
T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 1225 – 1234, 2005.
© IFIP International Federation for Information Processing 2005

A Component-Based Architecture for an Autonomic
Middleware Enabling Mobile Access to Grid

Infrastructure

Ali Sajjad, Hassan Jameel, Umar Kalim, Young-Koo Lee, and Sungyoung Lee

Department of Computer Engineering, Kyung Hee University, Giheung-Eup,
Yongin-Si, Gyeonggi-Do, 449-701, Republic of Korea

{ali, hassan, umar, yklee, sylee}@oslab.khu.ac.kr

Abstract. The increasing pervasiveness of wide-area distributed computing re-
sources, like computational Grids, has given rise to applications that have in-
herent problems of complexity, adaptability, dynamism and heterogeneity etc.
The emerging concept of autonomic computing holds the key to the self-
management of such a multifarious undertaking and provides a way to further
build upon this complexity without incurring additional drawbacks. Further-
more, access to Grid services at present is generally limited to devices having
substantial computing, network and memory resources whereas most of mobile
devices do not have the sufficient capabilities to be either direct clients or ser-
vices in the Grid environment. The existing middleware platforms like Globus
do not fully address mobility, yet extending the potential of the Grid to a wider
audience promises increase in its flexibility and productivity. In this paper1, we
present a component-based autonomic middleware that can handle the complex-
ity of extending the potential of the Grid to a wider mobile audience, by incor-
porating the features of context-awareness and self-management. We also ad-
dress the middleware issues of job delegation to a Grid service, support for dis-
connected operation/offline processing and secure communication.

1 Introduction

Grid [1] computing permits participating entities connected via networks to dynami-
cally share their resources. Its increasing usage and popularity in the scientific com-
munity and the prospect of seamless integration and interaction with heterogeneous
devices and services makes it possible to develop further complex and dynamic appli-
cations for the Grid. However, most of the conventional distributed applications are
developed with the assumption that the end-systems possess sufficient resources for
the task at hand and the communication infrastructure is relatively reliable. For the
same reason, the middleware technologies for such distributed systems encourage the
developers to focus on the functionality rather than the distribution. But we know that

1 This research work has been supported in part by the ITRC program of Korean Ministry of

Information and Communication (MIC), in collaboration with Sunmoon University, Republic
of Korea.

1226 A. Sajjad et al.

in case of mobile computing, these assumptions are not essentially true. Firstly, there
is a wide variety of mobile devices available; laptops offering substantial computing
power and memory etc. to cell phones with scarce resources. Secondly, in mobile
systems, network connections generally have limited bandwidth, high error rates and
frequent disconnections. Lastly, mobile clients usually have the ability to interact with
various networks, services, and security matters as they move from one place to an-
other. So extending this potential of the Grid to a wider audience promises increases
in flexibility and productivity, particularly for the users of mobile devices who are the
prospective consumers and beneficiaries of this technology.

This goal was the main motivation behind the MAGI middleware [25], whose ar-
chitecture provided the foundation support and infrastructure for building applications
and services that provide mobile clients access to Grid. However, the efficient man-
agement of such a large platform is a considerably complicated issue and it is a con-
stantly increasing complexity because of increasing numbers of heterogeneous de-
vices and components being added to it. In fact, the current level of software com-
plexity has reached such a level of complexity that it threatens the future growth and
benefits of the general IT infrastructure [2]. Also, as the environment of a mobile
device changes, the application/service behaviour needs to be adjusted to adapt itself
to the new environment. Hence dynamic reconfiguration is an important building
block of such an adaptive system. Furthermore, the interaction approach between the
mobile client and the host dictates the effectiveness and efficiency of a mobile sys-
tem. A promising approach to handle this complexity is the emerging field of auto-
nomic computing [3]. It calls for the design of a system in such a way that it is aware
of its constituting components and their details, it can reconfigure itself dynamically
according to the change in its environment, optimize its working to achieve its goals
and predict or recognize faults and problems in its work flow and rectify them. The
inspiration of such self-managing approach has been taken from the autonomous
nervous system and many efforts are underway for further development in this field
[4], [5], [6]. The effect of such an autonomous system will be the reduction in the
complexity and ease in management of a large system, and what better exemplar case
for its application than the Grid and its middlewares. Various ways have been pro-
posed to achieve the fulfillment of this vision, from agent-based [7] to policy-based
self-management [8], from autonomic elements and closed control loops [9] to adap-
tive systems, self-stabilizing systems and many more, but the motivation and ultimate
goal of all is the same. Hence, given the highly variable computing environment of
mobile systems, it is mandatory that modern middleware systems are designed in such
a way that they can support the requirements of modern mobile systems such as dy-
namic reconfiguration and asynchronous communication. The motivation behind the
AutoMAGI middleware is to develop an autonomic middleware that provides mobile
devices access to Grid infrastructure and also enables autonomous applications to use
its platform. It will be beneficial to all kinds of Grid users, form the physicist who
wants to run a set of simulations from his PDA to a doctor who wants a Grid medical
service to analyze the MRI or CT scans of a patient from his smart phone, so that
finally we can promise increase in seamless flexibility and productivity. In what fol-
lows, we first discuss the basic structure of autonomic components in our autonomic
MAGI middleware and then present its architecture, which enables heterogeneous
mobile devices to access Grid services and also enables autonomous applications to

