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Abstract. Building intelligent environment is one of crucial challenges for 
ubiquitous computing developers. To make the environment adapt rationally 
according to the desire of users, the system should be able to guess users’ 
interest, by learning users’ behavior, habit or preference. While learning the 
user preference, dealing with uncertainty and conflict resolution is of the utmost 
importance. When many users are involved in a ubiquitous environment, the 
decisions of one user can be affected by the desires of others. This makes 
learning and prediction of user preference difficult. To address the issue, we 
propose an approach of user preference learning which can be used widely in 
context-aware systems. We use Bayesian RN-Metanetwork, a multilevel 
Bayesian network to model user preference and priority.  

Keyword: Conflict resolution, preference learning, Bayesian network, Bayesian 
RN-Metanetwork, context awareness.

1   Introduction 

Ubiquitous computing is mainly about building systems which are useful to users, 
which "...weave themselves into the fabric of everyday life until they are 
indistinguishable from it" [1]. Users tend to move around often, doing new things, 
visiting new places, changing their minds suddenly, and changing their moods, too. 
Therefore, a helpful system should react according to the changing context of the 
user. 
 
Absorbing and developing the key ideas of ubiquitous computing as well as context-
awareness, a smart environment (e.g. smart office, smart home) contains a large 
number of invisible sensors and actuators which enable the system to “think and 
work” based on its own perception of users’ context [2]. Let us consider following 
scenario of a smart office:  
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“In the morning, secretary comes to the office. When she enters the room, the light is turned on 
and the curtain is opened. The music player plays the secretary’s favorite song. After that, 
professor arrives. Because the priority of professor is higher than that of secretary, the music is 
changed to professor’s favorite. When a student enters the office and sits down on the chair in 
front of professor’s desk, knowing that professor is having a meeting with his students, the 
music will be switched off...” 
 
The scenario sounds like it has some intelligence involved. It somehow satisfies the 
“invisible interface” requirement of a ubiquitous computing system, because the user 
does not need to use any explicit interface to interact with the system. However, this is 
just an automatic system triggered by events. System developer creates the rules and 
therefore thinks about what the system should do in each situation.  The smart system 
built in this way, will make the same decision, even if the user changes his preference. 
We argue that, a real smart system should have three capabilities. First, a smart 
system should be able to do inference. Second, a smart system should be able to learn 
by itself. User and developers can act like teachers, but the knowledge should be 
improved incrementally. Finally, a smart system should be able to solve some difficult 
problems, such as the conflict among the users [3]. Let us add some details to the 
above scenario to reflect this idea:  
 

“The music playing is stopped. Even though the command is from the remote control on the 
secretary’s desk, it does not totally mean that the secretary herself wants to stop the music. 
Maybe professor uses that remote control, or maybe the secretary does it because professor 
tells her to do. Moreover, there are some possible reasons that he or she does not want to listen 
to music at this time. The data from other sensors should be used to detect the person who 
wants to stop the music and his/her reason, so that the next time when the same situation 
happens, the music will be automatically stopped.” 

The preference of user changes over time or based on situation. It makes online 
learning (or adaptation) a crucial requirement. Sometimes there is uncertainty in 
user’s temporary preference. User does not always select the most weighted choice. 
Again, when there are many users in the smart environment, the action of one user 
can affect others’ choice [4]. It raises the challenges of distinguishing the preference 
of each user as well as resolving the conflicts among different user preferences.  The 
introduction of probabilistic model can handle these uncertainty and adaptive 
prioritization of users. But how the system measures the utility or user satisfaction 
level? If the system can read the user’s expression, and then tell whether the user is 
sad or happy, or anything else, it makes a very good utility function for the learning 
process. However, so far this is not realistic. Hence we base the utility function on the 
user control commands. After the smart system gives a command to an actuator, if the 
user selects another command, implies he does not agree with the system’s decision. 
If he does nothing, it means he is satisfied. By other words, this is a “Yes/No”, or 
Boolean utility function. Anyway, it is enough for a smart system to learn about the 
user’s preference, at least at the current level. In this paper, we discuss Bayesian RN-
Metanetowok [5] for preference learning with conflict resolution scheme. We also 
discuss the adaptation of the Bayesian model over time span. 



