for the reasoning engine

which are used. In our prototype system, because we use Jena generic rule reasoner to
reason over OWL[15] format data, the final rule has Jena rule format[16]:

[r1: (?user agt:personName “Bilbo”), (?x time:currentTime ?t),

(?user act:currentActivity ?curact), (?curact rdf:type act:WatchingTV)
AND 520 <=?t AND ?t <= 530
--> [(?pref agt:hasValue “TV.SelectChannel”), (?pref agt:hasPara “SportNews”)

<-- (makeInstance(?user,agt:hasPreference, agt:Command, ?pref)]]

with agt, time, act, rdf, act are the aliases for the namespaces of ontologies which are
currently used to define to data model of our context aware system.

 Middleware Architecture for Context Knowledge Discovery in Ubiquitous Computing 1185

4.1.3 Initiate Rule Learning Process
Because the purpose of rule learning is to supply rule sets for reasoning engines, we
first take a look at the information needed to define a rule-based reasoner. Even when
the rule set will be learn automatically, the developer must figure out the set of data
on which the reasoner will do its reasoning. For example, in this smart home scenario,
user preference is learn based on user, time, location, environment parameters, user
control commands, user activities. Therefore the developer should first define the set
of concepts which will be included in the data supplied to the future reasoning engine.

The developer can also define desired outputs of the desired reasoning engines.
However, the indication of output is optional, because in some cases we don’t know
exactly the desired output. For example, from activity and other information, we can
infer the intended control commands, but also we can base on the user control
commands to guess the current activity. In the above scenario, the desired output is
user preference.

The Reasoning Engine Manager then sends request to Rule Manager with the
required data and/or output of the rules. The learning module will send data request to
the query module (part of Data layer Preprocessing module) to get the data needed for
mining such rules. Query module responses to learning module with the data cubes.

4.1.4 Rule Mining Algorithm
In ubiquitous systems, a rule mining algorithm has to fulfill following requirements:
online (learning has to be done continuously in time domain), adaptive (as user
behaviors change over time, rule sets must be adapt to new input data), rules have
high accuracy but not necessarily high coverage (For example, every Sunday the user
will see a special program on television; the coverage of the control command to
select this program is low, but the related rule is highly accurate).

If the output is defined, we use the Sequential-Covering algorithm [9] to learn the
first rule sets from example data set. Otherwise, Apriori association rule mining
algorithm [10] is more suitable. After learning one rule, the examples covered by the
rule will be removed, and then the learning process repeats until no positive example
is left.

At this step, a question is raised: How can we select the “right” rules among a large
number of learned rules? To address this problem, we assign a utility function to
calculate the value of each rule based on confidence and support.

() () ()rSuprConfrUtility .. βα += (1)

With Conf(r) is the confidence Sup(r) is the support of the rule.
The α and β coefficients are related to each other by α + β = 1, and define the type

of rule which is more interested. Normally α = 1 and β = 0, showing that a rule which
has high confidence will be chosen even if it rarely happens.

Among a large number of rules mined, only the rules with high utility will be
selected. Those rules are inserted into rule table, and supplied to Reasoning Engine
Manager to be added into the rule set of the reasoning engine.

Whenever a reasoning engine is invoked, some rules will be fired. The utility of
those fired rules can be increased or decreased depending on the feedback from the
application after receiving new inferred information is positive or negative. In case of
Smart Home system, there are two common types of rule: decision rules and

1186 K.A. Ngoc Pham, Y.K. Lee, and S.Y. Lee

prediction rules. Decision rule leads to a control command decision, such as turn on
the light or adjust the temperature. After the control command is executed, there are
two types of response from user:

- If the user satisfies with the automatic command, he will do nothing.
- If the user does not satisfy, he himself will give a control command to adjust the

environment as to his desire.

In case of prediction rules, by observing the user, the system can know whether the
prediction is right or wrong.

According to the feedback from application, the rules in rule set can be divided
into 3 groups: the “right” rules (which generate right prediction or right commands),
the “wrong” rules (which generate wrong prediction or unsatisfying commands) and
the rules which are not fired.

The utility of those rules then be updated:

() () ()rrr rUtilityrUtilityrUtility −×+= 1(γ (2)

() () ()www rUtilityrUtilityrUtility ×−= γ (3)

() () ()uuu rUtilityrUtilityrUtility ×−= ε (4)

Where rr denote the “right” rule, rw denotes the “wrong” rule and ru denotes the
unfired rule. γ and ε are the coefficients to tune the speed of changing the utility of
rules after each time the reasoning engines are invoked. If ε is set to 0, the utility of
unfired rules is maintained.

The rules which have utility below a threshold will be removed from reasoning
engine’s rule set.

User preference and behavior changes quickly, so the new data plays more
important role in the training data set than the old data. To maintain a high learning
performance, we can restrict the number of training data set. Only N newest history
data records will be retrieved. In that case, whenever new context info comes into the
history database and makes the training data set change, the utility of the rules in rule
table is updated:

() () ()
1+
+×

=
N

rUtilityNrUtility
rUtility newold (5)

Where ()rUtilityold is the current utility of the rule and ()rUtilitynew is the new utility

of the rule calculated by the new training data.
Then the examples covered current rules are removed and new rules are mined.

4.2 Context Recognition Using Clustering

In section 2, we briefly described the context recognition step. This section discusses
it in detail.

