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Constrained Spatiotemporal ICA and Its Application for fMRI Data Analysis 

Abstract 

In general, Independent component analysis (ICA) is a statistical blind source separation technique, 

used either in spatial or temporal domain. The spatial or temporal ICAs are designed to extract maxi-

mally independent sources in respective domains. The underlying sources for spatiotemporal data (se-

quence of images) can not always be guaranteed to be independent, therefore spatial ICA extracts the 

maximally independent spatial sources, deteriorating the temporal sources and vice versa.  For such 

data types, spatiotemporal ICA tries to create a balance by simultaneous optimization in both the do-

mains. However, the spatiotemporal ICA suffers the problem of source ambiguity. Recently, con-

strained ICA (c-ICA) has been proposed which incorporates a priori information to extract the desired 

source. In this study, we have extended the c-ICA for better analysis of spatiotemporal data. The pro-

posed algorithm, i.e., constrained spatiotemporal ICA (constrained st-ICA), tries to find the desired 

independent sources in spatial and temporal domains with no source ambiguity. The performance of 

the proposed algorithm is tested against the conventional spatial and temporal ICAs using simulated 

data. Furthermore, its performance for the real spatiotemporal data, functional magnetic resonance 

images (fMRI), is compared with the SPM (conventional fMRI data analysis tool). The functional 

maps obtained with the proposed algorithm reveal more activity as compared to SPM.   

Keywords— Independent component Analysis (ICA), Spatiotemporal ICA, Constrained ICA, Statisti-

cal parametric mapping (SPM), Functional magnetic resonance imaging (fMRI).  

Introduction 

Independent component Analysis (ICA), a blind source separation (BSS) method based on higher 

order statistics, decomposes the linear memory-less observations into their underlying maximally in-

dependent sources and their corresponding mixing weights [1, 2]. There are two conventional modali-

ties in which ICA can be used to decompose the spatiotemporal data into a set of spatial or temporal 

ICs i.e., spatial ICA and temporal ICA. Spatial ICA finds underlying independent spatial sources and 

the mixing matrix contains corresponding set of time sequences; temporal ICA finds independent tem-

poral sequences and the obtained mixing matrix gives the corresponding set of spatial modes. With the 

success of ICA in medical signal processing there is a strong interest in ICA for the analysis of spatio-

temporal data e.g., fMRI images. fMRI is a non-invasive technique used to study spatiotemporal brain 

functions in both research and clinical areas [3]. It can measure small changes in the MR signal caused 

by small changes in blood oxygenation level, when specific areas of brain are performing the given 

task [4].  By acquiring successive images from multiple slices of head in time, image intensity varia-



  

tion at each voxel represent the blood oxygenated level dependent (BOLD) response to a given task. 

Therefore, it is possible to determine active brain regions for a given task by correlating each voxel 

signal in MR image sequences to the experimental paradigm. The spatial resolution in fMRI images 

can go up to 1mm, making it a preferred technique for accurate source localization.  

In 1998, McKeown et al. [5] for the first time introduced ICA for fMRI data analysis, with the as-

sumption that fMRI data is a mixture of spatially independent components. Biswal and his colleagues 

[6] applied the ICA in the temporal domain for fMRI un-mixing. So far, most of the applications of 

ICA for fMRI are based on ICA using the spatial mode (Spatial ICA). However the choice of spatial or 

temporal ICA is controversial: Comparison and discussion on the underlying assumptions for the use 

of spatial and temporal ICA is given in [7]. Some authors have also applied ICA on the fMRI data in 

the complex domain [8] considering that the phase information which is normally discarded in usual 

ICA application provides vital information. ICA has been successful in the identification of various 

source signals in fMRI [9] which are considered challenging for the second order techniques such as 

correlation and regression analysis. 

The foremost assumption for ICA application is that the underlying sources should be independent. 

