J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005. © TROUBADOR PUBLISHING LTD) 1

Scalable and Adaptive Context Delivery Mechanism
for Context-aware Computing

Lenin Mehedy

Dept. of Computer Engineering, Kyung Hee University, 446-701, South Korea, Email: lenin@oslab.khu.ac.kr
Sungyoung Lee*

Dept. of Computer Engineering, Kyung Hee University, 446-701, South Korea, Email: sylee @oslab.khu.ac.kr

Salahuddin Muhammad Salim Zabir

Dept. of Computer Engineering, Kyung Hee University, 446-701, South Korea, Email: szabir@oslab.khu.ac.kr

Young-Koo Lee
Dept. of Computer Engineering, Kyung Hee University, 446-701, South Korea, Email: yklee@khu.ac.kr

Received: December XX 2006; revised: December XX 2006

Abstract— Presence of innumerable sensors, complex deduc-
tion of contexts from sensor data, and reusability of contextual
information impose the requirement of middleware for context-
aware computing. Smart applications, hosted in myriad devices
(e.g PDA, mobile, PCs), acquire different contexts from the
middleware and act intelligently based on the available con-
texts in a context-aware computing environment. Therefore we
believe, as the system grows larger in near future, scalable
delivery of contexts from the middleware to numerous context-
aware applications will be inevitable. But, pure unicast or pure
broadcast based dissemination can not provide scalability as
well as less average latency. Hence, in this paper we present
a scalable context delivery mechanism for these middleware to
facilitate the development of larger context-aware computing
systems. Proposed scheme is based on hybrid data dissemination
technique where the most requested data (e.g. HOT contexts) are
multicast and the rest (e.g. COLD contexts) are delivered through
unicast to reduce network traffic. We dynamically prioritize and
classify the HOT and COLD context data depending on the
number of requests and longest waiting time. Moreover, the
division of bandwidth between the delivery of HOT and COLD
contexts reduces average latency and we also decrease polling
traffic by incorporating leasing mechanism. Extensive simulation
proves the proposed scheme to perform better. We also present
implementation detail of our prototype that is developed using
the available tools such as Jini framework and Java Reliable
Multicast Service (JRMS) library.

Index Terms— Context delivery, Context aware Middleware,
Hybrid data dissemination, Bandwidth Division, Scalable Deliv-
ery

I. INTRODUCTION

Context awareness is the key element to provide pervasive
services (i.e. anywhere, any time) to users in context-aware
computing era, where the system is supposed to have the abil-
ity to detect and sense, interpret and respond to the situation of
an entity (e.g. user, applications etc.) [1]. Innumerable sensors
will be deployed in a context-aware computing environment
to collect various information and then deduce some higher

*Sungyoung Lee is the corresponding author

level contexts such as user’s contexts (e.g. location, speed,
activity, preference etc.), environmental contexts (e.g. temper-
ature, humidity etc.), systems contexts ( e.g. network status,
available resources etc.). However, collecting and processing
huge sensor data imposes significant computational as well as
design overhead for developing individual smart applications.
Furthermore, some deduced contextual information may also
be reusable for many other applications. Hence, context-
aware computing environment, also termed as ubiquitous
computing [2], is supposed to provide middleware support
for context awareness [3]. Middleware solutions provide the
system support, reusability and separation of concerns that
are required for developing context aware systems (see [4]
for a survey). For example, a middleware performs all the
functions of context sensing and inferring and then the smart
applications utilize these contextual information to provide
intelligent support to the users. Hence, every context-aware
middleware is supposed to have the following three main
phases of execution (Fig. 1): a) Acquisition of raw sensor
data, b) Context inference from the sensory data, ¢) Context
delivery to applications. Therefore, the delivery of context
is an indispensable part for any context aware middleware
to facilitate the building up of “Context-aware Computing”
environments. This paper focuses on the scalable context
delivery mechanism for such middlewares.

While most of the middleware researches (e.g. Aura [5],
ContextFabric [6], Context Toolkit[7], Gaia [8], iRos [9],
mavHome [10], Solar [11] etc.) model small interactive en-
vironments such as home, class room, meeting room etc., we
may envision a larger smart environment (such as a corpo-
rate office, academic building, shopping complex etc.) where
numerous context-aware applications (we interchangeably use
client or receivers), running on mobile devices like PDA
or stationary devices (e.g. desktop PC), frequently request
various contexts to the middleware. Size of context data may
vary from few hundred bytes (e.g. XML representation of
user’s preference, location, activity, profile, and temperature



2 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005. © TROUBADOR PUBLISHING LTD)

@

0
Con tﬁ;ery

ﬁ{nso.r\\l@lues

o e @
@@ Te
e @

Fig. 1. Basic Functionalities of a Context-aware Middleware

of environment) to several kilobytes (e.g. image, video frame).
Large number of users may request for the same context data
and unicast of this context data will cause serious perfor-
mance degradation in terms of access latency and bandwidth
utilization. Moreover, a user may need particular context
information for a long duration and polling in such case will
also cause the misuse of valuable bandwidth due to large
number of request messages. Hence, efficient and scalable
dissemination of contextual information to large number of
clients in such environment will be of utmost importance.
However, our main focus of this scalable dissemination is to
provide efficient use of bandwidth and provide less latency to
clients while considering heterogeneous size of contexts and
variable request rate.

