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Improving supervised learning performance
by using fuzzy clustering method to select
training data
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Abstract. The crucial issue in many classification applications is how to achieve the best possible classifier with a limited number
of labeled data for training. Training data selection is one method which addresses this issue by selecting the most informative data
for training. In this work, we propose three data selection mechanisms based on fuzzy clustering method: center-based selection,
border-based selection and hybrid selection. Center-based selection selects the samples with high degree of membership in each
cluster as training data. Border-based selection selects the samples around the border between clusters. Hybrid selection is the
combination of center-based selection and border-based selection. Compared with existing work, our methods do not require
much computational effort. Moreover, they are independent with respect to the supervised learning algorithms and initial labeled
data. We use fuzzy c-means to implement our data selection mechanisms. The effects of them are empirically studied on a set
of UCI data sets. Experimental results indicate that, compared with random selection, hybrid selection can effectively enhance
the learning performance in all the data sets, center-based selection shows better performance in certain data sets, border-based
selection does not show significant improvement.
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1. Introduction

Supervised learning is one primary sub-field of clas-
sical machine learning. In supervised learning, we are
provided with a collection of labeled (preclassified) pat-
terns. And the problem is to label a newly encountered,
yet unlabeled, pattern. Typically, the given labeled
(training) patterns are used to learn the descriptions of
classes which in turn are used to label a new pattern [1].

Usually supervised learning works well only when
we have enough training samples. Unfortunately, in
many real-world applications, the number of labeled
data available for training purpose is limited. This is
because labeled data are often difficult, expensive, or
time consuming to obtain as they require the efforts of
experienced human annotators [2]. For instance, if one
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is building a speech recognizer, it is easy enough to
get raw speech samples, but labeling even one of these
samples is a tedious process in which a human must
examine the speech signal and carefully segment it into
phonemes. Another example is Web page classification
in which unlabeled samples are readily available, but
labeled ones are fairly expensive to obtain. In these
applications, the crucial issue is how to achieve the best
possible classifier with a small number of labeled data.

An important topic addressing above issue is select-
ing the valuable data to label, considering that label-
ing data is a costly job. This topic is known as active
learning [3,4]. In active learning, the learning process
iteratively queries unlabeled samples to select the most
informative samples to annotate and update its learned
models. Therefore, the unnecessary and redundant an-
notation is avoided.

This paper proposes three new active learning meth-
ods based on fuzzy clustering method. Our methods
first partition the given unlabeled samples into clusters
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and then select the most representative ones from each
cluster to label. Our proposed data selection methods
are center-based selection (CS), border-based selection
(BS) and hybrid selection (HS). In CS, the data with
high degree of membership in each cluster are selected.
Center-based selection is named because the selected
data samples are usually close to the cluster centers.
BS selects training samples around the borders between
clusters and HS is a hybrid selection method combining
CS and BS.

The heuristic of CS, BS and HS is similar with some
existing works. In [3], the authors choose the valuable
training samples which are closest to the current clas-
sification boundary. The intuitive ideas of closest-to-
boundary criterion and our BS are similar. The differ-
ence is that BS tries to find those samples using clus-
tering information instead of classification. Some oth-
er existing works [13,30] put more emphasis on the
representative samples, which are basic idea of our CS
method.

Compared with existing methods, the proposed fuzzy
cluster-based methods usually require much less com-
putational effort. In addition, they are independent
with the supervised learning algorithms and the initial
labeled data for training purpose. In particular, they
can work even in the case when there is no labeled data
available.

This paper studies empirically the effects of our three
data selection methods for supervised learning. All the
data selection methods are implemented by using the
fuzzy c-means algorithm. Eleven UCI data sets were
used in the empirical study. We regard the performance
of random selection (RS) as the baseline and compare it
with that of CS, BS and HS. Experimental results clear-
ly indicate that HS outperforms RS in all the selected
datasets. While, CS shows better performance as com-
pared to RS in certain datasets. On the other hand, the
BS strategy fails to show any significant improvement
over the RS technique.

The rest of this paper is organized as follows. In
Section 2, related work is presented. Section 3 presents
our proposed three data selection mechanisms (center-
based selection, border-based selection and hybrid se-
lection) in details. Section 4 reports on the empiri-
cal study and discusses some observations. Section 5
discloses conclusions and future work.

2. Related work

In many classification applications, we cannot get
enough labeled data for training. And the crucial issue

is how to achieve the best possible classifier using the
limited number of training data.

Semi-supervised learning [5] is a method aiming to
address above issue. In addition to labeled samples,
unlabeled ones are exploited in semi-supervised learn-
ing to improve learning performance. Many exist-
ing semi-supervised learning algorithms use a genera-
tive model for the classifier and employ Expectation-
Maximization (EM) to model the label estimation or
parameter estimation process [6]. For example, mix-
tures of Gaussians [7], mixture of experts [8], and naive
Bayes [9] have been used as the generative model re-
spectively, while EM is used to combine labeled and
unlabeled data for classification.

In addition to semi-supervised learning, another im-
portant method to address above issue is selecting the
valuable data to label, which is known as active learn-
ing [3,4]. In this paper we focus our attention on active
learning.