However, for spatiotemporal data like fMRI image sequences it is difficult to fulfill this independence 

criterion for both the spatial and temporal domains (i.e., independent sources in spatial domain as well 

as independent sources in temporal domain). In such cases, spatial or temporal ICA tries to find a set 

of maximally independent sources in one domain at the cost of their corresponding unconstrained set 

of sources in the other domain. Lately, Spatiotemporal ICA [10] has been proposed to create a balance 

by jointly optimizing the sources in spatial and temporal domains. Stone and his colleagues [10] sug-

gested that skew symmetric source distribution is more realistic assumption for fMRI studies. Suzuki 

et. al. [11] also assumed a skew symmetric distribution in his study. In 2002, Seifritz and his team used 

a combination of spatial and temporal ICA to analysis the spatiotemporal data [12]. They first used the 

spatial ICA to locate a region of interest and finally temporal ICA to find the temporal response of 

human auditory cortex. However, for the higher dimensional data like fMRI, spatiotemporal ICA gives 

large number of independent components making the subsequent analysis very complicated and sub-

jective. In other words, there exists source ambiguity for ICAs in the conventional spatial, temporal, 

and spatiotemporal modes. 

The existing ICA models are blind source separation methods; they do not take advantage from the 

a priori information that might be available about the desired source. In the case of fMRI data, the 

paradigm information is vital. The conventional ICAs use this information for sorting the ICs found 



instead of utilizing it in the un-mixing process. Recently, Lu and Rajapakse introduced an algorithm, 

constrained ICA, [13] that can incorporate a priori information in the un-mixing process. In temporal 

mode, this algorithm has been applied for fMRI data analysis [13]. Constrained ICA has also been 

applied for artifact removal from EEG signals [14]. However constrained ICA, which is the same as 

the spatial or temporal ICA except that it includes the constraints in the cost function, also suffers from 

the same disadvantage as of spatial or temporal ICA i.e., the maximal independent component in one 

domain and deteriorated components in the corresponding domain. 

As mentioned above, there exists a problem of source ambiguity in the case of spatiotemporal ICA. 

In case of, constrained ICA source identification problem is solved by incorporating the a priori infor-

mation. However, the performance of earlier for spatiotemporal data is better than the later. In this 

study, considering the spatiotemporal nature of fMRI data, we extend constrained ICA into constrained 

spatiotemporal ICA (constrained st-ICA) that finds independent, yet desired temporal and spatial 

sources thus solving the source ambiguity problem for spatiotemporal data. The proposed method is 

based on the singular value decomposition (SVD) and cascade of two simplified one unit ICA-R 

blocks as shown in the schematic diagram Fig. 1. The performance of the algorithm against the con-

ventional ICAs is tested using the simulated data. To analyze the performance for real spatiotemporal 

data, it is applied to fMRI data and its results are compared to those of the conventional fMRI data 

analysis tool i.e., Statistical Parametric Mapping (SPM). The functional maps obtained with the pro-

posed algorithm reveal more active brain regions compared with the SPM. Based on the results we 

strongly believe that the proposed algorithm could be used for spatiotemporal data analysis. 

 

Fig. 1: The schematic diagram of the constrained spatiotemporal ICA. 

 

 



  

Independent Component Analysis 

Independent component Analysis (ICA) assumes that a linear memory-less observation matrix 

܆ ൌ ሺܠଵ, … , ܁ ୫ሻ୲ can be decomposed into underlying set of independent sourcesܠ ൌ ሺܛଵ, … ,  ୬ሻ୲ suchܛ

that, 

܆ ൌ ۯ܁ ܚܗ ෠܁ ൌ  (1) ܅܆

where ۯ is the ݉ x ݊ mixing matrix and ܅ is the un-mixing matrix.  

General implementations of ICA can be found in the literature [1, 2]. If the observation matrix con-

tains image sequence, Equation 1 can be written as ܆ ൌ ܁ ୲ where܂઩܁ ൌ ሺܛଵ, … , -୩ሻ୲ represent the inܛ

dependent spatial sources, Tൌ ሺܜଵ, … , -୩ሻ୲ the corresponding independent time courses, and ઩ the diܜ

agonal scaling parameters. 

A. Spatial and Temporal ICA 

The observation matrix ܆ can be decomposed into ܆ ൌ  ୲ using singular value decomposition܄۲܃

(SVD) where ܃ is an ݉ x ݉ Eigen image matrix, ܄ ݊ x ݊ matrix of corresponding Eigen sequences, 

and ۲ a ݉ x ݊ diagonal matrix of singular values. By retaining the ݇ singular value we can reduce the 

rank of the matrix. 

