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Vessel enhancement is an important preprocessing step in accurate vessel-tree reconstruction which is
necessary in many medical imaging applications. Conventional vessel enhancement approaches used
in the literature are Hessian-based filters, which are found to be sensitive to noise and sometimes give
discontinued vessels due to junction suppression. In this paper, we propose a novel framework for vessel
enhancement for angiography images. The proposed approach incorporates the use of line-like direc-
tional features present in an image, extracted by a directional filter bank, to obtain more precise Hessian
analysis in noisy environment and thus can correctly reveal small and thin vessels. Also, the directional
image decomposition helps to avoid junction suppression, which in turn, yields continuous vessel tree.
Qualitative and quantitative evaluations performed on both synthetic and real angiography images show
that the proposed filter generates better performance in comparison against two Hessian-based
approaches. In average, it is relatively 3.74% and 7.02% less noise-sensitive and performs 5.83% and
6.21% better compared to the two approaches, respectively.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Correct assessment, especially accurate visualization and quan-
tification, of blood vessels reflected in X-ray angiograms or angiog-
raphy images plays a significant role in a number of clinical
procedures. For various medical diagnostic tasks, it is necessary
to measure vessel width, reflectivity, tortuosity, and abnormal
branching. For example, detecting the occurrence of vessels of a
certain width may reveal the signs of stenoses. Grading of stenoses
is of importance to diagnose the severity of vascular disease and
then to determine the treatment therapy [1,2]. Moreover, planning
and performing neurosurgical procedures require an exact insight
into blood vessels and their branches, which exhibit much variabil-
ity. In planning, they provide information on where the blood is
drawn and drained to differentiate between the feeding vessel
and the transgressing vessel. While transgressing vessels need to
be preserved, feeding ones are selectively closed through the artery
in interventional neuroradiology such as brain arteriovenous mal-
formations treatment. During surgery the vessels serve to provide
landmarks and guidelines to the lesion. In short, the accuracy in
navigation and localization of clinical procedures is determined
by how minute and subtle the vascular information is. Although
it is possible for medical experts to delineate vessels, manual delin-
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eation of the vasculature becomes tedious or even impossible
when the number of vessels in an image is large or when a large
number of images is acquired. Therefore, the development of auto-
matic and accurate vessel-tree reconstruction from angiograms is
highly desirable. Unfortunately, it has proven to be a challenging
task. The key fact is that vessels cannot be characterized uniformly.
Because the blood either by itself or by the contrast agent it carries
is responsible for the vessel contrast to the background, large ves-
sels usually have high contrast while small ones resemble the
background (see Fig. 1a). Non-uniform illumination as shown in
Fig. 1b, which is one of the major sources of angiography image
degradation [3], is also a hindrance for accurate reconstruction be-
cause it is likely to make an individual vessel broken into several
segments. According to [4,5], current automatic computer-assisted
procedures are still far from providing a precise spatial representa-
tion of the vessel tree.

In order to achieve an accurate vessel-tree reconstruction, the
vessel enhancement procedure, which is the main issue of this pa-
per, is an important preprocessing step. There are a variety of ves-
sel enhancement methods in the literature. Some works have taken
linear filtering approach. Poli and Valli [6] proposed a computa-
tionally efficient algorithm based on a set of linear filters, obtained
as linear combinations of properly shifted Gaussian kernels, sensi-
tive to vessels of different orientation and radius. Another type of
linear filters, the morphological connected-set filter, was utilized
by Wilkinson and Westenberg [7] to capture filamentous
structures. Together with a shape criterion that can distinguish
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Fig. 1. Angiography images with typical hindrances for accurate vessel-tree
reconstruction such as (a) low-contrast vessels and (b) non-uniform illumination.

filamentous structures from others, connected-set filters can help
to extract filamentous details without distortion. Similarly, Eiho
and Qian [8] and Zana and Klein [9] used morphological operators
such as erosion, dilation, and Top-Hat to enhance the shape of the
artery and remove other points. However, these methods were un-
able to suppress sudden noise and edge noise and were less effi-
cient on capillaries. A different linear filtering approach which
combined Laplacian filter with fuzzy logic was presented by Yan
et al. [10]. Small vessels were not captured satisfactorily by this ap-
proach either.

Non-linear anisotropic filtering has also been applied to vessel
enhancement [11-13]. This method searches for the local orienta-
tion of a vessel to perform anisotropic smoothing without blurring
its edge. While Krissian et al. performed a particular version of
anisotropic diffusion, Orkisz et al. used a kind of filter bank called
“sticks”, which can be seen as a set of directional structuring ele-
ments. Similar approaches were also proposed by Czerwinski
et al. [14,15], Kutka and Stier [16], Chen and Hale [17], and Du
et al. [18,19]. The last two combined the outputs of directional
operators without an explicit extraction of the vessel local orienta-
tion. The main disadvantage of the methods in this category is that
they can hardly detect vessels in a wide range due to the fixed scale
analysis. Although they can be extended to multiple scales by using
sticks of variable length, the computation time would increase very
much.