For a data setD = {x1, x2, . . . , xn} ⊂ Rd, let Dl

represent the labeled set in which every sample is given
a label andDu = D−Dl. Most active learning systems
comprise two parts: a learning engine and a selection
engine. The learning engine uses a supervised learning
algorithm to train a classifier onDl at every iteration.
The selection engine then selects a sample fromDu

and requests a human expert to label the sample before
passing it to the learning engine. The goal of active
learning is to achieve the best possible classifier within
a reasonable number of calls for labeling by human
help.

Existing work on active learning can be character-
ized by the learning algorithms used by learning engine,
which include multilayer perceptrons [10], combina-
tion of naive Bayes and logistic regression [3], Support
Vector Machine (SVM) [11–13] and so on.

The central part in active learning is data selection
strategy since learning algorithm is just a tool to im-
plement active learning process. Most existing work
has concentrated on two strategies: certainty-based
and committee-based selection. In the certainty-based
strategy, an initial system is trained usingDl [14–
17]. Then the system labels the samples inDu and
determines the certainties of its predictions of them.
The sample with the lowest certainty is then select-
ed and presented to the experts for annotation. In the
committee-based methods, a distinct set of classifiers
is created usingDl [18–21]. The sample inDu, whose
label differs most when presented to different classi-
fiers are presented to the experts for annotation. In both
paradigms, a new system is trained using the new set of
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annotated examples, and this process is repeated until it
reaches the predefined rounds or some stopping criteria
are satisfied.

There are several drawbacks in certainty-based and
committee-based selection. First of all, data selection is
based on the classification result obtained by using clas-
sifier (or classifiers) to classify the unlabeled samples.
Therefore, the classifier/classifiers should make sense;
otherwise data selection process is disturbed. Consid-
ering the first iteration of data selection, classifier is
trained onDl. To get qualified classifier/classifiers,
the number of samples inDl cannot be zero or very
small value. However, in real-world applications, it
is quite possible that the number of initial labeled da-
ta is small or even zero. In this case, most exist-
ing data selection methods, including certainty-based
and committee-based methods, can not work. Sec-
ondly, most data selection methods require much com-
putational effort. The reason is that many iterations
are needed and each iteration only selects one single
sample. Note that one iteration requires one training-
classification (for certainty-based selection) or multiple
training-classification processes (for committee-based
selection).

To solve above problems, we propose new data se-
lection methods based on fuzzy clustering. Our method
first partitions the given unlabeled samples into clus-
ters and then selects the most representative ones from
each cluster to label. Actually, using clustering in
data selection is not new and several work has been
done [22–24]. However, they use clustering only at the
initial/preprocessing stage. Then supervised learning
methods, Learning Vector Quantization [22], k-nearest
neighbor [23] and regularized logistic regression [24]
are needed for data selection. Different with them, we
aim to give an empirically study on whether clustering
solely (without supervised learning) could be used for
data selection through appropriate data selection meth-
ods. It should be noted that because there is no any
supervision used by our methods, our methods might
give bad results to those data sets of which the under-
lying structure cannot be found by fuzzy clustering. In
this case, traditional active learning can be used.

Since our methods are based on fuzzy clustering in-
stead of supervised methods, there is no any require-
ment on the size of initial labeled samples. In particu-
lar, the best case to use our methods is when there are
no (or very small number) pre-labeled samples avail-
able so that traditional supervise-based selection meth-
ods cannot be used. Moreover, our methods reduce
the computational complexity by selecting a batch of

unlabeled samples instead of one sample. Note that
for existing works [25–30], even a batch of samples
are selected at each iteration, still more computational
effort is needed compared with ours. The reason is
that the existing work are based on classifiers which
requires training process, while our method is based on
clustering which does not require training process.

In fact, batch samples selection is not only useful on
saving computational effort, but also more convenient
for the human experts. Human experts always tend
to give the labels more precisely for batch samples
than single sample, because they can compare different
examples and refine the assigned labels.

3. Our proposed data selection mechanisms

3.1. A brief introduction to fuzzy c-means

Fuzzy c-means clustering (FCM) [31] is a popu-
lar data clustering algorithm which combines K-means
clustering with fuzzy logic. As with fuzzy sets [32],
using FCM, each data point can be a member of more
than one cluster with different degrees of membership
function between 0 and 1. FCM is an objective func-
tion based clustering method. Here objective function
measures the overall dissimilarity within clusters. By
minimizing the objective function we can obtain the
optimal partition. LetX = {x1, x2, . . . , xn} denote
the measured data set. The FCM objective functionJ
is defined as:

J =
n∑

i=1

c∑
j=1

(uij)m ‖xi − vj‖2 (1)

Clustering of FCM is carried out through an iterative
minimization ofJ according to the following steps:

S1: Choose fuzzy factor (m), number of clusters
(c) andcinitial cluster centersvj .
REPEAT
S2: At iterationt, computeuij with vj by

uij =

(
c∑

k=1

‖xi − vj‖2/(m−1)

‖xi − vk‖2/(m−1)

)−1

(2)

S3: Updatevj with uij , by

vj =

n∑
i=1

um
ij · xi

n∑
i=1

um
ij

(3)

UNTIL (‖Vt − Vt−1‖ ≤ ε, Vt andVt−1 denote the
vector of clusters centers at iterationt and t − 1
respectively,ε is convergence criterion with0 <
ε < 1)
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Fig. 1. Artificial data set.

Hereuij is the degree of membership ofxi in cluster
j andm is the fuzzy factor that determines the degree
of fuzziness (m > 1). Asm approaches one, fuzziness
degrades and the FCM algorithm approaches to the
standard K-means algorithm.V = {v1, v2, . . . , vc} is
the vector of cluster centers.‖xi − vj‖2 is any norm
expressing the similarity between the measured datax i

and the centervj .