܆ ൎ ෡܆ ൌ ෡۲෡܃  ෡୲ (2)܄

Spatial ICA assumes that the ݉ x ݇ Eigen image matrix ܃෡ can be decomposed into the ݇ spatially in-

dependent components ܁ ൌ ሺܛଵ, … ,   .୩ሻ୲. The corresponding time courses can be obtained as followsܛ

෡܆ ൌ ୱ۲෡ۯ܁ ෡୲܄ ൌ  ୱ (3)܂܁

where the rows of  ܂ୱ ൌ ݐෝ܄ෝࡰsۯ
 contain corresponding time courses. On the other hand, temporal ICA 

assumes that n x ݇ Eigen sequence matrix can be decomposed into the ݇ independent temporal com-

ponents Tൌ ሺܜଵ, … ,  .୩ሻ୲. The corresponding spatial modes can be obtained as followsܜ

෡܆ ൌ ෡۲෡܃ ୲ۯ
୲ ୲܂ ൌ  ୲ (4)܂୲܁

where each column of  ܁୲ ൌ ෡۲෡܃ ୲ۯ
୲  is the spatial mode. 

B. Spatiotemporal ICA 

The Spatiotemporal ICA (stICA) [8] is based on the assumption that sometimes underlying spatial 

and temporal sources are not completely independent. In these cases, spatial or temporal ICA will not 

produce good results in their corresponding temporal and spatial domains respectively. stICA treats the 

spatial and temporal domains equally by maximizing the following cost function: 

hୱ୲ሺ܅௦, ઩ሻ ൌ ୱሻ܇ሺܪߙ ൅ ሺ1 െ  ୲ሻ (5)܇ሺܪሻߙ



where ௦ܹ is the spatial un-mixing matrix, ઩ scaling matrix, ߙ the relative weighting factor, ܪሺ܇୲ሻ the 

temporal entropy, ܇୲ ൌ σ୲ܡ୲ the cdfs of temporal signals, ܡ୲ ൌ V෡܅୲ extracted temporal signals, ܪሺ܇ୱሻ 

the spatial entropy, ܇ୱ ൌ σୱܡୱ the cdfs of spatial signals, and ܡୱ ൌ U෡܅ୱ the extracted spatial signals. 

C. Constrained ICA 

When a priori information about the desired source is available, we can incorporate this information 

in the constrained ICA (cICA) algorithm [13]. These constraints (or references) guide the algorithm in 

the direction of only desired independent sources during the optimization process. Variant of unit 

cICA algorithm can be found in [14]. We will discuss the in detail the one unit cICA algorithm, which 

is the integral part of our proposed constrained spatiotemporal ICA, with simplifications/modifications 

that come naturally in our implementation in the next section.  

Constrained Spatiotemporal ICA 

The spatiotemporal data where the underlying independence criterion is difficult to establish; the 

conventional ICA algorithms have some weaknesses, i) spatial or temporal ICA tries to find the maxi-

mally independent components in the spatial or temporal domains respectively affecting the compo-

nents in the corresponding domains, ii) ordering of the output sources are random (source ambiguity), 

iii) the number of sources found for the high dimensional data are very large (such as sequences of 

fMRI images), making the subsequent analysis laborious and highly subjective. The stICA tries to 

overcome the first above mentioned disadvantage of conventional ICA by simultaneously optimizing 

the spatial and temporal domains. However, it suffers from source ambiguity and large number of de-

rived sources for high dimensional data; same as that of conventional ICAs. The cICA finds only a 

specific or a subset of sources and also solves a source ambiguity problem by incorporating a priori 

information. However, the cICA being exactly the same as that of conventional ICA (same contrast 

function, same optimization procedure) else than it includes some constrains into the contrast function 

suffers from the above mentioned first disadvantage of the conventional ICA. In the proposed con-

strained st-ICA we have tried to collect the advantages of stICA and cICA to overcome the above 

mentioned disadvantages of conventional ICA. 

In this algorithm, we exploited the salient features of SVD along with the one unit cICA algorithm. 

The SVD: (i) decompose the observed spatiotemporal data into a set of spatial and temporal modes, 

(ii) the modes are orthonormal and (iii) the rank reduction can be done by selecting an appropriate 

number of k  vectors. Based on these properties, corresponding underlying sources in the two domains 

can be found independently if some a priori information about the desired source is available. As 

shown in fig. 1 there are two simplified/fast cICA blocks, we first explain the cICA and the simplifica-



  

tions/modifications that come naturally with our proposed constrained spatiotemporal ICA algorithm 

then at the end complete algorithm will be explained. 