 

To resolve conflicts for Context-aware Media services in smart home environments, 
GIST [6] applies Naïve Bayes classifier to resolve conflicts among users. The system 
sums up the preferences of users who are collided with each other and recommends 
the specific contents ordered by the summed preference. However, this system does 
not have online learning capability. Reactive Behavioral System (ReBa) resolves 
conflicts by inferring only the group activities [7], so it is very difficult in ReBa to 
provide particular services to a specific user when a group of people is present. 

In the next section, we point the superiority of our method with an introduction of 
Bayesian RN-Metanetwork. The subsequent sections describe the modeling of the 
network for user preference and priority.  

2.   Bayesian RN-Metanetwork  

The smart system should deal with uncertainty, should learn the preference of each 
user in a multi-user environment, should utilize domain knowledge and user-defined 
rules and should adapt to the changed user preference. Besides, we see that when 
combining the preferences of many users, we often base on user priority. Priority can 
be fixed, but normally it changes over time, or based on situation; for example a 
sleeping user will be considered more important than others. Hence the context-aware 
system should be able to learn and adapt to the changes of user’s situation-based 
priority. To address these issues, We propose a Bayesian RN-Metanetwork (RN 
stands for Relevant Network). 

 

 
Fig. 1. A Bayesian RN-Metanetwork structure 

The Bayesian RN-Metanetwork is a set of Bayesian networks, which are put on two 
levels in such a way that the distribution of probabilistic networks on first level 
depends on the local probability distributions associated with the nodes of the second 
level network. The Bayesian RN-Metanetwork is a triplet: 



 

RMBN = (BN0, BNS, R) (1) 

 
where BNS = {BNS1, BNS2, ... BNSn} is a set of sets of Bayesian networks in first  
layer and BN0 is the second level Bayesian networks; R = {R1 ... Rn} is a set of inter 
level links. The probability distribution of each Bayesian network is included inside 
it. Each Ri is a link “vertex – network set” meaning that stochastic values of vertex vi 
in the network BN0 correspond to the distribution of one set of Bayesian networks in 
the first level.  
Bayesian RN-Metanetwork supports multi-agent systems. As depicted in Fig. 1, each 
set of Bayesian networks in the first level is hold by an agent. Each agent uses the 
distribution of its Bayesian networks to calculate some needed values, and they 
communicate with other agents through some interfaces. The interfaces consist of 
common nodes between agents’ networks. The mechanism for belief updating in a 
multi-agent Bayesian network system is described in [8].  
 
We use the Bayesian RN-Metanetwork to learn both user preference and priority at 
the same time, as well as to resolve the conflict among many user preferences. Our 
approach is special in the following aspects: 

• The Bayesian RN-Metanetwork model is very suitable for multi-agent systems. 
Especially in ubiquitous environments, due to the complex, diverse and open-
ended characteristic of the system, the multi-agent paradigm brings much more 
advantages than the single-agent paradigm.  

• The adaptation algorithm for Bayesian RN-Metanetwork is fully described to adapt 
the model to the continuously changing preference of users.  

• Finally, no matter how many users are there in the environment, the priority and 
preference of each user is calculated separately. This is very useful for widening 
the scale of systems, as well as knowledge reuse. 

3.   Modeling User Preference and Priority using Bayesian RN-
Metanetwork  

When many users are present in a smart environment, and each user has his or her 
own preference about a certain service, the last decision to select the service is related 
to the priorities of the users. Therefore, when modeling the user preference, we also 
need to model the user priority.  
 
The user priority can be categorized into 2 types: situation-independent priority and 
situation-dependent priority. Situation-independent priority means that the priority of 
a user does not change when situation changes, i.e. it does not change by time or by 
place or under any condition. In contrast, situation-dependent priority changes when 
situation changes, such as when user changes his place or activity.  
 



 

The user preference in case of situation-independent priority can be modeled using 
the 2-level Bayesian RN-Metanetwork. Fig. 2 shows the Bayesian RN-Metanetwork 
for modeling user preference about Multimedia service in a 2-user system.  
 
 

 
Fig. 2. A Bayesian RN-Metanetwork to learn multimedia service preference of 2 users A, B in 
case of situation-independent priority.  

The model is based on the idea that the priority of one user can be understood as how 
much that user can contribute into the final decision. In the model, the distribution of 
relevant Bayesian networks, which model individual user preferences, indicates the 
proportion of each user preference in the compound preference. Hence the meta-level 
of this Bayesian RN-Metanetwork also models the user priority. We can see that the 
user priority in this case depends only on the user presence. Table 1 shows an 
example of value of the conditional distribution of relevant Bayesian networks (or 
user priority).  

