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Automatic bone segmentation of computed tomography
(CT) images is an important step in image-guided
surgery that requires both high accuracy and minimal
user interaction. Previous attempts include global
thresholding, region growing, region competition, wa-
tershed segmentation, and parametric active contour
(AC) approaches, but none claim fully satisfactory
performance. Recently, geometric or level-set-based
AC models have been developed and appear to have
characteristics suitable for automatic bone segmenta-
tion such as initialization insensitivity and topology
adaptability. In this study, we have tested the feasibility
of five level-set-based AC approaches for automatic CT
bone segmentation with both synthetic and real CT
images: namely, the geometric AC, geodesic AC,
gradient vector flow fast geometric AC, Chan–Vese
(CV) AC, and our proposed density distance augmented
CV AC (Aug. CV AC). Qualitative and quantitative
evaluations have been made in comparison with the
segmentation results from standard commercial soft-
ware and a medical expert. The first three models
showed their robustness to various image contrasts,
but their performances decreased much when noise
level increased. On the contrary, the CV AC’s perfor-
mance was more robust to noise, yet dependent on
image contrast. On the other hand, the Aug. CV AC
demonstrated its robustness to both noise and contrast
levels and yielded improved performances on a set of
real CT data compared with the commercial software,
proving its suitability for automatic bone segmentation
from CT images.
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INTRODUCTION

A long with the advancements in medical imag-
ing modalities, such as ultrasound, magnetic

resonance imaging (MRI), and computed tomogra-
phy (CT), medical image analysis has drastically
increased its importance in clinical procedures.1

Current research works can be classified into four

categories according to their purposes: enhancement,
registration, visualization, and segmentation of the
images. Image enhancement2 deals with yielding
more accurate images with improved contrast and
reduced noise. Image registration3 is an essential
technique for multimodality imaging where MRI,
single photon emission CT, positron emission
tomography, or angiography could be registered to
each other to complement information. For instance,
the complementary information, such as soft-tissue
information from MRI, could be added to CT or
vascular data to the anatomical MRI. Image
visualization4 is used to provide more effective
viewing of complex structures or information of the
human body. Image segmentation deals with an
extraction of targeted regions of interest from the
original image with minimum human interaction.
Nowadays, due to increasing computing power, a
combination of these research topics is integrated
into the computer-aided surgery planning or the
image-guided surgery system.1

In computer-assisted orthopedic surgery, auto-
matic image segmentation, especially automatic
bone segmentation from CT imagery, is a critical
but challenging component. The challenges are
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twofold: in developing good segmentation algo-
rithms and in automating them. The former has
three main hindrances: (1) inhomogeneous bone
structures, (2) low-contrast edges, and (3) over-
lapping intensity values of bones, whereas the
latter is even more challenging because it requires
high performance to be obtained with minimal
user interactions, such as image-dependent initial-
ization or prior information about the number of
bones and/or their shapes. Inhomogeneous regions
are due to the nature of the bone structure in which
the outer layer (i.e., cortical bone) is denser than
the inner one (i.e., spongy bone). As a result, the
cortical bone appears brighter in CT images while
the spongy bone is darker and sometimes textured.
Moreover, during the image acquisition process,
small gaps can exist in the bone surfaces where
blood vessels go through. Also, when the bound-
aries of two bone regions are close to each other,
they tend to be diffused, making the background
pixels between them brighter and, thus, lowering
contrast. The boxes in Figure 1 indicate these
challenging characteristics.
There have been several attempts, including

global thresholding, region growing,5 region com-
petition,6 atlas-based,7 artificial intelligence, wa-
tershed segmentation approaches, and various
combinations thereof, as surveyed in.8,9 Most of
the methods have shown success in certain
anatomical structures where they have been opti-
mized, such as carpal bones,9 acetabulum and
femoral head,10 spinal canal,11 pelvis,7,12 verte-
brae,13 ribs,14 and phalanx bones.15 In,8 two
methods were validated on knee bone segmenta-
tion, which is also the subject of this study. The
first one was a four-step process16 that contains
region-growing using local adaptive thresholds,

discontinued-boundary closing, anatomically ori-
ented boundary adjustment, and manual correction.
The other one was a seeded edge-detection and
tracing algorithm12 where initial seeds were obtained
by thresholding in intensity histograms. The afore-
mentioned methods often require several steps with
certain degrees of user interaction; additional tasks
are especially needed to close discontinued object
boundaries.
On the other hand, since it was first introduced