Hessian-based multiscale filtering has been proposed in a num-
ber of vessel enhancement approaches [20-25]. One advantage of
the approaches in this category is that vessels in a large range of
diameters can be captured due to the multiscale analysis. In these
methods, an input image is first convolved with the derivatives of a
Gaussian at multiple scales and then the Hessian matrix is ana-
lyzed at each pixel in the resulting image to determine the local
shape of the structures at that pixel (see Fig. 2a). The ratio between
the minimum and the maximum Hessian eigenvalues is small for
line-like structures but it should be high for blob-like ones. Specif-
ically, Krissian et al. [26] introduced several models of vessels and
used the Hessian eigenvalues to define a set of candidate pixels

which could be the centerlines of vessels. At each of these candi-
dates, pre-defined multiscale response functions were computed
to determine the likelihood of the pixel corresponding to vessels
of different scales (radii). The drawbacks of the Hessian-based ap-
proaches are that they are highly sensitive to noise due to the sec-
ond-order derivatives and that they tend to suppress junctions
since junctions are characterized same as the blob-like structures.
Junction suppression leads to the discontinuity of the vessel net-
work, which is of course undesirable. To deal with this problem,
Agam et al. [27] proposed a filter model which is based on the cor-
relation matrix of the regularized gradient vectors (first-order
derivatives), to avoid the need for second-order derivatives as
demonstrated in Fig. 2b. This model generated good performance
when dealing with thoracic CT images. However, when dealing
with angiography images, which are more noisy and suffer from
the non-uniform illumination, it shares the same limitations of
Hessian-based filters in finding small and low-contrast vessels.
The reason is that it is still using the Hessian eigenvalues to pre-se-
lect the vessel-candidate pixels at which the filter is applied.

In this paper, we propose a new framework for the vessel
enhancement filter utilizing the directional information present
in an image. This study focuses on the processing of 2D images
such as X-ray angiography and retinal photography images. In such
applications as intervention planning, blood vessel and retinal
pathology, blood-flow analysis, or drug evaluation, 2D imaging is
often the method of choice since it provides sufficiently good re-
sults although 3D imaging techniques would provide more infor-
mation. The proposed approach alleviates the calculation of the
Hessian eigenvalues in noisy environment. Specifically, the input
image is first decomposed by a decimation-free directional filter
bank (DDFB) into a set of directional images, each of which con-
tains line-like features in a narrow directional range. The direc-
tional decomposition has two advantages. One is, noise in each
directional image will be significantly reduced compared to that
in the original one due to its omni-directional nature. The other
is, because one-directional image contains only vessels with simi-
lar directions, the Hessian eigenvalue calculation in it is facilitated.
Then, distinct appropriate enhancement filters are applied to en-
hance vessels in the respective directional images. Finally, the en-
hanced directional images are recombined to generate the output
image with enhanced vessels and suppressed noise. This decompo-
sition-filtering-recombination scheme also helps to preserve junc-
tions. The experimental results show that our approach is less
noise-sensitive, can reveal small vessel network, and avoid junc-
tion suppression.

The paper is organized as follows. In Section 2, we introduce the
DDFB and discuss about the mathematical model of vessels while
Section 3 describes our approach in details. Experimental results
on synthetic data sets and real angiography and retinal photogra-
phy images are shown in Section 4. Finally, conclusion is made
after some discussions in Section 5.

Image Multi-scale Hessian eigenvalue Enhancement
acquisition convolution analysis filter
Image Regularized Orientation Iterative eigenvalue- Enhancement
acquisition gradient vectors consistency process calculation filter

Fig. 2. Block diagrams of (a) conventional Hessian-based and (b) correlation-based approaches.
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2. Methodology

In this section, we briefly describe the directional filter bank
(DFB) and its adapted version, the DDFB which is used in our pro-
posed framework. The mathematical background for a vessel mod-
el on which the enhancement filter is based is also introduced.

2.1. Directional filter bank

DFB was originally proposed by Bamberger and Smith [28]. It
was shown that DFB can decompose the spectral region of an input
image into n=2% (k=1,2,...) wedge-shaped like passbands which
correspond to linear features in a specific direction in spatial do-
main. Initially, DFB was designed to provide image compression
[29]. Later on in [30,31], it was used in collaboration with direc-
tional energy for image enhancement purpose. Recently, in [32],
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DFB and directional energy were tuned to provide fingerprint
recognition.

Outputs of DFB were named as subbands. One major drawback
of original DFB proposed in [28] is that subbands become visually
distorted due to aliasing. One possible solution was provided by
Park et al. [33], where it was pointed out that aliasing was pro-
duced due to non-diagonalization of overall downsampling matrix.
Then the authors proposed in [34] a new DFB structure as follows.

2.1.1. First stage of DFB

Construction of the first stage of DFB requires a pair of dia-
mond-shaped like passband filters, Ho(w{, ;) and Hq(wq,@3), a
modulator, and a Quincunx downsampling matrix as shown in
Fig. 3a, where @ = (w;,,)" is a pair of 2D Fourier frequency vari-
ables. Modulator used in this stage shifts frequency spectrum of an
input image by 7 in any of the two directions. In this structure, Q is
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Fig. 3. The DFB structure in [34]. (a
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a) First stage, (b) second stage, and (c) third stage. Subbands produced by the first stage are used as input to the second stage and so on. The

size of subbands is smaller than that of the original image, which is good for image compression but causes problems for image analysis.
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a Quincunx non-separable downsampling 2 x 2 matrix which not
only downsamples but also rotates the image at an angle of 45°.

