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Abstract. In ad hoc sensor networks, sensor nodes have very limited energy re-
sources, thus energy consuming operations such as data collection, transmission 
and reception must be kept at a minimum. This paper applies particle swarm 
optimization (PSO) approach to optimize the coverage in ad hoc sensor net-
works deployment and to reduce cost by clustering method based on a well-
known energy model. Sensor nodes are assumed to be mobile, and during the 
coverage optimization process, they move to form a uniformly distributed to-
pology according to the execution of algorithm at base station. The simulation 
results show that PSO algorithm has faster convergence rate than genetic algo-
rithm based method while demonstrating good performance1. 

1   Introduction 

Recent military operations have limitations of surveillance missions performed by 
high-altitude platforms (UAV, U2, satellite) even when equipped with state of the art 
sensors. Most of the limitations are inherent to long-distance surveillance and cannot 
be resolved by any improvement in the onboard-sensor technology [1].  

In order to get a clear understanding of the situation on the ground, it is important 
to observe from close range, using remote sensing device placed in the region of 
interest (ROI) to form a sensor network. Ad hoc sensor networks that employ ad hoc 
networking have become an area of intense research activity. In most cases, a large 
number of wireless sensor devices can be deployed in hostile areas without human 
involved, e.g. by air-dropping from an aircraft for remote monitoring and surveillance 
purposes. Such airdropped networks are called ad hoc sensor networks to distinguish 
them from other types of sensor networks where nodes are laid out in some fixed 
predetermined pattern. Due to their attractive characteristics, ad hoc sensor networks 
have been applied to many military and civil applications such as target tracking, 
surveillance, and environmental control. Usually, once the sensors are deployed on 
the ground, their data are transmitted back to the base station to provide the necessary 
situational information. 

                                                           
1  Dr. Sungyoung Lee is the corresponding author. 



The limited energy storage and memory of the deployed sensors prevent them from 
relaying data directly to the base station. It is therefore necessary to form a cluster 
based topology, and the cluster heads (CHs) provide the transmission relay to base 
station such as a satellite. And the aircraft carrying the sensors has a limited payload, 
so it is impossible to randomly drop thousands of sensors over the ROI, hoping the 
communication connectivity would arise by chance; thus, the mission must be per-
formed with a fixed maximum number of sensors. In addition, the airdrop deployment 
may introduce uncertainty in the final sensor positions. Though many scenarios adopt 
random deployment for practical reasons such as deployment cost and time, random 
deployment may not provide a uniform sensor distribution over the ROI, which is 
considered to be a desirable distribution in sensor networks. These limitations moti-
vate the establishment of a planning system that optimizes the sensor reorganization 
process after initial random airdrop deployment assuming sensor node mobility, 
which results in the maximum possible utilization of the available sensors. 

There exist a lot of research work [2], [3], [4] related to the placement of sensor 
nodes in network topology design. Most of them focused on optimizing the location 
of the sensors in order to maximize their collective coverage. However only a single 
objective was considered in most of the research papers, other considerations such as 
energy consumption minimization are also of vital practical importance in the choice 
of the network deployment. Self-deployment methods using mobile nodes [4，9] 
have been proposed to enhance network coverage and to extend the system lifetime 
via configuration of uniformly distributed node topologies from random node distri-
butions. In [4], the authors present the virtual force algorithm (VFA) as a new ap-
proach for sensor deployment to improve the sensor field coverage after an initial 
random placement of sensor nodes. The cluster head executes the VFA algorithm to 
find new locations for sensors to enhance the overall coverage. They also considered 
unavoidable uncertainty existing in the precomputed sensor node locations. This 
uncertainty-aware deployment algorithm provides high coverage with a minimum 
number of sensor nodes. However they assumed that global information regarding 
other nodes is available. In [1], the authors examined the optimization of wireless 
sensor network layouts using a multi-objective genetic algorithm (GA) in which two 
competing objectives are considered, total sensor coverage and the lifetime of the 
network. However the computation of this method is not inexpensive. 

