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a b s t r a c t

This paper proposes a novel method for nearest neighbor editing. Nearest neighbor editing
aims to increase the classifier’s generalization ability by removing noisy instances from the
training set. Traditionally nearest neighbor editing edits (removes/retains) each instance
by the voting of the instances in the training set (labeled instances). However, motivated
by semi-supervised learning, we propose a novel editing methodology which edits each
training instance by the voting of all the available instances (both labeled and unlabeled
instances). We expect that the editing performance could be boosted by appropriately
using unlabeled data. Our idea relies on the fact that in many applications, in addition to
the training instances, many unlabeled instances are also available since they do not need
human annotation effort. Three popular data editing methods, including edited nearest
neighbor, repeated edited nearest neighbor and All k-NN are adopted to verify our idea.
They are tested on a set of UCI data sets. Experimental results indicate that all the three
editing methods can achieve improved performance with the aid of unlabeled data. More-
over, the improvement is more remarkable when the ratio of training data to unlabeled
data is small.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The k-nearest neighbor algorithm (k-NN) is an important classification algorithm. This algorithm firstly finds the k nearest
neighbors to each target instance according to a certain dissimilarity measure and then makes a decision according to the
known classification of these neighbors, usually by assigning the label of the most voted class among these k neighbors
[6]. The asymptotic classification error of k-NN (when the number of training data n grows to infinity) tends to the optimal
Bayes error as k!1 and k=n! 0. If k ¼ 1, the error is bounded by approximately twice the Bayes error [8]. k-NN is a type of
lazy learning where the function is only locally approximated and all computation is deferred until classification. Therefore,
compared with other classifiers which require training, k-NN learns more easily because it only needs to read in the training
set without much further processing.

However, due to the high degree of local sensitivity, k-NN is highly susceptible to noisy instances in the training set [6].
The noisy instances include those with errors in the input vector or output class, or those not representative of typical cases.
The noisy instances can degrade the generalization ability of k-NN [17].

In order to minimize the downside of noisy instances in k-NN, people mainly take either of the two approaches: indirect
or direct. The indirect approach tries to control the negative effect of noisy instances without removing them. The methods in
this category include increasing the number of nearest neighbors or utilizing distance weighted voting. On the contrary, the
direct approach tries to remove the noisy instances. Nearest neighbor editing [17] is one of the most significant representa-
tives of this approach. It eliminates erroneous instances from the training set and cleans possible overlapping among classes.
In this paper, we mainly focus on nearest neighbor editing.
. All rights reserved.
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We propose a novel nearest neighbor editing method that utilizes both labeled and unlabeled data sets. In particular, this
is in contrast with existing editing methods that rely upon only the training data set (labeled data set) and focus upon the
two factors of search direction and instance location. The advantages of our method include the use of unlabeled data that
are often convenient to obtain in many applications with only marginal modifications required to existing data editing
methods.

Our method is motivated by the works on semi-supervised learning which make use of both labeled data and unlabeled
data for learning. Most existing works on semi-supervised learning focus on the classification task; although, we have noted
that unlabeled data have been used to solve other types of problems. For instance, unlabeled data have been used for ensem-
ble learning [2,24], dimension reduction [18,22], active learning [4,5,15] and feature selection [11,23].

Our method is applied in two phases wherein the first provides predictive labeling for unlabeled data and the second
incorporates the augmented data editing methods.

To evaluate the performance of our method, three popular data editing techniques are adopted. They are edited nearest
neighbor, repeated edited nearest neighbor and All k-NN. We use a set of benchmark data sets from the Machine Learning
Database Repository to test the data editing performance. Experimental results demonstrate that the performances of all
these three methods are improved with the aid of unlabeled data especially in the situation where the ratio between training
data to unlabeled data is small.

The rest of the paper is organized as follows. Section 2 describes the related works on data editing. Then we present our
proposed method in Section 3. Our method is applied in two phases which are presented in Sections 3.1 and 3.2 respectively.
Section 4 discusses the experiments by using benchmark data. Section 5 summarizes our conclusions and future work.
2. Related works on nearest neighbor editing

There are many data editing algorithms. Herein, we consider the edited nearest neighbor (ENN) [21], repeated edited
nearest neighbor (RENN) [19] and All k-NN (ANN) [19] algorithms due to their wide-spread and popular use in the literature.