2.1.2. Second stage of DFB

Requirements for construction of the second stage of DFB are
same as those for the first one. Subbands produced by the first
stage are used as input to the second stage. Fig. 3b shows the spec-
tral geometry of subbands created by the second stage. It is evident
that these subbands have a parallelogram-shaped geometry.

2.1.3. Third stage of DFB

The additional requirements for construction of the third stage
(see Fig. 3c) as compare to the first and second are resampling
matrices and post-sampling matrices. Resampling matrices R; are
used to map parallelogram-shaped passbands to diamond-shaped
passbands and post-sampling matrices to convert the overall
non-diagonal sampling matrix to the diagonal one.

2.2. Decimation-free directional filter bank

Another disadvantage of DFB is that the subbands are smaller in
size as compare to the original image. The reduction in size is due
to the presence of decimators. As far as image compression is con-
cerned, decimation is a must condition. However, when DFB is em-
ployed for image analysis purposes, decimation causes two
problems. One is, as we increase the directional resolution, spatial
resolution starts to decrease [35], due to which we loose the corre-
spondence among the pixels of DFB outputs. The other is, an extra
process of interpolation is involved prior to enhancement or recog-
nition computation [31,36,32]. This extra interpolation process not
only affects the efficiency of whole system but also produces false
artifacts which can be harmful especially in case of medical imag-
ery. Some vessels may be broken and some can be falsely con-
nected to some other vessels due to the artifacts produced by
interpolation. So a need arises to modify directional filter bank
structure in a sense that no decimation is required during analysis
section. To meet that need, the authors in [37,33] presented new
rules to modify DFB. Based on those rules, we suggest to shift the
decimators and resamplers to the right of the filters to make a
decimation-free directional filter bank (DDFB), which yields direc-
tional images rather than directional subbands. This consequently
results in elimination of interpolation and naturally fits the pur-
poses of feature analysis. The block diagram of DDFB structure is
shown in Fig. 4.

2.2.1. First stage of DDFB

Construction of the first stage of DDFB only requires two filters
which are Hgo(wq,2) and Hyy(wq,w;). They have hourglass-
shaped like passbands as shown in Fig. 4a. Hourglass-shaped filters
are created by shifting the modulators present at the first stage of
DFB to the left of filters using rules proposed in [31]. So the inter-
relation between filters used during the first stage of DFB and that
of DDFB can be given as

a

H(RiQTQ oy, o2))

Fig. 4. DDFB structure. (a) First stage, (b) second stage, and (c) third stage. DDFB
provides directional images of same size as the original image, which fits the
purposes of image analysis.

Hyo(w1, 2) = Ho(w1 4+ T, 12), (1)
Hyi (w1, @2) = Ho(w1, 0, 4 T0), 2)

where Ho(w1,®5) is a diamond-shaped passband filter used during
the first stage of DFB. No downsampler is applied after the input im-
age is filtered by Hoo(w1,>) and Hy;(w1, ). By doing so, the size
of outputs from the first stage becomes equal to the size of input

._|Huotﬁ)|—o—| 1Q |—o<—>~—| 1Q |_._.| H(T) '_.

S T SRS g S o B
b

Fig. 5. Rules used in this paper to shift resampling and downsampling matrix to right.
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image. Due to this reason, these outputs are named as directional
images.

2.2.2. Second stage of DDFB

The filters required for the construction of the second stage are
Hoo(Q (1, m2)) and H11(Q"(w1,® »)), where T represents transpose
and Q is same as the Quincunx downsampling matrix in the first
stage of DFB. Basically the Q, which should have been in the first
stage of DDFB, was shifted to the right of the second stage filter
using Fig. 5. Filters of this stage of DDFB can be related to filters
of that of DFB by the following equations:

Hoo(Q"(1,32)) = Ho(Q" (w1 + T, ), 3)
H11(QT(CO1,602)) = Ho(QT(CUhCOz + 7). 4)

Directional images obtained from the first stage of DDFB are filtered
through these two filters. No further operation is required at the
end of this stage. Spectral regions of directional images obtained
after filtering through this stage’s filters are shown in Fig. 4b.

2.2.3. Third stage of DDFB

Filters used during the third stage of DDFB are Hgo(wl ,>) and
H§1(a)1,w2), where i=1,2,3, and 4 as shown in Fig. 4c. Overall
eight different filters are created to be used during this stage.
Mathematically this stage of DDFB can be related to that of DFB as

Hig(1,02) = Ho (RIQ'Q (1 + T, ) (5)
Hiy (o1, 02) = Ho(RIQQ (@1, 00 + ), (6)

where R; and Q are, respectively, the same resampling and down-
sampling matrices as used in DFB.