Now, the first challenge is to provide quick response time for
clients by reducing network traffic. If the context information
of interest is the same among different clients, traditional
unicast (point to point or pull based) connection-oriented
data services are uneconomical because it incurs a lot of
unnecessary traffic from clients to server as well as on the
reverse direction. Even if the current technology allows us
to have high network bandwidth and server capacity, most
of it would be under utilized and wasted during non-peak
periods. Broadcast ( push based) is an efficient and scalable
dissemination method in a connectionless mode to any number
of clients with no significant performance degradation in terms
of access latency [12]; but a major concern for the success of
such system is broadcasting the right set of data. Because,
broadcasting less important data may cause network overload.
On the other hand, on-demand broadcast (pull-push) method
the server aggregates the requests of clients and broadcast
the data. But broadcasting the context with lowest request
rate (cold item) may also increase network traffic. So hybrid
approach combines the benefit of broadcasting hot context
data (having higher request rate) and that of unicasting the
cold context data (having lower request rate) [13]. Even with
this suitable and scalable approach, we have the problem
of differentiating hot and cold context data and formulate a
suitable broadcast scheduling algorithm for quick response

time. These challenges are also considered for web databases
and mobile computing [12], [13], [14], [15], [16], [17].

Besides, a smart environment is truly dynamic in nature
where the context receivers (or, clients) may appear and
disappear unpredictably. So the periodical delivery requires
incorporating a leasing mechanism [18] or sending of peri-
odical beacon from the clients [19] so that the contexts are
not delivered indefinitely if the clients disappear without prior
notice.

Furthermore, all the clients and middleware should share
the same concepts of domain and context groups (e.g context
ontology) for semantic inter-operability [20], [3]. This sharing
of context ontology helps in reducing ambiguity and provides
better matching between requests and associated contextual
information.

Unavailability of a single comprehensive solution to these
problems motivates us to devise a novel and scalable context
delivery mechanism that resolves all these problems for con-
text aware middleware in ubiquitous computing domain. In this
paper we present our solution which is an effort towards devel-
oping a robust and comprehensive context delivery mechanism
for the middleware CAMUS (Context Aware Middleware for
Ubiquitous System) [21], [4]. Earlier version of this work
appears in [22].

In brief, our delivery mechanism has the following proper-
ties:

1) It uses context ontology for semantic inter-operability.

2) We dynamically differentiate hot and cold context items
to disseminate through multicast and unicast respec-
tively. So, this adaptive delivery makes it more suitable
for ubicomp application.

3) Lease mechanism is used instead of periodic context
update request (polling) and copes up with dynamic
environment.

4) We use request rate of an item and longest waiting time
of any outstanding request for an item to prioritize as
hot or cold items. Hence, we prioritize a data either
because it is very popular or because it has at least one
long-outstanding request

5) We further perform bandwidth division between hot and
cold items for better performance in terms of average
latency.

6) Our delivery technique also gives solutions to push
popularity problem.

Some terms that we use in this paper are:

o Average Waiting Time: The amount of time on average
from the instant that a client request arrives at the
middleware, to the time that the data is delivered.

o Longest Waiting Time: The maximum amount of time
that a request remains in the service queue before it is
satisfied.

o Average Latency: The average latency for a data item on
the push channel is half of the period of the multicast cy-
cle if we assume that the items are multicast sequentially.
However, the latency for pulled items are totally different
because if an item of size is queued at the server for
transmission, the corresponding queuing delay is either
O(Si) or unbounded [14].



L . MEHEDY ET AL . : TOWARDS SCALABLE AND ADAPTIVE CONTEXT DELIVERY MECHANISM FOR CONTEXT-AWARE COMPUTING 3

The rest of this paper is organized as follows: Section II
describes related works. Section III explains the proposed
method of context delivery. Section IV presents the perfor-
mance evaluation and Section V describes implementation
detail of the prototype using some available tools. Then section
VI concludes with some future work.

II. RELATED WORK

Several middleware have been designed for ubiquitous (or,
pervasive) computing [5], [6], [7], [8], [9], [10], [11]. Most
of them focus on small interactive environments with small
number of users such as class room [5], [8], meeting room
[8], [9], home [10] etc. So their main concerns are about
seamless communication among middleware components [5],
[8], [9], abstraction to sensors [7], [6], [11] etc. However, large
scale deployment of ubiquitous systems (e.g. corporate office,
academic building, shopping complex, airports, subway etc.)
with myriad context-aware clients (e.g. mobile or static) will
be inevitable in near future. Hence in such large environments,
scalable dissemination of contextual information based on
available bandwidth, request rate etc. will be of great impor-
tance. A few works can be found regarding context query and
aggregation [23], [24], [25], [19]. But none of them consider
the important performance parameters such as request rate,
available bandwidth, size of context items etc. during delivery
of contextual information.

The most related research to ours is the Context Discov-
ery Protocol (R-CDP) [19] that has been implemented and
evaluated in “Reconfigurable Context Sensitive Middleware”
(RCSM) [26]. The fundamental difference between R-CDP
and our work is that R-CDP uses broadcast to request for a
context and the middleware unicast the data to the requester,
which is completely opposite to our mechanism as we use
unicast for request and combination of multicast and unicast
for delivery. We use the technique of RxW algorithm [17] to
prioritize the delivery where they use Refresh Priority, which
is based on the divergence of contexts and energy consumption
of Provider. We also perform bandwidth division for hot and
cold items for optimal average latency. The similarity with
their work is that the motivation of their Neighbor Validation
Beacons (NVB) is same as that of our Lease Renewal and
we also have the way of specifying the update threshold for
context update notification. However, they do not use context
ontology for semantic interpretation. Moreover, R-CDP has
not been tested for scalability [19], which we believe an
important performance issue for large scale deployment of
smart applications.

The idea of Hybrid data dissemination technique was first
used in the Boston Community Information System [15] by
combining broadcast and interactive communication to provide
most updated information to an entire metropolitan area.
This scheme is also adopted in [12] [13], [14], [15], [16]
where the issue of mixing push and pull web documents
together on a single broadcast channel was examined. But the
document classification problem was introduced in [13] and
later document classification along with bandwidth division
was resolved in [14]. We employ these ideas of hybrid

dissemination, scheduling, classification of data, bandwidth
division etc. for scalable and efficient delivery of context for
ubiquitous computing environment. Though our approach is
very similar to [14], we differ in calculating the popularity of
an item not only on the total number of requests but also on
the longest waiting time of any outstanding request to avoid
starvation of request for cold item . Moreover we also employ
lease mechanism to reduce the periodic request (polling).