Let there are ‘݊’ independent source signals  ܛሺݐሻ ൌ ሺ1ݏሺݐሻ, ,ሻݐ2ሺݏ … ,  ሻሻt and ‘m’ the number ofݐሺ݊ݏ

observed mixtures ܠሺݐሻ ൌ ሺ1ݔሺݐሻ, ,ሻݐ2ሺݔ … , ሻሻtݐሺ݉ݔ . The a priori information, which represents some 

traces of the desired independent source, can be represented in terms of the reference signal ݎሺݐሻ. The 

information in the signal ݎሺݐሻ may be incorporated as closeness constraint onto the ICA contrast func-

tion.  The closeness constraint for single IC can be written as  

gሺܟሻ ൌ ,ܠ୲ܟሺߝ ሻݎ െ ߦ ൑ 0 (6) 

where ߝ is some closeness measure (e.g. Mean square error or correlation). The closeness threshold 

parameter is denoted by ߦ. Various ICA algorithms use different contrast functions depending on the 

application area in which they are used. However the ICA contrast function based on negentropy is 

very reliable and flexible. In the original one unit cICA algorithm there are two constrains i.e., equality 

constraints and the inequality constraints. Equality constraints are to keep the unity variance and the 

inequality constraints are to incorporate the a priori information. In our case, the input data has inher-

ently unit variance because both the modes are orthonormal; we don’t need the equality constraints. 

Therefore the optimization equation for the constrained spatiotemporal ICA is as follows. 

ሻݕJሺ  :݁ݖ݅݉݅ݔܽ݉ ൎ ሻሽݕሼGሺܧሾߩ െ  ሻሽሿଶݒሼGሺܧ

ሻܟgሺ    :݋ݐ ݐ݆ܾܿ݁ݑܵ ൑ 0 or gොሺܟሻ ൌ gሺܟሻ ൅ bଶ 
(7) 

where Jሺݕሻ denotes the one-unit ICA contrast function introduced by [2], ߩ a positive constant, ݒ a 

zero mean, unit variance Gaussian variable. Gሺ. ሻ is a non-quadratic function as defined in [2], gሺܟሻ 

the closeness constraint mentioned in Equation 5, and b the slack variable. By explicitly manipulating 

for the optimum bכ the equation 7 can be solved through the use of an augmented Lagrangian function.  

Cሺܟ, ሻߤ ൌ ሻݕሺܬ ൅ ௧ߤ ො݃ሺݓሻ ൅
1
2

ห| ො݃ሺݓሻ|หଶ

Cሺܟ, ሻߤ ൌ Jሺݕሻ െ
1

ߛ2
ሾmaxଶሼߤ ൅ ,ሻܟgሺߛ 0ሽ െ  ଶሿߤ

(8) 

where C represents the new contrast function to be optimized, ߤ is the Lagrange multiplier and ߛ is the 

scalar penalty parameter. Learning of the weights can be achieved through Newton like learning proc-

ess. 

 



୩ାଵܟ ൌ ୩ܟ െ ୶୶܀ߟ
ିଵሺHᇱᇱሻିଵCᇱ 

where       ܀୶୶ ൌ Eሼ܆܆୲ሽ ൌ ۷ 

therefore 

୩ାଵܟ ൌ ୩ܟ െ  ሺCᇱᇱሻିଵCᇱߟ

ܟ ՚
ܟ

 |ܟ|

and 

 Cᇱ ൌ ρതE൛ܠG௬
ᇱ ሺݕሻൟ െ

1
2

g௬ܠEሼߤ
ᇱ ሺܟሻሽ 

Hᇱᇱ ൌ ρതE ቄܠG௬మ
ᇱᇱ ሺݕሻቅ െ

1
2

g௬మܠEሼߤ
ᇱᇱ ሺܟሻሽ 

(9) 

The optimum multipliers can be found by iteratively applying the gradient ascent method. 

୩ାଵߤ ൌ max ሼ0, ୩ߤ ൅ ୩ሻሽ (10)ܟgሺߛ

The presented cICA algorithm is simple and fast compared to cICA presented by Lu [13]. There are no 

equality constrains and matrix inversion (܀୶୶
ିଵ) at each iteration is avoided to achieve speed [14]. 

