
Ann. Telecommun.
DOI 10.1007/s12243-009-0123-0

MUQAMI+: a scalable and locally distributed key
management scheme for clustered sensor networks

Muhammad Khaliq-ur-Rahman Raazi Syed ·
Heejo Lee · Sungyoung Lee · Young-Koo Lee

Received: 10 November 2008 / Accepted: 19 June 2009
© Institut TELECOM and Springer-Verlag France 2009

Abstract Wireless sensor networks (WSN) are sus-
ceptible to node capture and many network levels
attacks. In order to provide protection against such
threats, WSNs require lightweight and scalable key
management schemes because the nodes are resource-
constrained and high in number. Also, the effect
of node compromise should be minimized and node
capture should not hamper the normal working of
a network. In this paper, we present an exclusion
basis system-based key management scheme called
MUQAMI+ for large-scale clustered sensor networks.
We have distributed the responsibility of key manage-
ment to multiple nodes within clusters, avoiding single
points of failure and getting rid of costly inter-cluster
communication. Our scheme is scalable and highly ef-
ficient in terms of re-keying and compromised node
revocation.

Keywords Locally distributed · Key management ·
Sensor networks · Key revocation · Scalable key
management · Flexible scheme

M. K. R. R. Syed · S. Y. Lee (B) · Y. K. Lee
Department of Computer Engineering,
Kyung Hee University, Seoul, Korea
e-mail: sylee@oslab.khu.ac.kr

M. K. R. R. Syed
e-mail: raazi@khu.ac.kr

Y. K. Lee
e-mail: yklee@khu.ac.kr

H. Lee
Divison of Computer & Communication Engineering,
Korea University, Seoul, South Korea
e-mail: heejo@korea.ac.kr

1 Introduction

Wireless sensor networks (WSN) are employed in var-
ious application areas, which include habitat moni-
toring, military surveillance, border monitoring, and
health care. WSNs differ from other distributed net-
work systems in such a way that they have to work in
real-time with given constraints, which include energy,
storage, computation, and communication. WSNs are
mostly data centric and are used to monitor their sur-
roundings, gather information, and filter it [3]. A sensor
network typically consists of a large number of sensor
nodes working together to collect data and gather it in
a central node, using wireless communications [27].

Security is an important aspect in WSN. Adversaries
may try to listen to communications, disrupt them,
or even block them. Also, an adversary may attack
externally, e.g., capture the node or jam the traffic
signals. In addition to being secure, WSN should also
be cost effective because their batteries may not be
recharged. This also limits their memory and computa-
tional power. So the WSN require security mechanisms
that are also resource-efficient. Highly effective secu-
rity mechanisms, such as TLS [7] and Kerberos [18],
exist, but they cannot be applied to the WSN paradigm
because they are not resource-efficient.

In WSN, group communications are performed to in-
crease efficiency. Groups of nodes share common secret
keys. If a node is compromised, it must be evicted from
the group and keys must be refreshed in such a way that
the compromised node does not get to know the new
key values. A single key cannot be used for the whole
network because, in that case, if even a single node is
compromised, it compromises the whole network with
it. On the other extreme, all pairs of sensor nodes can

Ann. Telecommun.

have separate keys. This provides high security, but
it hampers network processing [15, 17] because some
schemes use passive participation of nodes, i.e., they
decide their actions after overhearing the messages
[16, 22]. So, we need a lightweight scheme, which also
enables sharing of a key with large numbers of nodes.

In this paper, we proposed MUQAMI+,1 a light-
weight, scalable, and locally distributed key man-
agement scheme for clustered sensor networks. In
MUQAMI+, a large number of nodes in a cluster share
common keys. MUQAMI+ is efficient not only for
periodic key refreshment but also for revocation of a
compromised node. Also, our scheme allows the role
of being a cluster head to be shifted from node to
node with the passage of time. MUQAMI+ is based
on exclusion basis system (EBS) matrix [10] and key
chains [8]. The key chain is an authentication mecha-
nism based on Lamport’s one-time passwords [19].

The rest of the paper is organized as follows:
Section 2 outlines background and related work.
Section 3 describes models and assumptions. Section 4
presents our scheme. Section 5 and Section 6 contain
theoretical and simulation-based analysis and evalua-
tion, respectively. Section 7 concludes the paper and
suggest some future work.

2 Background and related work

Static key management is the primitive form of key
management in WSN. It is sometimes also referred to
as key pre-distribution, in which keys are calculated
and pre-loaded in the nodes before the deployment of
the WSN. Intensive research has been done in devising
efficient methods for distributing keys before the net-
work deployment [6, 9, 12, 21]. Camtepe et. al. [5] have
proposed a key distribution approach based on combi-
natorial design using balanced incomplete block design
(BIBD) and generalized quadrangles (GQ). These are
static key management schemes and they work on the
assumption that WSN are very short-lived networks.
However, a real-life example of WSN Mica2 has a
life-time of 2 weeks at full power [17]. If keys are
not refreshed periodically, there are always chances of
cryptanalytic attacks on the WSN.

Many dynamic key management schemes have been
proposed, which emphasize the refreshment and revo-
cation of keys periodically. Riaz et al. [26] proposed
a scheme that actively involves the base station for

1In the conference version, we named this protocol MUQAMI.
Since it is much improved in this journal version, we have named
it MUQAMI+.

communication among sensor nodes using public keys.
Drawback of this scheme is the frequent communica-
tion between sensor nodes and the base station as it
incurs a lot of communication overhead. G. Dini [8]
proposed a tree-based key revocation protocol for
WSNs based on key chains. Apart from increased stor-
age overhead, another drawback of their scheme is
that there is a lot of communication and computation
overhead in case of node compromise.

LEAP+ [31] and SHELL [13] are two state-of-the-
art schemes for key management in WSN. Also, K.J.
Paek et al. [24] proposed key management based on
regional and virtual groups. Drawbacks of Paek et al.
[24] and LEAP+ [31] are that they assume that the
network is safe during some initial time period. Also, all
the nodes have to generate keys, which consume a lot
of energy. SHELL [13] does not require all the nodes to
generate keys, but it has a lot of inter-cluster commu-
nication, which is also not desirable. Later, Eltoweissy
et al. briefly proposed LOCK [11], which eliminates
inter-cluster communication by distributing key gen-
eration responsibilities among few nodes within the
cluster. However, LOCK requires some nodes to have
more capabilities than normal sensor nodes so that they
can generate keys. Otherwise, it causes the key gen-
erating nodes to die down more quickly. Our scheme
assumes no initial safe time period. Also, there is no
inter-cluster communication and very few nodes are
involved in key management. Moreover, our scheme is
flexible and allows the key management responsibilities
to rotate among different nodes within the cluster. In
addition to that, we use key chains [8] to keep the key
generation cost low.

3 Models and assumptions

3.1 System model and assumptions

WSN consist of a command node connected to a num-
ber of sensor nodes, which can be grouped into clusters.
We assume that the constraints of WSN do not apply to
the command node. We are assuming clustered sensor
networks, in which cluster head node aggregates infor-
mation from other sensor nodes and sends it back to
the command node. Clustering can be based on some
criteria like in [1, 14], where nodes do not know their
locations. Sensor nodes relay their messages directly
or indirectly, depending upon their communication
ranges [2, 20]. There are many applications of WSN-
like soil moisture monitoring and battlefield monitor-
ing, in which nodes do not change their location after
initial deployment. It is also important to minimize key

Ann. Telecommun.

Fig. 1 Clustered sensor networks architecture

management overhead in such applications. We are
assuming that all nodes, including the cluster heads, are
stationary. Authors of other state-of-the-art schemes,
like LEAP+ and SHELL, have also assumed the sen-
sor nodes to be stationary. Communication range and
physical locations of all nodes are known to the nodes
at the higher levels. The role of being cluster head
requires more capabilities in a node as compared to the
simple sensor nodes. The role of being a cluster head
node can be shifted between nodes, which can bear the
responsibility of a cluster head node. Figure 1 depicts
the network architecture assumed in our scheme. Each
node can be a member of only one cluster. If it falls
within the boundaries of more than one cluster head
node, it must choose one cluster for its membership.

