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Abstract In this paper, we present a technique for estimat-
ing three-dimensional (3-D) human body posture from a set
of sequential stereo images. We estimated the pixel displace-
ments of stereo image pairs to reconstruct 3-D information.
We modeled the human body with a set of ellipsoids con-
nected by kinematic chains and parameterized with rota-
tional angles at each body joint. To estimate human posture
from the 3-D data, we developed a new algorithm based on
expectation maximization (EM) with two-step iterations, as-
signing the 3-D data to different body parts and refining the
kinematic parameters to fit the 3-D model to the data. The
algorithm is iterated until it converges on the correct posture.
Experimental results with synthetic and real data demon-
strate that our method is capable of reconstructing 3-D hu-
man posture from stereo images. Our method is robust and
generic; any useful information for locating the body parts
can be integrated into our framework to improve the out-
comes.
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1 Introduction

During the last decade, automatically tracking and recover-
ing thee-dimensional (3-D) human body posture from video
footage has become one of the most interesting topics in the
field of computer vision, with applications in tracking, mo-
tion analysis, and activity recognition. In healthcare appli-
cations, tracking the movements of individuals may allow
clinicians and family members to detect events such as dan-
gerous falls by elderly family members, or monitor the ac-
tivities of patients for diagnosis of disease.

The traditional system used for human motion capture
consists of multiple special cameras that are arranged in a
studio. The subject must wear markers that can be detected
by the multiple cameras in 3-D. Combining the 3-D coordi-
nates of the recognized points, the system computes the nec-
essary joint parameters to represent the human body. Requir-
ing expensive devices with complicated deployment, this ap-
proach is only suitable for limited applications.

Markerless systems that estimate posture from a se-
quence of images are receiving more attention because they
are more convenient for users in daily applications. Al-
though using a single camera is the most convenient way
of capturing data, monocular images do not provide enough
information to recover 3-D posture due to ambiguity and oc-
clusion: basically, when projecting a 3-D object into a 2-D
image, we lose the depth information from the original ob-
ject.

Obviously, multiple-camera systems, with cameras in-
stalled at different view angles, can capture comprehensive
3-D information. However, some disadvantages are also ev-
ident with the multiple-camera approach. The cameras need
to be fixed at multiple positions for calibration and are
inflexible for deployment in outdoor and mobile environ-
ments. Synchronization is also required for the high-speed
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hardware and the additional protocols necessary to control
large video files over a network. It is possible to obtain use-
ful information, including depth data, using a stereo camera,
which consists of two lenses integrated into a unified device.
Stereo cameras achieve depth perception in a manner similar
to human eyesight. Due to their flexibility, stereo cameras
are convenient to deploy under a variety of environmental
conditions.

Here, we give an overview of previous studies that have
investigated human pose estimation from video. Gener-
ally, these algorithms can be grouped into two categories,
namely the model-based approach and the matching-based
approach.

The model-based approach The model-based approach
predefines the human body with a set of parameters related
to the locations of body joints, the kinematic rotational an-
gles, and the sizes of body parts, then attempts to fit the
model to the observation.

One branch of methods using this approach uses only
monocular images. Because of the ambiguity in depth in-
formation, most researchers simplify the problem by only
locating the positions of body parts in 2-D images [10, 16,
19–21, 31]. Among these studies, some sophisticated proba-
bilistic graphical models were designed to evaluate the com-
patibility between model parameters and cues from images
like colors, edges, shapes, and contours. The most suitable
parameters are found by message-passing based algorithms
such as nonparametric belief propagation [23]. Although the
problem is challenging, there are some current attempts to
estimate 3-D human posture information using only monoc-
ular images [12, 26]. Similarly, in [12], the probabilistic ap-
proach is also attempted where the posterior probability dis-
tribution of the parameters is estimated by the Markov chain
Monte Carlo (MCMC) method. The convergence speed of
MCMC can be ensured by decomposing the Markov chain
to a series of local transitions of each portion (e.g., face or
limb).

Given the limitations of using a single view, the multi-
view approach is proposed to overcome the missing 3-D in-
formation. Integrating the 2-D cues from each image with
the data from multiple cameras, Gupta et al. [7] demon-
strated that their system can solve the problem of posture es-
timation even within self occlusion. In [11], Knossow et al.
analyzed the properties of the extremal contours of elliptical
cones, then analytically derived the non-linear expressions
of contour velocities that can be further used to minimize the
differences between model contours and contours extracted
from binary image silhouettes. The shortcomings of these
methods are shown by the fact that they work separately on
a single image. The outcomes also need to be combined in
an additional stage to obtain the precise 3-D model parame-
ters.