by Kass et al.,17 the deformable curve or snake or
active contour (AC) model has attracted much
attention in the image segmentation research com-
munity. In general, AC models are the descriptions
of contours in 2D or surfaces in 3D that evolve under
an appropriate energy to move toward desired
features, such as object boundaries. One advantage
of these models is that they are always closed,
yielding continuous object boundaries, which no
longer requires postprocessing tasks to connect
discontinued ones. However, because their perfor-
mance depends heavily on the initial contour and
image noise, many modified versions have been
proposed to cope with bone segmentation. In,18 the
authors incorporated region-based image features to
the snakes model of Kass et al.,17 which was edge-
based, to improve its convergence and dependence
on initial position and to reduce its sensitivity to
noise. Sharing the same idea, Pardo et al.,19

introduced new region potential term that did not
rely on prior knowledge about image statistics.
Although the integration of edge and region infor-
mation made the model more robust to noise and
permitted a more precise segmentation of bones, the
automatic selection of relative weighting between
edge and region terms remains an unsolved problem.
In another work,9 Sebastian et al. combined conven-

a b c

Fig 1. Typical CT bone images with challenging obstacles for accurate segmentation such as a weak edges, b gaps and texture areas,
and c blurred interbone regions as indicated with boxes.
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tional approaches, such as bubble ACs,20 region
growing, region competition, and morphological
operations, in a unified framework. Specifically,
from initialized seeds, region growing took place
under the evolution implementation of bubbles. The
growth of seeds was also modulated by the interseed
skeleton-mediated competition between neighbor
regions. The method inherited the advantages of
each individual approach to overcome the discretiza-
tion drawbacks of the region competition method,
the convergence problems, and initial placement
sensitiveness of curve evolution methods. Never-
theless, it had limited performance in the case of
narrow and diffused interbone spaces. Ballerini
and Bocchi21 proposed the use of multiple genetic
snakes whose energy minimization was based on
the genetic algorithms, which helped to tackle the
initialization problem. However, the method re-
quired much user interaction in determining the
energy weights and the functionals governing the
snake behavior.
Although those modified AC models can over-

come the drawbacks of conventional ones in some
particular situations, they are still far from the
automatic bone segmentation procedure that requires
high accuracy, initialization insensitivity, and topol-
ogy adaptability (i.e., automatic splitting and merg-
ing ability to capture multiple objects). In this study,
we evaluate five recently developed AC models,
namely, the geometric AC,22 the geodesic AC,23 the
gradient vector flow (GVF) fast geometric AC24

(GVF-Geo AC), the Chan–Vese (CV) AC,25,26 and
the density distance augmented CV AC (Aug. CV
AC), which was developed by us,27 in extracting
knee bones from CT images in comparison against
3D-DOCTOR software,1 which is considered as a
semiautomatic method. We do not consider other
models that incorporate prior knowledge about
object shape28,29,30 or texture31 since they require a
training stage and, thus, are hardly automated and
cannot be fairly compared. Our motivation here is
to find the most appropriate technique that produces
the highest segmentation accuracy with the least
amount of user interaction. From a clinical per-
spective, the development of such an algorithm is

of great value since it can significantly reduce the
amount of time a practitioner spends on inspecting
andmodifying the results of a more-or-less automatic
segmentation. Knee bones are chosen as the region
of interest because they have all the segmentation
challenges described above. Together with both
qualitative and quantitative evaluations on real CT
images, the influences of noise and contrast are also
investigated with simulated data. Our evaluation
results indicate that the Aug. CVACmodel produces
superior segmentation results with strong feasibility
for automatic bone segmentation.

MATERIALS AND METHODS

AC Models

The five models used in this study are geomet-
ric-type ACs, which are based on the theory of
curve evolution32 and the level-set framework.33,34

In this framework, the curve C is implicitly
represented by the zero-level set of a Lipschitz
function , which is usually defined as a
signed distance function such that

C ¼ x 2 �:� xð Þ ¼ 0f g;
inside Cð Þ ¼ x 2 �:� xð Þ G 0f g;

outside Cð Þ ¼ x 2 �:� xð Þ > 0f g

8<
: ð1Þ

where is the image plane. The main idea
is to evolve the embedding functionϕ and keep track
of its zero-level set. The function ϕ moves up and
down on a fixed coordinate systemwithout changing
its topology, but its zero-level set corresponding to
the contour C may split or merge. This is an
advantage of level-set-based ACs since their topol-
ogy is naturally handled to capture multiple objects
without additional efforts. In general, the evolution is
performed using three forces: one internal force
(curvature-based) and two external forces (normal
direction and vector-field-based) as follows.