Basically, we have shifted all the modulators, the downsamplers
and resampling matrices present in DFB to the right of all the
filters. So, at the end of the third stage we will be left with two
downsampling matrices, one resampling matrix followed by the
post-sampling matrix. We do not apply these matrices onto our
directional images. Directional images present at the third stage
of DDFB are visually correct as no downsampling was applied to in-
put image during the whole structure of DDFB. Fig. 6 demonstrates
eight-directional images obtained by applying DDFB on the origi-
nal image shown in Fig. 1b with n=8 (i.e., k= 3).

Although we described eight-band DDFB, it can be extended to
16-band and 32-band DDFB and so on. For this extension to take
place, we can take advantage of simple extension rules for DFB
as described in [38]. For a given application, to decide how many
directional images are needed, we assess how much directional
resolution we are in need of, at the cost of additional computation.
In our angiogram enhancement, we found 16-directional decom-
position a good compromise between directional resolution and
computational cost.

Furthermore, the 2D DDFB can be extended to 3D DDFB on the
same lines as 2D DFB being converted to 3D DFB as an optimum
three-dimensional matched filter for linearly moving objects in
noise. More details can be found in [38] where the 3D DFB is re-
ferred to as velocity selective filter bank (VSFB) for emulating the
behavior of the spatio-temporal continuous wavelet transform
(CWT) that has proven useful for motion estimation [39,40]. The
VSFB approach offers a computational advantage over direct
implementation of the CWT in the sense that it exploits the tempo-
ral information in addition to 2D spatial coordinates which is crit-
ical in some real world applications.

2.3. A comparative analysis between DDFB and DFB

We have avoided the aliasing present in DFB by shifting of
resampling and downsampling matrices to the right. Doing so we

are able to get directional images of the same size as the original
image. One of the main advantages of DDFB is that due to absence
of aliasing, directional images are visually correct.

In previously proposed DFB, spatial resolution decreases at least
as fast as the directional resolution increases. The more one knows
about the orientation of a feature, the less he knows about its
length and vice versa [35]. However, in DDFB, there is no interde-
pendency between the length and orientation of the feature. This
means that increasing directional resolution does not affect spatial
resolution. Although in DDFB no downsamplers are employed at
all, complexity will be higher due to the increased data size. Nev-
ertheless, artifacts due to aliasing are avoided in reconstruction.
This is important in medical images as some aliasing artifacts can
be misleading.

In DDFB, since directional images are of same size as the origi-
nal image, no interpolation step to establish one-to-one pixel cor-

Fig. 6. Eight-directional images of the angiography image shown in Fig. 1b after
applying DDFB with n = 8. (a) Corresponds to orientations in the range 45-67.5°, (b)
67.5-90°, () 90-112.5°, (d) 112.5-135°, (e) 135-157.5°, (f) 157.5-180°, (g) 0-22.5°,
and (h) 22.5-45°.
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respondence is needed like in DFB. As a result, DDFB avoids false
artifacts produced during interpolation in subbands.

The synthesis section of DFB requires exactly the reverse pro-
cess of the analysis section. In contrast, at any stage in DDFB, syn-
thesis can be achieved by the simple addition of directional images.
So the overall process of synthesis section is simplified in DDFB.

2.4. Vessel model

An intensity image I(p), where p = (x,y), can be approximated by
its Taylor expansion about a point pg up to the second order

1(p) = 1(po) + AD" - Vi(po) + 2 AH(I(po)) A, )
Ap =p - po, (8)

where VI(po) and H(I(po)) are, respectively, the gradient vector and
the Hessian matrix at point po.

Without loss of generality, we assume that in 2D X-ray angiog-
raphy images, vessels are bright over the dark background and the
brightness is decreased from their centers toward their boundaries.
Therefore, a vessel is modeled as a tube with a Gaussian profile
across its axis, which is identical to the x-axis

hiey) = grze 7 )
In Hessian-based vessel enhancement approaches, a vessel is de-
clared when the ratio between the minimum and maximum Hes-
sian eigenvalues is low. Its direction is considered to be the
eigenvector corresponding to the smallest eigenvalue in absolute
value.

The Hessian of the above model can be expressed as

Pl Zh 0 0

X2 x9
H= % (321;‘), = |:0 yzo:l(ré IO:| (10)

axdy  oy? 0
and its eigenvalues and eigenvectors

y:-a3
/11 :O; )»2 :—Io,
7

vi=(1,0); v;=(0,1). (11)

In order to capture vessels with various sizes, one should compute
the gradient and the Hessian at multiple scales ¢ in a certain range.
In this case, the only way to ensure the well-posed properties, such
as linearity, translation invariance, rotation invariance, and re-scal-
ing invariance, is the use of linear scale space theory [41,42], in
which differentiation is calculated by a convolution with derivatives
of a Gaussian

I =0"Geo 51, I, =0"Gyp 51, (12)

where I, and I, are, respectively, the spatial derivatives in x- and y-
direction of the image I(x,y) and G, and G, spatial derivatives of a
Gaussian with standard deviation o
G (%,) =5m028 - (13)
The parameter y was proposed by Lindeberg [42,43] to normalize
the derivatives of the image. This normalization is necessary for
comparison of the response of differentiations at multiple scales be-
cause the intensity and its derivatives are decreasing functions of
scale. In vessel enhancement application, where no scale is pre-
ferred, y is usually set to one.