Alternatively, rather than directly processing on images,
some algorithms assume that the 3-D data is already avail-
able. In [24], Sundaresan et al. segmented 3-D voxels into
different rigid parts, represented each with a 1-D curve, and
linked these curves to form the articulated skeleton. Mean-
while, several methods rely on the gradient descent algo-
rithm to identify the human kinematic configurations best
matching observations. In [18], Plankers et al. introduced
the concept of an articulated soft object to represent the hu-
man body as an explicit surface. The first and second deriv-
atives of the body surface are used by the least-square es-
timator to adjust the soft object matching with the cloud of
3-D points. During model registration, to reduce ambiguity,
each 3-D point is cast into one portion (i.e., a single body
part) of the model using the Euclidean distance as in [14,
29]. Recently, Horaund et al. [9] applied the datum distance
calculated from the coordinates and normal vectors of 3-D
points to perform point assignments. Obviously, the use of
distance alone to locate the body parts is deficient in the case
where the model is diverging markedly from the data. It is
necessary to exploit more cues to improve detection accu-
racy.

The matching-based approach The matching-based ap-
proach stores a number of human pose configurations in a
database. From the exemplar dataset, the main features of
each observation are extracted and mapped to a specific con-
figuration. This method also determines the features from
the queries and uses them to search for the most suitable
poses. For 2-D images, the binary shapes including the inter-
nal and external contours can be utilized as the descriptors
for each 3-D pose [1, 15]. Additionally, after background
subtraction, the remaining silhouettes of the human body
also exhibit potential features [22]. For stereo data, in [32],
Yang et al. used the depth images (i.e., disparity images)
to retrieve a human pose from the hierarchy database with
100,000 exemplars. Within the huge space of all possible hu-
man poses, the matching-based approach requires efficient
methods for organizing and searching the exemplars stored
in the database.

In this study, we capitalize on the advantages of the stereo
camera to implement a novel system for recovering 3-D hu-
man body postures. Our system is built on an iterative co-
registration algorithm with two steps: detecting body parts
from 3-D data and fitting the model to the data after the body
parts have been located. Here are the main characteristics of
our algorithm that distinguish it from others: (1) As a model-
based approach for estimating 3-D human body postures
from stereo camera images, our method does not require
us to build and maintain a large database of human poses.
(2) Both the bottom-up approach (i.e., detecting the location
of each body part) and the top-down approach (i.e., connect-
ing different body parts in a predefined human model using
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Fig. 1 Our proposed method of
estimating 3-D human body
posture from stereo images.
(a) A set of stereo images.
(b) Estimated disparity image.
(c) Labeling the body parts of
the 3-D data. (d) Fitting the 3-D
model with the 3-D data.
(e) Final estimated body posture

ellipsoids) are integrated in our framework. (3) Our algo-
rithm utilizes all 3-D information, cues from RGB images,
and geodesic relationships among 3-D points to better detect
body parts.

The rest of this paper is organized as follows. In Sect. 2,
we describe our overall system. The main algorithm of
recovering human posture from 3-D data is presented in
Sect. 3. The experimental results are shown in Sect. 4. Fi-
nally, we present our conclusion and discussion in Sect. 5.

2 Our methodology

The step-by-step processing stage of our system is briefly
described in Fig. 1. In the preprocessing step, we estimate
the disparity between the left and right images taken by a
stereo camera. The 3-D location of the observed subject is
reconstructed using this disparity and represented by a cloud
of points in 3-D. To fit the 3-D model to the given 3-D data,
we perform co-registration in two steps: labeling (E-step)
and model fitting (M-step). The labeling step assigns each
point to one ellipsoid and the model fitting step fits the el-
lipsoids to their corresponding points. This process is iter-
ated by minimizing the discrepancies between the model
and the observation, finally recovering the correct human
pose. The details of our co-registration algorithm are dis-
cussed in Sect. 3.

2.1 Stereo image processing

The computation of stereo information is the preliminary
processing step necessary to recover 3-D information from
a pair of images. The displacements between two images
are presented as a disparity image and used to estimate the
depth value. With an ordinary searching technique, it ex-
hausts O(n3) computation to obtain the complete dispar-
ity values, assuming that the size of the image is n2. We
use the fast stereo matching algorithm, Growing Correspon-
dence Seeds (GCS) [4], which requires only a small frac-
tion of the disparity space to improve speed and accuracy.
The computation complexity becomes O(kn2) with k � n

compared with searching the entire disparity space at O(n3).
Moreover, if the background is partially eliminated, we can

Fig. 2 Computing the 3-D stereo data. (a) Disparity image. (b) Sam-
pling on the grid. (c) 3-D data

reduce the searching time on the sparse regions. The ap-
proach we apply for the background modeling and removal
is described in [30].

Then, the disparity image is sampled by a grid to reduce
the number of points in the observed data and avoid exten-
sive computation, as depicted in Fig. 2(b). To obtain the 3-D
data, the depth value Z of each point is computed by

Z = f b

d
(1)

where f is the focus length, b is the base-line, and d is the
disparity value. The two remaining coordinates X and Y are
given by

X = uZ

f
, Y = vZ

f
(2)

where u and v are the column and row index of a pixel in
the disparity image.