The task of this step is to identify the context (or activity, situation, etc.) of user,
based on the low-level contexts from sensors. After preprocessing, the sensor data is
gathered in context data cube, including user, time, location, environment parameters
and device statuses. To know the context of user, this step handles two tasks:

 Middleware Architecture for Context Knowledge Discovery in Ubiquitous Computing 1187

determining the common contexts of user using clustering over history context data
and identifying the current context of user based on sensed data.

4.2.1 Clustering Common User Contexts
Ideally, an algorithm for context recognition must be online and thus unsupervised
and must have a variable network topology to cope with changing sensor data cube
(changing sensor configurations). The clustering algorithm must not be hard
competitive to allow multiple active contexts and it has to be designed for life long
learning to not forget or overwrite already learned clusters over time (which is known
as the plasticity-stability dilemma [11] in neural networks and clustering literature).
Among the most common online clustering algorithms, LLGNG [12] – a modification
of GNG algorithm [13] to cope with continuously changing environments and life-
long learning - seems to provide most flexibility for context clustering in ubiquitous
environment. After the clustering step, the system can label the clusters by itself, or
ask user to give some meaningful names, such as “working”, “watching TV”,
“cooking” and the like for the clusters. This is theoretically an optional step, because
the machine considers the meaningful and non-meaningful labels the same. However,
in practice, while naming the clusters, user can give same name for many clusters, or
split a cluster into many different contexts; and hence improve the result of context
recognition.

4.2.2 Identify Current Context
This is not the task of data mining but machine learning. Having the result clusters as
the context classes, we can apply different machine learning methods to infer the
current context/activity/situation of user, base on the time, location, environment and
other low-level context data.

Selecting the learning mechanism is up to developer. Our middleware provides the
possibility of plugging in different reasoning engines and learning modules. We also
provide advance support for the common reasoning engines, such as rule-based
reasoning engines (as described above). Another supported approach is Bayesian
network, which gains an advantage in the uncertain environment.

CAMUS support Bayesian network by: First, associating each context with a
probability attribute; Second, enhancing the context data ontology (implemented in
OWL) to represent some concepts which support creating and maintaining Bayesian
network, such as relation chain, probabilistic dependencies, etc. [14]; Finally,
introducing a Construct-BN algorithm [14] to derive a Bayesian network from the
domain ontology.

5 Summary and Outlook

In this paper, we have presented a novel middleware architecture which addresses the
key challenges in ubiquitous computing systems, including supports for a context
knowledge discovery process. Our CAMUS prototype proves the feasibility of
building intelligent ubiquitous environments with lesser workload on the developers.

Our next steps include the effort to make the interface between learning and
reasoning more transparent and make more use of data mining techniques.

1188 K.A. Ngoc Pham, Y.K. Lee, and S.Y. Lee

References

[1] Hong, J. I., et al.: An Infrastructure Approach to Context -Aware Computing. HCI
Journal, 2001, Vol. 16.

[2] Context Toolkit project http://www.cs.berkeley.edu/~dey/-context.html
[3] Guanling Chen and David Kotz.: Solar: An Open Platform for Context –Aware Mobile

Applications. In Proceedings of the First International Conference on Pervasive
Computing (Pervasive 2002), Switzerland, June, 2002.

[4] Anand Ranganathan, Roy H. Campbell: A Middleware for Context -Aware Agents in
Ubiquitous Computing Environments. In ACM/IFIP/USENIX International Middleware
Conference, Brazil, June, 2003.

[5] Anjum Shehzad et. al. A Comprehensive Middleware Architecture for Context-Aware
Ubiquitous Computing Systems. Accepted for publication, ICIS 05.

[6] A. Dey, G. D. Abowd, and D. Salber. A context-based infrastructure for smart
environments, 1999

[7] A. Schmidt. Ubiquitous Computing – Computing in Context. PhD thesis, Lancaster
University, November 2002.

[8] Korpipaa, P., Koskinen, M., Peltola, J., Makela, S. M., Seppanen, T.: Bayesian approach
to sensor-based context awareness. In: Personal and Ubiquitous Computing, Vol. 7, Issue
2. (July 2003) 113-124

[9] Ton Weijters Jan Paredis. Discovering Rules with a Genetic Sequential Covering
Algorithm (GeSeCo)

[10] Jiawei Han,Micheline Kamber. Data Mining: Concepts and Techniques
[11] S. Grossberg. Adaptive pattern classification and universal recoding: Parallel

development and coding of neural feature detectors. Biological Cybernetics, 23:121–134,
1976.

[12] F. H. Hamker. Life-long learning cell structures continuously learning without
catastrophic interference. Neural Networks, 14(4–5):551–573, May 2001.

[13] B. Fritzke. A growing neural gas network learns topologies. In G. Tesauro, D. S.
Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing Systems
7, pages 625–632. MIT Press, Cambridge MA, 1995.

[14] Binh An Truong. Modeling and Reasoning about uncertainty in Context-Aware Systems.
Accepted for publication, ICIS 05..

[15] W3C Web Ontology Working Group: The Web Ontology language: OWL.
http://www.w3.org/2001/sw/WebOnt/

[16] Jena: A Semantic Web Framework for Java. http://jena.sourceforge.net/
[17] Mozer, M. C. (2005), Lessons from an adaptive house. In D. Cook & R. Das (Eds.),

Smart environments: Technologies, protocols, and applications (pp. 273-294). Hoboken,
NJ: J. Wiley & Sons

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