When applying the multiscale analysis, the model in (9) is con-
volved with a Gaussian of standard deviation . The derivations in
(10) and (11) are still correct except that oo is replaced with

0% + 0. We can see from those derivations that at pixels inside

the vessel (y? < 63), we have one negative eigenvalue correspond-
ing to the eigenvector orthogonal to the axis of the vessel. The
other eigenvalue, which is smaller in absolute value, associates
with the eigenvector having the same direction as the vessel axis.
Note also that in this case, when the vessel direction (v;) is aligned
with the x-axis, the eigenvalues of Hessian are same as its diagonal
values. This fact has been exploited in our work to compute the
Hessian eigenvalues with less noise sensitiveness compared to
the normal way. Details of the proposed approach, named as
DFB-based vessel enhancement filter, are described as follows.

3. DFB-based vessel enhancement filter

The proposed method consists of three steps, as shown in Fig. 7:
Step 1: construction of directional images, Step 2: vessel enhance-
ment, and Step 3: recombination of enhanced directional images.

3.1. Construction of directional images

An angiography image, in which vessels can be modeled as
piece-wise line-like segments, could be an appropriate candidate

Input image

Construction of

directional images

Homo- Homo- Homo- Homo-
morphic morphic morphic morphic
filter 1 filter 2 filter 3 filter n

I Iz

Enhance- Enhance- Enhance- Enhance-
ment ment ment ment
filter 1 filter 2 filter 3 filter n

. : ; ;

Recombination of enhanced directional images

Output image

Fig. 7. Block diagram of the proposed enhancement framework. There are three
main steps: construction of directional images, vessel enhancement, and recombi-
nation of enhanced directional images.
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for the decomposition using DDFB. Specifically, the input image is
decomposed to n=2* (k=1,2,...) directional images T;. The moti-
vation here is to detect thin and low-contrast vessels (which are
largely directional in nature) while avoiding false detection of
non-vascular structures. Directional segregation property of DDFB
is helpful in eliminating randomly oriented noise patterns and
non-vascular structures which normally yield similar amplitudes
in all directional images (see Fig. 6).

Before these directional images are enhanced in the next step,
they are utilized to efficiently remove non-uniform illumination
(NUI), which limits the correct vessel enhancement as introduced
in Introduction. One conventional approach to correct NUI is to di-
rectly apply homomorphic filtering [44] on the original image. A
general image can be characterized by two components: (1) the
illumination component, which changes slowly in a neighborhood
due to light source characteristics and thus is low-frequency and
(2) the reflectance component, which is determined by the amount
of light reflected by the objects and therefore is high-frequency.
The homomorphic filter is to suppress the low-frequency compo-
nent while enhance the high-frequency one. However, the direct
application of homomorphic filtering is sometimes unsatisfactory
because it may enhance high-frequency background noise as can
be seen in Fig. 8a. Tuning the filter parameters in this case suffers
from a compromise: the more NUI is removed, the more back-
ground noise is enhanced. Differently, we propose employing a
homomorphic filter matched with its corresponding directional
image as shown in the dash-boundary box in Fig. 7. This new
arrangement provides us a better control on the parameters of
individual homomorphic filter. For the sake of comparison, we
show the recombination of directional homomorphic filtered
images in Fig. 8b. The image is now largely uniformly illuminated
without unexpected noise amplification.

3.2. Vessel enhancement

As pointed out in Section 2.4, in order to compute the Hessian
eigenvalues with less noise sensitiveness, it is necessary to align
the vessel direction with the x-axis. One possible way is to rotate
the directional images. Nevertheless, image rotation requires inter-
polation which is likely to create artifacts and thus is harmful espe-
cially in case of medical imagery. We therefore rotate the
coordinates rather than the directional images.

Suppose the directional image I; (i=1,...,n) corresponds to the
orientations ranging from 0; min to 0;max (counterclockwise angle).
Its associated coordinates Oxy will be rotated to Ox’y’ by an amount
as large as the mean value 0;

_ ei.min + Hi.max
72 .

0; (14)

Fig. 8. Results of NUI removal for the image in Fig. 1b using homomorphic filter. (a)
Direct filtering on the original image and (b) filtering on directional images and
then recombining them. The former amplifies background noise whereas the latter
does not.

According to (A-1)-(A-2) in the Appendix, Hessian matrix of the
directional image [; in the new coordinates Ox'y’ is determined as

%I %l

, [hu hi Wy

H=lpm )=l 5 S| (15)

Wy y?

where

%L L . %l .

W’;:W; cos? 0; +W sin (26;) +WZI sin” 0, (16)

L % . %

W’zl = WZI sin? 0; — —6xa;/ sin (20;) + WZ’ cos? 0;, (17)
%I 1% . %I 1% .