3.2 Adversity model and assumptions

According to our model, the adversary will try to get
hold of keys so that it can attack actively or passively.
In order to get hold of the keys, an adversary can even
capture a node and use it in any way possible. It may
use its memory, spread false messages, and sabotage
communications. The sensor nodes are assumed not
to be tamper-resistant. Another assumption is that the
higher we go in the hierarchy of nodes, the more diffi-
cult it gets for an adversary to capture a node and that
the command node is completely secure. Moreover, we
assume that the compromised nodes do not collude, i.e.,
they do not collaborate with each other to carry out an
attack. Also, a compromised node is revoked as soon as

it is detected, and we have a reasonable compromised
node detection technique employed in the network.
Our last assumption is that compromised nodes cannot
communicate with each other through any external
communication channel. Detection of attacks is out of
the scope of this paper. Readers interested in attack
detection can refer to [4, 30] for further knowledge.

4 MUQAMI+

In our scheme, the command node (CN) stores all node
IDs. Since the CN does not have energy constraints,
we have tried to move as much load to the CN as
possible. The CN is responsible for managing basic keys
(Kbsc) and discovery keys (Kdisc) for all the nodes. It
is also responsible for managing keys between cluster
heads and the command node. In order to facilitate
in network processing and reduce the overall security
overhead, our scheme secures all communications us-
ing Kcomm, which is a group key used for providing
group confidentiality. However, using only Kcomm is
very risky, and it also cannot secure a network against
insider attacks. Therefore, we use administrative keys
Kadmin to secure Kcomm and to protect the network
against insider attacks. Apart from that, every node
in the network shares a pair-wise key with its CH.
If some key, other than Kcomm, is required to secure
communication between a pair of sensor nodes, the CH
node sends a pair-wise key to that pair of sensor nodes
directly. In this paper, we use different notations, which
are mentioned in Table 1.

Our scheme uses the EBS system of matrices [10]
to manage keys. In EBS, a small number of keys are
required to manage a large number of nodes. Every
node knows a distinct set of k keys out of a set of
k + m keys. We have proposed a little change in the
representation of the EBS matrix. Usually, we use “0”
if a node does not know a key and “1” if a node knows
a key. In our scheme, we also use “2,” which means that
a node generates a key. Table 2 shows an example of an
EBS matrix. Over 3,000 key combinations are available
if 14 keys are used.

After the CH nodes are deployed in the initial phase,
the CN sends Kdisc of all the nodes to their respective
CH nodes, so that the CH nodes can recognize the
newly deployed nodes in their respective clusters. After
the nodes are deployed, the CN computes the details of
EBS matrices according to the locations of all the nodes
in the network and shares them with the respective
CH nodes. CN also sends initial values of relevant
administrative keys to each node. While forwarding the
encrypted administrative keys to the respective nodes

Ann. Telecommun.

Table 1 List of used notations

CN Command node or the base station
CHi Cluster head node i
KGi Key generating node i. KG nodes compute keys

using lightweight one-way hash functions, rather
than generating them

SNi Sensor node i
{CH} Set of all the CH nodes
{SNCHi } Set of the SN nodes belonging to CH i
{KGCHi } Set of the KG nodes belonging to CH i
Ki

bsc Basic key of node i. Used for communication with
the command node. It is preloaded in every node
of the network and refreshed after being used once

Ki
disc Discovery key of node i. Used for initial discovery

of the node. It is preloaded in every node of the
network and refreshed after being used once

Ki, j
ch,kg Key used for communication between CH i and KG j

Ki, j
ch,sn Key used for communication between CH i and SN j

Kcomm Communication key
Ki

admin Administrative key i
Ki

cn,ch Key used for communication between CN and
CH node i

mi Message number i in a particular communication
sequence

EK{A|B} Values A and B is put together in a block/chunk and
then the chunk is encrypted using key K

in its cluster, CH nodes also establish pairwise keys
with all nodes in its cluster. For key refreshment, CH
asks the KG nodes to send new keys to sensor nodes
in its cluster. KG nodes compute key values with the
help of lightweight one-way hashing functions [23] and
broadcast them in the cluster. Keys, other than the
administrative and communication keys, are very rarely
used. Figure 2 elaborates the working of our scheme
MUQAMI+ with the help of a flow diagram.

4.1 Initial deployment

CH nodes are deployed in the first phase. Following is
the first message that a newly deployed CH i sends to
the CN:

m1 : ∀CHi ∈{CH} :CHi →CN : EKi
disc

{ID|Auth_Code}

Table 2 Example of an EBS matrix for MUQAMI+
N0 N1 N2 N3 N4 N5 N6 N7 N8 N9

K1 2 1 1 1 1 1 0 0 0 0
K2 1 2 1 0 0 0 1 1 1 0
K3 1 0 0 2 1 0 1 1 0 1
K4 0 1 0 1 0 2 1 0 1 1
K5 0 0 1 0 2 1 0 1 1 1

Fig. 2 Outline of the proposed scheme MUQAMI+

Then for every CH i, the CN authenticates it and sends
to it the Ki

cn,ch and the EBS matrix of its cluster along
with IDs and Kdisc of all nodes j, which are to be
deployed in the cluster of CH i:

m2 :∀CHi ∈{CH} :CN →CHi : EKi
disc

{
Ki

cn,ch|EBS_Matrix

|∀SN j ∈ {{SNCHi} ∪ {KGCHi}} : {
ID(SN j)|K j

disc

}}}

In the above message, IDs and Kdisc of all the relevant
nodes are put together in a block along with the Ki

cn,ch
and the relevant EBS matrix, then encrypted using Kdisc

of the CH node and then sent to the CH i from the CN.
SN and KG nodes are deployed in the second phase.
The following messages are exchanged for every KG
node j that is deployed in the cluster i:

∀CHi ∈ {CH} ∧ ∀KG j ∈ {KGCHi} :
m1 : KG j → CHi : EK j

disc

{
ID(KG j)|Auth_Code

}

m2 : CHi → CN : EKi
cn,ch

{
ID(KG j)|Auth_Code

}

m3 : CN → CHi : EKi
cn,ch

{
EK j

bsc

{
K j

bsc_new

|K j
disc_new|K1

admin|K2
admin|...|Kk−1

admin

}}

m4 : CHi → KG j : EK j
disc

{
Ki, j

ch,kg|EK j
bsc{

K j
bsc_new|K j

disc_new|K1
admin|K2

admin|...|Kk−1
admin

}}

In the above messages, after authenticating a new KG
node j, i.e., after the first two messages, CN puts to-
gether all the Kadmin relevant to the KG node j in
a block along with the new values of Kbsc and Kdisc,
encrypts this block first using the current value of Kbsc

and then using Ki
cn,ch, and then sends it to the CH i

in message m3. After receiving m3, CH i generates the
seed value for Ki, j

ch,kg and computes the whole key chain

associated with Ki, j
ch,kg. CH i then adds the seed value of

Ki, j
ch,kg into the block and sends it to KG j in m4. Note

that the CN sends new values for Kbsc and Kdisc every

Ann. Telecommun.

time they are used. Also, k − 1 administrative keys are
communicated to a KG node as it is responsible for
generating one key by itself. After receiving m4, KG
j computes the associated key chain for Ki, j

ch,kg. Similar
message exchanges take place for every SN node j that
is deployed in cluster i:

∀CHi ∈ {CH} ∧ ∀SN j ∈ {SNCHi} :
m1 : SN j → CHi : EK j

disc

{
ID(SN j)|Auth_Code

}

m2 : CHi → CN : EKi
cn,ch

{
ID(SN j)|Auth_Code

}

m3 : CN → CHi : EKi
cn,ch

{
EK j

bsc

{
K j

bsc_new

|K j
disc_new|K1

admin|K2
admin|...|Kk

admin

}}

m4 : CHi → SN j : EK j
disc

{
Ki, j

ch,sn|EK j
bsc{

K j
bsc_new|K j

disc_new|K1
admin|K2

admin|...|Kk
admin

}}

No key chain is associated with Ki, j
ch,sn as it is rarely

used. Sometimes, a node is not deployed in its expected
cluster. In that case, messages m2 and m3 in the above
message exchanges will be changed as follows:

m2 : CHi → CN : EKi
cn,ch

{
EK j

disc

{
I D(SN j)|Auth_Code

}}

m3 : CN → CHi : EKi
cn,ch

{
K j

disc|EK j
bsc

{
K j

bsc_new

|K j
disc_new|K1

admin|K2
admin|...|Kk

admin

}}

In the end, CN shares the final version of the EBS
matrix with the CH node as follows:

m1 : CN → CHi : EKi
cn,ch

{EBS_Matrix}

Note that the cluster heads do not know the administra-
tive keys being used in their clusters. This is important
to avoid a single point of failure, i.e., revelation of all
Kadmin in case of compromise of CH. Next, the initial
values of communication keys are distributed. Every
CH node i sends communication keys to all KG nodes
in its cluster. In turn, every KG node broadcasts the
communication key in the cluster using the administra-
tive keys that it manages. The message exchanges for
broadcasting the initial values of communication keys
are as follows:

∀CHi ∈ {CH} ∧ ∀KG j ∈ {KGCHi} :
m1 : CHi → KG j : EKi, j

ch,kg

{
Ki

comm

}

m2 : KG j → ∗ : EK j
admin

{
Ki

comm

}

4.2 Re-keying and node addition

In order to avoid the cryptanalytic attacks on the net-
work, keys need to be refreshed regularly. Communica-
tion keys are refreshed in the same manner as they were
distributed initially, i.e., using the administrative keys.
Administrative keys are refreshed using their previous
values. In order to refresh Kl

admin of its own cluster,
CH node i sends a refresh message to the KG node j,
which manages Kl

admin. KG node j then broadcasts the
new administrative key encrypted in the old one. The
following message exchanges take place:

m1 : CHi → KG j : EKi, j
ch,kg

{Refresh_Message}
m2 : KG j → ∗ : EKl

admin

{
Kl

admin_new

}

When a sensor node receives a new value of an admin-
istrative key, it verifies the new value through the one-
way hashing function as follows:

Kl
admin = F

(
Kl

adminnew

)

where F is the one-way hashing function that is used
to compute the administrative keys. Since we use key
chains to manage Kch,kg and Kadmin, it becomes neces-
sary for the KG node to get the new seed value from
CH node or the CN node, respectively. A KG node j
gets the new value of Kl

admin, which it manages, from
the CN through its CH i, as follows:

m1 : KG j →CHi :
EKi, j

ch,kg

{
EK j

bsc

{
Auth_Code|Refresh_Msg

}}

m2 : CHi →CN :
EKi

cn,ch

{
EK j

bsc

{
Auth_Code|Refresh_Msg

}}

m3 : CN →CHi : EKi
cn,ch

{
EK j

bsc

{
K j

bsc_new|Kl
admin_seed

}}

m4 : CHi → KG j : EKi, j
ch,kg

{
EK j

bsc

{
K j

bsc_new|Kl
admin_seed

}}

KG node j can get the new seed value for Ki, j
ch,kg from

the CH node i using the last value of Ki, j
ch,kg in the key

chain.
For the addition of SN node j in cluster i, CN sends

the following message to the CH i: -

m1 : CN → CHi : EKi
cn,ch

{
ID(SN j)|K j

disc

}

After getting this message, CH i waits for the discovery
message from the SN node j. When deployed, SN node

Ann. Telecommun.

j will contact the CH i with its discovery key K j
disc. The

following message exchanges will take place to add the
new SN node j in cluster i:

m2 : SN j → CHi : EK j
disc

{ID(SN j)|Auth_Code}
m3 : CHi → CN : EKi

cn,ch
{ID(SN j)|Auth_Code

|Cur_Admin_Chain_Indexes}
m4 : CN → CHi : EKi

cn,ch

{
EK j

bsc

{
K j

bsc_new|K j
disc_new

|K1
admin|K2

admin|...|Kk
admin

}}

m5 : CHi → SN j : EK j
disc

{
Ki, j

ch,sn|EK j
bsc

{
K j

bsc_new|K j
disc_new

|K1
admin|K2

admin|...|Kk
admin

}}

where Cur_Admin_Chain_Indexes represents the
number of times Kadmin, related to SN node j, has been
refreshed. Based on Cur_Admin_Chain_Indexes, the
CN calculates and sends to the SN j the current values
of the Kadmin related to the SN node j. In case a new
KG node j is to be deployed in cluster i, CN sends
initial value of the new key “l,” which KG j manages,
to all the relevant SN nodes in the cluster through the
CH i. Then, the new KG node j is deployed in the same
manner in which a new SN node is deployed. The only
difference is that k − 1 admin keys are sent to the new
KG node as it generates one by itself. The fact that the
CN is often solicited through CH nodes has an impact
on the energy consumption of CH nodes. A single
node may not be able to act as a CH node throughout
the network lifetime. Therefore, our scheme has the
flexibility to shift the responsibility of being the CH
node from the current CH node to another node,
which has the capability of becoming CH. Refer to
Section 4.3.1 for details regarding the addition a new
CH node.

4.3 Node compromise

If a node is compromised, we need to refresh the keys
in such a way that the new keys are not known to the
compromised node and it can only act as an outsider
when trying to interfere in the network operation. We
assume that an efficient mechanism to detect an attack
is already in place and the relevant CH node starts the
recovery procedure. In case of CH node compromise,
CN starts the procedure. We have three types of node
in our network. We will discuss the implications of the
compromise of each type of node one by one.

4.3.1 Cluster head compromise

If a CH node is compromised, CN can either deploy a
new CH node or designate an existing node from the
network to act as a CH node. Apart from sharing the
discovery keys of all nodes in the cluster and the EBS
matrix of the cluster i with the new CH i, CN sends a
validation message to each node in the cluster through
the new CH node i. CH i cannot decrypt the validation
messages as they are encrypted using Kbsc of the related
nodes. The following message is exchanged between
CN and the new CH node i:

m1 : CN → CHi : EKi
bsc

{
EBS|∀l ∈ {{SNCHi} ∪ {KGCHi}} :

{
Kl

disc|EKl
bsc

{
Kl

bsc_new|Kl
disc_new|CH_Valid

}} }

Then, the CH node sends the validation messages to all
the SN nodes k along with the new value of Ki,k

ch,sn. For
all the KG nodes j, it will send the validation message
along with a new seed value of Ki, j

ch,kg. The new CH
node i will send the following messages to each SN node
k and KG node j, respectively:

m2 : ∀SNk ∈ {SNCHi} : CHi → SNk : EKk
disc

{
Ki,k

ch,sn|EKk
bsc

{
Kk

bsc_new|Kk
disc_new|CH_Valid

}}

m2 : ∀KG j ∈ {KGCHi} : CHi → KG j : EK j
disc

{
Ki, j

ch,kg|EK j
bsc

{
K j

bsc_new|K j
disc_new|CH_Valid

}}

4.3.2 Sensor node compromise

If an SN node is compromised, we need to distribute
the set of K keys known to the compromised SN node
using the M keys not known to the compromised SN
node. So, in the first phase, the CH node will ask all the
KG nodes, which generate those K keys, to generate
new values, encrypt them using the previous ones, and
send them back to the CH node. If the SN node is com-
promised in cluster i, the following communications will
take place between CH i and the KG nodes, which
manage those K keys in the cluster:

m1 : ∀p ∈ K :CHi → KGp : EKi,p
ch,kg

{Revoc_Msg}

m2 : ∀p ∈ K : KGp → CHi : EKi,p
ch,kg

{
EK p

admin

{
K p

admin_new

}}

Now, the CH node will aggregate these K encrypted
values and send the aggregated message to the M KG
nodes, i.e., those KG nodes, which manage keys that
are not known to the compromised node. Each one of
those M KG nodes will then broadcast the aggregated
messages using the key it manages. SN nodes, which

Ann. Telecommun.

use any of those K compromised keys, will get the new
value using some key that it knows other than those K
keys. Note that no two nodes know the same set of K
keys in the EBS matrix (refer to Table 2). The following
message exchanges will take place to distribute the
refreshed keys:

m3 : ∀q ∈ M : CHi → KGq :
EKi,q

ch,kg

{
∀p ∈ K : EK p

admin

{
K p

admin_new

}}

m4 : ∀q ∈ M : KGq → ∗ :
EKq

admin

{
∀p ∈ K : EK p

admin

{
K p

admin_new

}}

Note that, in all these communications, the compro-
mised SN node can not use the keys known to it in order
to interfere in the network operations.