III. PROPOSED SCHEME

Before detailed description of our context delivery scheme,
we present our assumptions here:

o We assume that the clients can receive data though unicast
as well as multicast.

« Items on the multicast channel are assumed to be HOT as
well as useful for future. Hence, clients cache the items on
the multicast channel that are delivered by the middleware

o Before sending request, a client at first checks its cache
for that item. If it is found, client assumes it to be a fresh
copy and uses that. Currently we do not consider client’s
cache management issues [27], [28].

o Clients discover the context delivery service using some
discovery techniques (e.g. Jini Lookup [18]) and then
submit requests. We also assume that the clients authen-
ticate and exchange encryption keys to ensure secure
delivery of data.

A. Context Delivery Scheme

Pure unicast (pull) or pure broadcast (push) based dissem-
ination can not provide scalability as well as less average
latency. Contemporary schemes [23], [24], [25], [19] for
delivery of context may be viewed as pure pull based solutions.
However, we use hybrid dissemination (push-pull)[13], [14]
for scalable context delivery. In this data dissemination tech-
nique , the most popular data (e.g. HOT items) are multicast
and the rest (e.g. COLD items) are delivered through unicast
to reduce network traffic.

But this scheme introduces three inter-related data man-
agement problems at the middleware: First: The middleware
must dynamically classify the requests between hot and cold
context data and schedule the delivery according to priority
or popularity (Prioritization). Second: The middleware should
divide dynamically its bandwidth between unicast pull and
multicast push for optimal use of bandwidth and ensure
low latency (Bandwidth Division). Third: As the hot context
data are multicast, some clients may receive the information
passively in the sense that they do not send any request for
that data. Therefore, the middleware lacks a lot of invaluable
information about the data requirement that is used to decide
the hot and cold data item dynamically (Push Popularity
Problem [14]).

In the following sections we briefly describe our context
model Contel [20] and solutions to the challenges as stated
above (i.e. associated with hybrid dissemination).



4 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005. © TROUBADOR PUBLISHING LTD)

TIME
= InstaniEvent
- DurationDescription
InstantThingPair

+ Event
- TemporalUnit

- TemporalThing

etc.
- DutdoorPlace

+ LocationContextObj
- IndoorPlace
+ Home

Many other classes from
SWEET space Ontology

{http:/

- SpatialObject
sweet jpl.nasa.gov/
ontology/space.owl)

- Place

etc.

-0S

+ MemanyDevice

+ DisplayScreanProf
elc.

+ ApplicationFunction

+ DisplayDevice
+ AudloDeavice

+ NetworkDevica
- Application

+ AudioProfile

+ SoftwareProfile

+ Productinfo

+ Software

Some main Classes
- DevicaHWProfile

- Services

- Device

+ Light

+ Humidity
Btc.

+ Video

+ LightParameter
+ Luminosity
elc.

+ TemperatureParm

+ HumidityPamm

+ AudioParameter
atc.

Some main Classes
- Environmant
- Fealures
- Parameter
+ VideoParameter

AGENT /@L\ DEVICE LOCATION

Some main Classes

- Agent

+ IndoorActivityEvent

elc

+ GroupActivity

+ SinglaActivity

etc.

+ PersonProfile

+ GroupProfile
+ ActivityOnObject
+ OutdoorActivity

- ActivityEvent

+ Parson
+ Group
atc
- Profile
efc.
+ SelfActivity

- Activity

Fig. 2. Basic Categorizations and Domain Concepts in Contel

B. Formal Context Model and Semantics of Context

The middleware as well as the application should share
the same context ontology for interchanging the information.
In this regard, we use Contel [20] as the context ontology.
Contel is extensible and as well as reusable for any context-
aware system. Though more detail about Contel can be found
in [20], we briefly present it here for completeness. Contel
has categorized formal modeling of context into five top level
concepts such as agents, environment, device, location and
time. Fig. 2 describes a partial diagram of Contel. Here, the
Agent class has been further classified into SoftwareAgent,
Person, Organization, and Group. Each Agent has the property
hasProfile associated with it whose range is AgentProfile.
Also, an Agent isActorOf some Activity. Activity class, repre-
senting any Activity, can be classified based on the Actor of it
e.g. SingleActivity (which has only one actor), groupActivity
(which has Group as its actor and can have many SinlgeAc-
tivity instances). An Activity having some object of action on
which it is done called ActivityOnObject like CookingDinner,
TurnOnLight, or WatchingTV etc., while SelftActivity has no
object of action e.g. Sleeping, or Bathing. The Device ontology
in Contel is based on FIPA device ontology specification. The
environmental context is provided by the various classes in the
Environment ontology. Humidity, Sound, Light and Tempera-
ture are different environmental information we are utilizing
in our framework. This sensed information is available though

TABLE I
REQUEST/REPLY MESSAGE FORMAT

Type Content
Request  CT, ET, EID, LD, UT
Reply CT, ET, EID, V, MLD, MUT, RP

<contextType> temperature </contextType>
<Entity>
<EntityType> room </EntityType>
<EntityId> B340 </EntityId>
</Entity>
<leaseDuration> 3600 </leaseDuration>
<updateThreshold>0.5</updateThreshold>

Fig. 3. Request format in XML

different sensors deployed in the smart environment, and used
by the applications to adapt their behavior. Location ontology
is extended from NASA Jet Propulsion Lab space ontology.
We are also using the concepts from DAML-Time ontology
for temporal context.