ENN is the base of the other two algorithms. It removes all instances which have been misclassified by the k-NN rule from
the training set. Fig. 1 shows the effect of ENN. In this figure, the hollow rounds and the solid rounds represent instances
which belong to two different classes. The left part shows a hypothesis training set where misclassified instances using
the 1-NN rule are marked with dotted circles around them. The right part shows the reduced training set after applying ENN.

The idea of ENN relies on the fact that one can optimally eliminate outliers and possible overlap among classes from a
given training set so that the training of the corresponding classifier becomes easier in practice. In fact, it has been shown
by Penrod and Wagner [14] that the accuracy of the ENN classifier converges to Bayes error as the number of instances ap-
proaches infinity. Table 1 gives the ENN algorithm.

RENN applies the ENN algorithm repeatedly until all remaining instances have a majority of their neighbors with the
same class, which continues to widen the gap between classes and smooth the decision boundary of ENN. The RENN algo-
rithm is shown in Table 2.

The ANN algorithm is similar with the iterative ENN with the only exception that the value k is increased after each iter-
ation. Its algorithm is given in Table 3.

The common factor in all data editing methods discussed above is that they edit each instance based on the voting of
other instances in the training set. In many applications, as the matter of fact, it is common that the size of the unlabeled
Fig. 1. ENN editing with 1-NN classifier.

Table 1
The algorithm of edited nearest neighbor (ENN).

1. Let Te ¼ T==T is the original training set, and Te is the edited set
2. For each xi 2 Te , do:

Discard xi from Te if it is misclassified using the k-NN rule with prototypes in Te=fxig



Fig. 2. ENN with 1-NN classifier when unlabeled data are available.

Table 2
The algorithm of repeated edited nearest neighbor (RENN).

1. Let Te ¼ T==T is the original training set, and Te is the edited set
REPEAT
2. At iteration t, for each xi 2 Tt

e , do
Discard xi from Tt

e if it is misclassified using the k-NN rule with prototypes in Tt
e=fxig;

UNTIL Tt
e ¼ Tt�1

e ==Tt
e and Tt�1

e denote the edited data set of T at iteration t and t � 1 respectively

Table 3
The algorithm of All k-NN (ANN).

1. Let Te ¼ T==T is the original training set, and Te is the edited set
2. For each xi 2 Te , do:

2.1 set m ¼ 1
2.2 while m < kþ 1 do:

2.2.1 Discard xi from Te if it is misclassified using the m-NN rule with prototypes in Te=fxig, go to Step 2.
2.2.2 Set m ¼ mþ 1
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data set is greater than that of the labeled data set (e.g. mainly due to the fact that unlabeled data do not require human
labeling effort, and are easy to obtain). In Fig. 2, ‘‘�” represents unlabeled instance. Existing data editing methods, such
as ENN, do not consider these unlabeled data and they edit the training set as if the unlabeled data do not exit. The editing
result is shown in the right part of Fig. 2.

3. Our proposed method: data editing aided by unlabeled data

Our intuitive idea is to extend the searching scope of neighbors from the training set to the whole data set which includes
both the training set and the unlabeled set. Considering that the labels of unlabeled data are not available, in order to utilize
unlabeled data, the first phase therefore is to predict the labels for them. Then the second phase is to utilize this augmented
set in data editing. The two phases are presented in Sections 3.1 and 3.2 respectively.

3.1. Phase 1: Predicting labels for unlabeled data

In machine learning area, semi-supervised classification can provide a solution for this phase. Traditional classifiers use
only labeled data to train. Alternatively, semi-supervised classification uses unlabeled data together with labeled data to
train better classifiers by either modifying or reprioritizing hypotheses obtained from labeled data only.

Semi-supervised classification can utilize unlabeled data in a variety of ways, we, however, are only interested in the way
which explicitly predicts labels for unlabeled data so that the training set is enlarged.

Generally, there are two straightforward and popular semi-supervised methods following this way. They are self-training
and co-training. In self-training [16], a base learner is firstly trained on the labeled set. Then, iteratively, it attempts to choose
to label several instances that it is most confident of in the unlabeled set. After that it enlarges its labeled training set with
these self-labeled instances. Co-training [3] requires that features can be split into two sets; each sub-set is sufficient to train
a good classifier; the two sets are conditionally independent given the class. Initially two separate classifiers are trained with
the labeled data on the two sub-feature sets respectively. Each classifier then classifies the unlabeled data and aids the other
classifier with the few unlabeled instances (and the predicted labels) they feel most confident. Each classifier is retrained
with the additional training instances given by the other classifier and the process repeats.