4.3.3 Key-generator compromise

If a KG node is compromised, either a new node will
be deployed or an existing node will be given the re-
sponsibility of managing the key, which was previously
managed by the compromised node. If a new node is
deployed, key chain will be pre-loaded into it before
deployment. It will only need to know the current
key value so that it can use it to send the new value.
On the other hand, if an existing node is given the
responsibility, it will also need a seed value to compute
the new key chain. In order to award the responsibility
to an existing SN j in cluster i, the following messages
are exchanged:

m1 : CHi → CN : EKi
cn,ch

{Revoc_Msg|Key_ID

|Cur_Refr_Iter}
m2 : CN → CHi : EKi

cn,ch

{
ID(SN j)|K j

disc|EK j
bsc

{
K j

bsc_new

|K j
disc_new|Cur_Key_Val|Seed_Val

}}

m3 : CHi → SN j : EK j
disc

{
EK j

bsc

{
K j

bsc_new|K j
disc_new

|Cur_Key_Val|Seed_Val
}}

where Seed_Val is the seed value of the Kadmin that SN j

has to manage. After these messages are exchanged,
SN j becomes one of the K KG nodes, which know
one compromised key each in the cluster i. A similar
procedure, as in the previous section (Section 4.3.2), is
followed to distribute the set of K compromised keys
using the remaining set of M keys.

Since a compromised node is not bound in its be-
havior, it may happen that it refreshes a key without

consent of the CH node. If the compromised KG node
has already refreshed the compromised key without the
instructions of the CH i, then a new initial value of the
compromised key, encrypted with the respective Kbsc

of all the relevant SN nodes, is sent to all the relevant
SN nodes through the CH node i. In such a scenario, the
following message exchanges will take place instead of
the above message exchanges:

m1 : CHi → CN : EKi
cn,ch

{Revoc_Msg|Key_I D}

m2 : CN → CHi : EKi
cn,ch

{
I D(SN j)|K j

disc|EK j
bsc

{K j
bsc_new

|K j
disc_new|Seed_Val}|∀SNl ∈ Key_I D : I D(SNl)

|Kl
disc|EKl

bsc

{
Kl

bsc_new|Kl
disc_new|New_Init_Key_Val

}}

m3 : CHi → SN j : EK j
disc

{
EK j

bsc

{
K j

bsc_new|K j
disc_new

|Seed_Val
}}

m4 : ∀SNl ∈ Key_I D : CHi → SNl : EKl
disc

{
EKl

bsc

{
Kl

bsc_new

|Kl
disc_new|New_Init_Key_Val

}}

5 Performance analysis and comparison

In this section, we will provide a brief comparison of
MUQAMI+ with other schemes and try to establish
our claims. Two factors contribute towards the usage
of power in a node: communication overhead and com-
putation overhead. However, we need to consider the
storage overhead first as the sensor nodes are also
limited in their storage capacity.

5.1 Storage overhead

EBS-based key management schemes are inherently
able to support a large number of nodes with a small
number of keys using combinatorics (see Fig. 3). Note
that the graph is drawn on logarithmic scale because
the number of nodes that can be supported increases
exponentially with respect to the number of keys used.
This is particularly helpful when compromised nodes
need to be revoked. The number of nodes n that can be
supported using EBS matrix is given by the formula:

n = (k + m)!
k!m! , (1)

where k and m are EBS parameters. As opposed
to SHELL [13], cluster heads in our scheme need
not store any key to communicate with other cluster

Ann. Telecommun.

Fig. 3 Number of nodes that can be supported using the EBS-
based scheme

heads. Moreover, gateways in our scheme also need
not generate and store EBS keys for other clusters. In
MUQAMI+, each CH node has to store one Kcomm

and Kcn,ch apart from Kch,sn of all SN nodes and the
key chains Kch,kg of all KG nodes in the cluster. So, the
average storage requirement of a CH node (in number
of keys) in MUQAMI+ can be expressed with the
following formula:

SRMUQAMI+
CH = (l × (k + m)) + r − (k + m) + 2, (2)

where l is length of the key chain and r is the number
of nodes in a cluster. SN nodes have to store k admin
keys apart from four other keys: Kch,sn, Kcomm, Kbsc,
and Kdisc. So, the average storage requirement of an
SN node in MUQAMI+ can be expressed with the
following formula:

SRMUQAMI+
SN = k + 4 (3)

KG nodes have to store two key chains: one for the
admin keys, which it generates, and one for Kch,kg.
Also, it has to store k − 1 EBS keys along with three

other keys: Kcomm, Kbsc, and Kdisc. So the storage
requirement of a KG node can be expressed as:

SRMUQAMI+
KG = 2l + (k − 1) + 3

= 2(l + 1) + k (4)

Since we have k + m KG nodes out of r nodes inside
the cluster, average storage requirement of each node
within a cluster comes out to be:

SRMUQAMI+
SN∪KG = (r−(k+m))(k+4)+(k+m)(2(l+1)+k)

r

= r(k + 4) + (k + m)(2(l + 1) − 4)

r

= (k + 4) + 2(l − 1)(k + m)

r
(5)

Note that the ratio ((k + m) : r) is very small as
(k + m) << r (see Eq. 1 and Fig. 3). Therefore,
average storage requirements of a node inside a cluster
are not too much as compared to SHELL.

In our scheme, we use one-way hashing functions
to compute key chains. Also, we know that key-chain
length l is a variable, which can change according to
the storage capabilities of a node. However, l must be
a value such that the cost of computing the keys does
not exceed the cost of generating them on the nodes. In
other words, the following inequality must hold:

Costseed + l(Costcomp − 1) < l(Costgen)

⇒ Costseed < l(Costgen − Costcomp + 1)

⇒ l <
Costseed

Costgen − Costcomp + 1
(6)

where Costseed, Costcomp, and Costgen are the costs of
getting new seed value, computing a key value through
one-way hashing function, and generating a key on a
node, respectively.

Table 3 compares the storage requirements of
MUQAMI+ with other schemes. In Table 3, b is the
average number of neighboring nodes with whom SN
node has to share pair-wise keys and h is the num-
ber of neighboring CH nodes, with whom a CH node
communicates. The value of h can vary depending
upon the value of EBS parameters k and m and the
extent to which the distribution of keys is desired. Our

Table 3 Storage
requirements (in number of
keys) of each type of node
in all the three schemes

CH SN

MUQAMI+ (l × (k + m)) + r − (k + m) + 2 (k + 4) + [(2(l − 1)(k + m))/r]
LEAP+ r + 2 b + 2
SHELL l + r + h + k + m + 1 l + k + 3

Ann. Telecommun.

Table 4 Average number of
bytes transmitted by each
type of node on each link
during initial deployment
phase (an asterisk means a
broadcast within a cluster)

MUQAMI+ LEAP+ SHELL

CH → CH – – x(h + r + k + m)

CH → CN 2z(r + 1) – 2z
CN → CH g(x + y + r(z + x) + x(k + 2)) g(2x) g(x + (h + r)(z + x) + z)

CH → ∗ – 2x x(k + m)

CH → SN r(k + 3)x rx rkx
SN → CH 2z (d + 2)x 2z
SN → SN – (2b + 3d)x –
SN → ∗ – 2x –

scheme is completely distributed in nature, i.e., one
node manages not more than one key. The value of
b also varies according to the size and density of the
network. However, the values of parameters h and b
are always such that they are comparable to the value
of k + m. In Table 3, we use SN nodes to represent
both SN and KG nodes of MUQAMI+ because other
schemes do not have any KG nodes. Details of the
storage analysis of LEAP+ and SHELL are presented
in Appendix A.