Wy - 2% sin(26;) + oy cos(26;) + 5 R sin(20;). (18)

The Hessian eigenvalues are then defined by the diagonal values of
H'. As proven in (9)-(11), these values are

y? - (05 + %)

hi1 =0 and hy, =
11 22 (6%+0’2)2

I(x,y"), (19)
where o selected in a range S is the standard deviation of the Gauss-
ian kernel used in the multiscale analysis.

Practically, the vessel axis is not, in general, identical to the x'-

axis and so hy1 ~ 0. Inside the vessel, |y'| < /03 + 62 and thus hy,
is negative. Therefore, vessel pixels are declared when h, <0 and
|pe] < 1.

To distinguish background pixels from others, we define a
structureness measurement

C=/h +h,. (20)

This structureness C should be low for background which has no
structure and small derivative magnitude. Based on the above
observations, the vessel filter output, which is similar to that in
[20], can be defined as

I'g c
90(p) = 11(hz2) exp (—Zﬁz) {1 —exp (—zyzﬂ @1
where p=(x,y'), R = % B and y are adjusting constants, and
0 ifz=>0
= 22
1) {l ifz<0. (22)

The filter is analyzed at different scales ¢ in a range S. When the
scale matches the size of the vessel, the filter response will be max-
imum. Therefore, the final vessel filter response is

(p) = Max b, (p). (23)

One filter (23) is applied to one-directional image to enhance vessel
structures in it.

3.3. Recombination of enhanced directional images

Each directional image now contains enhanced vessels in its
directional range and is called the enhanced directional image.

Denote @(p),i=1,...,n, as the enhanced directional images. As
mentioned in Section 2.3, the synthesis of DDFB is achieved by sim-
ply summing all directional images. Thus, the output enhanced im-
age F(p) can be obtained by

Fp) = 0ip). 24)
i=1

The whole filtering procedures can be summarized as follows. First,
the input angiography image is decomposed into n=2* (k=1,2,...)
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directional images T; using DDFB. Then, n distinct homomorphic fil-
ters are employed to n respective directional images to remove non-
uniform illumination. The output uniformly illuminated directional
images I; are enhanced according to (21)-(23). Finally, all enhanced
directional images are recombined to yield the final filtered image F
as in (24).

4. Experimental results

In this section, experiments have been performed with both
synthetic images and real angiography and retinal photography
images to verify the performance of the proposed DFB-based
enhancement filter in comparison with the filters introduced by
Frangi et al. [20] and Shikata et al. [25], which are considered as
the standard techniques. In experiments using our proposed filter,
the input image is decomposed to 16-directional images (n = 16) as
a trade-off between performance and computation time. If not sta-
ted otherwise, the scale range S = {1,v2,2,2v2,4} is used for all
three models as proposed in [25]. The computation time (cpu time,
in seconds), performed on an Intel Duo Core 1.86 GHz with 1 GB of
RAM, will be given in each case.

4.1. Junction suppression

Fig. 9 shows the results of an synthetic image of size 158 x 176
which was processed by the three filter models. The synthetic im-
age is designed to contain vessels of different sizes and junctions of
different types. It is possible to see that the Frangi and Shikata fil-
ters suppress junctions while the DFB-based approach does not.
The suppressed junctions make vessels discontinuous. Although
this error may be small, it can cause the splitting of a single vessel,
which in turn has a critical effect on the vessel-tree reconstruction
accuracy.

It is the use of directional image decomposition that makes the
proposed model work. Normally, a vessel has one principal direc-
tion, which is mathematically indicated by a small ratio between
the minimum and maximum Hessian eigenvalue. Meanwhile, at
a junction, where a vessel branches off, there are more than two
principal directions, and thus the ratio of two eigenvalues is no
longer small. As a result, the Frangi and Shikata filters consider
those points as noise and then suppress them. The DFB-based ap-

Fig. 9. Vessel enhancement results. (a) The original synthetic image. (b) Enhanced
image by the Frangi method, cpu = 6.70 s, (c) by the Shikata method, 6.65 s, and (d)
by our approach, 8.44 s. The Frangi and Shikata methods suppress the junctions
while ours does not.

proach, on the other hand, decomposes the input image to various
directional images, each of which contains vessels with similar ori-
entations. Consequently, junctions do not exist in directional
images and so are not suppressed during the filtering process. After
that, due to the recombination of enhanced directional images,
junctions are re-constructed at those points which have vessel val-
ues in more than two-directional images. Therefore, junctions are
not only preserved but also enhanced in the final output image.