@�

@t
¼ b� r�j j|fflfflffl{zfflfflffl}

Curvature�based

þ VN r�j j|fflfflfflffl{zfflfflfflffl}
Normal direction

þ S
!�r�|fflfflffl{zfflfflffl}

Vector�field�based

;

ð2Þ
where κ is the Euclidean curvature and b, VN, and
S
!

are three parameters determining the velocity

1A commercial software (Able Software, http://www.ablesw.
com/3d-doctor/), approved by the US Food and Drug Admin-
istration for medical imaging and visualization applications and
currently used by leading hospitals, medical schools, and
research organizations around the world.
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and direction of the evolution. The curvature-based
force smoothes the curve, the normal-direction
force shrinks or expands the curve along its normal
direction, and the external vector-field-based force
acts as a translation operator. Depending on how
those three parameters are chosen, we have different
AC models as listed below.

(Original) Geometric AC

The (original) geometric AC22,35 was proposed
using an edge-based function g(x), which
approaches zero on the edges and one in other

regions, e.g., g xð Þ ¼ e
� 1

�2e
r G�*Ið Þ xð Þj j2

, where σe is
a scaling factor and G�*Ið Þ is the convolution of

the input image I with a Gaussian kernel G�. The
evolution flow is

�t ¼ g �þ V0ð Þ r�j j; ð3Þ

where V0 is a real constant, meaning that the curve
is shrunk or expanded at a constant velocity. The
product g(κ+V0) determines the overall evolution
speed of level sets of ϕ(x,t). The geometric AC is
derived, not by an energy minimization, but by a curve
evolution method where a constant normal direction
force is used together with an edge-based function g to
evolve and stop the curve on the object boundaries.

Geodesic AC

The geometric AC works well, in general, for
objects that have good contrast. If there are weak
edges and/or gaps along edges, however, it tends
to pass through these areas because gradient values
are not large enough for g(x) to approach zero. To

overcome this limitation, the following evolution
flow, called geodesic AC flow, was introduced
in23,36 and can be expressed as

�t ¼ g �þ V0ð Þ r�j j þ rg�r�: ð4Þ
Different from the geometric AC, which has no
energy minimization, this model is derived from
the problem of finding a curve of minimal
weighted length, which was proven to be equiva-
lent to a particular case of the energy of the snakes
model.17 Comparing this with the previous model
(Eq. 3), we see that the extra stopping term
rg � r�ð Þ is used to increase the attraction of the
evolving contour toward weak boundaries because
rg points to the middle of the edges. By this way,
the curve can stop on the boundaries even when
g≠0.

Gradient Vector Flow Fast Geometric AC

The GVF37 refers to a slowly varying and
bidirectional vector field that is nearly the same as
the gradient of an image in the neighborhood of the
boundaries (where the gradient magnitude is large)
and still has significant values in the homogeneous
regions (where the gradient gets close to zero) via a
diffusion process. One can think of this field as the
optimal direction to be followed to reach the object
boundaries. Inspired from that observation, Paragios
et al.24 proposed an integration of GVF into the
geometric AC as follows:

�t ¼ g �þ V0K xð Þð Þ r�j j � 1� K xð Þj jð Þ bu;bv½ ��r�ð Þf g;
ð5Þ

where bu;bvð Þ is the normalized GVF and K xð Þ ¼
sign bu;bv½ � � N xð Þð Þe�� bu;bv½ ��N xð Þj j with N(x) as the

F1(C) > 0, F2(C) = 0
Fitting > 0

F1(C) = 0, F2(C) > 0 
Fitting > 0

F1(C) > 0, F2(C) > 0
Fitting > 0

F1(C) = 0, F2(C) = 0 
Fitting = 0

Fig 2. All possible positions of the curve. When it is on the boundary of the object, the “fitting” term is minimized.
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inward normal of the curve and δ as a scaling
factor (chosen as δ=1 in our implementations).
K(x) approaches one when the normal and the
GVF are close to orthogonal and zero otherwise.
In the above flow, 1� K xð Þj jð Þ bu;bv½ � has the

effect of a bidirectional flow that moves the
curve toward object boundaries from either side,
whereas V0K(x) serves as an adaptive balloon
force used to determine the evolution when the
bidirectional flow term becomes inactive. Sim-
ilar to that of the geometric AC, the overall
speed of this curve evolution is coupled with
the edge-driven information via the stopping
term g. The GVF-Geo AC replaces rg in the
geodesic AC (Eq. 4) with the GVF. This
increases the capture range due to the slowly
varying characteristic of the GVF.