Table 4
The algorithm of ensemble-based co-training (En-co-training).

Given:
� L, A set of labeled training examples, consisting of M classes
� U, A set of unlabeled examples

Create a pool U0 of examples by choosing u examples at random from U
Loop for k iterations:
(1) Use L to train a classifier h1; h2 and h3 respectively
(2) For each class C, pick the nc unlabeled data which classifier h1;h2 and h3 agree with that its class label is C and add it to the collection of labeled
examples
(3) Randomly choose

PM
c¼1nc examples from U to replenish U0

Output: The new labeled data generated from step (2).
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However, both of self-training and co-training still present some problems. For self-training, on one hand, the classifier
requires some measures to evaluate the ‘‘confidence” of unlabeled data. In fact, many classifiers like k-nearest neighbor can
not give this measure easily. On the other hand, even if the classifier could measure the confidence, its own prediction on the
unlabeled data might not be as correct as two classifiers of co-training. In case of co-training, it lacks generality since it only
works for the data sets which can be represented by two sufficient and independent views.

In this section, we propose ensemble-based co-training (En-co-training) method shown in Table 4 by combining ensem-
ble learning and co-training.

Three classifiers (algorithms) are used instead of the individual classifier of self-training and two classifiers of co-training.
En-co-training overcomes the limitations of self-training and co-training. Explicit measures of confidence are not required
due to the majority voting of these three classifiers. In addition, the diversity of the two classifiers in co-training is achieved
by using different sets of features. This process requires two views of features. But in En-co-training, the diversity of classi-
fiers is achieved by using different algorithms. For instance, in our experiment, k-nearest neighbor, naive Bayes and decision
tree are used to train three different classifiers, respectively. At the beginning of En-co-training, u instances are randomly
selected from the unlabeled set U to be processed. Related work [3] shows that this kind of setting is better than dealing with
the whole U directly. Then this algorithm will run k times to iteratively select more unlabeled instances to process. In En-co-
training, k is employed to control the number of unlabeled instances used to aid the data editing process. With k growing,
more unlabeled instances are likely to be selected. k is set to 2 in the following experiments. With respect to u, in general, the
output of En-co-training tends to be better when u is smaller. However, a small u will lead to the long execution time of En-
co-training. Empirically it is an adequate trade-off between the performance of En-co-training and its execution time when u
equals to the number of labeled data.

3.2. Phase 2: Utilizing the augmented data set in data editing

The nearest neighbors of a training instance obtained from a search of the training set and those from the whole data set
may be different. The variation of nearest neighbors might lead to a change of editing result. The effect of our method is illus-
trated in Fig. 3. Let T denote the training set and TU denote the unlabeled set with their predicted labels from Phase 1. Tra-
ditionally, when editing T using ENN with 1-NN rule, instance x1 will be retained since its nearest neighbor in T has the same
label with it. Instance x2 will be removed since its nearest neighbor in T has different label with it. However, when aided by
TU , the editing results of x1 and x2 are changed. Now x1 will be removed as its nearest neighbor searched from the whole data
set is in TU which has the different label with x1. In contrast, x2 will be retained as its nearest neighbor based on the whole
data set is from TU which has the same label with it.

Now the variants of ENN, RENN, and ANN in the case of using unlabeled data to aid data editing on T are considered. With-
out changing the data editing rules much, ENN, RENN, and ANN can use TU easily as shown in Tables 5–7. Tables 5–7 show
Fig. 3. The effect of unlabeled data for data editing.



Table 5
The algorithm of ENN aided by unlabeled data.

1. Let Te ¼ T==T is the original training set, and Te is the edited set
2. For each xi 2 Te , do:

Discard xi from Te if it is misclassified using the k-NN rule with prototypes in ðTe=fxigÞ [ TU

Table 6
The algorithm of RENN aided by unlabeled data.