3.2. Our training data selection mechanisms

Fuzzy c-means computes the cluster centers and gen-
erates the class membership matrixU . We proposed
three data selection mechanisms in this paper, and all
of them are based onU . To visually see the difference
between them, an artificial data set is used. As shown
in Fig. 1, this data set includes 150 2-D samples and 3
classes. 21 samples will be selected as training data.

(1) Center-based selection: This selection strate-
gy assumes that the samples with high degree
of membership in each cluster are more valu-
able and representative for learning. We ex-
tract these samples through analyzing member-
ship matrixUn×m. Heren is the number of
samples partitioned andm is the number of clus-
ters. uij is the element at theith row andjth

column inU . In each clusterj(j = 1 : m), if
i∗ = argmax uij

i=1:n

, then samplexi is regarded

as the most representative sample in this cluster
and selected firstly. The next selected sample

is xi∗∗ with i∗∗ = arg maxuij
i=1:n,i�=i∗

. In turn, other

samples in clusterj will be selected using this
way, until the number of data equals tokj (the
number of training data allocated to clusterj).
Usually in active learning, we are given the total

number of training dataK(K =
m∑

j=1

kj) instead

of kj , so how to determinekj with the knowl-
edge ofK is an issue in center-based selection.
To avoid imbalance problem in learning, a sim-
ple and effective way we adopted is to select the
same or similar number of samples from each
clusterkj

∼= K
m . This method is sufficient for

our purpose since it provides for a basic level
of exploring the effect of samples obtained from
center-based selection. It could be improved if
needed since the detailed information of each
cluster, such as sample distribution and size, is
not considered. Based on CS, if we select 21
training samples from above artificial data set (7
samples each cluster), the result of selection is
shown in Fig. 2(b).

(2) Border-based selection: This selection strategy
assumes that the samples located at the borders
between clusters are more representative. Here
we say a sample is located at the border between
clusters when its two high degrees of member-
ship are very similar. For example, a data set
comprises three clusters. For a sample of it,
when its degrees of membership for each cluster
is [0.5, 0.49, 0.01], its two high membership de-
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Fig. 2. Training data selected by different mechanisms.

grees (0.5 and 0.49) are very similar. In this case,
we say that this sample is located at the border
between cluster 1 and 2. Membership matrix
Un×m is also used in this part. Heren is the
number of samples partitioned andm is the num-
ber of clusters. For each samplexi(i = 1 : n),
if j∗ = arg max

j=1:m
uij andj∗∗ = arg max

j=1:m,j �=j∗
uij ,

thenTi (Ti = uij∗−uij∗∗) is calculated. Finally
samplexi∗ with i∗ = arg min

i=1:n
Ti is regarded as

the most representativesample. In turnxi∗∗ with
i∗∗ = arg min

i=1:n,i�=i∗
Ti is the next valuable data to be

selected. Other samples will be selected using
this way until the number of selected reaches the

limitation. The training data selected using the
border-based selection are shown in Fig. 2(c).

(3) Hybrid selection: This strategy is a hybrid se-
lection method combining above two methods.
It assumes that both the samples from CS and
BS are representative. Combining them might
provide better result than either alone. For a
data poolD, let K denote the number of data
to be selected as training data. A simple com-
bination scheme in this work is to select about
K/2 samples from center-based selection and
border-based selection respectively. Of course,
it is not required to exactly follow this combi-
nation scheme in the real applications. For ex-
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ample, if it is obvious that samples got from
center-based selection are redundant, then more
samples could be extracted from border-based
selection. For above artificial data set, if 9 sam-
ples are selected by CS (3 samples each cluster)
and 12 samples are selected by BS. Then the 21
training samples determined by HS are shown in
Fig. 2(d).

4. Empirical study

4.1. Configuration

In this work, training samples are selected by analyz-
ing membership matrix computed by fuzzy c-means.
Fuzzy c-means is configured as follows: Fuzzy factor
(m, in Section 3.1) is set to 2. Convergence criterion
(ε, in Section 3.1) is set to 0.00001. Maximum iter-
ation is set to 100. Euclidean distance is used as the
similarity measure. This is the default configuration of
the fuzzy c-means tool we used [33]. For the number of
clusters for each data set, we set it equal to the number
of classes since the number of classes is available in
many applications.

To test the effect of training data selection mecha-
nisms, a classifier is needed. In this empirical study,
Multilayer Perceptron neural network with back prop-
agation (BP) training algorithm is used. In all the ex-
periments, the network with one hidden layer is adopt-
ed. TANSIG, LOGSIG activation functions are used
in the hidden layer and output layer respectively. Let
n1, n2, n3 denote the number of input nodes, hidden
nodes and output nodes respectively. In our experi-
ments,n1 is the number of attributes in each sample, in
hidden layern2 = 2×n1+1, n3 is the number of class-
es. Consider the example of the iris data set. It contains
four attributes and classifies them into three classes. In
this case, a 4-9-3 network is used. Each network is
trained to 100 epochs. Note that, since the relative in-
stead of absolute performance of the proposed methods
are concerned, the architecture and training process of
the neural networks have not been finely tuned.