C. Message Format

All the clients request for context information according
to the context ontology. Clients specify (Table I) the type of
context (e.g. Temperature) and as well as the entity of which
this context is related to (e.g. Room). "Lease Duration” and
”Update Threshold” are also to be specified if a client needs
a context for a certain amount of time to avoid polling. Thus
the Request message contains the following basic information:
Context Type (CT), Entity Type (ET), Entity Id (FID), Lease
Duration(LLD) and Update Threshold (UT) (see Table I). If any
client does not need periodical update notification, it should
specify the “Lease Duration” field and "Update Threshold”
field as zero. It should be noted that the middleware (context
server) does not give lease to a client for more than a
predefined maximum period (e.g. S hours) to block the delivery
of context for an indefinite duration.

Now let’s consider an example where a smart assistant
running on student’s PDA (client) may specify that it is
interested to 0.5 degree Celsius change in the temperature of
a room (e.g. B340) during the class period of one hour (Fig.
3 shows the XML format of this request). Here we can see
that the client takes lease for the the temperature context for a
long duration (e.g. one hour) to avoid polling. Consequently, it
will certainly improve efficiency by saving valuable bandwidth
when number of clients (e.g. students) is large.

To the contrary, the Reply message (see Fig. 4) contains
CT, ET, EID, value (V), Maximum Lease Duration (MLD),
Minimum Update Threshold (MUT) and Report Probability
(RP). In our current prototype implementation (see Section
V) the data type of the Value (V) field is a Java Object
to accommodate any data type (e.g. Integer, Float, String
etc.) and Java Serialization is used for transmitting the whole
reply packet. When the size of the reply packet is large (e.g.
compared to a smaller packet with just numerical value),
bandwidth saving is significant. An example of large reply



L . MEHEDY ET AL . : TOWARDS SCALABLE AND ADAPTIVE CONTEXT DELIVERY MECHANISM FOR CONTEXT-AWARE COMPUTING 5

<contextType> temperature </contextType>
<Entity>
<EntityType> room </EntityType>
<EntityId> B340 </EntityId>
</Entity>
<Value>25</Value>
<MaxLease>3600<MaxLease>
<MinUThreshold>0.5</MinUThreshold>
<ReportProbability>0.2</ReportProbability>

Fig. 4. Reply format in XML

packet may be a video frame of a particular location (e.g.
class room) that is collected using a video camera mounted at
the requested location.

It is notable that these formats of the request/reply messages
are extendable for comprehensive representation. For example,
we may include measurement unit information (e.g. second,
Celsius etc.) for Value, LD, UT etc. fields in the messages.
Investigation of such comprehensive message formats may be
another direction of extending this work. However, in this
work we only consider some basic information in the messages
as described above.

D. Prioritization

To overcome the item prioritization problem as stated in
section III-A, we at first categorize the requests into groups,
in the form of a tree, depending on the context type (e.g.
CT="temperature’) and entity information (e.g. ET="Room’,
EID="B07’). These groups form the leaf nodes of our context
request hierarchy (e.g. request tree). Motivation of using tree
structure in storing requests is to make the searching faster.
However, if multiple requests for the same context are received
from the same client, the system keeps only one entry (e.g.
most recent one) for that request in the request lists (see below
for different request lists: TLR, TPR). This is because, the
delivery of this data will satisfy the duplicate requests from
the same client at the same time. Thus it also helps to prevent
the false popularity problem that may happen if a client sends
many duplicate requests to increase the popularity of a item
of its interest. Polling may also cause the generation of these
duplicate requests; but however, no duplicate request is stored
in the request tree.

To facilitate the delivery mechanism described in this paper,
the middleware maintains the following information for each
of the groups in the request tree:

o Context Id (CID): A unique identifier is assigned to each

group.

o Total Leased Request (TLR): Total number of leased
requests for this specific context. This value is used in
determining whether this data should be scheduled for
multicast (hot item) or unicast (cold item).

o Leased Request List (LRL): This list contains the re-
questers’ ids (IP address) that have been leased along
with their lease duration.

e Max Lease Duration (MLD): Maximum lease duration
among the leased duration. This information is also sent

along with the data to let the clients know how long this
data will be delivered. If any client is receiving the data
passively and wants to use longer than this time, it will
renew the lease with longer period.

o Total Pending Request (TPR): This field denotes the
total number of requests that have been received but no
delivery of the context has been done yet. This field
is reset to zero after each delivery of the context and
incremented after receiving of each new request for this
context. The larger the value of this field, the higher the
priority of delivery of this context should be.

e Pending Request List (PRL): This list is similar to
LRL but contains the re-questers’ ids (IP address) and
requested lease duration of the pending re-quests. After
the delivery, the requests with lease duration greater than
zero will be added to the LRL and TLR will be updated
accordingly.

o First Arrival Time (FAT): This is the arrival time of the
first request which is still pending.

o Longest waiting time (LWT) of any pending request for
this context is the difference of current time and FAT.
LWT is used to determine the priority of delivering this
context together with TPR. FAT is reset to zero after each
delivery and set to the arrival time of the first request as
it is queued. The larger the value of this field, the higher
the priority of delivery of this context should be.

e Last Delivery Time (LDT): The most recent time when
the context was delivered. This is used to calculate the
longest waiting time of the leased re-quests in LRL.

o Min Update Threshold (MUT): The minimum of update
threshold values among the requests. If the context is
changed by this amount, it is then scheduled for delivery.

o Candidate for Scheduling (CS): This is a binary value. If
the context change exceeds the threshold MUT, the value
of this field becomes one (true) and implies this data to
be delivered. This field becomes zero (false) with the next
delivery of the context data.

o Last Update Time (LUT): This field denotes the time of
last update of this context data.

o Frequency of Update (FUT): The frequency of update of
this context data.

o Value (V): The current updated value of this context. This
field may contain any kind of data (i.e. character, string,
double, integer, boolean etc).

o Size (S): Size of this data item.