Given the spatiotemporal data, the spatial and temporal modes can be obtained via SVD. Appropriate 

data reduction is also done.  A priori information and the appropriate SVD mode (spatial or temporal) 

after data reduction are given to the first cICA block. The outputs will be the independent source and 

the mixing vector of that domain. From the mixing vector reference signal for the corresponding inde-

pendent source in the other domain can be generated as given in Equation 11. This reference signal 

and the other reduced SVD mode are presented to the second cICA block. The output will be the inde-

pendent component of this domain, corresponding to the previously extracted independent component. 

Constrained st-ICA, fMRI data as a specific example, can be described as follows:  

Step 0: The observation matrix ܆ contains the fMRI image sequence. 

Step 1: Reduce the dimension of the observation matrix ܆ using SVD. Find ܃෡ and ܄෡ according to 

Equation 2. The matrix ܃෡ contains spatial mode and ܄෡ contains temporal modes. 

Step 2: Generate reference signal from a priori information; inverted fMRI experiment protocol. 

Step 3: Zero mean and normalize the reference signal.  

Step 4: Call the simplified cICA with ܄෡ and reference as the inputs. Upon convergence the output 

will be the independent source in the time domain.  

Step 5: To determine the corresponding independent spatial source generate the reference signal (a 

priori information) for the spatial source according to the following equation: 



  

ܚ ൌ ୲൯୲ሻିଵܟ෡܄෡ሺ൫܆ or ܚ ൌ ୲ሻିଵ (11)܂ሺ܆

             where ܟ୲ is un-mixing vector and ܂ is the independent time source recovered at Step 4.      

Step 6: Zero mean and normalize the reference. 

Step 7: Call the cICA with ܃෡ and reference found at the Step 6.  Upon convergence output will be 

independent spatial source corresponding to the independent time source found in Step 4. 

fMRI Experiment and Data Acquisition  

fMRI data was acquired on a 3.0T MR scanner (Magnum 3.0, Medinus, Korea) using a T2-weighted 

EPI sequence (TR = 2850ms, TE = 36ms, flip angle =70°, 64 x 64 matrix, FOV = 240 x 240 mm, slice 

thickness = 4mm, voxel size = 3.75 x 3.75 x 4mm3) with 29 transaxial slices covering the whole brain 

regions. To minimize motion artifact, we tightly fixed the head using sponge in the head coil.  

A well-established protocol for alpha activity modulation for human brain is closing (thus inducing 

the alpha activity) and opening (thus suppressing the alpha activity) of the eyes [5]. By adopting this 

experimental protocol, after several minutes of dark adaptation, we asked each subject (5 male, 26±3 

years old) to open his eyes for 30 sec and then close for 30 sec. This cycle was repeated three times to 

obtain 60 flash image for one complete experiment. Fig. 2 shows experimental protocols. 

 
Fig. 2: Experimental protocol for fMRI data collection. 

 

Results 

The performance of the proposed constrained st-ICA algorithm was tested using the simulated data. 

Four temporal and spatial sources were generated as shown in Fig 3(a). Each temporal source is of 100 

sample points and each spatial source is of 40 x 40 matrix. As evident in the Fig. 3(a) neither temporal 

nor spatial sources are independent. These simulated sources are mixed together to create a spatiotem-

poral data. The results of spatial ICA and temporal ICA on this mixture data set are shown in Fig. 3(b) 

and (c). Both, the spatial and temporal ICA try to find maximal independent sources in the spatial or 

temporal domains respectively, deteriorating the sources in the other (corresponding) domain. On the 



other hand, constrained st-ICA finds independent sources in two stages with minimal inter domain 

affect. It employs a priori information so that only the desired sources (connected sources) should be 

extracted from the two domains. The results of constrained st-ICA are shown in Fig. 3(d). The results 

indicate that the quality of temporal sources obtained with constrained st-ICA is superior to those ob-

tained with spatial ICA and the obtained spatial sources are superior to those obtained with temporal 

ICA. The reason for this is that the cost function of temporal or spatial ICA are designed to find 

maximally independent temporal or spatial sources respectively thus effecting the sources in their cor-

responding domains. However, this is not the case with the proposed constrained st-ICA as explained 

in detail in the constrained spatiotemporal ICA section. Also, the time consumed by spatial or tempo-

ral ICA (Pentium (R) 4 CPU 3.01 GHz, 1GB of Ram) to derive sources is in the range of 5 – 6 Sec. 

whereas, for the constrained st-ICA the time to extract the desired source is in the range of 3.0 – 3.5 

sec.    