Table 1. Conditional probability of Used_Pref_BN node in 2nd level Bayesian network in 
Fig.2 

Presence_A Y N 
Presence_B Y N Y N
Use_A_pref 0.5 1 0 0
Use_B_pref 0.5 0 1 0
Use_Nouser_pref 0 0 0 1

 



 

From the conditional probability table, we see that the two users have same priority. 
When both users are present, each of them contributes 50% into the final preference 
decision.  
 
In case of situation-dependent priority, the 2nd (or Meta) level is replaced by a 
metanetwork. In other words, one more level for learning priority based on situation is 
added. Fig. 3 depicts the Bayesian RN-Metanetwork for the multimedia services 
preference in situation-dependent priority case.  

 
Fig. 3. A Bayesian RN-Metanetwork to learn multimedia service preference of 2 users A, B in 
case of situation-dependent priority. Priority depends on not only user presence but also user 
activity.    

Table 2. Conditional probability of Used_Prio_BN node in 3rd level Bayesian network in Fig.3 

Presence_A Y N 
Presence_B Y N Y N
Use_AB_prio 1 0 0 0
Use_single_prio 0 1 1 1

Table 3. Conditional probability of Used_Pref_BN node when both A and B are present 

CurrentActivity_A Working Sleeping 
CurrentActivity_B Working Sleeping Working Sleeping 

Use_A_pref 0.5 0.3 0.9 0.5 
Use_B_pref 0.5 0.7 0.1 0.5 

Use_Nouser_pref 0 0 0 0 



 

Table 4. Conditional probability of Used_Pref_BN node in 2nd level Bayesian network when 
there is no conflict. 

Presence_A Y N 
Presence_B Y N Y N
Use_A_pref - 1 0 0
Use_B_pref - 0 1 0
Use_Nouser_pref - 0 0 1

Tables 2, 3 and 4 show the sample conditional probability of Used_Prio_BN node 
and Used_Pref_BN nodes. Note that the value range of Current Activity nodes is 
reduced for easier demonstration (normally we have a lot of activities such as 
Reading, Walking, Eating, Working, etc.) 

4.   Probability Propagation and Adaptation for 2-layer Bayesian 
RN-Metanetwork  

In this session, we will explain the algorithms for Probability Propagation and 
Adaptation for the basic 2-layer Bayesian RN-Metanetwork. The algorithms are 
illustrated by computations on the model in Fig. 2. 
 
Notations and Definitions 
 
The Bayesian RN-Metanetwork in Fig. 2 has parameters: 
 
+ 1st level:  

- This level has only one set of Bayesian networks: 2 Bayesian networks modeling 
the preferences of 2 users and one Bayesian network for the case of no user.  
- The attributes of the Bayesian networks: Time (denoted T), Location_A/B 
(denoted Li, i=1, 2 corresponding to A and B), CurrentActivity _A/B (denoted 
CAi), ServiceCategory (denoted Sx, x=1, 2, 3 for its duplications in 3 networks) 
and has the values {SV1 ...SVj}.  
- The prior probabilities: P(T); P(Li); P(CAi), P(Sx).  
- The conditional probability P(Si|T, Li, CAi), i=1, 2 and P(S3|T). 

+ 2nd level:  
- The attributes: Presence_A/B (denoted by Pri, i=1, 2) represents the Presence of 
user A/B with the values {yes/no} 
- The relevance node: Used_Pref_BN (denoted BN) holds the probability to have 
each Bayesian model in the predictive level with the values {BN1, ... BN3}.  
- The prior probabilities: P(Pr) denotes the probability distribution of the set Pr and 
P(Pri)  denotes that of each item in the set.  
- The relevance probability: P (BN). The conditional probability P (BN|Pr) 

4.1.    Probability Propagation  

Given the evidence P (Pr), P(BNx) is calculated as: 
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Then the probability of the target attribute ServiceCategory can be estimated: 
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In other words, the probability of ServiceCategory preference of each user will be 
calculated separately, and then combined with the weight coefficients which are the 
distributed probabilities of the Bayesian networks in Predictive level. The target 
ServiceCategory SVj with highest P(S=SVj) will be selected.  
 