To set the priorities of the requested context data, we use
the total number of requests (R) and longest waiting time of
the outstanding request (W) for that item and it is motivated
by algorithm [17]. In RxW algorithm, the item with higher
R*W wvalue has higher priority. Thus we prioritize a data
either because it is very popular or because it has at least
one long-outstanding request. We consider both Total Pending
Request (TPR) and Total Leased Request (TLR) when CS is
one (true) to be the total number of request (R), otherwise we
only consider TPR to be the R value for the context item (see
Equation 1). This is because TLR comes into account as soon
as the amount of change exceeds Min Update threshold (MUT)



6 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005. © TROUBADOR PUBLISHING LTD)

and CS becomes one (true). Similarly, as long as CS is zero,
difference of current time (CT) and FAT (First Arrival Time)
is the value of longest waiting time (W); but as soon as CS
becomes one, the longest wait time (W) is the difference of CT
and LDT (Last Delivery Time) as all the leased requests have
been waiting since LDT. Hence we define with the following
equation:

RaW = (TPR+ CS «TLR)x
(CT-FAT)(1-CS)+CS(CT - LDT)) (1)

We calculate value of each group (data item) and sort them in
descending order. We update the list each time a request comes
and use the same data structure proposed in [17] for efficient
maintenance of such list. The RxW value of ith group is
denoted as popularity (or priority) p; in the following sections.

E. Bandwidth Division

The motivation of bandwidth division comes from the fact
that the average latency (L) of a data item is less when
HOT items are assigned to push, COLD items to unicast pull
and the bandwidth is divided appropriately between the two
channels. We use the bandwidth division algorithm based on
the prioritization described in section III-D rather than using
the prioritization based on request rate only as it is used in
[14]. The bandwidth division algorithm uses the sorted list of
items with decreasing order of popularity, i.e. p; > pit1, (1 <
i < n) , where n is the current size of the list. It is intuitive
that if item ¢ is pushed, then j < ¢ should also be pushed.
So, the algorithm tries to partition the list at index k such
that the push set 1,2, ..., k minimizes the latency L given a
certain bandwidth B and pull over-provisioning factor o > 1.
The pull over-provisioning factor denotes the actual bandwidth
we reserve for pull is « times what an idealized estimate
predicts and queuing theory asserts that @ > 1 guarantees
bounded queuing delays [14]. The optimal value k* is found
by trying all possible values of L and finally the algorithm
determines the pull bandwidth o>, 41 APiSi , which leaves
bandwidth pushBW = B — a) ;" | Ap;S; for the push
channel and average latency for the pushed documents is then
Zle %w% . Here A and S; denote request rate and size
of the item respectively. The algorithm runs in O(n) as it
performs binary search over all possible values of L and
maintains an internal array that stores the total size of each
possible partition using binary tree techniques [14].

FE. Push Popularity Problem

As the HOT items are delivered through multicast, some
clients will use this data without sending explicit request. Thus
middleware may not know the actual number of clients that
are using an item. Hence, middleware will be misguided to
lower the priority of an item even though that is being used
by a large number of clients. This problem is known as push
popularity problem [14].

However, we can not expect to solve this push popularity
problem completely as it will require all the clients to send
requests explicitly and hinder the benefit of multicast. So, a

TABLE 1T
SIMULATION PARAMETERS

Parameter Value

Total Client 3000

Total Item, N 50

Size of Each Item 200 bytes

Zipf Parameter 6 15

System Bandwidth 512,000 bits/sec
Exponential mean M 12

« 2

€ 0.005

Lease Duration of a Client 10 ~ 100 ms (uniform)
Lease Renewal Probability 0.7
Update Threshold 0.5 ~ 2 unit (uniform)

portion of the passive clients should send requests even though
the data is ensured to be delivered. The middleware sends
a report probability (RP) with the data and a passive client
submits an explicit request for this data with probability RP. It
is proved in [14] that RP should be set inversely proportional to
the predicted access probability for that data and the equation
to calculate RP is :

wn- |

Where [ is the difference of Maximum acceptable TCP con-
nection and request arrival rate, A denotes aggregate request
rate and p; denotes the priority ( or popularity) of group
i based on total request and k denotes the current number
of multicast items. Here we notice that if Ap;k > 3 , the
probability will exceed one and hence we specified RP to be
0.2 as a default. It should also be noted that whenever the client
sends a request, it sends a complete request with its desired
update threshold (UT) and desired lease extension (LE). LE
denotes the desired extension after the expiry of current MLD.

otherwise

B
Apik

0.2 @

IV. EVALUATION

In order to establish the potential of our proposed context
delivery mechanism, we have built a simulation model of
the proposed system and evaluated using the simulation tool
OMNET++ [29]. All the graphs presented here are generated
using the Plov tool of OMNET++.

A. Simulation Model

In our client-server model the server (our middleware)
acts as a data server and delivers self identifying context
data items of equal size either by multicast or unicast upon
explicit request. The clients request an item according to Zipf
distribution [30] and the time of requests is exponentially
distributed with mean, where is the average request rate of
each client. We present the analysis of average latency and
network traffic of the proposed system in the following sub-
sections. Table II presents all the simulation parameters. Here
the pull over-provisioning factor o and the tolerance factor
€ are used by the bandwidth division algorithm described in
[14].