 A Component-Based Architecture 1227

use it as a platform for this purpose. This middleware provides support and manage-
ment infrastructure for delegation of jobs to the Grid, a light-weight security model,
offline processing, adaptation to network connectivity issues (disconnected operation)
and presentation of results to client devices in keeping with their limited resources.

2 Autonomic Components in AutoMAGI

The AutoMAGI middleware is composed of autonomic components which are re-
sponsible for managing their own behavior in keeping with the relevant policies, and
also for cooperating with other autonomic components to achieve their objectives.
The structure of a typical component is shown in Figure 1.

Fig. 1. Structure of an Autonomic Component in AutoMAGI

A resource can be anything, from a CPU, memory etc. to an application or service.
The event signifies a change in the state of a resource. Decision rules are used for
deducing a problem based on the information received from various events. The prob-
lems can be deduced using a single event or inferring from a group of events, based
on a single occurrence or based on a history of occurrences. The component then
makes plans to rectify this problem or optimize some functional/behavioral aspects,
basing upon the policies and internal and external knowledge of the component. Ac-
tion rules are then used to execute tasks to bring about these changes in line with the
desired goal of the component.

This manner of structure facilitates in building up a control loop by employing the
monitor, analyze, plan and execute cycle, which is of key significance for autonomic
behavior [24].

3 AutoMAGI Architecture

The AutoMAGI middleware is exposed as a web service to the client application.
The components of the middleware (as shown in Figure 2) are discussed briefly as
follows.

1228 A. Sajjad et al.

3.1 Discovery Service

The discovery of the middleware by mobile devices is undertaken by employing a
UDDI registry [11], [12]. The composition of the current web services may not give
sufficient facilities to depict an autonomic behavior or to integrate them seamlessly
with other autonomic components but with the advent of semantic web service tech-
nologies like OWL-S [13], it becomes possible to provide a fundamental framework
for representing and relating devices and services with their policies and describing
and reasoning about their functionalities and capabilities. Another hurdle is that the
current organization and management of Web services and Grid services are static
and must be defined a priori. However, by using Web Services Distributed Manage-
ment (WSDM) [26], we get a mechanism of managing resource-oriented and dynamic
web services and their discovery.

Fig. 2. AutoMAGI – Architecture and Deployment diagram

Once the middleware service is deployed and registered, other applications/devices
would be able to discover and invoke it using the API in the UDDI specification [12]
which is defined in XML, wrapped in a SOAP envelope and sent over HTTP.

3.2 Client Communication Interface

The service advertised to the client is the communication interface between the mo-
bile device and the middleware. This layer enables the middleware to operate as a
semantic web service [14] and communicate via the SOAP framework [15]. The re-
pository in the middleware also contains the device and user related ontologies and
service policies for the devices, users and applications. Due to this service-oriented
approach, it is not expected of the client to remain connected to the middleware at all
times while the request is being processed.

 A Component-Based Architecture 1229

3.3 Adaptive Communication Component

We focus on providing support for offline processing in the Adaptive Communication
component, which allows the system to automatically redeploy essential components
to maintain service availability, even in adverse circumstances. The adaptation
scheme used is application aware, i.e., the framework of the Adaptive Communication
component allows the developer to determine the application policies, which describe
how the component will react in different situations. This enables the component to
reconfigure itself while adapting to the prevailing conditions. With an autonomic
policy manager to direct these reconfigurations, the services can maintain their avail-
ability even in disconnected mode. Two kinds of disconnections are considered for
providing offline processing; voluntary and involuntary disconnection. The former
refers to a user-initiated event that enables the system to prepare for disconnection,
and the latter to an unplanned disconnection (e.g., due to network failure). The differ-
ence between the two cases is that in involuntary disconnection the system needs to
be able to detect disconnection and reconnection, and it needs to be pessimistically
prepared for disconnection at any moment, hence requiring to proactively reserve and
obtain redundant resources (if any) at the client. The Adaptive Communication com-
ponent utilizes a connection monitor for this purpose but the job for facilitating in
making such decisions that whether the disconnection was intentional or not is done
with the help of decision rules of the component. The action rules of the component
take the contributing factors and parameters into account and based on the particular
policy, proceed with the course of actions to be undertaken.