We can decrease the key-chain length in
MUQAMI+ at the cost of more computations and
communications, but we cannot store more keys in
LEAP+ to reduce the computation and communi-
cation costs. This proves our scheme to be more
adaptable to the capabilities of nodes as compared to
LEAP+. Also, storage requirements of SN nodes are
very low in our scheme MUQAMI+ as compared to
SHELL.

5.2 Communication and computation overhead

Since communication is the most energy-consuming
activity, we will analyze and discuss it in more detail.
While designing our scheme, we have tried to minimize
and localize the communication as much as possible.
This also helps in reducing the computation overhead
because fewer message exchanges will result in fewer
encryptions/decryptions. Now, we will try to compare
our scheme with other schemes with respect to the
number of messages exchanged between various types
of nodes during different phases.

If we assume key length to be x bytes, EBS matrix
size to be y bytes, and average length of other types of
messages to be z bytes, then Table 4 shows the average
number of messages transmitted by each type of node
on each link during the initial deployment phase of
each scheme. Here, g is the total number of CH nodes
in the network and d is the number of nodes, which
communicate with the CH node through a particular
node. The exact value of d depends upon the network
topology and varies from node to node even within a

network. One important thing to note in Table 4 is that
there is much less load on CH nodes in LEAP+. In
LEAP+, SN nodes have to bear extra loads instead of
the CH node in the initial deployment phase. LEAP+ is
designed in such a way that if two nodes have to share a
key, one of them broadcasts and the other one unicasts.
We could have assumed that the CH node uses the
broadcasts of SN nodes. However, that exercise would
have only increased the load on the CH node without
any significant effect on the load of SN nodes. The
reason is that every SN node would have to broadcast
with even more power so that its broadcast message
could reach the CH node. New nodes are added in
the same way as they are deployed initially in all the
three schemes. So the comparison of new node addition
would be similar to the one shown in Table 4.

Table 5 shows the average number of bytes transmit-
ted by each type of node during the key refreshment
phase. Communication keys are refreshed in the same
way as the administrative keys except in LEAP+. In
LEAP+, communication key refreshment is compara-
tively efficient for CH nodes. However, this efficiency
comes at the cost of increased load on all SN nodes.
The average number of messages broadcasted by an SN
node for rekeying in our scheme can be expressed with
the following formula:

Avg_Msg_Count_RekeyMUQAMI+
SN→∗ = k + m

r
(7)

Table 5 Average number of bytes transmitted by each type of
node on each link during key refreshment phase (an asterisk
means a broadcast within a cluster)

MUQAMI+ LEAP+ SHELL

CH → CH – – x(h + k + m)

CN → CH (zg) + ((2xg)/ l) xg xg(h + 1)

CH → CN (2z)/ l – –
CH → ∗ – – x(k + m)

CH → SN x(k + m) + ((2z)/ l) xr –
SN → CH (2z)/ l x(d + 1) –
SN → SN – x(b + 2d) –
SN → ∗ x((k + m)/r) – –

Ann. Telecommun.

Table 6 Average number of bytes transmitted by each type of node on each link in case the CH node of the cluster is compromised

MUQAMI+ LEAP+ SHELL

CH → CH – – x(h + (k + m)(2r + 1))

CN → CH y + r(3x + z) 2x (2xh) + r(2x + z)

CH → CN 2z 2z 2z
CH → ∗ – 2x (k + m)x
CH → SN (r(3x + z)) + x(k + m) + ((2z)/ l) rx r((k + 3)x + z)

SN → CH – (d + 2)x –
SN → SN – (2b + 3d)x –
SN → ∗ – – –

All communications are within the cluster of the compromised CH except CH → CH communication (an asterisk means a broadcast
within a cluster)

Apart from that, we have added an expression 1/ l in
the number of communications from SN → CH, CH →
SN, and CH → CN. This expression caters to the com-
munications that are required to get a new seed value
from the CH node.

If a CH node is compromised, the recovery proce-
dure of our scheme is fairly straight forward as com-
pared to other schemes. In Table 6, we have compared
the communication overhead of our scheme with other
schemes in case of CH node compromise.

If an SN node is compromised, we do not assume
that a new SN node is deployed. However, in case
of a KG node in MUQAMI+, we have to give the
responsibility of key generation to some other node.
In MUQAMI+, if a KG node is compromised, the CH
sends one message to the CN and the CN replies with
the compromised administrative key’s new seed value.
Apart from that, there is only one extra communication
from the CH to the SN node, after which the SN node
becomes a KG node. We assume that all nodes in a
cluster have equal probabilities of being compromised.
So, the average number of communications between
CH and CN, in case of the compromise of the SN or
the KG node, will be similar to Eq. 5, i.e., (k + m)/r.
Similarly, the average number of communications from

CH to SN node can be calculated with the following
formula:

Avg_Msg_Count_SNComprMUQAMI+
CH→{SN∪KG}

= ((r − (k + m))(k + m)) + (k + m)(k + m + 1)

r

= (k + m)(r − k − m + k + m + 1)

r

= (k + m)(r + 1)

r
(8)

Whereas the average number of bytes transferred from
the CH to the SN node for the above task can be
expressed with the following formula:

Avg_Byte_Count_SNComprMU QAMI+
CH→{SN∪KG}

= ((r−(k+m))(kz+mx))+(k+m)(kz+mx+2z+2x)

r

= krz + mrz + 2zk + 2xk + 2zm + 2xm
r

= 2x(k + m) + z(r(k + m) + 2(r + m))

r
(9)

Table 7 Average number of bytes transmitted by each type of node on each link in a cluster in case a SN node is compromised in that
cluster

MUQAMI+ LEAP+ SHELL

CH → CH – – x(h + k + m) + zk
CN → CH 3(x + z)((k + m)/r) – –
CH → CN 3z((k + m)/r) – –
CH → ∗ – x xm
CH → SN (2x(k + m) + z(r(k + m) + 2(r + m)))/r xr –
SN → CH x(k/r) x(d + 1)(b/r) –
SN → SN – x(b + 2d)(b/r) –
SN → ∗ x(m/r) x –

All communications are within the cluster of the compromised CH except CH → CH communication (an asterisk means a broadcast
within a cluster)

Ann. Telecommun.

In Table 7, we have compared the communication
overhead of our scheme with other schemes in case of
SN node compromise. Details of the communication
and computation analysis of LEAP+ and SHELL are
presented in Appendix B.

Note that, in all comparisons, there are no inter-
cluster communications in our scheme as opposed to
SHELL, and there are no unicast communications
among SN nodes as opposed to LEAP+. There is com-
munication between CH nodes and the CN node, but it
is minimal and not very frequent. Due to these factors,
our scheme has less communication and computation
overhead than other schemes, which we will further
establish in Section 6.

6 Simulation results

For simulation, our proposed network architecture is
similar to the one shown in Fig. 1. We have compared
our scheme with two other schemes, SHELL[13] and
LEAP+[31], which are the most appropriate ones for
WSNs proposed so far according to the best of our
knowledge. In SHELL, CH nodes need to contact the
neighboring CH nodes, so we have assumed a total of
five clusters (g = 5) with 412 nodes in each cluster, i.e.,
r = 412. We have assumed k = m = 6, so that there are
ample key combinations left for the addition of new
nodes in the network. Also, we have assumed b = 10
and d = 0.5 on average. In case of SHELL, each CH
node divides the EBS matrix into four equal parts and
shares one part with each of the other CH nodes, i.e.,
h = 4. The neighboring CH nodes in turn manage keys
for the part of EBS matrix shared with them. Simula-
tion was programmed in “Tools Command Language
(tcl8.0),” which is used to program ns-2 simulations.

G. Xing et al. [29] state that the range of data trans-
mission from sensor nodes is between −20 and 10 dBm.

We have assumed that the maximum distance between
a CN and a CH or between two CH nodes is about ten
times that of a cluster size. Moreover, the maximum
cluster size is around ten times the maximum distance
between two neighboring nodes. In order to record the
power consumed during message exchanges, we have
assumed three power levels for message transmission:
one for communication outside the cluster, one for
communication with a node inside the same cluster,
and one for communication with a neighboring node.
Also, we assume that the power levels are directly
proportional to the distance of communication.