For real life application, the proposed algorithm is applied for fMRI analysis. The fMRI data col-

lected for each individual is realigned and convolved with a Gaussian filter (8 x 8 x 8) for smoothing. 

The data from each individual was processed separately on a single volume basis. Each row of an ob-

servation matrix X  contains an image. The ON-OFF stimulation (inverted) (Fig. 2) was used as the 

initial reference. Independent spatial and temporal components are recovered according to the algo-

rithm presented above in the constrained spatiotemporal ICA section.  

Once a component map is recovered, it is converted to the z-map [5] according to the Equation 12.  

z୧୨ ൌ
s୧୨ି୫౟

σ୧
൒ (12) ݈݀݋݄ݏ݁ݎ݄ݐ

where i is the row index, j is the column index, s୧୨ is row and column of the spatial component recov-

ered ሺ܁ሻ, m୧ the mean, and σ୧ the standard deviation of the ith row of ܁. The threshold value selected 

for our implementation was 0.6. Details of how to calculate the threshold value can be found in [5]. 

The time courses (temporal sources) recovered with the constrained st-ICA is shown in Fig. 4. The 

time courses have higher correlation with the ON-OFF stimulation reference (cc = 0.87 ~ 0.88) com-

pared to SPM (cc = 0.66 ~ 0.75) results.  

 



  

 

(a)  Simulated temporal and spatial sources  

 

(b). Sources recovered using spatial ICA 
 

 
(c). Sources recovered using temporal ICA 

 

 

 
 

(d). Sources recovered with constrained st-ICA 

Fig. 3: (a) Simulated Sources (b) The result of spatial and (c) temporal ICA, Deteriorations in the 

corresponding domain are clearly visible. (d) Constrained st-ICA gives better results compared to 

other ICAs. In (d) first column are the ref. functions used, centre column are the temporal sources 

and right column are the spatial sources recovered. 

 
 
 
 



 SPM 
 

Constrained Spatiotemporal ICA 
 

S1 

S2 

 S3 

Fig. 4: Time sequences (solid) obtained with constrained st-ICA has higher correlation with the ref. 

signal (dotted), inverted ON-OFF stimulation sequence, compared with those obtained with SPM. 

 
SPM  

 
Constrained Spatiotemporal ICA 

 
Slice 14 Slice 15 Slice 16 Slice 14 Slice 15 Slice 16 

S 1 

S 2 

S 3 

Fig. 5: SPM and constrained spatiotemporal ICA processed fMRI data. Z-score maps obtained with 

constrained st-ICA shows frontal activity which was missed by SPM in most of the cases. 



  

The functional maps (spatial sources) obtained with constrained st-ICA are compared with those ob-

tained with SPM. The results for the slice 14, 15 and 16 for three different subjects are presented in 

Fig. 5. In the previous alpha modulation fMRI experiments, the functional maps are known to have 

activity in the frontal and occipital regions [16]. The functional maps by constrained st-ICA reveal 

more frontal activities, which is missed by SPM in most of the cases. The results indicate that the pro-

posed constrained st-ICA may be a more effective method for fMRI data analysis. 

Discussion and Conclusions 

In this study a new algorithm, constrained-stICA is proposed. The method tries to find the desired 

independent spatial and temporal components by separating the input image sequences into spatial and 

temporal modes that can be analyzed independently by incorporating the a priori information. The 

conventional ICA algorithms, for data sets like image sequences, try to find maximum independent 

component without taking into considering the fact that if the extracted IC is not independent how 

badly the IC in the corresponding domain may be affected. If the conventional ICA is applied sepa-

rately on spatial and temporal domains obtained with SVD. There is no way that the output of the two 

ICAs can be connected together as the ordering of the components is random.   

  In this study, we have validated the performance of the proposed algorithm by comparing the re-

sults of simulated data set with the conventional ICAs. Furthermore as a real application, we have 

applied the algorithm on a set of fMRI data and the compared the results with the SPM, which is the 

conventional technique for fMRI analysis. The results of the proposed algorithm on the simulated data 

as well as the fMRI data indicate that the proposed algorithm could be more effective technique for the 

analysis of spatiotemporal data. 
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