In this paper, we attempt to solve the coverage problem while considering energy 
efficiency using particle swarm optimization (PSO) algorithm, which can lead to 
computational faster convergence than genetic algorithm used to solve the deploy-
ment optimization problem in [1]. Sensor nodes are assumed to have mobility, and 
during the coverage optimization process, they move to form a uniformly distributed 
topology according to the execution of algorithm at the base station. To the best of 
our knowledge, this is the first paper to solve deployment optimization problem by 
PSO algorithm. 

In the next section, the PSO algorithm is introduced and compared with GA. Mod-
eling of sensor network and the deployment algorithm is presented in section 3, fol-
lowed by simulation results in section 4. Some concluding remarks and future work 
are provided in section 5. 



2   Particle Swarm Optimization 

PSO, originally proposed by Eberhart and Kennedy [5] in 1995, and inspired by so-
cial behavior of bird flocking, has come to be widely used as a problem solving 
method in engineering and computer science.  

The individuals, called, particles, are flown through the multidimensional search 
space with each particle representing a possible solution to the multidimensional 
problem. All of particles have fitness values, which are evaluated by the fitness func-
tion to be optimized, and have velocities, which direct the flying of the particles. PSO 
is initialized with a group of random solutions and then searches for optima by updat-
ing generations. In every iteration, each particle is updated by following two "best" 
factors. The first one, called pbest, is the best fitness it has achieved so far and it is 
also stored in memory. Another "best" value obtained so far by any particle in the 
population, is a global best and called gbest. When a particle takes part of the popula-
tion as its topological neighbors, the best value is a local best and is called lbest. After 
each iteration, the pbest and gbest (or lbest) are updated if a more dominating solution 
is found by the particle and population, respectively. 

The PSO formulae define each particle in the D-dimensional space as Xi = (xi1, xi2, 
xi3,……,xiD) where i represents the particle number, and d is the dimension. The 
memory of the previous best position is represented as Pi = (pi1, pi2, pi3……piD), and a 
velocity along each dimension as Vi = (vi1, vi2, vi3……viD). The updating equation [6] 
is as follows,  
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where ϖ  is the inertia weight, and c1 and c2  are acceleration coefficients. 
The role of the inertia weight ϖ  is considered to be crucial for the PSO’ s con-

vergence. The inertia weight is employed to control the impact of the previous history 
of velocities on the current velocity of each particle. Thus, the parameter ϖ  regulates 
the trade-off between global and local exploration ability of the swarm. A large iner-
tia weight facilitates global exploration, while a small one tends to facilitate local 
exploration, i.e. fine-tuning the current search area. A suitable value for the inertia 
weight ϖ  balances the global and local exploration ability and, consequently, re-
duces the number of iterations required to locate the optimum solution. Generally, it 
is better to initially set the inertia to a large value, in order to make better global 
exploration of the search space, and gradually decrease it to get more refined 
solutions. Thus, a time-decreasing inertia weight value is used. The initial swarm can 
be generated randomly [7]. 

PSO shares many similarities with GA. Both algorithms start with a group of a 
randomly generated population, have fitness values to evaluate the population, update 
the population and search for the optimum with random techniques. However, PSO 
does not have genetic operators like crossover and mutation. Particles update them-



selves with the internal velocity. They also have memory, which is important to the 
algorithm [8].  

Compared with GA, PSO is easy to implement, has few parameters to adjust, and 
requires only primitive mathematical operators, computationally inexpensive in terms 
of both memory requirements and speed while comprehensible. It usually results in 
faster convergence rates than GA. This feature suggests that PSO is a potential algo-
rithm to optimize deployment in a sensor network.  