CH nodes transmit at 10 dBm (10 mW) to com-
municate outside the cluster and 0 dBm (1 mW) to
communicate within its cluster. SN and KG nodes
transmit at 0 dBm to communicate with the CH or to
broadcast within the cluster. Communication with the
neighboring node within the cluster is done at −10 dBm
(0.1 mW). Karlof et al. [17] suggests that the application
level bandwidth in WSN is around 19.2 kbps, and [29]
suggests that it is around 6 kbps. We have assumed
the application level bandwidth to be 19.2 kbps in our
simulations. We also simulated keeping it at 6 kbps and
found similar results.

The power level of a node during message reception
and computation phase is assumed to be 0.1 mW. It
is important to assume a power level for computation
because we have also taken into account computation
costs in our simulation. We have assumed that MICA2
motes are used, and they have ATMEGA128L CPU,
as mentioned in [17]. Further, we have assumed that
MD5 hashing scheme and IDEA cipher algorithm are
used. For 16 bytes, MD5 takes 1.45 ms, encryption
using IDEA takes 0.68 ms, and decryption using the
same algorithm takes 2.42 ms on ATMEGA128L CPU
according to [28].

We have assumed key size and key-chain seed size
to be 16 bytes in our simulation. Seetharam and Rhee

Fig. 4 Comparison of
average energy consumed by
different types of nodes in
different phases of each
scheme (a, b)

(a) Cluster Head Node (b) Sensor Node

Ann. Telecommun.

Fig. 5 Comparison of average energy consumed by a node in
different phases of each scheme

[25] states that an 8-MHz processor can generate 50,000
random bytes in 1 min. ATMEGA128L CPU also has
a speed of 8 MHz. So, we have calculated the time to
generate a key or seed value as 19.2 ms according to
the calculations of [25]. Lastly, we have assumed the
key-chain length l to be 32 in our simulations.

With the above set of simulation parameters, we
recorded the average energy consumed by CH and SN
nodes during these five phases: initial deployment, re-
freshment of administrative keys, refreshment of com-
munication keys, revocation of a compromised CH
node, and revocation of a compromised SN node. Over
70 iterations were carried out for every phase. In case
of MUQAMI+, we took the weighted average of SN
and KG nodes and recorded it as average energy con-
sumed by SN nodes. Weights were set according to the
number of number of KG nodes in a cluster, i.e., 12/412

in our case. We have plotted our graphs on logarith-
mic scale because of large differences in the readings
recorded.

Figure 4a compares the average energy consumed
by a CH node in each of the three schemes in all
five phases. Apart from the initial deployment phase,
in which SHELL and MUQAMI+ are comparable,
MUQAMI+ outperforms SHELL in all other episodes
by a comprehensive margin. MUQAMI+ outperforms
LEAP+ in the refreshment phase of the admin key
and revocation of a compromised SN node, but the
CH node in LEAP+ consumes less energy than the
CH node in our scheme if we consider the phases of
initial deployment, refreshment of communication key,
and revocation of a compromised CH node. However,
it comes at the cost of additional burden on the other
SN nodes in those three phases, as is evident in Fig. 4b.
Also, note that there is no additional burden on SN
nodes of our scheme as compared to SHELL, whose
CH nodes consume more energy as compared to our
CH nodes.

We believe that the role of being a CH node can
be transferred from one node to another from time
to time. Also, the CH node of LEAP+ consumes less
energy than that of our scheme, and the SN node of
our scheme consumes less energy than that of LEAP+.
So we find it necessary to compare the average energy
consumed by a node considering all types of nodes in
the network. Figure 5 compares the average energy
consumed by a node considering all types of nodes, i.e.,
CH nodes and SN nodes together. Except for the initial
deployment phase, our scheme outperforms both of the
other schemes. MUQAMI+ outperforms LEAP+ due
to the use of combinatorics, and it outperforms SHELL
due to the local distribution of key management re-
sponsibilities. Also, there is no single point of failure
in our scheme.

Fig. 6 Comparison of
average energy consumed in
administrative key
refreshment phase of each
scheme with respect to the
number of nodes in the
network (a, b)

(a) Plotting consumption of CH (b) Plotting consumption of CH and SN

and SN nodes separately nodes collectively (Average)

Ann. Telecommun.

Finally, we need to show the most significant im-
provement of our scheme and its scalability. For that
purpose, we changed the number of nodes in our sim-
ulation code and then recorded the readings. Since the
management of the administrative key is most critical
in key management, we have plotted, in Fig. 6a, trends
of average energy consumed in the phase of administra-
tive key refreshment by both type of nodes considering
each of the three schemes while varying the number
of nodes in the network. Figure 6b shows the average
of both types of node. It is clear that our scheme is
scalable, as well as more efficient, than the other two
schemes. It is important to note the convergence of
SHELL with MUQAMI+ in Fig. 6b. The improvement
of our scheme over SHELL is in the energy consumed
by the CH node. With increased network size, energy
consumed by CH nodes averages with larger numbers
of nodes. For LEAP+, we assume that the network
density increases with the number of nodes. A similar
trend is followed by all the schemes in communication
key refreshment and node revocation phases.

7 Conclusion and future work

We have presented the MUQAMI+ key manage-
ment scheme, which uses EBS matrix to manage large
numbers of nodes with small numbers of administra-
tive keys. In MUQAMI+, the load of key manage-
ment is distributed within clusters. We have compared
MUQAMI+ with two other state-of-the-art schemes
and found that our scheme is more efficient in key
refreshment and node revocation phases. Also, our
scheme is scalable and flexible, as we can transfer the
responsibility of being cluster head or key generator
from node to node with the passage of time.

Apart from defence from attacks, it is also important
to focus on the detection of attacks in the network. A
future direction of this research is to devise a scheme
for attack detection in WSN and then couple it with the
attack prevention and mitigation schemes, proposed
in this paper, to form a complete lightweight security
solution for WSN.

Acknowledgements This research was supported by the MKE
(Ministry of Knowledge Economy), Korea, under the ITRC
(Information Technology Research Center) support program
supervised by the IITA (Institute of Information Technology
Advancement) (IITA-2009-(C1090-0902-0002)). This work also,
was supported by the Korea Science & Engineering Founda-
tion (KOSEF) grant funded by the Korea government (MEST)
(No. 2008-1342), and was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and Tech-
nology (2009-0076798). This work is supported by the IT R&D

program of MKE/KEIT, [10032105, Development of Realistic
Multiverse Game Engine Technology].

Appendices

Appendix A. Storage overhead

The average storage requirements of a CH node in
LEAP+ are fairly straightforward. Apart from the pair-
wise key shared with each node in the cluster, it has
to store two more keys, i.e., its cluster key and the
communication key. So, if there are r nodes in a cluster,
storage requirements of a CH node in LEAP+ turn out
to be:

SRLEAP+
CH = r + 2 (10)

In LEAP+, the SN nodes only establish pair-wise keys
with only their b neighbors. However, they have to
store two keys, i.e., the cluster key and the communi-
cation key. So, the storage requirement of SN node in
LEAP+ becomes:

SRLEAP+
SN = b + 2 (11)

Now, we will discuss the storage requirement of a CH
node in SHELL. In SHELL, each node has to store a
key chain of length l for the key it shares with the CN.
Also, it has to store pair-wise keys with h neighboring
CH nodes, with whom it shares the EBS matrix. Also,
it has to store pair-wise keys with the r nodes, i.e.,
the average number of nodes in a cluster. Finally, it
has to store the k + m administrative keys and the
communication key. So, the storage requirement of a
CH node in SHELL can be written as

SRSHELL
CH = l + r + h + k + m + 1 (12)

Apart from the key chain of length l for the key shared
with the CN and the k administrative keys, SN nodes
have to store three other keys, i.e., one pair-wise key
shared with a neighboring CH node, one shared with
its own CH node, and one communication key. So, the
average storage requirements of a SN node in SHELL
can be written as:

SRSHELL
SN = l + k + 3 (13)

Appendix B. Communication and computation
overhead

In this section, we will discuss the communication and
computation overhead of LEAP+ and SHELL and
explain the formulas listed in Tables 4 to 7. In the
initial deployment phase, every CH node receives one

Ann. Telecommun.

message each from h neighboring CH nodes to establish
the communication path. Also, for each node in its
cluster, the CH node receives one message from one
of the neighboring CH nodes in order to establish pair-
wise keys. Finally, for the distribution of the communi-
cation key, every CH node receives the communication
keys k + m times, i.e., encrypted separately in each
administrative key. So, the average message exchanges
between CH nodes during the initial deployment phase
of SHELL comes out to be:

Avg_Msg_Count_InitSHELL
CH→CH = h + r + k + m, (14)

where Avg_Msg_Count_InitSHELL
CH→CH is the average mes-

sage exchanges between CH nodes during initial de-
ployment phase of SHELL.