The Bayesian RN-Metanetwork provides an easy but efficient method for modeling 
many kinds of user preferences, from multimedia services such as music, television, 
radio, web page, public information, etc. to the environment parameter such as light, 
temperature, etc. All we have to do is identify the features which affect the preference 
of users, build the preference model for each user and finally combine them by a RN-
Metanetwork. When the system learns, each preference model is updated separately 
so that they can be reused in other systems.  

4.2.   Adaptation  

Even though some approaches address learning issue as the initial of the conditional 
probabilities from example data sets, the true meaning of learning in a ubiquitous 
system is online learning. When a ubiquitous system starts working, there is no 
example data but only the domain knowledge and user-defined rules. So, the task of 
online learning, or adaptation, is crucial.  
 
Each time the system makes a decision about which service category to be selected, it 
then wait a time interval tw for the response of users. There are 2 cases of user 
responses:  
 
Approval: If there is no response, then the system assumes that the users are pleased 
with the decision. In this case, the decision together with the evidences will be 



 

considered a single sample and be used to update the Bayesian networks conditional 
probabilities.  
 
Denial: If one user gives a control command to the system to change the selected 
service category, it means that the user may not be satisfied with the decision of the 
system. This is a serious case, and the system should not make the same wrong 
prediction again. So the user’s selection together with the evidences will be 
considered N samples (N>>1) and be used to update the Bayesian networks 
conditional probabilities.  
 
The adaptation algorithm is based on two assumptions:  
 
Assumption 1: The contribution of one user preference in the combined preference is 
equal to his contribution in making a decision. The assumption means that when the 
system estimates the preference of many users, it gives each user’s preference a 
weight. On the other hand, whenever a control command is given by a group of user, 
each user has his contribution in that command. The weight in first case and the 
contribution in second case are assumed to be equal. 
 
Assumption 2: Every user has the tendency of selecting the option which has highest 
probability calculated by his preference model. This option is called the most favorite 
option. The assumption means that given the evidences, calculate the posterior 
distribution of a preference using the preference model of one single user (one of 2 
Bayesian networks for 2 users A and B in the previous example, for instance), the 
option with highest probability can be considered that user’s most favorite, and is 
most likely to be selected by the user himself. Assumption 2 leads to a definition: A 
decision matches user preference if it matches the most favorite option of that user.  
 
Based on the above assumptions and definition, the adaptation algorithm for RN-
Metanetwork is introduced:  

 

Adaptation Algorithm  
Step 1: update the meta-layer network 
+In Approval case, there is no need to update the meta-layer network (users satisfy 
with the current priority) 
+ In Denial case:  

- Find the most favorite option of each user 
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Where SV*i denotes the most favorite service of user i. 

- Count 1 for the value of relevant node related to the user’s preference model if 
the final decision is the same with user’s most favorite option. We use the 
sequential updating introduced in [9]. We perform the following adaptation: 
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With SV*: the finally selected services, Pre: the set of evidences of the presences of 
users, q: the fading factor, q ∈ (0, 1), s: the effective sample size which is calculated 
by:  
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Step 2: update the preference model of each user based on the contribution of that 
user into the decision 
For each user i: Calculate wi, the distribution probability of that user’s preference 

model: )( ii BNPw = . Count wi for the final selected option and update the user’s 
preference model 1 or N times, in approval or denial case respectively. 
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Where Te, Lei, CAei denote the evidences of the Time, user location, user current 
activity of user i, P(Si | Te, Lei, CAei) denotes the distribution of conditional 
probabilities in preference model of user i   qi: the fading factor which is calculated 
separately for each preference model, to maintain the same experience size according 
to the following equation: 
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The probability propagation algorithm and adaptation algorithm which were described 
above can also be applied for multi-layer Bayesian RN-Metanetwork in a recursive 
manner.  
 
The probability propagation process for the Bayesian RN-Metanetwork in Fig.3: 



 

Step 1: applying the probability propagation algorithm for the first 2 layers to 
calculate the marginal of Used_Pref_BN 
Step 2: use the marginal of Used_Pref_BN as the distribution for the Bayesian 
networks in third layer to calculate the marginal for Service_Category.  