3   The Proposed Algorithm 

First of all, we present the model of wireless sensor network. We assume that each 
node knows its position in the problem space, all sensor members in a cluster are 
homogeneous and cluster heads are more powerful than sensor members. Sensing 
coverage and communication coverage of each node are assumed to have a circular 
shape without any irregularity. The design variables are 2D coordinates of the sensor 
nodes, {(x1, y1), (x2, y2), ……}. And the sensor nodes are assumed to be mobile. 
Many research efforts into the sensor deployment problem in wireless sensor network 
[4, 9] make this sensor mobility assumption reasonable. 

3.1  Optimization of Coverage 

We consider coverage as the first optimization objective. It is one of the measurement 
criteria of QOS of a sensor network.  

 
Fig. 1. Sensor coverage models (a) Binary sensor and (b) stochastic sensor models 

The coverage of each sensor can be defined either by a binary sensor model or a 
stochastic sensor model as shown in Fig. 1 [9]. In the binary sensor model, the detec-
tion probability of the event of interest is 1 within the sensing range, otherwise, the 
probability is 0. In the stochastic sensor model, the probability of detection of the 
event of interest follows a decaying function of distance from the sensor. In this paper, 
the binary sensor model is employed and coverage is defined as the ratio of the union 
of areas covered by each node and the area of the entire ROI, as shown in Eq (3). 
Here, the covered area of each node is defined as the circular area within its sensing 
radius [9]. 
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where 
Ai       is the area covered by the ith node;  
N     is the total number of nodes;  
A     stands for the area of the ROI. 

 
In order to prevent recalculating the overlapped area, the coverage here is calcu-

lated using Monte Carlo method by meshing the network space, i.e., by creating a 
uniform grid in the ROI. All the grid points being located in the sensing area are 
labeled 1 otherwise 0, depending on whether the Euclidean distance between each 
grid point and the sensor node is longer or shorter than sensing radius, as shown in 
Fig 2. Then the coverage can be approximated by the ratio of the summation of ones 
to the total number of the grid points. 

If a node is located well inside the ROI, its complete coverage area will lie within 
the ROI. In this case, the full area of that circle is included in the covered region. If a 
node is located near the boundary of the ROI, then only the part of the ROI covered 
by that node is included in the computation. 

 
Fig. 2. Sensing coverage calculation (dashed circle indicating the sensing area boundary) 

3.2 Optimization of Energy Consumption 

After optimization of coverage, all the deployed sensor nodes move to their own 
positions. Now we can disregard the assumption of sensor mobility since our goal is 
to minimize energy usage in a cluster based sensor network topology by finding the 
optimal cluster head (CH) positions. For this purpose, we assume a power consump-
tion model [10] for the radio hardware energy dissipation where the transmitter dissi-
pates energy to run the radio electronics and the power amplifier, and the receiver 
dissipates energy to run the radio electronics. This is one of the most widely used 



models in sensor network simulation analysis. For our approach, both the free space 
(distance2 power loss) and the multi-path fading (distance 4 power loss) channel mod-
els were used. Assume that the sensor nodes inside a cluster have short distance dis to 
cluster head but each cluster head has long distance Dis to the base station. Thus for 
each sensor node inside a cluster, to transmit an l-bit message a distance dis to cluster 
head, the radio expends 
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For cluster head, however, to transmit an l-bit message a distance Dis to base sta-

tion, the radio expends 
4),( DisllEDislE mpelecTH ε+=  (5) 

                            
In both cases, to receive the message, the radio expends: 
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The electronics energy, Eelec, depends on factors such as the digital coding, modu-

lation, filtering, and spreading of the signal, here we set as Eelec=50nJ/bit, whereas the 
amplifier constant, is taken as fsε =10pJ/bit/m2, mpε = 0.0013pJ/bit/m2.  

So the energy loss of a sensor member in a cluster is 
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The energy loss of a CH is  
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 Since the energy consumption for computation is much less than that for commu-
nication, we neglect computation energy consumption here.  