Eleven data sets from the UCI Machine Learning
Repository [34] are used in the empirical study, where
missing values on continuous attributes are set to the av-
erage value while those on binary or nominal attributes
are set to the majority value. Information on these data
sets is tabulated in Table 1.

In the experiment, we set the number of training da-
ta to some small values, because data selection mech-

anisms aim to improve learning performance in the
case when training data is insufficient. To objectively
compare the performance of our proposed three mech-
anisms on each data set, experiments are conducted
with different numbers of training data. Consider the
example of the iris dataset. As shown in Table 2, ex-
periment on it consists of five parts with training num-
ber is set to 3, 6, 9, 15, 21 respectively. LetX de-
note the number of training data. In each part (For
instance, whenX = 21), Iris (denoted byD) is ran-
domly partitioned into two sets:Dtest(|Dtest| = 75)
and Dnon−test(Dnon−test = D\Dtest).Dtest repre-
sents test set. Then 21 samples will be selected from
Dnon−test by using random selection, center-based se-
lection, border-based selection and hybrid selection
methods and they are represented byDrs, Dcs, Dbs and
Dhs respectively. FinallyDrs, Dcs, Dbs andDhs will
be used as training data for Multilayer Perceptron. We
conducted 100 trials on each part and average the re-
sult. In each trail, the partition ofDtest andDnon−test

is different.
As shown in Table 2, for each data set (except glass

and echocardiogram), the maximalX is usually not
greater than the number of test data. In this study, the
selection ofX might be different for different data sets.
For example, we set the values 3, 6, 9, 15 and 21 for the
X in iris and 4, 8, 12, 16 and 20 for theX in soybean.
The reason for this setting is to simplify the experiment.
One simple configuration for CS is to select the same
number of training data from each class, so we select
evenly divisible numbers of training data respective of
the numbers of classes in the data (recall iris has three
classes and soybean has four classes). One measure to
evaluate the performance of our proposed methods on
each data set is the average classification accuracy of
all parts. For example, experiment on iris comprises
five parts. Then the performance evaluation on iris is
based on the average classification accuracy of these
five parts. For data selection methods, classification
accuracy is important, but it cannot show the robustness
of the methods. For example, as shown in Table 3, the
performance of two methods (CS and BS) are compared
on one data set when training numberX is set toN1,
N2,N3 andN4 respectively.

In Table 3, the average classification accuracy of BS
is better than CS. However, we cannot say that BS is
really good, because it is not robust. Concretely, CS is
better than BS in three cases (N1,N2 andN3). BS is
better than CS only in one case (N4). So in this work,
we use robustness to evaluate their performance.

“Robustness” here is used to evaluate whether the
proposed methods can give a consistent improve-
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Table 1
UCI data sets used in the empirical study

Data set Size Attribute Class Class distribution

iris 150 4C 3 50/50/50
soybean 47 35C 4 10/10/10/17
breast-w 698 9C 2 457/241
wine 178 13C 3 59/71/48
glass 214 9C 6 9/13/17/29/70/76
echocardiogram 131 1B 6C 2 88/43
heart1 303 13C 2 164/139
heart2 294 13C 2 188/106
horse 368 4B 5N 6C 2 232/136
german 1000 24C 2 700/300
wdbc 569 30C 2 357/212

B: Binary, N: Nominal, C: Continuous.

Table 2
Size of training data and test data for each data set

Data set Size Test data num. Training data num.

iris 150 75 3,6,9,15,21
soybean 47 25 4,8,12,16,20
breast-w 698 100 6,10,14,20
wine 178 50 6,9,12,15,18,21,30
glass 214 50 24,30,48,60,80
echocardiogram 131 30 10,20,30,40,50,60
heart1 303 50 10,20,30,40,50
heart2 294 50 10,20,30,40,50
horse 368 50 10,20,30,40,50
german 1000 100 10,20,30,40,50
wdbc 569 100 10,20,30,40,50

Table 3
Performance evaluation measure: classification accuracy

Training Data Num. Classification Accuracy
C-S B-S

N1 0.5 0.4
N2 0.5 0.4
N3 0.5 0.4
N4 0.6 1
Ave. 0.525 0.55

ment under different experiment environment (different
number of training data). For each number of training
data, the value of “Robustness” for a specified method is
the difference value between the times that this method
outperforms others and the times that others methods
outperform this specified method. The value of “Ro-
bustness” under different numbers of training data will
be aggregated to be the final “Robustness” value of this
method.

As shown in Table 4, for each data set, to make a
clearer view of the relative performance between each
mechanism, a partial order “�” is defined on the set
of all comparing algorithms for different training data
size, where A1�A2 means that the classification accu-
racy of method A1 is better than that of method A2 on
the specific training data number. Note that the partial

Table 4
Performance evaluation measure: robustness

Training data num. Classification accuracy comparison
A1 (C-S) A2 (B-S)

N1 A1�A2
N2 A1�A2
N3 A1�A2
N4 A2�A1
Total order A1 (2)> A2 (−2)

order “�” only measures the relative performance be-
tween two method A1 and A2 on one specific number
(or size) of training data. However, it is quite possi-
ble that A1 performs better than A2 in terms of some
numbers but worse than A2 in terms of other ones. In
this case, it is hard to judge which method is superior.
Therefore, in order to give an overall performance as-
sessment of a method, a score is assigned to it which
takes account of its relative performance with other
methods on all the numbers of training data. Concrete-
ly, for each number of training data, for each possible
pair of method A1 and A2, if A1�A2 holds, then A1 is
rewarded by a positive score+1 and A2 is penalized by
a negative score−1. Based on the accumulated score
of each method on all evaluation numbers, a total order
“>” is defined on the set of all comparing methods as
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Table 5
Performance comparison of RS, CS, BS and HS on four datasets: iris, soybean,
breast-w and wine