 
The adaptation process for the Bayesian RN-Metanetwork in Fig.3: 

Step 1: in case of denial, applying the adaptation algorithm for the first 2 levels of 
the Bayesian RN-Metanetwork.  
Step 2: calculate the marginal of Used_Pref_BN and use it to do adaptation for the 
third level.  

4.   Evaluation  

One can argue that the traditional Bayesian network is still faster than the Bayesian 
RN-Metanetwork, because for Bayesian RN-Metanetwork we have the overhead of 
the meta-layer propagation. In fact, the Bayesian RN-Metanetwork is slower just in 
case the distribution of every Bayesian network in the first layer is not equal to 0, or 
by other words, when all users are present in the system.  
 
Let estimate the calculation time for the Multimedia preference example above when 
using the traditional Bayesian network and Bayesian RN-Metanetwork. Analysis in 
[10] shows the runtime for the brute force method of enumeration is , where q 
is the size of the alphabet (in our example: q = number of values for Service Category 
i for the preference model, or number of users + 1 in the meta network) and m is the 
number of unknown variables.  

( )mO q

 
We have seen that Pearl's algorithm [11], for the special case of a polytree, has an 
efficient runtime of , where e is the maximum number of parents on a vertex. 
It can be seen that in the case of the turbo-decoding algorithm [12], the runtime is 
linear in the size of the network, as evidence is propagated a constant number of 
times. 

( eO Nq )

 
Here because both the number of unknown variables and the number of maximum 
parents will increase when the node number increase, we assume that in general the 
runtime is with x is proportional to the size of the network. The size, S of the 
network in traditional case is proportional to the number of user. So with N = number 
of user and q = number of values for Service Category i for the preference model, the 

propagation time is  with α is proportional to the number of node in a 
single user preference model. From Fig.1, the size S’ of each preference network in 
Bayesian RN-Metanetwork remains the same for every user. S’ = S / N. We have the 

propagation time of each preference network is and the propagation time of 
meta network in Fig.1 is O (1) given that we know the location of all the users. Then 

( )xO q
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the numbers of preference model should be propagated, k has the binomial 
distribution, because this is the distribution of obtaining exactly k (Presence = Yes) 
out of N trials.  
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Where p is the mean probability of one user is presented in the location. 

 The expected value of k is N.p  E[k] = . So, expected propagation time is 

 . We have  < . The Bayesian RN-Metanetwork is 
still more efficient.  

)O(Npqα )O(Npqα )O(q Nα

In case of situation-dependent priority, the propagation runtime is added with the time 
for calculating the priority given the evidences about situation. The runtime for each 

priority model is with N* is the mean of the binominal distribution of 
taking k users from N users. We have N* = N.p. Hence the expected propagation 

runtime for a priority model is . So, the total propagation runtime is 

. In this case, it is hard to tell whether the Bayesian RN-
Metanetwork is faster or slower. However, besides the speed, the advantages of 
Bayesian RN-Metanetwork come from at least two aspects:  

)O(q
*Nα

)O(q Npα

)qO(Npq Npαα +

− First, with the division of a large network into small and single-user models, the 
design of any Bayesian RN-Metanetwork becomes much easier, especially when 
we have to assign the conditional probabilities for the network.  

− Second, we have the separate models for priority and preference. We also have 
separate models for each user. This dramatically increases the reusability of the 
models.  

5.   Conclusion and Future Works 

Context-aware computing poses interesting issues for information system researches. 
Learning user preference in order to adapt the system automatically to the need of 
user is one of those issues. The challenges in this are due to the uncertain, 
heterogeneous, distributing characteristic of a context-aware system. Especially when 
there are many users involve in an intelligent environment, the system has to cope 
with conflict resolution and distinguishing among the user preferences. A solution for 
learning user preference in a multi-user context-aware environment which can 
efficiently resolve the above mentioned problems is the contribution of this paper. We 
have first presented the Bayesian RN-Metanetwork which can be used to model the 
user preference as well as user priority for many users, while still maintain separate 



 

preference model for each user. The propagation algorithm showed how to calculate 
the composite preference of all the users in the system and make decision about the 
service to provide. To actively and continuously adapt the models to the newest 
preferences and priorities of the users, the adaptation algorithm for Bayesian RN-
Metanetwork was described. However, this is just the first step to make the system 
intelligent. There are still a lot of challenges such as user behavior routine learning, in 
which the prediction of the future actions of user is the most important task.  We leave 
that as a future work. 
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