The flow of events dealing with the disconnected operation can be seen in the
state-transition diagram in Figure 3. During execution, checkpoints are maintained at
the client and the middleware, taking into account the policies of the device, user and
application, in order to optimize reintegration after disconnection and incorporate
fault tolerance.

Fig. 3. State-transition diagram from disconnection/reconnection management

3.4 Grid Communication Interface

The Grid Communication interface provides access to the Grid services by creating
wrappers for the API advertised by the Grid. These wrappers include standard Grid

1230 A. Sajjad et al.

protocols such as GRAM [16], MDS [17], GSI [18] etc. which are obligatory for any
application trying to communicate with the Grid services using Globus. This enables
the middleware to communicate with the Grid, in order to accomplish the job as-
signed by the client. Its working is in close collaboration with the Grid Information
component, which is discussed later in the section.

3.5 Grid Information Component

The Grid Information component interacts with the wrapper of the GLOBUS toolkit’s
API for information services (MDS [17]). It assists the client application by managing
the process of determining which services and resources are available in the Grid (the
description of the services as well as resource monitoring such as CPU load, free
memory etc.). Detailed information about Grid nodes (which is made available by
MDS) is also shared on explicit request by the client.

3.6 Job Broker Component

The autonomic Job Broker component deals with initiating the job request and steer-
ing it on behalf of the client application. After going through the related policy and
determining the availability of the Grid service and authorization of the client, it
downloads the code (from the mobile device or from a location specified by the client
e.g. an FTP/web server). Once the code is available, the Job Broker component sub-
mits a “createService” request on the GRAM’s Master Managed Job Factory Service
(via the wrapper) which is received by the Redirector [16]. The application code (con-
trolled by the application policy) then interacts with the newly created instance of the
service to accomplish the task. The rest of the process including creating a Virtual
Host Environment (VHE) process and submitting the job to a scheduling system is
done by GRAM. Subsequent requests by the client code to the Job Broker component
are redirected through the GRAM’s Redirector.

The monitoring service of the Job Broker component interacts with GRAM’s
wrapper to submit FindServiceData requests in order to determine the status of the
job. It may then communicate with the Knowledge Management component to store
the results, depending on the type of application and all the related policies, as the
mobile client may reconnect and ask for the results (intermediate/final) of its job from
the Job Broker component.

3.7 Knowledge Management Component

The knowledge used by different autonomic components is handled by using semantic
web technologies in the middleware which provide the mechanisms to present the
information as machine-processable semantics and is useful in building intelligent
decision-making mechanisms and perform knowledge level transformations on that
information. These decisions and transformed information is then passed on to other
components within the system or directly to the client or the Grid, which utilize it
according to their specific needs.

The autonomic components that constitute the AutoMAGI middleware constantly
monitor and gather the data they need to react to or act upon, according to their man-
agement tasks and targets. This wide-scoped data is elaborated and organized through

 A Component-Based Architecture 1231

the notion of events. Events in turn are typically meaningful in a certain context when
related with other events. This correlation information can then be used for Data fil-
tering, measuring thresholds and sequencing of actions etc. But for such an autonomic
model to work properly, a shared knowledge must be present which includes features
context information, system logs, performance metrics and relevant policies. We
manage this knowledge base with the help of a Policy Manager in the KM compo-
nent. Due to the autonomic character of the Knowledge Management component, the
middleware is able to respond to a problem that happened in the defined problem
space (scope of defined problems) and use predictive methods to discover probable
problems in advance and so succeed in achieving better results and eliminating prob-
lems. But as each autonomic element has its own knowledge model, the problem of
data/knowledge integration might result, which is again handled by the Knowledge
Management module. Furthermore, some conflict-scenarios may arise due to the
conflicting goals pursued by different autonomic components. The optimal solution of
such conflicts is also the job of this component.

3.8 Security Component

The Grid Security Infrastructure is based on public key scheme mainly deployed
using the RSA algorithm [19]. However key sizes in the RSA scheme are large and
thus computationally heavy on handheld devices such as PDA’s, mobile phone’s,
smart phones etc. We propose the use of Elliptic Curve Cryptography (ECC) based
public key scheme, which can be used in conjunction with Advanced Encryption
Standard (AES) for mobile access to Grid. This provides the same level of security as
RSA and yet the key sizes are a lot smaller [20] which means faster computation, low
memory and bandwidth and power consumption with high level of security.