(a) Accuracy comparison on iris

Dataset: Iris
Classification Accuracy

RS CS BS HS

T = 3 0.571± 0.153 0.744 ± 0.090 0.441± 0.174 0.744 ± 0.090
T = 6 0.719± 0.147 0.761± 0.076 0.498± 0.175 0.787 ± 0.113
T = 9 0.819± 0.101 0.796± 0.074 0.523± 0.124 0.846 ± 0.089
T = 15 0.879± 0.077 0.826± 0.067 0.565± 0.099 0.883 ± 0.057
T = 21 0.893± 0.075 0.836± 0.062 0.597± 0.057 0.907 ± 0.051
Average 0.776 0.793 0.525 0.833

(b) Robustness comparison on iris

Dataset: Iris
Robustness Comparison

RS (A1) CS (A2) BS (A3) HS (A4)

T = 3 A2�A1, A2�A3, A1�A3, A4�A1, A4�A3
T = 6 A4�A1, A4�A2, A4�A3, A2�A1, A2�A3, A1�A3
T = 9 A4�A1, A4�A2, A4�A3, A1�A2, A1�A3, A2�A3
T = 15 A4�A1, A4�A2, A4�A3, A1�A2, A1�A3, A2�A3
T = 21 A4�A1, A4�A2, A4�A3, A1�A2, A1�A3, A2�A3
Total Order A4 (14) > A1 (1) > A2 (0 ) >A3 (−15)

(c) Accuracy comparison on soybean

Dataset: Soybean
Classification Accuracy

RS CS BS HS

T = 4 0.614± 0.139 0.799 ± 0.131 0.418± 0.109 0.799 ± 0.131
T = 8 0.826± 0.136 0.872± 0.110 0.517± 0.107 0.905 ± 0.093
T = 12 0.912± 0.097 0.938 ± 0.064 0.593± 0.154 0.937± 0.057
T = 16 0.947± 0.087 0.964 ± 0.052 0.865± 0.166 0.954± 0.064
T = 20 0.964± 0.050 0.964± 0.057 0.961± 0.072 0.972 ± 0.048
Average 0.853 0.907 0.671 0.913

(d) Robustness comparison on Soybean

Dataset: Soybean
Robustness Comparison

RS (A1) CS (A2) BS (A3) HS (A4)

T = 4 A2�A1, A2�A3, A1�A3, A4�A1, A4�A3
T = 8 A4�A1, A4�A2, A4�A3, A2�A1, A2�A3, A1�A3
T = 12 A2�A1, A2�A3, A2�A4, A4�A1, A4�A3, A1�A3
T = 16 A2�A1, A2�A3, A2�A4, A4�A1, A4�A3, A1�A3
T = 20 A4�A1, A4�A2, A4�A3, A2�A1, A2�A3, A1�A3
Total Order A4 (10) > A2 (9) > A1 (−4) > A3 (−15)

(e) Accuracy comparison on breast-w

Dataset: Breast Cancer
Classification Accuracy

R-S C-S B-S H-S

T = 6 0.868± 0.106 0.931 ± 0.035 0.290± 0.177 0.922± 0.044
T = 10 0.908± 0.072 0.924 ± 0.039 0.341± 0.175 0.921± 0.040
T = 14 0.925± 0.052 0.929± 0.040 0.321± 0.211 0.931 ± 0.034
T = 20 0.923± 0.052 0.934 ± 0.035 0.371± 0.260 0.934 ± 0.032
Average 0.906 0.930 0.331 0.927



D. Guan et al. / Improving supervised learning performance by using fuzzy clustering method 329

Table 5, continued

(f) Robustness comparison on breast-w

Dataset: Breast Cancer
Robustness Comparison

R-S (A1) C-S (A2) B-S (A3) H-S (A4)

T = 6 A2�A1, A2�A3, A2�A4, A4�A1, A4�A3, A1�A3
T = 10 A2�A1, A2�A3, A2�A4, A4�A1, A4�A3, A1�A3
T = 14 A4�A1, A4�A2, A4�A3, A2�A1, A2�A3, A1�A3
T = 20 A2�A1, A2�A3, A4�A1, A4�A3, A1�A3
Total Order A2 (9) > A4 (7) > A1 (−4) >A3 (−12)

(g) Accuracy comparison on wine

Dataset: Wine
Classification Accuracy

RS CS BS HS

T = 6 0.704± 0.139 0.838 ± 0.062 0.756± 0.120 0.835± 0.071
T = 9 0.772± 0.116 0.829± 0.074 0.788± 0.112 0.849 ± 0.065
T = 12 0.823± 0.094 0.819± 0.068 0.844± 0.079 0.857 ± 0.068
T = 15 0.837± 0.078 0.821± 0.066 0.860± 0.062 0.870 ± 0.052
T = 18 0.863± 0.074 0.835± 0.053 0.873 ± 0.049 0.871± 0.056
T = 21 0.870± 0.061 0.847± 0.062 0.871± 0.060 0.875 ± 0.052
T = 30 0.871± 0.057 0.870± 0.055 0.881± 0.055 0.884 ± 0.046
Accuracy 0.820 0.837 0.839 0.863