CV AC

Chan and Vese25 proposed an alternative form
of AC based on the Mumford and Shah functional
for segmentation.38 Unlike other level-set-based
ACs, which rely much on the gradient of the image
as the stopping term and, thus, have unsatisfactory
performance in noisy images, the CV AC model
instead utilizes the homogeneity characteristic of
an object. In this case, the image I is assumed to
consist of two areas with approximately piecewise-

constant intensities, of different values cin and cout.
The “fitting” term is defined as

F1 Cð Þ þ F2 Cð Þ

¼
Z
inside Cð Þ

I xð Þ � c1j j2dxþ
Z
outside Cð Þ

I xð Þ � c2j j2dx;

ð6Þ
where cl and c2 are, respectively, the average
intensities inside and outside the variable curve C.
As can be seen in Figure 2, the “fitting” term is
minimized if the curve C is placed exactly on the
boundary of the two areas.
One can regularize the solution by constraining

the length of the curve and the area inside it. Then,
the level set formulation of this model is expressed
as

�t ¼ r�j j ��þ V0 þ I � c1ð Þ2 � I � c2ð Þ2
h i

;

ð7Þ
where ν and V0 are adjustment constants. Like the
geometric AC flow, the CV AC flow does not
have an external vector-field-based force, reduc-
ing the computational cost. This flow evolves
the AC, looking for a two-phase segmentation of
the image, given by bI xð Þ ¼ cinH � xð Þ½ � þ cout 1�ð
H � xð Þ½ �Þ, where H is the Heaviside function

H zð Þ ¼ 1 if z � 0;
0 if z G 0:

�
ð8Þ

Density Distance Augmented CV AC

Compared to other AC models, the CV AC can
detect the boundaries more exactly since it does
not need to smooth the initial image (via the edge

Fig 3. Real CT data set.

a b

Fig 4. Bone regions delineated by a medical expert, used as
ground truths.
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function g), even if it is very noisy. This model
was also shown to provide a relaxed initial position
requirement. However, the convergence of the CV
AC depends on the homogeneity of the segmented
objects. When the objects are largely inhomoge-
neous, such as carpal bones or knee bones in CT
images, the CV AC provides unsatisfactory results.
To overcome this limitation, we have recently
proposed a novel model, called the Aug. CV
AC.27 The proposed model searches for the solution
that not only minimizes the dissimilarity within
each segment (which is what the CV AC does), but
also maximizes the distance between different
segments. In this regard, we used the Bhattacharrya
distance as the distance measure for its simple
analytical form and its better performance in signal
selection.39 The evolving flow was given as

�t ¼ r�j j ��þ # xð Þ½ �; ð9Þ
with

# xð Þ ¼ V0 þ � I � c1ð Þ2 � I � c2ð Þ2
h i

� 1� �ð Þ
B

2

1

Ain
� 1

Aout

� �
þ 1

2

Z
Z

� z� Ið Þ 1

Aout

ffiffiffiffiffiffiffiffi
pin
pout

r
� 1

Ain

ffiffiffiffiffiffiffiffi
pout
pin

r� �
dz

� �
;

ð10Þ
where � 2 0; 1½ � is a weighting constant (we
choose β=0.5 in all experiments) and Ain, Aout, pin,
and pout, respectively, are the areas and the density

functions inside and outside the curve C, given by

Ain ¼
Z
�

H �� xð Þð Þdx

Aout ¼
Z
�

H � xð Þð Þdx

ð11Þ

pin zð Þ ¼
R
� �0 z� I xð Þð ÞH �� xð Þð Þdx

Ain

pout zð Þ ¼
R
� �0 z� I xð Þð ÞH � xð Þð Þdx

Aout

ð12Þ

z 2 Z is a certain image feature (intensity, color,
texture, etc.) and B ¼ R

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pin zð Þpout zð Þp

dz is the
Bhattacharyya coefficient.39 More details of the
Aug. CV AC are available in.27