Furthermore, as no autonomic element should provide its resources or services to
any other component without the permission of its manager, we make use of security
policies that govern and constrain their behavioral aspects at a higher level. The secu-
rity policies include different characteristics like the level of protection needed to be
applied to the various information resources that the component contains or controls,
rules that determine how much trust the element places in other elements with which it
communicates, cryptographic protocols the element should use in various situations
and the circumstances in which the element should apply or accept security-related
patches or other updates to its own software, and so on. Each autonomic component
also holds various security related tasks and state representations to describe the cur-
rent status and activities, like level of trust on other communicating entities, notifica-
tion form other components or human administrators of suspicious circumstances,
agreements with other components regarding provision of security-related information,
such as log-file analyses or secure time stamping, and a list of trustworthy resource
suppliers (used to quickly verify the digital signatures on the resources they provide).

4 Communication Between the Middleware Gateways

In case multiple instances of the MAGI middleware gateways are introduced for im-
proving scalability, some problem scenarios might arise. Consider a mobile device that
accesses the Grid network via gateway M1, but disconnects after submitting the job. If

1232 A. Sajjad et al.

the mobile device later reconnects at gateway M2 and inquires about its job status, the
system would be unable to respond if the middleware is not capable of sharing informa-
tion with other instances. To manage resources, clients and requests etc. between them-
selves, the distributed instances of AutoMAGI middleware use an Arbiter component.
So in accordance with high-level guidance from the application/client’s policies for the
functional environment and the load-balancing policies from the middleware, we attain
a guideline for optimal sharing of knowledge between different middleware instances.

The Arbitrator facilitates in communication between any two middleware in-
stances. It maintains the ordered pairs (ID, URI) which are used for the identification
of the middleware instance. So for instance, after reintegration of the mobile client at
M2, C sends the ID of the middleware instance, where the job was submitted (i.e. M1),
to the Arbitrator. The Arbitrator determines that the ID is not that of M2. It then
checks the Middleware Directory Listing to find the URI corresponding to the Mid-
dleware instance M1. The Arbitrator then requests (from the client application) the
job-ID of the job submitted by C. Upon a successful response the Arbitrator of M2 (A-
M2) communicates with the Arbitrator of M1 (A-M1) using the URI retrieved. After
mutual authentication, A-M2 sends the job-ID along with the clients request for fetch-
ing the (intermediate/final) results to A-M1. If the job is complete, the compiled results
are forwarded to client application. In case the job isn’t complete yet, the client appli-
cation continues to interact with A-M1 (where the job was submitted). Note that A-M2
acts as a broker for communication between C and M1. Also, if the C decides to dis-
connect and later reconnect at a third middleware instance M3, then A-M3 will act as a
broker and communicate with M1 on behalf of C. As all the processing of information
is done at the middleware where the job was submitted, the other instances would
only act as message forwarding agents.

5 Related Work

Signal [21] proposes a mobile proxy-based architecture that can execute jobs submit-
ted to mobile devices, so in-effect making a grid of mobile devices. After the proxy
server determines resource availability, the adaptation middleware layer component in
the server sends the job request to remote locations. The efforts are inclined towards
QoS issues such as management of allocated resources, support for QoS guarantees at
application, middleware and network layer and support of resource and service dis-
coveries based on QoS properties.

In [22] a mobile agent paradigm is used to develop a middleware to allow mobile
users’ access to the Grid and it focuses on providing this access transparently and
keeping the mobile host connected to the service. Though improvement is needed in
the system’s security, fault-tolerance and QoS, the architecture is sufficiently scalable.
GridBlocks [23] builds a Grid application framework with standardized interfaces
facilitating the creation of end user services. For security, they are inclined towards the
MIDP specification version 2 which includes security features on Transport layer.
They advocate the use of propriety communication protocols based on the statement
that performance of SOAP on mobile devices is 2-3 times slower as compared to a
proprietary protocol. But in our view, proprietary interfaces limit interoperability and
extensibility, especially to new platforms such as personal mobile devices and certainly
an autonomic computing system will only be possible if open standards are ensured.

 A Component-Based Architecture 1233

6 Conclusions and Future Work

In this paper we identified the potential of enabling mobile devices access to the Grid
and how we use the emerging autonomic computing paradigm to solve the manage-
ment complexity. The component-based architecture of an autonomic middleware
named AutoMAGI is presented which facilitates implicit interaction of mobile de-
vices with Grid infrastructure. It ensures secure communication between the client
and the middleware service, provides support for offline processing, manages the
presentation of results to heterogeneous devices considering the device specifications
and deals with the delegation of job requests from the client to the Grid.