L . MEHEDY ET AL . : TOWARDS SCALABLE AND ADAPTIVE CONTEXT DELIVERY MECHANISM FOR CONTEXT-AWARE COMPUTING 7

W Tpul
@ Tpush
N & Tavg
w0
L ]
E ] BB
g |
5 . [ ] I L] -
® : =
- -
o) Bl
(=2} M "
& P le ¥
() H
® ;
< 404 *
L ]
L ]
- L]
T T T
0 5 10
Item
Fig. 5. Relation of average latency of Push and Pull as the number of

multicast items changes according to our experiments. Here the intersection
of and occurs at and before k=3, grows arbitrarily large.

- Request
—f— Reply
100 4
3
E
3
=
| 50
=}
i
04
0 ‘ o ' 2
Time (s)
Fig. 6. Number of request and reply with change of time. The number of

reply denotes total of multicast and unicast items.

B. Average Latency

Let G(k) be the average latency (Th.g) if the k& most
popular items are multicast. The function G(k) is a weighted
average of the average latency of pushed items Tpyqn
Zle W% and 1the average latency for the pulled items
Tpuni —(Z”lki—Z’?’ /\i) , where \; is the Poisson

request rate for each item 4 [13], [14]. Our result is shown
in Fig. 5. Notice that the minimum of G(k) is to the left of
the intersection (at k=10) of the push and pull curves though
theoretically it should be on the right side of the intersection
[13]. The minimum of G(k) occurs at a relatively small value
of k and precedes the intersection due to two complementary
reasons. First, the most popular items are chosen for push and
are also those to which a Zipf distribution gives substantially
more weight. So, if an item is delivered using multicast, it will
also have the largest impact on the globally average delays.
As the numbers of the most popular items are small and are
multicast first, the overall minimum delay occurs for small
values of k . Second, pull delays are actually minimized at
the points k" where the pull-curve flattens out. However K
precedes the intersection in our graph, and so the overall
minimum occurs before that intersection.

—l- Unicast
—= Broadcast
30
T
£ 2
3
Zz
©
°
-
10+
0
T I T
0 10 20
Time (s)
Fig. 7. Number of multicast and Unicast items with change of time.

According to our approach, some of the requested items are multicast while
the remaining items are delivered by unicast. Total numbers of multicast and
unicast replies are shown in Fig. 6

--~{il-Our Approach
—@-Pure Pull
150 4
T
o
£ 100 -
3
=
]
o
=
50
0
T T T T 1
0 10 20 30
Time (s)
Fig. 8. Number of requests in our approach and in pure pull approach.

Simulation results show that our approach causes fewer requests as it avoids
polling and uses lease mechanism.

C. Network Traffic

Fig. 6 presents our simulation result regarding network
traffic. Here we can see that in the beginning of time, the
number of request is high. But as the server starts to deliver
items, the number of request decreases due to two reasons.
First, the replies contain the maximum lease period and
minimum threshold value for the context items and the clients
do not need to send explicit request again until the lease
expires. Second, as the most popular items are multicast, the
clients that also need the data do not send request but uses
the data passively. But we can see some spikes in the request
graph because of the lease renewal requests and the requests
sent by the passive clients due to Report Probability as we
have already discussed. Here we see that incorporation of lease
mechanism and threshold reduces overall network traffic from
client as well as from server. Besides, the lease renewal and
Report Probability cause the generation of necessary traffic
from clients to determine the hot and cold item at server. Fig.
7 shows the number of multicast and unicast items with the
change of time.



8 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005. © TROUBADOR PUBLISHING LTD)

Service
Registry

2. Look for desired . .
1. Publish Service

Description

Service Provider

Service and get 4
Service Proxy

3. Use the service
) via Proxy

Service Consumer

Fig. 9. Service Oriented Architecture

V. IMPLEMENTATION OF PROTOTYPE

Now, as our proposed mechanism shows convincing perfor-
mance in a simulated environment, we engage in developing
the prototype of context delivery module for our middleware
CAMUS [21], [4].

We design the context delivery module (CDM) as a mid-
dleware service based on Service Oriented Architecture (SOA)
[31]. The SOA interaction comprise of a service provider, a
service consumer (or, client) and a registry (Fig. 9). A service
consumer look for a service provider using the registry. A
service lease specifies the amount of time or contract for
which the interaction with the service is valid. The service
provider supplies a service proxy to the service consumer and
the service consumer executes the request by calling an API
function on the proxy. Then the proxy formats the request
message and executes that on behalf of the consumer. Figure
9 shows a typical setup of a service oriented system.

Motivation of using SOA for our prototype is to enable
dynamic discovery of the Context Delivery Service of the
middleware. For example, if the contextual information is
provided through a static address such as URL or IP address,
all clients are to be pre-configured to operate using that ad-
dress. Moreover, the users are also to be notified whenever the
address is changed. But the problem of notifying all the users
about the changed address is very challenging. However, SOA
rescues us from this problem as the applications (or, clients)
may themselves discover the context delivery service from the
well known service registry such as Jini Lookup service [18].
In our implementation, we provide context delivery module as
a Jini service [18] assuming that clients will be able to lookup
for this context delivery service using the Jini Lookup.

A. Architecture and System Work Flow

The main entities of context delivery module are Jini
Service Interface, Context Delivery Manager, Request Queue,
Schedule Manager, Priority Calculator, Bandwidth Allocator
and Dissemination Manager (Fig. 10). The data flow among
these modules is described below.

Context Delivery Module publishes a Jini Service Interface
through which clients submit their requests. Clients at first
discover this interface using Jini Lookup service [18] and get a
proxy of this interface. This proxy, on behalf of the clients, per-
form all the task of remote procedure call (RPC) to handover
the requests to Context Delivery Manager. Context Delivery
Manager controls the dataflow among various modules. As

83 8%%

Priority Calculator |

¥

—
4
Bandwidth Allocator , é

LA

Architecture of Context Delivery Module

Fig. 10.

soon as Context Delivery Manager gets a request from Jini
Interface, it enqueues that request into the Request Queue.
Request Queue maintains a tree like data structure to store the
requests. Tree like structure helps to optimize the searching
and grouping of requests. Schedule Manager prioritizes the
requests using the Priority Calculator module and Bandwidth
Allocator allocates the requests to be delivered by multicast or
unicast based on available bandwidth. Then the actual delivery
is performed by the Dissemination Manager. Dissemination
Manager has the ability to deliver the context using multicast
channel or using unicast. In our implementation, Java Reliable
Multicast Service (JRMS) library [32] is used for reliable
multicast delivery.