4.2. Noise sensitivity

To compare the performances of the filters with respect to noise
levels, we construct a set of phantom images as follows. First of all,
one original phantom image with various typical hindrances for
accurate vessel detection is created (see Fig. 10a) and later on used
as the “ground truth”. In this 512 x 512 sized phantom, fifteen ves-
sel segments are constructed for a wide range of widths and direc-
tions to model a vascular image. For the sake of description, these
segments are numbered in an increasing order from left to right
and top to bottom. Segment 1 represents distinct branch points
in a real angiography image, and Segments 4 through 7 character-
ize junctions with different widths while Segment 3 stands for ves-
sel orientation diversity. Moreover, Segments 2, 12, and 14 are
designed deliberately to have variable cross-sectional widths. In
addition, common challenges such as the presence of close parallel
vessels (Segments 8,9, and 11), very thin vessels (Segment 10), dis-
continued vessels (Segment 13), and vessels with variable intensi-
ties along their length (Segment 15) are also incorporated into the
phantom. Next, based on this original phantom, a series of testing
data are generated by adding various levels of white noise, having
standard deviation (SD) ranging from 5% to 80%. The noise SD is
calculated as a percentage of the 8-bit dynamic range of the image
(0-255). To our experience, the data with noise SD of 80% repre-
sents the most possibly challenging situation, which is well beyond
any worst case of real angiography images. Fig. 10b-d present
three samples of the testing data having noise SD of 5%, 45%, and
80%, respectively.

Fig. 10. Testing data with a size of 512 x 512 and different amount of white noise.
(a) Original phantom (obtained from www.ecse.rpi.edu/censsis/phantom). (b) Noisy
phantom with noise SD of 5%, (c) 45%, and (d) 80%. The testing data incorporate
most of the common challenges to exact vessel extraction procedure such as image
noise and presence of close parallel vessels, very thin vessels, discontinued vessels,
and vessels with variable intensities along their length.
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Fig. 11. Sample vessel enhancement results. (a) Sample phantom image with noise
SD of 10%. (b) Enhanced image by the Frangi filter, cpu = 66.42 s, (c) by the Shikata
filter, 65.86 s, and (d) by DFB-based filter, 81.27 s.

The three filters are then applied on those phantom images and
the outputs are segmented using global thresholding to compare
with the “ground truth”. The quantitative performance is mea-
sured with receiver operating characteristic (ROC) curves [45]. An
ROC curve plots the rate of pixels correctly classified as vessels
(i.e., true positive rate or sensitivity) against the rate of pixels incor-
rectly classified as vessels (i.e., false positive rate or 1—specificity).
The rates are obtained with all possible threshold choices. Each dis-
crete threshold value produces a (sensitivity, 1—specificity) pair
corresponding to a single point in the curve. The closer the curve
approaches the northwest corner, the better the filter performs. A
single scalar value reflecting this behavior is the area under the
ROC curve (AUC), which is 1 for perfect performance. Note that
to get rid of the large number of background pixels correctly clas-
sified, one can compute the sensitivity and specificity in the vicin-
ity of the “ground truth” vessels which can be obtained by dilation.
In our experiment, the vicinity size is selected such that the num-
ber of background pixels is comparable to that of the vessel pixels.

Fig. 11 shows sample enhancement results for the data with
noise SD of 10%. The performances of the three filters applied on
the whole testing data set are presented in Fig. 12. In this figure,
the AUC measures are plotted as a function of the noise SD. We
can see that the DFB-based filter outperforms the others for this
data set. Specifically, compared to the Frangi filter, it generates
similar results in case of low noise (i.e., SD of 5-10%) but performs
much better when the noise level increases.

4.3. Real data

Similar to junction suppression problem, small vessel enhance-
ment is critical because those thin vessels which may appear broken
or disconnected from larger structures will often be omitted in the
reconstruction procedures. Fig. 13 shows the enhancement results
of the three filters applied on two real angiography images. The
images are of size 401 x 401 and belong to cardiac part of the human
body. As can be observed, the Frangi filter gives good results with
large vessels but fails to detect small ones while the Shikata model
is able to enhance small vessels but unfortunately enhances back-
ground noise also. Conversely, the DFB-based filter can enhance
small vessels with more continuous appearances.
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Fig. 12. Performance plots vs. noise levels for the testing data described in Fig. 10.
In average, the AUC of DFB-based filter is relatively 3.74% and 7.02% larger than that
of Frangi and Shikata filters, respectively.

Due to lack of ground truths for the above images, we leave them
as qualitative results but instead utilize the Utrecht database! to
quantitatively evaluate the three filters on real medical images. This
database contains 40 retinal color images of size 584 x 565 and their
corresponding vasculatures manually segmented by an expert, which
are used as ground truths. In this experiment, the negative of the green
channel of the image is used (see e.g., Fig. 14a and f). The green channel
is selected since it gives the highest contrast and it is made negative
because the filters assume that vessels are brighter than the back-
ground as stated in Section 2.4. Since vessels in these images are rela-
tively small, the scale range S = {v2/2,1,v2,2,2v2} is used. The
validation process is performed same as in Section 4.2.

Fig. 14 shows for the results with highest and lowest AUC mea-
sures. The performances of the three filters for the whole database
are presented in Fig. 15 and the mean and standard deviation are
given in Table 1.

To evaluate the noise sensitivity of the filters for retinal images,
we create a testing data set similar to the previous section. Here,
we use 40 ground truths of the Utrecht database as original phan-
tom images; each is added with noise having SD ranging from 5% to
80%. By this way, we will have several images per noise level.
Fig. 16 plots variation ranges of AUC per every noise level. Again,
it can be seen that the DFB-based filter is least sensitive to noise
among the three filters.