In future we intend to focus on issues of autonomic security (self-protection) and
streamline the Knowledge Management component for self-optimization. Along with
a prototype implementation, we intend to continue validating our approach by ex-
perimental results and benchmarks.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Int’l J. Supercomputer Applications, vol. 15, no. 3 (2001) 200-222

2. Wladawsky-Berger, I.: Advancing E-business into the Future: The Grid. Kennedy Consult-
ing Summit. New York (2001)

3. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM Systems
Journal, v.42 n.1 (2003) 5-18

4. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information Technol-
ogy. http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf: IBM
Corporation (2001)

5. HP Adaptive Enterprise strategy: http://www.hp.com/go/demandmore
6. Microsoft Dynamic Systems Initiative:

http://www.microsoft.com/windowsserversystem/dsi/default.mspx
7. Bonino, D., Bosca, A., Corno, F.: An Agent Based Autonomic Semantic Platform. First

International Conference on Autonomic Computing. New York (2004)
8. Chan, H., Arnold, B.: A policy based system to incorporate self-managing behaviors in

applications. Companion of the 18th Annual ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications. (2003) 94-95

9. Kephart, J., Chess, D.: The Vision of Autonomic Computing. Computer, v.36 n.1 (2003)
41-50

10. Puliafito , A., Riccobene, S., Scarpa, M.: Which paradigm should I use?: An analytical
comparison of the client-server, remote evaluation and mobile agents paradigms'. IEEE
Concurrency and Computation: Practice & Experience, vol. 13 (2001) 71-94

11. Hoschek, W.: Web service discovery processing steps.
http://www-itg.lbl.gov/~hoschek/publications/icwi2002.pdf

12. UDDI specification: http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
13. OWL-S: OWL-based Web Service Ontology: http://www.daml.org/services/owl-s/
14. Semantic Web Services Initiative (SWSI): http://www.swsi.org/
15. SOAP Framework: W3C Simple Object Access Protocol ver 1.1, World Wide Web Con-

sortium recommendation. 8 May 2000; www.w3.org/TR/SOAP/
16. GT3 GRAM Architecture: www-unix.globus.org/developer/gram-architecture.html

1234 A. Sajjad et al.

17. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, I.: Grid Information Services for
Distributed Resource Sharing. Proceedings of the Tenth IEEE International Symposium on
High-Performance Distributed Computing, IEEE Press (2001)

18. Welch, V., Siebenlist, F., Foster I., et al.: Security for Grid Services. HPDC (2003)
19. Welch, V., Foster I., Kesselman, C., et al.: X.509 Proxy Certificates for dynamic delega-

tion. Proceedings of the 3rd Annual PKI R&D Workshop (2004)
20. Gupta, V., Gupta, S., et al.: Performance Analysis of Elliptic Curve Cryptography for SSL.

Proceedings of ACM Workshop on Wireless Security. Atlanta, GA, USA (2002) 87-94
21. Hwang, J., Aravamudham, P.: Middleware Services for P2P Computing in Wireless Grid

Networks. IEEE Internet Computing vol. 8, no. 4 (2004) 40-46
22. Bruneo, D., Scarpa, M., Zaia, A., Puliafito, A.: Communication Paradigms for Mobile

Grid Users. Proceedings 10th IEEE International Symposium in High-Performance Dis-
tributed Computing (2001)

23. GridBlocks: Helsinki Institute of Physics, (CERN).
http://gridblocks.sourceforge.net/docs.htm

24. Herrmann, K., Mühl, G., Geihs, K.: Self-Management: The Solution to Complexity or Just
Another Problem? IEEE Distributed Systems Online, vol. 6, no. 1 (2005)

25. Sajjad, A., Jameel, H., et al.: MAGI - Mobile Access to Grid Infrastructure: Bringing the
gifts of Grid to Mobile Computing. Proceedings of 2nd International Conference on Grid
Service Engineering and Management. Erfurt, Germany (2005)

26. Web Services Distributed Management (WSDM) standards specifications:
http://docs.oasis-open.org/wsdm/2004/12/wsdm-1.0.zip/

	Introduction
	Autonomic Components in AutoMAGI
	AutoMAGI Architecture
	Discovery Service
	Client Communication Interface
	Adaptive Communication Component
	Grid Communication Interface
	Grid Information Component
	Job Broker Component
	Knowledge Management Component
	Security Component

	Communication Between the Middleware Gateways
	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