In the initial deployment phase of LEAP+, every SN
node sends two unicast messages to the CH node. One
message establishes a pair-wise key with the CH node
and the other one transfers the cluster key to the CH
node. Apart from that, it also has to forward d messages
to the CH node, where d is the average number of
nodes that establish their pair-wise keys with the CH
node through each node. So, the average number of
messages transmitted from a SN to its CH in the initial
deployment phase turns out to be:

Avg_Msg_Count_InitLEAP+
SN→CH = d + 2 (15)

where Avg_Msg_Count_InitLEAP+
SN→CH is the average num-

ber of messages transmitted from a SN to its CH in the
initial deployment phase of LEAP+. Also, it is impor-
tant here to mention the average number of message
exchanges between SN nodes in LEAP+. There are
b neighbors of each node and each node has to send
two messages to each of its neighbors. One message
is for the pair-wise key establishment and the other
message is for the communication of its cluster key.
Apart from that, three messages are exchanged for
every node that establishes a pair-wise key with the
CH node through this node, i.e., three messages are
exchanged for d nodes from each node on average. In
one message, the d nodes send a message to the CH
node through this node to establish a pair-wise key with
the CH node. In the other two messages, cluster keys
are exchanged between the CH and the d nodes, i.e.,
CH and the d nodes send their cluster keys to each
other through this node. So, the average number of
message exchanges between SN nodes in LEAP+ for
the initial deployment phase comes out to be:

Avg_Msg_Count_InitLEAP+
SN→SN = 2b + 3d, (16)

where Avg_Msg_Count_InitLEAP+
SN→SN is the average num-

ber of messages exchanged between SN nodes in the

initial deployment phase of LEAP+. It is not difficult
to understand the rest of the expressions in Table 4.

For key refreshment in SHELL, every CH sends a
message to h neighboring CH nodes. In turn, it re-
ceives k + m messages from them to broadcast in the
cluster. So, the average number of messages exchanged
between the CH nodes in the key refreshment phase
can be written as:

Avg_Msg_Count_RekeySHELL
CH→CH = h + k + m, (17)

where Avg_Msg_Count_RekeySHELL
CH→CH is the average

message exchanges between CH nodes during the key
refreshment phase of SHELL. Also, the keys between
the neighboring CH nodes and the keys between CH
nodes and the CN will also be refreshed. So, in order
to refresh those keys, the CN will send h + 1 messages
to all the CH nodes, i.e., to g CH nodes. h messages
contain new keys for communication with the neigh-
boring CH nodes and one message contains a key for
communication with the command node. So, the total
number of messages transferred from CN to the CH
nodes in key refreshment phase of SHELL comes out
to be:

Msg_Count_RekeySHELL
CN→CH = g × (h + 1) (18)

where Msg_Count_RekeySHELL
CN→CH is the total number of

messages transferred from CN to the CH nodes in key
refreshment phase of SHELL.

In order to refresh its cluster key, each node will send
one message to the CH node. Also, it will forward one
message each from d nodes, so the average number of
messages transmitted from a SN to its CH in the key
refreshment phase turns out to be:

Avg_Msg_Count_RekeyLEAP+
SN→CH = d + 1 (19)

where Avg_Msg_Count_RekeyLEAP+
SN→CH is the average

number of messages transmitted from a SN to its CH in
the key refreshment phase of LEAP+. In the same way,
when a SN node refreshes its cluster key in LEAP+, it
send one message each to its b neighbors. Also, the CH
node exchange cluster keys with d nodes through every
node on average. On a particular SN node, one message
is received from each of the d nodes and forwarded to
the CH node and one message from the CH node is
forwarded to them. So, the average number of message
exchanges between SN nodes in LEAP+ for the key
refreshment phase comes out to be:

Avg_Msg_Count_RekeyLEAP+
SN→SN = b + 2d (20)

where Avg_Msg_Count_RekeyLEAP+
SN→SN is the average

number of messages exchanged between SN nodes in
the key refreshment phase of LEAP+. The rest of the

Ann. Telecommun.

expressions in Table 5 are trivial and easily under-
standable. Expressions in Table 6 are similar to the
ones in Table 4 except that h + 1 messages are sent
from the CN to the CH nodes in case a CH node is
compromised. One message is sent to the new CH node
and h messages are sent to its neighboring CH nodes, so
that keys can be established between the new CH node
and its neighboring CH nodes. Explanations for the rest
of the expressions in Table 6 are similar to the ones in
Table 4.

In case a SN node is compromised, k compromised
keys are refreshed using m remaining keys that the
compromised SN node does not know. So, the num-
ber of broadcast messages in the cluster by the CH
node is m. However, the CH has to send k messages
to the neighboring CH nodes, which manage the k
compromised keys. k messages will be returned to the
CH node with the new key values encrypted in the
old ones. Then, those k keys will be aggregated and
sent to the h neighboring CH nodes, so that they can
encrypt the aggregated message using them using all
keys that they manage other than the k compromised
keys. In turn, the CH will receive m messages, which it
will broadcast in its cluster. So, the average number of
messages exchanged between the CH nodes in case of
SN node revocation in SHELL can be written as:

Avg_Msg_Count_Revoc_SNSHELL
CH→CH = h + 2k + m

(21)

where Avg_Msg_Count_Revoc_SNSHELL
CH→CH is the aver-

age message exchanges between CH nodes when a SN
node is compromised in SHELL. In LEAP+, if a SN
node is compromised, only its neighbors perform the
SN → CH and SN → SN communication. So, in order
to calculate the average message count, we divide the
expressions for the count of both such messages by b/r.
The rest of the expressions in Table 7 do not require
much elaboration.

References

1. Younis O, Fahmy S (2004) Heed: a hybrid, energy-efficient,
distributed clustering approach for ad hoc sensor networks.
IEEE Trans Mob Comput 3(4):366–379. doi:10.1109/TMC.
2004.41

2. Youssef A, Agrawala A, Younis M (2005) Accurate anchor-
free localization in wireless sensor networks. In: First IEEE
workshop information assurance in wireless sensor networks
(WSNIA ’05)

3. Akyildiz I, Su W, Sankarasubramaniam Y, Cayirci E (2002)
Wireless sensor networks: a survey. Comput Networks
38(4):393–422

4. Amin S, Siddiqui M, Hong C (2008) Detecting jamming at-
tacks in ubiquitous sensor networks. In: IEEE sensors appli-
cations symposium 2008, pp 40–45

5. Çamtepe SA, Yener B (2007) Combinatorial design of
key distribution mechanisms for wireless sensor networks.
IEEE/ACM Trans Netw 15(2):346–358. doi:10.1109/TNET.
2007.892879

6. Chan H, Perrig A, Song D (2003) Random key predistrib-
ution schemes for sensor networks. In: SP ’03: proceedings
of the 2003 IEEE symposium on security and privacy. IEEE
Computer Society, Washington, DC, p 197

