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a b s t r a c t

Since finding whether a graph has a Hamiltonian path or Hamiltonian cycle are both NP-
complete problems, researchers have been formulating sufficient conditions that ensure
the path or cycle. Rahman and Kaykobad (2005) [2] presented a sufficient condition for
determining the existence of Hamiltonian path. Three recent works – Lenin Mehedy,
Md. Kamrul Hasan, Mohammad Kaykobad (2007) [3], Rao Li (2006) [4], Shengjia Li,
Ruijuan Li, Jinfeng Feng (2007) [5] – further used the same or similar condition to ensure
Hamiltonian cyclewith someexceptions. The threeworks, alongwith their unique findings,
have some common results. This paper unifies the results and brings them under Rahman
and Kaykobad’s condition.

© 2009 Elsevier B.V. All rights reserved.

1. Preliminaries

We consider only simple undirected graphs- graphs that do not contain loops or multiple edges. A Hamiltonian cycle is
a closed path passing through every vertex of a graph. A graph containing a Hamiltonian cycle is said to be Hamiltonian. By
Hamiltonicity we mean the virtue of a graph to be Hamiltonian. Naturally every Hamiltonian graph contains a Hamiltonian
path but a graph with Hamiltonian path may not contain a Hamiltonian cycle. We define δ(u, v) as the shortest distance
between u and v. Let us take the notation diam(G) as the diameter of G, Kp as the complete graph with p vertices,
Kp,q as complete bipartite graph with p + q vertices. A complete graph is also called a clique. We term the condition:
‘‘d(u) + d(v) + δ(u, v) ≥ n + 1, where |V | = n and u, v are distinct non-adjacent vertices of G’’, as Rahman–Kaykobad
condition.
We also need to describe two graph families Cn, Dn. We derive two special classes of graph from Cn, namely C ′n and C

′′
n .

Cn consists of graphs formed from two cliques A and B and a vertex, w connected to at least one vertex in A and at least
one vertex in B. Note that the maximum diameter of Cn is 4, when w is not connected to at least one vertex of clique A and
at least one vertex of clique B.
We define C ′n as a special case of Cn when w is connected to all the vertices of clique A. When w is connected to all the

vertices of both cliques, A and B, Cn becomes C ′′n . Here the diameters of C
′
n and C

′′
n are 3 and 2 respectively.

Dn is defined as {G : Kp,p+1 ⊆ G ⊆ Kp + (p+ 1)K1, where p ≥ 1, and (p+ 1)K1 denotes (p+ 1) isolated vertices, and+
is the join operator}. Dn is a 2-connected graph and has a diameter of 2.
The graph classes Cn, Dn are presented visually in Figs. 1 and 2. Cn was defined in [4] and Dn was defined in [4] and also

in [5] as Ln. Here, for the sake of simplicity, we use slightly different but equivalent definitions. It is to be noted that graphs
in Cn ∪ Dn are not Hamiltonian but contain a Hamilton Path.
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Fig. 1. Graph class Cn .

Fig. 2. Graph class Dn .

2. Existing results

Now we discuss some earlier results.

Theorem 2.1 (Ore [1]). If d(u)+ d(v) ≥ n for every pair of distinct non-adjacent vertices u and v of G, then G is Hamiltonian.

Theorem 2.2 (Rahman and Kaykobad [2]). Let G be a connected graph which satisfies Rahman–Kaykobad condition, then G has
a Hamiltonian path.

Lemma 2.1 (Mehedy, Hasan and Kaykobad [3]). Let G be a 2-connected graph which satisfies the Rahman–Kaykobad condition.
Then the endpoints of any Hamiltonian path are at distance at most 3.

Theorem 2.3 (Mehedy, Hasan and Kaykobad [3]). Let G be a 2-connected graph which satisfies the Rahman–Kaykobad
condition. If G contains a Hamiltonian path with endpoints at distance 3 then G is Hamiltonian.

Theorem 2.4 (Rao Li [4]). Let G be a connected graph which satisfies the Rahman–Kaykobad condition, then G is Hamiltonian or
G ∈ Cn ∪ Dn.