5. Discussions and conclusion

We have presented in this paper a novel approach of vessel
enhancement for 2D angiography images by using directional
decomposition. Our main contribution resides in adapting the Hes-
sian-based filters to be used in the directional images. In particular,
this permits the estimation of the vessel directions without the
Hessian eigen-analysis. The advantage of the proposed approach
is that it distinguishes all vessels at bifurcations and crossings. At
these configurations, one will obtain different vessel directions
and thus different second derivatives that are different from the
Hessian eigenvalues (of the original image).

The larger the number of directional images n, the smaller the
directional range and as a result the more accurate the eigenvalue
estimation is, at the cost of the computation time. While the cpu
time increases rather linearly with n, the performance does not in-

1 Available at http://www.isi.uu.nl/Research/Databases/DRIVE/.
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Fig. 13. Qualitative results for two cardiac angiography images. (a and e) Original images, (b and f) enhanced images by Frangi method, cpu =43.22 s each, (c and g) by
Shikata method, 43.11 s, and (d and h) by DFB-based approach, 49.08 s. The Frangi and Shikata models fail to correctly enhance small vessels but our approach succeeds.
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crease as much. A pilot experiment showed that our filter with
n=16 performed about 4% better than that with n=8 but the
cpu time almost doubled. Also, it can be seen from the previous
section that the cpu time of the DFB-based filter with n=16 is
comparable to those of the Frangi and Shikata filters (e.g., respec-
tively, 93's, 87 s, and 85 s for a retinal image of size 584 x 565).
With those remarks, we use n =16 rather than 32 or higher be-
cause the benefit on the relatively small performance gain is not
worth the cost of much more computation time.

Another advantage of the DFB-based approach is the NUI re-
moval using homomorphic filters on directional images. Looking
at the dark disks in the retinal images in Fig. 14a and f, we can

Shikata results

(h) AUC=0.858

Fig. 14. Best and worst results for the Utrecht database in terms of AUC measures. For each image, the Frangi method cpu = 87.02 s, Shikata 85.55 s, and DFB-based 93.46 s.

DFB-based results Ground truths

(i) AUC=0.923

see that the DFB-based filter can reduce these artifacts compared
to the two other filters. Also, it has removed the bright blob at
the center of the image in Fig. 14a whereas the others could not.

The experimental results show that the DFB-based filter over-
comes the limitations of conventional Hessian-based methods
such as junction suppression and noise sensitivity. It also performs
better on real angiography images. In conclusion, we consider the
proposed DFB-based filter a better candidate for pre-processing in
an accurate vessel-tree reconstruction in clinical tasks.

Although in this work, we restrict ourselves to 2D images, the
proposed approach can be extended to deal with 3D images by
extending DDFB to 3D, which is our future work. The 2D-to-3D
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Fig. 15. Performance plots vs. sample number for the Utrecht database. The mean and SD of these measurements are given in Table 1. In average, the DFB-based filter is 5.8%

and 6.2% better than the Frangi and the Shikata filters, respectively.

Table 1
Mean and SD of the AUC of the three methods performed on the Utrecht database
Frangi Shikata DFB-based
Mean 0.8994 0.8970 0.9519
SD 0.0162 0.0152 0.0060
DFB-based
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Fig. 16. Mean and SD bar plots of AUC vs. noise levels for 40 noise-added ground
truths of the retinal images. In average, the AUC of DFB-based filter is relatively
3.47% and 2.36% larger than that of Frangi and Shikata filters, respectively.

DDFB extension can be done on the same lines as 2D DFB being
converted to 3D DFB as described in [38]. Another aspect of future
study will be on the clinical usage of the proposed technique.
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Appendix. Hessian matrix in new rotated coordinates
Given a function f(x,y) in the coordinates Oxy. Suppose that:

(1) Hessian matrix H of f{x,y)

o o

H— X2 oxdy
- o*f f
oy o2

is known a priori.
(2) The coordinates Oxy is rotated to Ox’y’ by an counterclock-
wise angle 0 (see Fig. A-1).
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Let us compute the Hessian matrix H’ of f in Ox'y’

Lol T
r ox2 oX'dy’
H=lo o
woy  oy?
We have
{x} _ {cosﬁ fsine} {x’} _ {x’cosﬁfy’sine
y]  |sin@ cos6 ||y ] |xsin6+y cos6
Thus,
of ofox of oy of of
W xox @&_ax 059+@sm9
E af aX+af & af(—sin())—s—gcosa
gy oxoy oyody ox oy
Then

fxi{:i<%) f§[°f cosf+ cos()]

ox’

*f ?f D 3 ?f @ -
= cos [on a axe{y aﬂ +sin 0[ y£ ailf aye); eﬂ (A-1)
= 2L cos? 0+ 2L sin (20) + & sin” 0.
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of _0f o o
— n’ 0 — —2 sin (20) + — cos> 0, A-2
¥ e’ axdy S (26) + 52 (A-2)
and
2L=2 (%) =& [Z{(( sin6) + < cos 0]
*f o ?f 3 Pf 3 Pf @ _
= {ax{ ;;):' axafy ai"] +cos0 {Fvyﬂfx ﬂ% + ﬁ a){'] (A-3)
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