7. Dierks T, Allen C (1999) The TLS protocol version 1.0
8. Dini G, Savino IM (2006) An efficient key revocation pro-

tocol for wireless sensor networks. In: WOWMOM ’06: pro-
ceedings of the 2006 international symposium on on world
of wireless, mobile and multimedia networks. IEEE Com-
puter Society, Washington, DC, pp 450–452. doi:10.1109/
WOWMOM.2006.23

9. Du W, Deng J, Han YS, Varshney PK (2003) A pairwise key
pre-distribution scheme for wireless sensor networks. In: CCS
’03: proceedings of the 10th ACM conference on computer
and communications security. ACM, New York, pp 42–51.
doi:10.1145/948109.948118

10. Eltoweissy M, Heydari MH, Morales L, Sudborough IH
(2004) Combinatorial optimization of group key manage-
ment. J Netw Syst Manage 12(1):33–50. doi:10.1023/B:JONS.
0000015697.38671.ec

11. Eltoweissy M, Moharrum M, Mukkamala R (2006)
Dynamic key management in sensor networks. IEEE
Commun Mag 44(4):122–130. doi:10.1109/MCOM.2006.
1632659

12. Eschenauer L, Gligor VD (2002) A key-management scheme
for distributed sensor networks. In: CCS ’02: proceedings
of the 9th ACM conference on computer and communi-
cations security. ACM, New York, pp 41–47. doi:10.1145/
586110.586117

13. Ghumman K (2006) Location-aware combinatorial key
management scheme for clustered sensor networks. IEEE
Trans Parallel Distrib Syst 17(8):865–882. doi:10.1109/
TPDS.2006.106 (Senior Member-Mohamed F. Younis and
Senior Member-Mohamed Eltoweissy)

14. Gupta G, Younis M (2003) Load-balanced clustering of wire-
less sensor networks. In: International conference on commu-
nications (ICC ’03), pp 1848–1852

15. Intanagonwiwat C, Govindan R, Estrin D (2000) Directed
diffusion: a scalable and robust communication paradigm for
sensor networks. In: ACM mobile computing and networking
(Mobicom’00), pp 56–67

16. Karlof C, Li Y, Polastre J (2003) Arrive: an architecture for
robust routing in volatile environments. Tech. Rep. CSD-03-
1233, University of California at Berkeley

17. Karlof C, Sastry N, Wagner D (2004) TinySec: a link
layer security architecture for wireless sensor networks. In:
SenSys ’04: proceedings of the 2nd international conference
on embedded networked sensor systems. ACM, New York,
pp 162–175. doi:10.1145/1031495.1031515

18. Kohl J, Neuman C (1993) The Kerberos network authentica-
tion service (v5)

19. Lamport L (1981) Password authentication with insecure
communication. Commun ACM 24(11):770–772. doi:10.1145/
358790.358797

20. Langendoen K, Reijers N (2003) Distributed localization in
wireless sensor networks: a quantitative comparison. Comput
Networks 43(4):499–518

21. Li G, He J, Fu Y (2006) A hexagon-based key predistrib-
ution scheme in sensor networks. In: ICPPW ’06: proceed-

http://dx.doi.org/10.1109/TMC.2004.41
http://dx.doi.org/10.1109/TMC.2004.41
http://dx.doi.org/10.1109/TNET.2007.892879
http://dx.doi.org/10.1109/TNET.2007.892879
http://dx.doi.org/10.1109/WOWMOM.2006.23
http://dx.doi.org/10.1109/WOWMOM.2006.23
http://dx.doi.org/10.1145/948109.948118
http://dx.doi.org/10.1023/B:JONS.0000015697.38671.ec
http://dx.doi.org/10.1023/B:JONS.0000015697.38671.ec
http://dx.doi.org/10.1109/MCOM.2006.1632659
http://dx.doi.org/10.1109/MCOM.2006.1632659
http://dx.doi.org/http://10.1145/586110.586117
http://dx.doi.org/http://10.1145/586110.586117
http://dx.doi.org/http://10.1109/TPDS.2006.106
http://dx.doi.org/http://10.1109/TPDS.2006.106
http://dx.doi.org/10.1145/1031495.1031515
http://dx.doi.org/10.1145/358790.358797
http://dx.doi.org/10.1145/358790.358797

Ann. Telecommun.

ings of the 2006 international conference workshops on par-
allel processing. IEEE Computer Society, Washington, DC,
pp 175–180. doi:10.1109/ICPPW.2006.9

22. Madden S, Szewczyk R, Franklin MJ, Culler D (2002) Sup-
porting aggregate queries over ad-hoc wireless sensor net-
works. In: WMCSA ’02: proceedings of the fourth IEEE
workshop on mobile computing systems and applications.
IEEE Computer Society, Washington, DC, p 49

23. Menezes AJ, Vanstone SA, Oorschot PCV (1996) Handbook
of applied cryptography. CRC, Boca Raton

24. Paek KJ, Kim J, Hwang CS, Song US (2007) An energy-
efficient key management protocol for large-scale wireless
sensor networks. In: MUE ’07: proceedings of the 2007 inter-
national conference on multimedia and ubiquitous engineer-
ing. IEEE Computer Society, Washington, DC, pp 201–206.
doi:10.1109/MUE.2007.74

25. Seetharam D, Rhee S (2004) An efficient pseudo random
number generator for low-power sensor networks. In: LCN
’04: proceedings of the 29th annual IEEE international con-
ference on local computer networks. IEEE Computer Soci-
ety, Washington, DC, pp 560–562. doi:10.1109/LCN.2004.18

26. Shaikh R, Lee S, Khan M, Song Y (2006) LSec: light-
weight security protocol for distributed wireless sensor net-
works. In: 11th IFIP international conference on personal

wireless communications PWC’06. LNCS, vol 4217, Spain,
pp 367–377

27. Tilak S, Abu-Ghazaleh N, Heinzelman W (2002) A taxon-
omy of wireless microsensor network models. ACM Mobile
Comput Commun 6(2):1–8

28. Venugopalan R, Ganesan P, Peddabachagari P, Dean A,
Mueller F, Sichitiu M (2003) Encryption overhead in em-
bedded systems and sensor network nodes: modeling and
analysis. In: CASES ’03: proceedings of the 2003 interna-
tional conference on compilers, architecture and synthe-
sis for embedded systems. ACM, New York, pp 188–197.
doi:10.1145/951710.951737

29. Xing G, Lu C, Zhang Y, Huang Q, Pless R (2005) Minimum
power configuration in wireless sensor networks. In: Mobi-
Hoc ’05: proceedings of the 6th ACM international sympo-
sium on mobile ad hoc networking and computing. ACM,
New York, pp 390–401. doi:10.1145/1062689.1062738

30. Xu W, Ma K, Trappe W, Zhang Y (2006) Jamming sensor
networks: attack and defense strategies. IEEE Netw 20(3):
41–47. doi:10.1109/MNET.2006.1637931

31. Zhu S, Setia S, Jajodia S (2006) LEAP+: efficient secu-
rity mechanisms for large-scale distributed sensor networks.
ACM Trans Sen Netw 2(4):500–528. doi:10.1145/1218556.
1218559

http://dx.doi.org/10.1109/ICPPW.2006.9
http://dx.doi.org/10.1109/MUE.2007.74
http://dx.doi.org/10.1109/LCN.2004.18
http://dx.doi.org/10.1145/951710.951737
http://dx.doi.org/10.1145/1062689.1062738
http://dx.doi.org/10.1109/MNET.2006.1637931
http://dx.doi.org/10.1145/1218556.1218559
http://dx.doi.org/10.1145/1218556.1218559

	MUQAMIbold0mu mumu ++units++++: a scalable and locally distributed key management scheme for clustered sensor networks
	Abstract
	Introduction
	Background and related work
	Models and assumptions
	System model and assumptions
	Adversity model and assumptions

	MUQAMI+
	Initial deployment
	Re-keying and node addition
	Node compromise
	Cluster head compromise
	Sensor node compromise
	Key-generator compromise

	Performance analysis and comparison
	Storage overhead
	Communication and computation overhead

	Simulation results
	Conclusion and future work
	Appendices
	Appendix A. Storage overhead
	Appendix B. Communication and computation overhead

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