Parameter Setting and Tuning

There are four parameters for the above-men-
tioned AC models: σ, σe, V0, and ν. σ determines
the width of the smoothing Gaussian kernel used
in the edge function g and is chosen small enough
to retain minute details. It is fixed as σ=0.3 for all
experiments. The rest are chosen depending on
each specific case. Decreasing σe helps to detect
weak edges but, in turn, traps the contour in false
edges that are caused by noise. Since V0 constantly
moves the contour along its normal direction
regardless of its current position, increasing V0

will speed up the evolution but can march the
contour over weak edges. So, σe and V0 should be
large for noisy images and vice versa. ν weights
the length constraint of the CV and the Aug. CV
ACs. If we have to detect all or as many objects as
possible and of any size, then ν should be small. If
we have to avoid detecting smaller objects (like
points, due to noise), then ν has to be larger.
In practice, some preliminary tests are needed

for a new set of images with similar characteristics.
In our experiments, we estimate the noise and
contrast levels of one or two images from a testing
set to provide an initial guess of the parameter set
based on the above guidelines. Then, we use a
coarse-to-fine scheme to obtain the “best” parameters

Outside

Inside

Cross

Fig 5. Topology adaptability and initialization sensitivity. Left
to right: initialization, geometric–geodesic–GVF-Geo, CV, and
Aug. CV ACs. The latter two models succeed with all three
types of initialization, whereas the others fail with the cross-
type.

Table 1. Parameter Settings for Experiment 1

Geometric �2e ; V0
� 	

Geodesic �2e ; V0
� 	

GVF-Geo �2e ; V0
� 	

CV (ν, V0) Aug. CV (ν, V0)

0.2, 0.5 0.2, 0.7 0.2, 0.5 1, 0 1, 0
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based on both visual evaluation and quantitative
measures.

Testing Data

Three testing data sets, named contrast, noisy,
and real CT images, are used to test the five
techniques on CT bone segmentation. The last
consists of 16 CT images covering the knee
regions of one person; see Figure 3. These images
are selected because they have typical challenges
for segmentation, such as inhomogeneous objects,
low-contrast edges, and overlapping intensity
values, as described in the “Introduction.” The
two other data sets are of synthetic data, made to
see how these techniques behave at different
contrast and noise levels, respectively, and were

created as follows: First, we asked a medical expert
to carefully extract bone regions from the 16 CT
images, which will be used as “ground truths” later
on; see Figure 4 for two sample ground truths
corresponding to the first and the last images of the
set. Then, we placed each extracted bone region on
ten homogenous backgrounds with various intensi-
ties to obtain ten images having contrast varying
from 1% to 20%. Here, we adopt the definition of
contrast introduced by Morrow et al.40

contrast ¼ B0 � B

B0 þ B
100%; ð13Þ

where B and B0 are, respectively, the mean
intensity of the object (foreground) and the
surrounding region (background) in an image. In
our real CT data, the contrast is about 8%. To our

Initialization Geometric Geodesic GVF-Geo CV Aug. CV

Fig 6. Performance at different contrast levels. Upper row: contrast=13%, and lower row: contrast=1%. The ground truth is shown
in Figure 4b.
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Fig 7. Plots of error means vs contrast level. Mean value is calculated over 16 samples at each contrast level.
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knowledge, CT images with contrasts of 20% are
quite clear, and those with contrasts of 1% are
beyond the worst case. By this way, we had a
contrast data set consisting of 160 images (16
images × ten contrast levels each) with typical CT
bone segmentation challenges. Similarly, placing
extracted bones on noisy backgrounds with signal-
to-noise ratios (SNR) of 50, 40, 30, 20, and 10 dB,
we formed a noisy data set consisting of 80 images
(16 images × five noise levels each). Here,
Gaussian noise was used for its simplicity and
popularity.12,16 Images with SNRs of 10 dB are
beyond the worst case. The difference between our
synthetic images and real CT images is that the
former has a synthetic background such that its
contrast and noise levels can be controlled.

Evaluation Method

For quantitative comparison, we use two error
measures, ε1 and ε2, defined as

"1¼ 1� # Extracted regions \ True regionsð Þ
# Extracted regions [ True regionsð Þ

"2 ¼ Hd Extracted boundaries; True boundariesð Þ;
ð14Þ

where # denotes the number of points in a set and
Hd(A,B) denotes the Hausdorff distance between
two polygons A and B.