VI. CONCLUSION

In this paper we present a scalable context delivery mech-
anism for context-aware middlewares based on hybrid data
dissemination technique where the most requested data are
multicast and the rest are delivered through unicast to reduce
network traffic. Our mechanism dynamically prioritizes and
classifies the hot and cold context data depending on the
request rate and longest waiting time. We further perform
division of bandwidth depending on the hot and cold items
to reduce average latency dynamically. Our solution also
addresses the push popularity problem that occurs as the
passive client access data without sending explicit requests.
We incorporate the leasing mechanism to reduce the periodical
requests (polling) for better performance. We further describe
the implementation detail of the prototype using Jini frame-
work [18] and Java Reliable Multicast Service (JRMS) library
[32].

There is a lot of interesting works to be done in the near
future for efficient context delivery. We plan to investigate
indexing scheme, cache invalidation report (IR) scheme, real
time delivery, predictive multicast of context and secure de-
livery of context in future.

ACKNOWLEDGMENT

Authors would like to thank Kamrul Hasan, Yllias Chali for
their valuable suggestions. Moreover, authors are also grateful
to the anonymous reviewers for their useful comments to
improve the quality of this paper. This research was supported



L . MEHEDY ET AL . : TOWARDS SCALABLE AND ADAPTIVE CONTEXT DELIVERY MECHANISM FOR CONTEXT-AWARE COMPUTING 9

by the MIC (Ministry of Information and Communication),
Korea, under the ITRC (Information Technology Research
Center) support program supervised by the IITA (Institute of
Information Technology Advancement), IITA-2006-(C1090-
0602-0002).

(1]

(2]
(3]

[4]

[5]

(6]

(7]

(8]

(9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

A. K. Dey and G. D. Abowd, “Towards a better understanding of context
and context-awareness,” in Proc. of the 2000 Conference on Human
Factors in Computing Systems, The Hague, The Netherlands, April 2000.
M. Weiser, “The computer for the 21st century,” Scientific America, pp.
94-104, Sept 1991.

A. Ranganathan and R. H. Campbell, “A middleware for context-aware
agents in ubiquitous computing environments,” in ACM/IFIP/USENIX
International Middleware Conference, Brazil, June 2003.

A. Shehzad, N. Q. Hung, K. A. Pham, M. Riaz, S. L. Kiani,
S. Y. Lee, and Y. K. Lee, “Middleware infrastructure for context-
aware ubiquitous computing systems,” Kyung Hee University, Seoul,
Korea, CAMUS Technical Report TR-V3.2, February 2005. [Online].
Auvailable: http://oslab.khu.ac.kr/camus

D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste, “Project
aura: Toward distraction-free pervasive computing,” IEEE Pervasive
Computing, April-June 2002.

J. . Hong and J. A. Landay, “An infrastructure approach to context-
aware computing,” HCI Journal, vol. 16, 2001.

D. Salber, A. K. Dey, and G. D. Abowd, “The context toolkit: Aid-
ing the development of context-enabled applications,” in Proc. of the
1999 Conference on Human Factors in Computing Systems (CHI ’99),
Pittsburgh, PA, May 15-20.

A. Ranganathan and R. H. Campbell, “A middleware for context-
aware agents in ubiquitous computing environments,” in Proc. of
ACM/IFIP/USENIX International Middleware Conference, Brazil, June
2003.

B. Johanson, A. Fox, and T. Winograd, “The interactive workspaces
project: Experiences with ubiquitous computing rooms,” I[EEE Pervasive
Computing, 2002.

S. K. Das, D. J. Cook, A. Bhattacharya, E. O. Heierman-IIl, and T. Y.
Lin, “The role of prediction algorithms in the mavhome smart home
architecture,” IEEE Wireless Communications Special Issue on Smart
Homes, vol. 9, pp. 77-84, 2002.

G. Chen and D. Kotz, “Solar: An open platform for context-aware mobile
applications,” in Proc. of the First International Conference on Pervasive
Computing (Pervasive 2002), Switzerland, June 2002,

S. Acharya, M. Franklin, and S. Zdonik, “Balancing push and pull data
broadcast,” ACM SIGMOD, May 1997.

K. Stanthatos, N. Roussopoulos, and J. S. Baras, “Adaptive data broad-
cast in hybrid networks,” in Proc. of the 23rd International Conf. on
VLDB, September 1997, pp. 326-335.

J. Beaver, N. Morsillo, K. Pruhs, and P. K. Chrysanthis, “Scalable
dissemination: What’s hot and what’s not,” in Proc. of the Seventh
International Workshop on the Web and Databases (WebDB 2004), Paris,
France, June 17-18 2004.

D. Gifford, “Polychannel systems for mass digital communications,”
Communications of ACM, vol. 37, October 1994.

P. Triantafillou, R. Harpantidou, and M. Paterakis, “High performance
data broadcasting systems,” Mobile Networks and Applications, pp. 279—
290, July 2002.

D. Aksoy and M. Franklin, “RxW: A scheduling approach for large-scale
on-demand data broadcast,” ITEEE/ACM Transactions On Networking,
vol. 7, pp. 846-860, December 1999.