1. Let Te ¼ T [ TU==T is the original training set, and Te is the edited set
REPEAT
2. At iteration t, for each xi 2 Tt

e , do
Discard xi from Tt

e if it is misclassified using the k-NN rule with prototypes in Tt
e=fxig

UNTIL (Tt
e ¼ Tt�1

e ; Tt
e and Tt�1

e denote the edited data set of T at iteration t and t � 1 respectively)
3. Te ¼ Te \ T

Table 7
The algorithm of ANN aided by unlabeled data.

1. Let Te ¼ T==T is the original training set, and Te is the edited set
2. For each xi 2 Te , do:

2.1 set m ¼ 1
2.2 while m < kþ 1 do:

2.2.1 Discard xi from Te if it is misclassified using the m-NN rule with prototypes in ðTe=fxigÞ [ TU , go to Step 2.
2.2.2 Set m ¼ mþ 1
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two different usages of TU . In Tables 5 and 7, TU is used to optimize the editing performance of T while TU is never edited. In
Table 6, TU and T are edited together. But as shown in Step 3 of Table 6, Te ¼ Te \ T , the final edited data are only extracted
from T. Therefore, all the three methods regard unlabeled data as the activator of data editing which will not be included in
the final edited set.

Although semi-supervised classification could predict the labels for unlabeled data, it is intractable to predict labels with-
out errors. That is the reason the predicted labels usually include some errors. The erroneous labels could potentially degrade
the editing performance. Considering the following three cases (Fig. 4) based on the ENN algorithm:

Case A: Traditional ENN. The edited data set is denoted by TeðaÞ.
Case B: Assume that an oracle who can predict labels for the unlabeled set U correctly exists. Then this idealistic noise-free

labeled data set, denoted by Tideal, is used to aid the editing on T. The edited data set is denoted by TeðbÞ.
Case C: Our proposed En-co-training is used to predict labels for the unlabeled set U and then this realistically obtained, but

possibly noisy labeled data set, denoted by Trealistic , is used to aid the editing on T. The edited data set is denoted by
TeðcÞ.
Fig. 4. (a) Standard ENN (b) ENN aided by unlabeled data (processed by the Oracle) (c) ENN aided by unlabeled data (processed by semi-supervised
classification).
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It is expected that the editing performance of case B is the best since Tideal is noise-free which provides reliable extra infor-
mation to aid the editing process. Heuristically, the functions of Trealistic are twofold. On one hand, the noise-free instances in
Trealistic could improve the editing performance as Tideal. On the other hand, the noisy instances in Trealistic could degrade the
editing performance. Therefore, the comparison between case A and case C is significant. The success of our proposed meth-
od (case C) depends on the comparison between the positive effects and the negative effects generated by Trealistic . The com-
parison between case A and case C will be validated in next section.
4. Experimental results

The objective of the experiments is to validate the benefit of our method compared with existing methods described in
Section 2. Section 4.1 explains the experimental setup. Followed by Section 4.2 presents the experimental results.

4.1. Experimental setup

Three data editing techniques are used and tested on the benchmark data sets from the Machine Learning Database
Repository [20]. These methods are Wilson’s edited nearest neighbor (ENN), Tomek’s Repeated ENN (RENN), and All k-NN
(ANN). Aided by unlabeled data, their variants are represented by ENN+, RENN+, and ANN+ respectively.

Information of these data sets is tabulated in Table 8. These data sets are collected from different real-world applications
in various domains, such as breast cancer (breast) and iris plant database (iris). Note that ‘‘magic” used here is just part of the
original one in UCI. Originally, ‘‘magic” has 19,020 instances consisting of two classes. To reduce the experiment time, we
extract the first 1000 instances from each class. Therefore, 2000 samples are used. Each data set is divided into training
set and test set. Data editing method works on the training set and generates the edited training set. Then, the test set is
classified by the edited training set with the k-NN algorithm. Classification accuracy is the measure to evaluate the perfor-
mance of data editing methods, where
Table 8
UCI dat

Dataset

iris
voting
heart2
horse
sonar
wine
breast
yeast
australi
bupa
diabete
echo
german
glass
magic
credit
spect
wdbc
ecoli
ionosph
haberm
classification accuracy ¼ No: of correct classifications on testing instances
No: of testing instances
When two data editing methods are applied to the same data set with the same k-NN algorithm, higher classification accu-
racy means that the data editing performance is better. To obtain the classification accuracy, each data set D is processed as
follows:

(1) Data set D is randomly partitioned into two parts: labeled set L and unlabeled set U.
(2) Ten trials derived from tenfold cross-validation on L are used to evaluate the performance of data editing methods. At

each trial, 90% of L, that is T, is used as training set. T is edited by various data editing methods as mentioned above.
The remaining 10% of L is used as test set to evaluate the performance of various edited sets of T.