Hd A; Bð Þ ¼ max h A; Bð Þ; h B; Að Þf g; ð15Þ

Table 2. Mean and SD of Error Measures for Contrast Data Set

Contrast [%]

Mean (SD)

Geometric Geodesic GVF-Geo CV Aug. CV

"1 1 0.108 (0.074) 0.150 (0.095) 0.092 (0.029) 0.479 (0.055) 0.050 (0.041)
3 0.110 (0.082) 0.133 (0.070) 0.101 (0.060) 0.368 (0.159) 0.032 (0.022)
5 0.108 (0.096) 0.132 (0.077) 0.087 (0.046) 0.271 (0.109) 0.034 (0.024)
7 0.096 (0.078) 0.134 (0.088) 0.092 (0.079) 0.239 (0.105) 0.033 (0.020)
9 0.118 (0.105) 0.127 (0.088) 0.076 (0.051) 0.115 (0.080) 0.036 (0.026)

11 0.096 (0.100) 0.124 (0.109) 0.087 (0.066) 0.086 (0.036) 0.032 (0.024)
13 0.094 (0.073) 0.099 (0.080) 0.068 (0.038) 0.052 (0.034) 0.035 (0.024)
15 0.082 (0.070) 0.104 (0.072) 0.063 (0.051) 0.039 (0.023) 0.037 (0.023)
17 0.062 (0.039) 0.085 (0.054) 0.054 (0.018) 0.034 (0.018) 0.044 (0.029)
20 0.066 (0.033) 0.063 (0.021) 0.064 (0.042) 0.027 (0.012) 0.041 (0.024)

"2 1 9.071 (3.472) 11.512 (3.517) 8.121 (1.473) 20.690 (2.410) 7.301 (2.091)
3 9.672 (3.847) 10.921 (3.395) 9.913 (3.605) 19.682 (4.391) 6.757 (1.763)
5 9.366 (3.523) 10.357 (3.101) 8.512 (2.792) 16.251 (6.632) 6.819 (1.750)
7 9.225 (3.074) 10.902 (3.491) 9.204 (3.510) 14.180 (6.770) 7.074 (2.532)
9 10.184 (4.148) 11.943 (3.828) 8.207 (2.792) 9.975 (6.721) 6.814 (1.806)

11 9.314 (3.942) 10.711 (4.092) 9.055 (2.866) 9.487 (4.481) 6.783 (1.854)
13 9.273 (3.021) 9.620 (3.772) 7.714 (2.176) 8.059 (2.234) 6.867 (1.894)
15 9.247 (3.690) 9.873 (3.403) 8.233 (3.234) 7.006 (1.882) 7.292 (2.243)
17 7.861 (2.253) 9.074 (3.310) 7.382 (1.817) 7.053 (1.850) 7.261 (2.217)
20 8.279 (1.893) 8.494 (2.481) 8.009 (2.692) 7.028 (1.861) 6.665 (3.010)

Table 3. Parameter Settings for Experiment 2

SNR [dB] Geometric �2e ; V0
� 	

Geodesic �2
e ; V0

� 	
GVF-Geo �2e ; V0

� 	
CV (ν, V0) Aug. CV (ν, V0)

10 20, 3 20, 7 30, 7 1, 0 1.5, 0
20 3, 3 3, 9 4, 6 0.5, 0 1, 0
30 1, 1 2, 1 3, 1 0.05, 0 0.5, 0
40 1, 1 2, 1 3, 1 0.05, 0 0.5, 0
50 1, 1 2, 1 3, 1 0.05, 0 0.5, 0
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where h A; Bð Þ ¼max min
a2A b2B

dist a; bð Þf g and dist(a,b)

is the Euclidean distance between points a and b.
The error measure "1 quantifies the relative

overlap between the segmented and the true
regions and "2 measures the difference of the
extracted and the true contours. The former
provides a global goodness of the result, whereas
the latter determines how much detail of the object
shape is captured. The closer these measures are to
zero, the better the segmentation is.

EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we first analyze the topology-
adaptability and initialization-insensitivity charac-
teristics of the five AC models. Then, their
robustness to various contrast and noise levels will

be investigated. Finally, their performances on the
real CT data set are evaluated in comparison with
that of the 3D-DOCTOR software. The AC models
are implemented using MATLAB®. Parameters of
each model are first selected using the guidelines
in the section “Parameter Setting and Tuning” and
will be specified in each case. Then, the contours
evolve automatically under forces determined by
the image itself without any further user interac-
tion. The evolution is an iterative process and stops
when the contours in two consecutive iterations are
the same (i.e., unchanged).