(h) Robustness comparison on wine

Dataset: Wine
Robustness Comparison

RS (A1) CS (A2) BS (A3) HS (A4)

T = 6 A2�A1, A2�A3, A2�A4, A4�A1, A4�A3, A3�A1
T = 9 A4�A1, A4�A2, A4�A3, A2�A1, A2�A3, A3�A1
T = 12 A4�A1, A4�A2, A4�A3, A3�A2, A3�A1, A1�A2
T = 15 A4�A1, A4�A2, A4�A3, A3�A2, A3�A1, A1�A2
T = 18 A3�A1, A3�A2, A3�A4, A4�A1, A4�A2, A1�A2
T = 21 A4�A1, A4�A2, A4�A3, A3�A1, A3�A2, A1�A2
T = 30 A4�A1, A4�A2, A4�A3, A3�A1, A3�A2, A1�A2
Total Order A4 (17) > A3 (5) > A1 (-11) = A2 (-11)

shown in the last row of Table 3, where A1> A2. In
this case, we say A1 is more robust than A2.

The experimental results of our proposed data selec-
tion mechanisms on different data sets are shown in the
following tables. For each data set, experimental result
includes two parts. One part is the average accuracy
on different training data numbers. The other part is
used to show the robustness of each mechanism. The
value following “±”gives the standard deviation and
the best result on each training data number is shown in
bold face. We only give the experimental results on the
four datasets, iris, soybean, breast-w and wine. Other
results are given in Appendix. In the following tables,
“T” refers to the number of training data. Note that for
each data set, when the number of training data equals
to the number of classes in it, hybrid selection is same
as center-based selection.

Table 6 exhibits that, on iris, soybean, wine, glass,
echo, heart2, horse, and german, HS is best both on

average accuracy and robustness. Concretely its aver-
age accuracy is 5.7, 6, 4.3, 3.4, 2.6, 2.7, 0.1, and 1 per-
cent better than RS on these datasets respectively. On
breast-w and heart1, CS is best both on average accura-
cy and robustness. And its average accuracy is 2.4 and
3.3 percent better than RS on these two datasets. Note
that even in these two datasets, HS is also better than
RS. Its average accuracy is 2.1 and 0.3 percent better
than RS on them. On the wdbc dataset, HS and RS
have the same accuracy. However, HS is more robust
than CS.

In summary, the observations reported in this sec-
tion suggest that (performance of random selection is
regarded as baseline):

(1) Center-based selection shows better perfor-
mance as compared to random selection in cer-
tain datasets.

(2) Border-based selection does not show significant
improvement over random selection.



330 D. Guan et al. / Improving supervised learning performance by using fuzzy clustering method

Table 6
Performance comparison of RS, CS, BS and HS on learning

Dataset Accuracy Robustness
RS CS BS HS RS CS BS HS

iris 0.776 0.793 0.525 0.833 1 0 −15 14
soybean 0.853 0.907 0.671 0.913 −4 9 −15 10
breast-w 0.906 0.930 0.331 0.927 −4 9 −12 7
wine 0.820 0.837 0.839 0.863 −11 −11 5 17
glass 0.558 0.521 0.513 0.592 5 −10 −10 15
echocardiogram 0.650 0.667 0.617 0.676 −4 6 −18 16
heart1 0.741 0.774 0.585 0.744 −3 15 −15 3
heart2 0.753 0.769 0.667 0.780 −3 7 −15 11
horse 0.749 0.708 0.640 0.750 10 −5 −15 10
german 0.656 0.651 0.591 0.666 3 1 −15 11
wdbc 0.919 0.884 0.739 0.919 7 −2 −9 9

(3) Hybrid selection outperforms random selection
under all the selected datasets.

It is not difficult to understand this result. For center-
based selection, it selects the samples with high degree
of membership in each cluster. These samples are usu-
ally representative and valuable for learning, however,
with the number of training data increasing, these sam-
ples might be redundant for learning. This is the reason
why it cannot provide stable improvement compared
to random selection. If we further restrict the number
of training data to some extent, center-based selection
will be superior to random selection. For border-based
selection, it selects the samples around the borders be-
tween two classes. As they are quite likely to lie near
the decision boundaries of classes, they can be regard-
ed as “confusing samples”. If these confusing samples
are used solely for training, training might be overfit-
ted to them to give bad generality for unseen samples.
Hence border-based selection is always worst among
these four methods. For hybrid selection, it inherits the
advantages from both center-based and border-based
selection. Center-based selection provides representa-
tive samples for learning, while border-based selection
refines the performance of center-based learning.

In this work, we empirically evaluate our data se-
lection methods in the case that there is no any pre-
labeled data available. In contract to it, if small pre-
labeled data exist, we would make use of them to boost
the performance of clustering. This technique is called
semi-supervised clustering [35][36]. In the future, we
will continue our research to combine semi-supervised
clustering with data selection.

5. Conclusions and future work

To achieve the best possible classifier with a small
number of labeled data, in this paper, three training da-

ta mechanisms are proposed by using fuzzy clustering
method. They are center-based selection, border-based
selection and hybrid selection. Center-based selection
chooses the samples with high degree of membership
in each cluster. In border-based selection, the sam-
ples located at the borders between clusters are select-
ed. Hybrid selection is the combination of them. Ex-
perimental results on a set of UCI data sets indicate
that hybrid selection could effectively improve learning
performance.