(3) The average classification accuracy is obtained by averaging ten trials’ accuracies.
a sets used in the experiments.

Attribute Size Class Class distribution

4 150 3 50/50/50
16 435 2 267/168
13 294 2 188/106
15 368 2 232/136
60 208 2 111/97
13 178 3 59/71/48

9 1000 2 700/300
8 1484 10 463/429/244/163/51/44/37/30/20/5

an 14 690 2 383/307
6 345 2 145/200

s 8 768 2 500/268
7 131 2 88/43

24 1000 2 700/300
9 214 6 70/76/17/13/9/30

10 2000 2 1000/1000
15 690 2 307/383
44 267 2 212/55
31 569 2 357/212

7 336 8 143/77/52/35/20/5/2/2
ere 34 351 2 225/126

3 306 2 225/81
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(4) Considering that the partition of data set could influence this average classification accuracy, we execute the partition
five times and get five classification accuracies (execute step 1–3 five times).

(5) Finally the reported accuracy is the further averaged value of these five values.

In this experiment, En-co-training (Section 3) is adopted and its configuration is as follows. Three classifiers are generated
by: 3-nearest neighbor, naive Bayes and decision tree respectively. Initially, the size of U0;u is equal to the size of the training
set, namely u ¼ jLj. Iteration number k is 2.

When the setting of semi-supervised classification is fixed, there are three major parameters which can influence the
experiment. The first parameter determines data partitioning and it is the ratio between labeled data to whole data, referred
to labeled ratio. The second parameter determines data editing. Refer to the data editing methods mentioned before, k-NN
algorithm is the base of data editing methods. Therefore, different choices of k can influence the experiment. 3-NN and 1-NN
are the popular settings in the data editing area. The third parameter determines data testing. One popular setting is 1-NN for
testing. We have performed several experiments varying these parameters.

Experiment A: The labeled ratio is 5%. This value is used to represent the applications in which the number of unlabeled
data is much greater than the number of labeled data. In fact, this applies to most applications since unlabeled data are often
much easier to obtain as compared with labeled data. In addition, 3-NN is used for data editing and 1-NN is used for data
testing.

Experiment B: The labeled ratios are 10%, 15%, 20%, 30%, 40%, and 50%. This is the same as Experiment A that 3-NN is used
for data editing and 1-NN is used for data testing. The objectives of Experiment B are twofold. First, we further validate the
performance of our methods by varying the labeled ratio. Second, we want to know whether there are some relationships
between the labeled ratio and the data editing performance.

Experiment C: The labeled ratios are 5%, 10%, 15%, 20%, 30%, 40%, and 50%. Different from Experiments A and B, here 1-NN
is used for data editing and data testing. As a complement to Experiments A and B, this experiment is used to validate the
robustness of our method when k-NN in data editing is changed.

4.2. Experimental results

Experiment A: Table 9 shows the results of Experiment A. In each cell, the value without bracket represents the classi-
fication accuracy. In addition to that, we also give the retention rate that is below the accuracy and in brackets. Data reten-
tion rate is defined as
Table 9
Data ed
the valu
bold wi

Dataset

iris
vote
heart2
horse
sonar
wine
breast
yeast
australi
bupa
diabete
echo
german
glass
magic
credit
spect
wdbc
ecoli
ionosph
haberm
Ave.
B/W
S.B/W
data retention rate ¼ No: of labeled instances after editing
No: of training instances
iting performance when labeled ratio is 5% (3-NN for data editing, 1-NN for testing). The value without bracket represents the classification accuracy;
e with bracket represents the retention ratio; in each row, the better accuracy of each pair is shown in bold; the significant better accuracy is shown in
th underline.