Topology Adaptability and Initialization
Insensitivity

We consider an AC to be topology-adaptable if
it can naturally split and merge to capture multiple

Initialization Geometric GVF-Geo CV Aug. CVGeodesic

Fig 8. Performance at different noise levels. Upper row: SNR=30 dB, lower row: 10 dB. The ground truth is shown in Figure 4b.
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Fig 9. Plots of error means vs SNR. Mean value is calculated over 16 samples at each SNR.
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objects in the image without any prior information
and initialization-insensitive if it can do that regard-
less of its initial position and size. Figure 5 shows
three types of initialization and the corresponding
results. Note that only one representative result is
shown for three models, geometric, geodesic, and
GVF-Geo AC, because they yield similar results for
this synthetic image. We can see that these three
models work well with the first two types (the initial
contour is totally outside or inside the objects) but
fail with the last one (initial contour is across
the objects), whereas the CV and the Aug. CV
ACs succeeds with all three types. The reason
is that the former three models can only move
in a fixed direction based on the sign of the
constant V0; see Eqs. 3–5. When V0 is positive
(negative), the whole contour will shrink (expand)
all the time. Meanwhile, the image-dependent term
V0 þ I � c1ð Þ2 � I � c2ð Þ2
h i

in the CV AC flow

(Eq. 7) [or ϑ(x) in the Aug. CV AC flow (Eq. 9)]
allows the contour to expand and shrink where
appropriate because it can be negative at some
points and positive at others.

Experiment 1—Performance at Different
Contrast Levels

In this experiment, we use the contrast data set to
evaluate the performance of the AC models with

respect to different contrast levels. The parameter
settings are chosen as described in the section
“Parameter Setting and Tuning” and shown in
Table 1. Figure 6 shows visual results from two
samples having contrasts of 13% and 1%, respec-
tively. Mean values of error measures as functions
of contrast level are plotted in Figure 7, and
corresponding SD values are given in Table 2. We
can see that, although the CV AC performs well
when image contrast is high (more than 15%), its
performance decreases very quickly with the con-
trast, whereas the others are more robust to contrast
level. One possible reason is that the homogeneity
assumption of the CVmodel cannot be guaranteed in
low-contrast images, i.e., many parts of the object
resemble background and, thus, are likely to be
misclassified (see Figure 6, lower row).

Experiment 2—Performance at Different
Noise Levels

Similarly, the noisy data set is used to evaluate the
performance of the five AC models with respect to
various noise levels. The parameter settings are
shown in Table 3 and sample results in Figure 8.
Quantitative comparisons for this testing data set are
given in Figure 9 and Table 4. The geometric, the
geodesic, and the GVF-Geo ACs provide similar
performance to the others when noise level is low.
However, they tend to get stuck in false edges caused

Table 4. Mean and SD of Error Measures for Noisy Data Set

SNR [dB]

Mean (SD)

Geometric Geodesic GVF-Geo CV Aug. CV

"1 10 0.361 (0.090) 0.350 (0.087) 0.269 (0.067) 0.122 (0.031) 0.096 (0.024)
20 0.262 (0.065) 0.299 (0.075) 0.197 (0.049) 0.047 (0.012) 0.039 (0.010)
30 0.051 (0.013) 0.061 (0.015) 0.061 (0.016) 0.020 (0.018) 0.021 (0.003)
40 0.051 (0.020) 0.061 (0.011) 0.050 (0.010) 0.013 (0.005) 0.017 (0.007)
50 0.050 (0.011) 0.052 (0.009) 0.045 (0.012) 0.010 (0.004) 0.015 (0.004)

"2 10 24.597 (5.402) 23.586 (5.403) 25.237 (5.406) 19.144 (4.785) 15.074 (3.771)
20 22.347 (5.594) 23.030 (5.594) 20.186 (5.051) 11.903 (3.117) 10.094 (3.270)
30 8.854 (2.213) 8.902 (2.231) 8.833 (2.362) 8.507 (2.381) 7.906 (2.235)
40 8.756 (3.217) 8.620 (2.457) 8.339 (3.215) 6.827 (2.103) 7.036 (2.671)
50 8.282 (3.031) 7.421 (1.543) 8.090 (2.232) 6.102 (2.142) 6.597 (1.328)

Table 5. Parameter Settings for Experiment 3

Geometric �2e ; V0
� 	

Geodesic �2e ; V0
� 	

GVF-Geo �2e ; V0
� 	

CV (ν, V0) Aug. CV (ν, V0)

0.2, 0.4 0.2, 0.8 0.2, 1.2 0.5, 0 5.0, 0
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by noise when noise level increases due to the edge
function g. On the other hand, the CV and the
Aug. CV are more robust to noise, as they do
not depend on the edge information.