In current work, the samples around centers and bor-
ders are simply combined without considering their dis-
tributions and densities. Therefore, it is interesting to
see whether the information of distribution and den-
sity could further improve the performance of hybrid-
selection mechanism.
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Appendix: Experimental results

Table A1. Performance comparison of RS, CS, BS and HS on seven datasets:
glass, echo, heart1, heart2, horse, german and wdbc

(a) Accuracy comparison on glass

Dataset: Glass
Classification Accuracy

RS CS BS HS

T = 24 0.507± 0.098 0.481± 0.090 0.494± 0.099 0.562 ± 0.074
T = 30 0.536± 0.078 0.513± 0.082 0.513± 0.094 0.567 ± 0.070
T = 48 0.564± 0.074 0.514± 0.075 0.528± 0.078 0.584 ± 0.078
T = 60 0.604± 0.076 0.572± 0.074 0.514± 0.076 0.615 ± 0.067
T = 80 0.580± 0.074 0.525± 0.079 0.517± 0.088 0.633 ± 0.065
Average 0.558 0.521 0.513 0.592

(b) Robustness comparison on glass

Dataset: Glass
Robustness Comparison

RS (A1) CS (A2) BS (A3) HS (A4)

T = 24 A4�A1, A4�A2, A4�A3, A1�A2, A1�A3, A3�A2
T = 30 A4�A1, A4�A2, A4�A3, A1�A2, A1�A3
T = 48 A4�A1, A4�A2, A4�A3, A1�A2, A1�A3, A3�A2
T = 60 A4�A1, A4�A2, A4�A3, A1�A2, A1�A3, A2�A3
T = 80 A4�A1, A4�A2, A4�A3, A1�A2, A1�A3, A2�A3
Total Order A4 (15) > A1 (5) > A3 (−10) = A2 (−10)

(c) Accuracy comparison on echo

Dataset: Echo
Classification Accuracy

RS CS BS HS

T = 10 0.63± 0.120 0.621± 0.125 0.597± 0.119 0.641 ± 0.103
T = 20 0.641± 0.088 0.671 ± 0.092 0.564± 0.121 0.660± 0.092
T = 30 0.644± 0.086 0.686± 0.081 0.603± 0.093 0.691 ± 0.079
T = 40 0.655± 0.081 0.666± 0.086 0.637± 0.083 0.689 ± 0.070
T = 50 0.658± 0.074 0.682± 0.073 0.639± 0.087 0.687 ± 0.077
T = 60 0.672± 0.079 0.673± 0.088 0.660± 0.091 0.686 ± 0.081
Average 0.650 0.667 0.617 0.676

(d) Robustness comparison on echo

Dataset: Echo
Robustness Comparison

RS (A1) CS (A2) BS (A3) HS (A4)

T = 10 A4�A1, A4�A2, A4�A3, A1�A2, A1�A3, A2�A3
T = 20 A2�A1, A2�A3, A2�A4, A4� A1, A4 �A3, A1�A3
T = 30 A4�A1, A4�A2, A4�A3, A2�A1, A2�A3, A1�A3
T = 40 A4�A1, A4�A2, A4�A3, A2�A1, A2�A3, A1�A3
T = 50 A4�A1, A4�A2, A4�A3, A2�A1, A2�A3, A1�A3
T = 60 A4�A1, A4�A2, A4�A3, A2�A1, A2�A3, A1�A3
Total Order A4 (16) > A2 (6) > A1 (-4) > A3 (-18)
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Table A1, continued

(e) Accuracy comparison on heart1

Dataset: Heart1
Classification Accuracy

RS CS BS HS

T = 10 0.707± 0.096 0.756 ± 0.078 0.592± 0.103 0.733± 0.056
T = 20 0.740± 0.071 0.762 ± 0.067 0.591± 0.108 0.743± 0.066
T = 30 0.740± 0.065 0.801 ± 0.056 0.591± 0.106 0.747± 0.061
T = 40 0.753± 0.072 0.785 ± 0.062 0.583± 0.087 0.754± 0.058
T = 50 0.766± 0.060 0.768 ± 0.056 0.567± 0.105 0.744± 0.065
Average 0.741 0.774 0.585 0.744

(f) Robustness comparison on heart1

Dataset: Heart1
Robustness Comparison

RS (A1) CS (A2) BS (A3) HS (A4)

T = 10 A2�A1, A2�A3, A2�A4, A4�A1, A4�A3, A1�A3
T = 20 A2�A1, A2�A3, A2�A4, A4�A1, A4�A3, A1�A3
T = 30 A2�A1, A2�A3, A2�A4, A4�A1, A4�A3, A1�A3
T = 40 A2�A1, A2�A3, A2�A4, A4�A1, A4�A3, A1�A3
T = 50 A2�A1, A2�A3, A2�A4, A1�A4, A1�A3, A4�A3
Total Order A2 (15) > A4 (3) > A1 (-3) > A3 (-15)

(g) Accuracy comparison on heart2

Dataset: Heart2
Classification Accuracy

RS CS BS HS

T = 10 0.754± 0.085 0.769± 0.063 0.515± 0.163 0.789 ± 0.068
T = 20 0.747± 0.071 0.773 ± 0.061 0.648± 0.127 0.766± 0.069
T = 30 0.749± 0.091 0.761± 0.075 0.715± 0.087 0.787 ± 0.064
T = 40 0.755± 0.069 0.750± 0.062 0.742± 0.078 0.775 ± 0.060
T = 50 0.762± 0.063 0.792 ± 0.065 0.716± 0.100 0.781± 0.063
Average 0.753 0.769 0.667 0.780