KNN ENN ENN+ RENN RENN+ ANN ANN+

0.893 0.800 (87.6%) 0.895 (95.1%) 0.763 (82.5%) 0.893 (94.4%) 0.780 (85.4%) 0.895 (94.7%)
0.832 0.743 (80.5%) 0.838 (88.1%) 0.733 (76.9%) 0.848 (87.3%) 0.742 (77.2%) 0.832 (85.6%)
0.752 0.742 (78.2%) 0.775 (83.9%) 0.737 (75.3%) 0.775 (82.5%) 0.742 (71.4%) 0.765 (80.5%)
0.730 0.679 (80.1%) 0.739 (85.1%) 0.646 (74.3%) 0.729 (83.6%) 0.679 (71.4%) 0.760 (79.6%)
0.617 0.733 (66.0%) 0.733 (72.4%) 0.733 (66.0%) 0.733 (72.4%) 0.733 (46.5%) 0.733 (65.7%)
0.815 0.781 (57.4%) 0.767 (62.3%) 0.641 (52.7%) 0.752 (57.6%) 0.741 (51.6%) 0.800 (53.5%)
0.952 0.935 (93.6%) 0.957 (95.6%) 0.930 (93.1%) 0.957 (95.4%) 0.930 (92.1%) 0.957 (95.1%)
0.438 0.423 (41.0%) 0.503 (52.4%) 0.376 (31.0%) 0.482 (46.9%) 0.418 (32.2%) 0.494 (45.2%)

an 0.800 0.802 (82.2%) 0.835 (86.3%) 0.810 (80.0%) 0.833 (85.6%) 0.790 (75.7%) 0.826 (82.7%)
0.574 0.567 (58.8%) 0.574 (67.2%) 0.527 (47.0%) 0.584 (58.6%) 0.567 (49.8%) 0.574 (59.3%)

s 0.703 0.736 (73.1%) 0.763 (78.0%) 0.711 (68.3%) 0.746 (75.3%) 0.744 (64.0%) 0.767 (72.9%)
0.632 0.752 (65.1%) 0.756 (75.7%) 0.752 (63.7%) 0.752 (70.2%) 0.752 (55.4%) 0.748 (64.3%)
0.627 0.707 (67.6%) 0.720 (73.9%) 0.733 (62.6%) 0.720 (71.3%) 0.707 (60.4%) 0.720 (69.0%)
0.602 0.441 (52.4%) 0.526 (60.2%) 0.365 (41.5%) 0.480 (52.7%) 0.435 (47.2%) 0.516 (55.2%)
0.682 0.675 (63.8%) 0.691 (68.4%) 0.638 (55.6%) 0.667 (62.6%) 0.670 (53.1%) 0.691 (61.2%)
0.716 0.728 (77.0%) 0.747 (80.9%) 0.730 (74.3%) 0.748 (80.0%) 0.720 (68.5%) 0.741 (75.3%)
0.674 0.740 (74.6%) 0.758 (80.4%) 0.772 (69.6%) 0.800 (77.8%) 0.782 (63.3%) 0.766 (73.1%)
0.890 0.893 (90.2%) 0.905 (92.6%) 0.868 (87.1%) 0.910 (92.3%) 0.898 (87.8%) 0.904 (91.2%)
0.735 0.718 (68.8%) 0.715 (74.6%) 0.670 (67.6%) 0.715 (72.7%) 0.698 (61.7%) 0.715 (70.9%)

ere 0.778 0.670 (73.6%) 0.734 (75.6%) 0.689 (63.3%) 0.744 (70.9%) 0.689 (69.0%) 0.753 (73.0%)
0.612 0.630 (66.6%) 0.675 (75.0%) 0.627 (61.9%) 0.668 (72.1%) 0.640 (55.9%) 0.667 (67.0%)
0.717 0.709 (71.3%) 0.743 (77.1%) 0.688 (66.4%) 0.740 (74.4%) 0.708 (63.8%) 0.744 (72.1%)

2/18 1/18 2/18
0/11 0/17 0/14
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This rate captures the contribution of unlabeled data for training data (labeled data) editing. The main purpose of data edit-
ing is to improve the classification accuracy. Therefore, in the experiment, classification accuracy is the only measure to eval-
uate the editing performance. However, if two data editing methods give the same classification accuracy, the one with
smaller data retention rate is more attractive as it has smaller number of training data leading to higher classification speed.

In Table 9 and the following tables, ‘‘Ave.” denotes the average classification accuracy across all data sets. ‘‘B/W” denotes
the number of data sets for which our method is statistically better or worse than the original method. ‘‘S.B/W” denotes the
number of data sets for which our method is significantly better (threshold is 2%) or worse than the original method. In each
row, the better accuracy of each pair (ENN & ENN+, RENN & RENN+, ANN & ANN+) is shown in bold. The significant better
accuracy is shown in bold with underline.