Assume m clusters with nj sensor members in the jth cluster Cj. The total energy 
loss Etotal is the summation of the energy used by all sensor members and all the m 
cluster heads:  
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   Because only 2 terms are related to distance, we can just set the fitness function 
as: 
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4 Performance evaluation 

The PSO starts with a “swarm” of sensors randomly generated. As shown in Fig. 3 is 
a randomly deployed sensor network with coverage value 0.4484 calculated using Eq. 
(3). A linear decreasing inertia weight value from 0.95 to 0.4 is used, decided accord-
ing to [6]. Acceleration coefficients c1 and c2 both are set to 2 as proposed in [6]. For 
optimizing coverage, we have used 20 particles, which are denoted by all sensor 
nodes coordinates, for our experiment in a 50×50 square sensor network, and the 
maximum number of generations we are running is 500. The maximum velocity of 
the particle is set to be 50. The sensing range of each sensor is set to be 5 units. An 
upper bound on the coverage is given by the ratio of the sum of the circle areas 
(corresponding to sensors) to the total area of the sensor field. In this simulation, the 
upper bound evaluates to be 0.628, which is calculated from the perfect uniform dis-
tribution case without any overlapped area. The coverage is calculated as a fitness 
value in each generation. 

After optimizing the coverage, all sensors move to their final locations. Now the 
coordinates of potential cluster heads are set as particles in this static sensor network. 
The communication range of each sensor node is 15 units with a fixed remote base 
station at (25, 80). We start with a minimum number of clusters acceptable in the 
problem space to be 4. The node, which will become a cluster head will not have any 
restriction on the transmission range. The nodes are organized into clusters by the 
base station. Each particle will have a fitness value, which will be evaluated by the 
fitness function (10) in each generation. Our purpose is to find the optimal location of 
cluster heads. Once the position of the cluster head is identified, if there is no node in 
that position then a potential cluster head nearest to the cluster head location will 
become a cluster head. 

We also optimized the placement of cluster head in the 2-D space using GA. We 
used a simple GA algorithm with single-point crossover and selection based on a 
roulette-wheel process. The coordinates of the cluster head are the chromosomes in 
the population. For our experiment we are using 10 chromosomes in the population. 
The maximum number of generations allowed is 500. In each evolution we update the 
number of nodes included in the clusters. The criterion to find the best solution is that 
the total fitness value should be minimal. 

Fig. 4 is the coverage optimization results after 6 runs. Compared with the upper 
bound 0.628, the difference between them is small. Fig. 5 shows the convergence rate 
of PSO and GA. We ran the algorithm for both approaches several times and in every 
run PSO converges faster than GA, which was used in [1] for coverage and lifetime 
optimization. The main reason for the fast convergence of PSO is due to the velocity 
factor of the particle.  

Fig. 6 shows the final cluster topology in the sensor network space after coverage 
and energy consumption optimization when the number of clusters in the sensor 
space is 4. We can see from the figure that nodes are uniformly distributed among the 
clusters compared with the random deployment as shown in Fig 3. The four stars 
denote cluster heads, the small circles are sensor members, and the dashed circles are 
communication range of sensor nodes. The energy saved is the difference between the 



initial fitness value and the final minimized fitness value. In this experiment, it is 
approximately 16. 
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Fig. 3. Randomly deployed sensor network (Coverage value=0.4484) 
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Fig. 4. Optimal coverage results for 6 runs 
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Fig. 5.  Comparison of convergence rate between PSO and GA based on Eq. (10) 
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Fig. 6.  Energy efficient cluster formation using PSO 

5 Conclusions and Future Work 

The application of PSO algorithm to optimize the coverage in ad hoc sensor network 
deployment and energy consumption in cluster-based topology is discussed.  We have 
used coverage as the first optimization objective to place the sensors with mobility, 
and a distance based energy model to reduce cost based on clustering method. The 
simulation results show that PSO algorithm has faster convergence rate than GA 
based layout optimization method while demonstrating good performance. 

In the future work, we will take the uncertainty in the position of the sensors due to 
the initial random deployment into account. Moreover, other objectives, such as time 
and distance for sensor moving will be further studied.  
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