Experiment 3—Performance with Real Data

The aim of this experiment is to investigate how
the AC models work with real CT images in
comparison against 3D-DOCTOR software. The
parameter settings are shown in Table 5. Figure 10
shows segmentation results for two sample CT
images. It can be seen that the first three models,
i.e., the geometric, the geodesic, and the GVF-Geo
ACs, do not generate visually satisfactory results,
whereas the other two do. The geometric AC tends
to pass through some areas in the bone boundary

where the stopping function g is not small enough
due to weak edges and/or gaps. In this situation, the
geodesic AC with the extra stopping term (rg � r�)
(Eq. 4) can pull back the boundary-passing-through
contour in weak-edge regions, but it is likely to get
stuck in false edges caused by noises. The GVF-Geo
AC model (Eq. 5) has a similar problem. In contrast,
the CV and the Aug. CVACmodels can successfully
find the bone boundaries. The qualitative compar-
isons between these two models and the 3D-
DOCTOR software are presented in Figure 11.
These ACs yield better results in the sense that the
contours are smoother and do not contain cross-over
parts as the commercial software does.
The mean and standard deviation of the error

measures for 16 images are given in Table 6. Among
the five AC models, the last two perform well, and

Initialization Geometric Geodesic GVF-Geo CV Aug. CV

Fig 10. Two-sample segmentation results, whose corresponding ground truths are shown in Figure 4. The last two AC models
generate visually satisfactory results, whereas the others fail.

CV Aug. CV 3D-DOCTOR Ground truth

Fig 11. Qualitative comparison with the commercial software. The contours from the 3D-DOCTOR software contain cross-over parts
(see the arrows), whereas those from the AC models do not.
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their performance is comparable to that of the 3D-
DOCTOR software. The smaller "2 value of these
models over the commercial software can be
explained by the better boundary shapes they yielded.

CONCLUSION

We have examined the feasibility of five
different AC models on automatic bone segmen-
tation from CT images. By “automatic,” we mean
that a model can provide high accuracy with
minimal user interactions, such as initialization
and prior information about the number of bones
and/or their shapes. Due to the level-set frame-
work, all five models showed their ability to capture
complex shapes without any prior information.
Furthermore, in the case of ideal images (see
Figure 5), the CV AC’s and the Aug. CV AC’s per-
formances were invariable to different initial contour
positions and sizes. Although this cannot be ad hoc
extrapolated to many real CT images due to noise
and complexity, it shows that these two models
provide a relaxed initial position requirement.
Before assessing the performance on real images,

we investigated the influence of noise and contrast
level on the segmentation result, which is why
experiments 1 and 2 were carried out. Results show
that the geometric, the geodesic, and the GVF-Geo
ACs are robust to image contrast but sensitive to
noise, whereas the CV AC is robust to noise but
sensitive to image contrast. Meanwhile, the Aug. CV
AC is robust to both noise and contrast levels. The
reason is that it inherits the noise robustness of
the CV AC (they are both not based on an edge
function as the stopping term), and at the same
time, its additional density-distance term provides
flexibility in detecting low-contrast (inhomoge-
neous) objects.
The purpose of experiment 3 is to evaluate the

accuracy of the models on real patient data, acquired
in a clinical setting. Results show that the first three
models provide unsatisfactory results when dealing
with bones that have smooth edges and/or gaps. On
the other hand, the CV AC and the Aug. CV AC

models show excellent ability in segmenting bone
regions, with error measures comparable to those of
the 3D-DOCTOR software. These models even
generate visually better results than the commercial
software does in the sense that the contours are
smoother and do not contain cross-over parts, which
cannot truthfully represent real bone structures.
From these findings, we consider that the CV and

the Aug. CV AC models offer the best potential for
automatic bone segmentation work. Moreover, when
dealing with low-contrast images, the latter is more
suitable. Because this model does not require any
specific information about anatomical structures, it
could potentially be applied to other skeletal local-
izations. As future work, we will evaluate its
performance on other anatomical structures and
image modalities, such as ultrasound heart, MRI
knee bone, or CT kidney.
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