Several observations can be made from the results in this table. As we expect, our methods defeat the original data editing
methods on average. For example, the classification accuracy comparison between ENN+ and ENN is 0.743/0.709. ‘‘B/W” is
18/2. ‘‘S.B/W” is 11/0. In addition, the accuracies of ENN+ and ANN+ are similar and better than RENN+. If considering reten-
tion rate, ANN+ is better than ENN+.

For nine of the data sets explored, using data editing methods can improve the classification accuracy of k-NN. However,
for other twelve data sets, the data editing methods generate a negative effect. These data sets are iris, vote, heart2, horse,
wine, etc. One important observation is that our proposed methods can significantly reduce the negative effect for those data
sets. For instance, for eight of these twelve data sets (iris, vote, heart2, horse, breast, yeast, glass, and ionosphere), ENN+ sig-
nificantly improves the performance of ENN.

Experiment B: This experiment is implemented for labeled ratios 10%, 15%, 20%, 30%, 40%, and 50%. We summarize the
results from different labeled ratios in Table 10. Here, only classification accuracy is considered and data retention ratio is
neglected. In each cell, not only the performance comparison, but the degree of improvement is shown in brackets. The
greatest improvement among different labeled ratios is shown in bold.

From the experimental results, we obtain the similar observations as before. This experiment further validates the supe-
riority of our methods since they work well for different labeled ratios.

The other interesting observation obtained from this table is that although improvement is not strictly inversely propor-
tional to the labeled ratio, the greatest improvement is usually obtained when labeled ratio is small (5% or 10% in the
experiments).

Experiment C: Different with above experiments, 1-NN is used for data editing in Experiment C. Rather than giving the
experiment in detail, we summarize the results into Table 11. When 1-NN is used for data editing, ENN is same with ANN,
therefore ANN and ANN+ are ignored in this table.

Table 11 has similar experimental observations with Tables 10 and 9. This suggests that our methods work well indepen-
dently with k-NN algorithm of data editing.

Experiments A, B, and C indicate that when using ENN, RENN and ANN for data editing, the data editing performance
could achieve consistent improvement with the aid of unlabeled data. Recall the discussion in Section 3, intuitively, it is like
a double-edged sword to use unlabeled data for data editing. On one hand, unlabeled data (labeled by semi-supervised clas-
sification) might improve editing performance by providing extra information. On the other hand, the provided information
Table 10
Data editing performance summarization when labeled ratio is 5%, 10%, 15%, 20%, 30%, 40%, and 50% (3-NN for data editing, 1-NN for testing).

Labeled ratio

5% 10% 15% 20% 30% 40% 50%

ENN+ & ENN Accu. 0.743 0.752 0.759 0.774 0.782 0.791 0.790
0.709 0.723 0.735 0.760 0.770 0.783 0.781
(0.034) (0.029) (0.024) (0.014) (0.012) (0.008) (0.009)

B/W 18/2 19/2 18/3 15/4 16/3 14/7 16/5
(16) (17) (15) (11) (13) (7) (11)

S.B/W 11/0 8/0 9/1 6/0 7/1 4/1 2/1
(11) (8) (8) (6) (6) (3) (1)

RENN+ & RENN Accu. 0.740 0.742 0.748 0.767 0.775 0.787 0.788
0.688 0.700 0.717 0.748 0.761 0.783 0.775
(0.052) (0.042) (0.031) (0.019) (0.014) (0.004) (0.013)

B/W 18/1 19/1 17/4 16/5 16/4 13/7 14/6
(17) (18) (13) (11) (12) (6) (8)

S.B/W 17/0 12/1 9/1 6/0 6/0 4/1 5/1
(17) (11) (8) (6) (6) (3) (4)

ANN+ & ANN Accu. 0.744 0.749 0.758 0.773 0.783 0.792 0.789
0.708 0.716 0.731 0.759 0.770 0.784 0.780
(0.036) (0.033) (0.027) (0.014) (0.013) (0.008) (0.009)

B/W 18/2 16/5 19/1 16/4 16/4 14/6 16/5
(16) (11) (18) (12) (12) (8) (11)

S.B/W 14/0 12/0 9/0 6/0 8/1 5/1 4/1
(14) (12) (10) (6) (7) (4) (3)



Table 11
Data editing performance summarization when labeled ratio is 5%, 10%, 15%, 20%, 30%, 40%, and 50% (1-NN for data editing, 1-NN for testing).