(h) Robustness comparison on heart2

Dataset: Heart2
Robustness Comparison

RS (A1) CS (A2) BS (A3) HS (A4)

T = 10 A4�A1, A4�A2, A4�A3, A2�A1, A2�A3, A1�A3
T = 20 A2�A1,A2�A3.A2�A4, A4�A1, A4�A3, A1�A3
T = 30 A4�A1, A4�A2, A4�A3, A2�A1, A2�A3, A1�A3
T = 40 A4�A1,A4�A2,A4�A3, A1�A2,A1�A3,A2�A3
T = 50 A2�A1,A2�A3.A2�A4, A4�A1, A4�A3, A1�A3
Total Order A4 (11) > A2 (7) > A1 (−3) > A3 (−15)

(i) Accuracy comparison on horse

Dataset: Horse
Classification Accuracy

RS CS BS HS

T = 10 0.708 ± 0.107 0.691± 0.072 0.611± 0.090 0.708 ± 0.087
T = 20 0.730± 0.078 0.709± 0.061 0.649± 0.079 0.748 ± 0.064
T = 30 0.758 ± 0.071 0.704± 0.060 0.643± 0.076 0.748± 0.064
T = 40 0.775 ± 0.068 0.720± 0.071 0.639± 0.080 0.767± 0.063
T = 50 0.774± 0.062 0.716± 0.066 0.656± 0.088 0.777 ± 0.056
Average 0.749 0.708 0.640 0.750
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Table A1, continued

(j) Robustness comparison on horse

Dataset: Horse
Robustness Comparison

RS (A1) CS (A2) BS (A3) HS (A4)

T = 10 A1�A2, A1�A3, A4�A2,A4�A3,A2�A3
T = 20 A4�A1,A4�A2,A4�A3,A1�A2,A1�A3,A2�A3
T = 30 A1�A2,A1�A3,A1�A4,A4�A2,A4�A3,A2�A3
T = 40 A1�A2,A1�A3,A1�A4,A4�A2,A4�A3,A2�A3
T = 50 A4�A1,A4�A2,A4�A3,A1�A2,A1�A3,A2�A3
Total Order A1 (10) = A4 (10) > A2 (−5) > A3 (−15)

(k) Accuracy comparison on german

Dataset: German
Classification Accuracy

R-S C-S B-S H-S

T = 10 0.633± 0.072 0.665 ± 0.049 0.532± 0.102 0.656± 0.050
T = 20 0.657± 0.065 0.660± 0.066 0.618± 0.076 0.671 ± 0.052
T = 30 0.653± 0.063 0.639± 0.057 0.565± 0.086 0.673 ± 0.055
T = 40 0.667± 0.060 0.642± 0.053 0.593± 0.079 0.670 ± 0.052
T = 50 0.669 ± 0.058 0.648± 0.050 0.648± 0.067 0.660± 0.058
Average 0.656 0.651 0.591 0.666

(l) Robustness comparison on german

Dataset: German
Robustness Comparison

RS (A1) CS (A2) BS (A3) HS (A4)

T = 10 A2�A1,A2�A3,A2�A4,A4�A1,A4�A3,A1�A3
T = 20 A4�A1,A4�A2,A4�A3,A2�A1,A2�A3,A1�A3
T = 30 A4�A1,A4�A2,A4�A3,A1�A2,A1�A3,A2�A3
T = 40 A4�A1,A4�A2,A4�A3,A1�A2,A1�A3,A2�A3
T = 50 A1�A2,A1�A3,A1�A4,A4�A2,A4�A3
Total Order A4 (11) > A1 (3) > A2 (1) > A3 (−15)

(m) Accuracy Comparison on wdbc

Dataset: Wdbc
Classification Accuracy

R-S C-S B-S H-S

T = 10 0.885± 0.058 0.872± 0.050 0.578± 0.187 0.906 ± +0.035
T = 20 0.915± 0.039 0.883± 0.051 0.652± 0.188 0.917+0.034
T = 30 0.920± 0.032 0.887± 0.035 0.696± 0.195 0.927 ± 0.035
T = 40 0.938 ± 0.033 0.891± 0.039 0.818± 0.131 0.927± 0.029
T = 50 0.939± 0.025 0.889± 0.039 0.953 ± 0.054 0.919± 0.038
Average 0.919 0.884 0.739 0.919

(n) Robustness comparison on wdbc

Dataset: Wdbc
Robustness Comparison

RS (A1) CS (A2) BS (A3) HS (A4)

T = 10 A4�A1,A4�A2,A4�A3,A1�A2,A1�A3,A2�A3
T = 20 A4�A1,A4�A2,A4�A3,A1�A2,A1�A3,A2�A3
T = 30 A4�A1,A4�A2,A4�A3,A1�A2,A1�A3,A2�A3
T = 40 A1�A2,A1�A3,A1�A4,A4�A2,A4�A3,A2�A3
T = 50 A3�A1,A3�A2,A3�A4,A1�A2,A1�A4,A4�A2
Total Order A4 (9) > A1 (7) > A2 (−7) > A3 (−9)