Sun microsystems, inc.: Jinitm architecture specification. [Online].
Available: http://www.sun.com/jini/specs/

S. S. Yau, D. Chandrasekar, and D. Huang, “An adaptive, lightweight
and energy-efficient context discovery protocol for ubiquitous computing
environments,” in Proc. of 10th IEEE International Workshop on Future
Trends of Distributed Computing Systems (FTDCS 04), 2004.

A. Shehzad, N. Q. Hung, K. A. Pham, and S. Y. Lee, “Formal modeling
in context aware systems,” in Proc. of First Workshop on Modeling and
Retrieval of Context (MRC’04), vol. 114. Germany: CEUR, 2004.

N. Q. Hung, A. Shehzad, S. L. Kiani, M. Riaz, and S. Y. Lee,
“Developing context-aware ubiquitous computing systems with a unified
middleware framework,” in Proc. of Embedded and Ubiquitous Comput-
ing(EUC 2004), vol. LNCS 3207. Springer-Verlag, 2004, pp. 672-681.
L. Mehedy, M. K. Hasan, Y. Lee, S. Y. Lee, and S. M. Han, “Hybrid
dissemination based scalable and adaptive context delivery for ubiqui-
tous computing,” in Proc. of the 2006 IFIP International Conference on
Embedded And Ubiquitous Computing (EUC 2006), vol. LNCS 4096.
Seoul, Korea: Springer-Verlag, August 01-04 2006, pp. 987-996.

J. Heer, A. Newberger, C. Beckmann, and J. I. Hong, “liquid: Context-
aware distributed queries,” in Proc. of the Fifth International Conference
on Ubiquitous Computing: Ubicomp 2003.  Seattle, WA: Springer-
Verlag, 2003, pp. 140-148.



10 J. PERVASIVE COMPUT. & COMM. 1 (1), MARCH 2005. © TROUBADOR PUBLISHING LTD)

[24] G. Judd and P. Steenkiste, “Providing contextual information to per-
vasive computing applications,” in Proc. of the IEEE International
Conference on Pervasive Computing (PERCOM), Dallas, March 23-25
2003.

[25] G. Chen and D. Kotz, “Context aggregation and dissemination in
ubiquitous computing systems,” in Proc. of the Fourth IEEE Workshop
on Mobile Computing Systems and Applications, June 2002.

[26] S. S. Yau, F. Karim, Y. Wang, B. Wang, and S. K. S. Gupta, “Recon-
figurable context-sensitive middleware for pervasive computing,” IEEE
Pervasive Computing, vol. 1, pp. 3340, July-September 2002.

[27] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A
scalable wide-area web cache sharing protocol,” IEEE/ACM TRANSAC-
TIONS ON NETWORKING, vol. 8, June 2000.

[28] D. Barbara and T. Imielinski, “Sleeper and workaholics: Caching strat-
egy in mobile environments,” in Proc. of ACM SIGMOD Conference
Management of Data, 1994, pp. 1-12.

[29] Omnet++. [Online]. Available: http://www.omnetpp.org/index.php

[30] Wentian 1i, references on zipf’s law. [Online]. Available:
http://www.nslij-genetics.org/wli/zipf/

[31] N. Furmento, J. Hau, W. Lee, S. Newhouse, and J. Darlington, “Im-
plementations of a service-oriented architecture on top of jini, jxta and
ogsa,” in Proc. of the UK e-Science Program All Hands Meeting 2003,
Nottingham, UK, September 2003.

[32] P. Rosenzweig, M. Kadansky, and S. Hanna, “The java reliable multicast
service: A reliable multicast library,” Sun Microsystems, Tech. Rep.
SMLI TR-98-68, 1998.

Lenin Mehedy received the B.Sc. in Computer Sci-
ence and Engineering from Bangladesh University
of Engineering and Technology (BUET), Dhaka,
Bangladesh, in November 2004. Since March 2005,
he has been pursuing the M.S degree in Computer
Engineering at Kyung Hee University, Korea. His
research interests include middleware for Ubiquitous
Computing, Graph Theory and Pervasive Networks.

Sungyoung Lee received his B.S. from Korea Uni-
versity, Seoul, Korea. He got his M.S. and PhD
degrees in Computer Science from Illinois Institute
of Technology (IIT), Chicago, Illinois, USA in 1987
and 1991 respectively. He has been a professor in the
Department of Computer Engineering, Kyung Hee
University, Korea since 2001. Before joining Kyung
Hee University as an assistant professor in 1993,
he was an assistant professor in the Department
of Computer Science, Governors State University,
Illinois, USA. His current research interests include
Ubiquitous Computing Middlewares, Operating Systems, Real-Time Systems
and Embedded Systems. He is a member of the ACM and IEEE

Salahuddin Muhammad Salim Zabir got his PhD
and MS degrees in Information Science from To-
hoku University, Japan and MSc and BSc Engi-
neering in Computer Science and Engineering from
Bangladesh University of Engineering and Technol-
ogy (BUET). He is currently working as a visit-
ing professor at the Kyung Hee University (KHU),
Korea. He also worked as a faculty in Tohoku
University, Japan and Bangladesh University of En-
gineering and Technology. Prior to joining KHU, he
was working for the R&D efforts of Panasonic, in
Matsushita Electric Industrial Company, Japan. Prof. Zabir maintains a good
record of publications and patents in the fields of computer networking and
ubiquitous computing. He has been serving on the technical and/or program
committees of several conferences as well as guest editing journal special
issues. He is a member of the IEEE, BCS and TEB.

Young-Koo Lee got his B.S., M.S. and PhD in
Computer Science from Korea Advanced Institute
of Science and Technology, Korea. He is a profes-
sor in the Department of Computer Engineering at
Kyung Hee University, Korea. His research interests
include ubiquitous data management, data mining,
and databases. He is a member of the IEEE, the
IEEE Computer Society, and the ACM.