Labeled ratio

5% 10% 15% 20% 30% 40% 50%

ENN+ & ENN Accu. 0.727 0.741 0.760 0.774 0.783 0.791 0.790
0.694 0.715 0.742 0.757 0.767 0.786 0.783
(0.033) (0.026) (0.018) (0.017) (0.016) (0.005) (0.007)

B/W 18/2 20/1 18/2 13/5 17/2 15/6 16/5
(16) (19) (16) (8) (15) (9) (11)

S.B/W 14/1 10/1 7/0 7/0 6/0 4/2 4/0
(13) (9) (7) (7) (6) (2) (4)

RENN+ & RENN Accu. 0.728 0.743 0.760 0.773 0.781 0.791 0.790
0.688 0.707 0.738 0.754 0.764 0.785 0.784
(0.040) (0.036) (0.022) (0.019) (0.017) (0.006) (0.006)

B/W 20/0 20/1 18/3 16/5 15/6 14/6 15/6
(20) (19) (15) (11) (9) (8) (9)

S.B/W 14/0 13/0 13/1 6/0 6/0 4/2 3/1
(14) (13) (12) (6) (6) (2) (2)
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might degrade the editing performance as there might be some mislabeled data generated by semi-supervised classification.
The experimental results show that the positive effect of using unlabeled data defeats its negative effect. One possible expla-
nation is as follows: ENN (RENN or ANN) edits an instance based on the voting of its nearest neighbors. An instance is re-
garded as noisy instance to remove when its label is different from its label obtained by the voting of its nearest
neighbors, which is called voting label here. Heuristically, data editing works well only when the voting label of an instance
is same with its real label. In other words, data editing performance is expected to be improved when the training instances’
labels are predicted more correctly by their nearest neighbors. In k-NN, this means that data editing performance is in direct
ratio to the generalization ability. Existing works on semi-supervised learning have already shown that the generalization
ability can be improved by using unlabeled data. Based on PAC theory [1], although there might be some noisy instances
when predicting the labels for unlabeled data, the negative effect of noisy instances could be compensated if the amount
of newly labeled examples is sufficient.

There is another useful result shown in the experiments. In the case that labeled ratio is 5%, 10%, or 15%, greater improve-
ment will be achieved by unlabeled data compared to 20%, 30%, 40%, and 50%. That is to say, unlabeled data will give more
remarkable improvement for data editing in case that labeled data ratio is small (labeled data number is small). Existing
work on data editing [9] shows that the small set-size editing failure mainly stem for the inability of the nearest neighbor
instances to achieve sufficiently reliable estimates for this instance. Using unlabeled data seems to be promising to solve this
intrinsic limitation of data editing.

Note that, since the relative but not the absolute performance of the proposed methods is concerned, the configuration of
En-co-training has not been finely tuned. Based on our observations in experiments, En-co-training could achieve better per-
formance by tuning the parameters such as the number of classifiers and iterations. Therefore, our proposed method is ex-
pected to work better in the real applications for which En-co-training is finely tuned.

5. Conclusions and future work

In this work, we propose to utilize unlabeled data to boost the performance of data editing on the training set. Our meth-
od is applied in two phases. The first phase is to predict labels for the unlabeled data and then the second phase is to utilize
the augmented data set in data editing.

Wilson’s Edited Nearest Neighbor (ENN), Tomek’s Repeated ENN (RENN), and All k-NN (ANN) are used with 21 UCI data
sets to verify our method. Experimental results show that all the three editing techniques’ performances are improved with
the aid of the unlabeled data. In addition, more improvement is obtained in the case that the size of training set is small.

Apart from the three data editing techniques we used, there are many other related ones. Therefore, one future work will
investigate the using of unlabeled data for other data editing methods. Moreover, data editing is a kind of instance selection
technique [7,12,13] which consists of selecting an appropriate reduced sub-set of training instances and applying the k-NN
rule using only the selected instances. In addition to data editing, data condensing [10] is the other instance selection tech-
nique with focuses on data reduction more than generalization ability. Another future work is to investigate the using of
unlabeled data for data condensing.
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