Theorem 2.5 (Li, Li and Feng [5]). Let G be a 2-connected graph with n ≥ 3 vertices. If d(u) + d(v) ≥ n − 1 for every pair of
vertices u and v with δ(u, v) = 2, then G is Hamiltonian, unless n is odd and G ∈ Dn.

Ore [1] in Theorem 2.1, proposed a sufficient condition for a graph to be Hamiltonian. A graph with Ore’s condition has
a diameter of only 2. But if a sufficient condition can be derived for a graph with diameter more than 2, Hamilton Path or
cycle may be found with fewer edges. With this motivation, Rahman and Kaykobad [2] proposed a sufficient condition to
find Hamilton Path in a graph as given in Theorem 2.2.
Mehedy, Hasan and Kaykobad [3] extended the result of Rahman and Kaykobad [2] that Rahman–Kaykobad condition

for a 2-connected graph ensures Hamiltonian Cycle when any existing Hamilton Path’s end points are at a distance of 3, as
stated in Theorem 2.3. From Lemma 2.1, it can be concluded that the diameter of the graph will be maximum 3.
Rao Li [4] followed Rahman–Kaykobad condition but did not consider 2-connectedness. He showed that, if the graph is

not Hamiltonian, it falls into any of the two classes of graphs. He did not discuss anything about the diameter of the graph.
Li, Li and Feng [5]worked onOre’s condition and further restricted the condition for a 2-connected graph. They found that,

with the reduced number of edges, sometimes the graph may not be Hamiltonian. They characterized the non-Hamiltonian
graphs as a special graph class, also described by Rao Li [4].
In this paper, we propose a unified theorem for Rahman–Kaykobad condition based on existing results. We find out what

is themaximumdiameter of a graph under Rahman–Kaykobad condition. Thenwemeticulously describewhether the graph
is Hamiltonian, and if not, what graph class it will fall into.

3. Main results

Theorem 3.1. Let G = (V , E) be a connected graphwith n vertices such that for all pairs of distinct non-adjacent vertices u, v ∈ V
we have d(u)+ d(v)+ δ(u, v) ≥ n+ 1 (i.e. G satisfying Rahman–Kaykobad condition), then

(i) diam(G) ≤ 4;
(ii) if diam(G) = 4, then G ∈ Cn;
(iii) if diam(G) = 3 then G is Hamiltonian if 2-connected or else G ∈ C ′n;
(iv) if diam(G) = 2:
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– If G is 2-connected, then G is Hamiltonian when n is even and G is in Dn when n is odd.
– Otherwise G is in C ′′n .

(v) Otherwise, G is a clique.

Proof.

Proof of (i) and (ii). If a graph G = (V , E) fulfills Rahman and Kaykobad condition, Theorem 2.4 [4] says that G is
Hamiltonian or G ∈ Cn ∪ Dn. If G is Hamiltonian, it is 2-connected by definition. So, by Lemma 2.1 [3], diam(G) ≤ 3,
since any two consecutive vertices on a Hamiltonian cycle are endpoints of a Hamiltonian path. But if G is not Hamiltonian,
G falls into graph class Cn with diam(G) ≤ 4 or G is in Dn with diam(G) = 2. This immediately implies (i) and (ii).

Proof of (iii). When diam(G) = 3, the graph is Hamiltonian or of class Cn. If the graph is 2-connected, it cannot be an
instance of Cn, so it is Hamiltonian. Now suppose G has cut vertex, and so G is of class Cn. Removing the cut vertexw from G,
we get two cliques A and B. As diam(G) = 3,w cannot be connected to both A and B, assume without loss of generality, the
former. Consequently, at least one vertex of B cannot be connected tow. That proves G in C ′n.

Proof of (iv). It follows immediately from Theorem 2.4 [4] and Theorem 2.5 [5].

4. Conclusion

We relate three seminal works for finding the Hamiltonicity of a graph observing Rahman and Kaykobad condition or a
subset of the condition. We determine when the graph is Hamiltonian. If we cannot, we characterize the non-Hamiltonian
graph by using two families of graphs, and in which instances of graphs in those two families the graph falls. Our work
provides a comprehensive understanding of graphs following Rahman and Kaykobad condition.
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