2.2 3-D human body model

The 3-D human model includes a set of blobs represented by
a set of ellipsoids. In the computation of transformation, we
formulate the equation of an ellipsoid in the 4-D projective
space as

q(X) = XT QT
θ ST DSQθX − 2 = 0 (3)
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Fig. 3 3-D human body model. (a) Skeleton model. (b) Computation
model with ellipsoids. (c) Human synthetic model with super-quadrics

where D = diag[a−2, b−2, c−2,1] configures the size of the
ellipsoid, S locates the center of the ellipsoid in the lo-
cal coordinate system, Qθ is the skeleton-induced transfor-
mation, and X = [x, y, z,1]T is the coordinate of a 3-D
point. We choose b = a and c ≥ a to simplify the Euclid-
ean distance computation from one point to an ellipsoid.
The 4 × 4 transformation matrix Qθ is a matrix function of
θ = (θ1, θ2, . . . , θn) where θ1, θ2, . . . , θn are the n kinematic
parameters that control the position of each ellipsoid in the
model. Qθ is not only a single transformation, but it relates
to a kinematic chain of transformations through each body
part. The joint between two adjacent parts has up to three
rotational degrees of freedom (DOF), while the transforma-
tion from the global coordinate system to the local coordi-
nate system at the human hip requires six DOF (i.e., three
rotations and three translations). We separate Qθ to a series
of independent primitives that only depend on a single para-
meter,

Qθ = Qn(θn)Qn−1(θn−1) . . .Q1(θ1) (4)

where Q1(θ1),Q2(θ2), . . . ,Q6(θ6) are of six DOF of the
global transformation and Qi (θi) = TriR(θi) with i > 6 is
the local transformation from one coordinate system i to the
other i + 1. Tri is the translation matrix determined by the
skeleton architecture and R(θi) is the rotation matrix around
the x-,y-, or z-axis. We can set Tri to be the identity matrix
I4×4 if we want to add more than one DOF to a joint.

The whole body configuration is depicted in Fig. 3. There
are 14 segments of the body, nine joints (two knees, two
hips, two elbows, two shoulders, and one neck), and 24 DOF
(two DOF at each joint and six free transformations from
the global coordinate system to the local coordinate system
at the hip). Each body part may contain several ellipsoids.
However, to simplify the computation, we use only one for
each.

For better display and to create a synthetic human model
for simulations, we also designed a model using super-
quadrics as shown in Fig. 3(c). The equation of the super-
quadric surface [24] without any transformation is expressed
as
(

x

a0

)2

+
(

y

b0

)2

=
(

1 + sz

c0

)(
1 −

(
1 − 2z

c0

d))
,

0 ≤ z ≤ c0 (5)

where a0, b0, and c0 determine the size of the super-quadric
along the x-axis, y-axis, and z-axis, respectively.

2.3 Distance from one point to an ellipsoid

The distances between a set of points to an ellipsoid are used
to measure the differences between the 3-D data and the
model. For simplification, the function q(X) defined in (3),
which approaches zero at the ellipsoid surface and becomes
larger when the point moves away from the ellipsoid, has
been defined as the algebraic distance [18]. However, due
to variation that is related to direction (e.g., with the pro-
late spheroid, the algebraic distance gets smaller as the point
moves toward the poles), the algebraic distance cannot ex-
actly reflect the measurement, especially for thin ellipsoids
(usually representing limbs). In addition, Horaud et al. [9]
proposed an alternative distance, the datum distance; how-
ever, as it requires normal vectors, it is very difficult to calcu-
late this distance from the data gathered by a stereo camera
alone.

The Euclidean distance, equal to the distance from one
point to its nearest point in the ellipsoid surface, is rarely
used because it requires solving a sixth-degree polynomial
equation [8]. In this work, with the symmetric ellipsoid
model, the calculation of Euclidean distance can be sim-
plified: First of all, rather than computing Euclidean dis-
tance in the global coordinate system (x, y, z), the point
X0(x0, y0, z0) can be transformed to the local coordinate
system (x′, y′, z′) that holds the ellipsoid. In Fig. 4, let P be
the plane that contains a point X0 and the major z′-axis of
the ellipsoid. The intersection between the plane P and the
ellipsoid will be an ellipse. The computation of the Euclid-
ean distance to an ellipsoid is reduced to find the distance
between a point X0 and an ellipse lying in P with only a
fourth-degree polynomial equation that has an analytical so-
lution enabling us to calculate its roots.

Moreover, the kinematic parameter θ = (θ1, θ2, . . . , θn)

in (3) is updated by the gradient descent method in
Sect. 3.2.2. Therefore, at each step, the point X0 moves to
X0 + dX0 with a small change dX0 in the local coordinate
system (x′, y′, z′). Corresponding, Xt , the nearest point of
X0 in the ellipsoid surface, also moves to Xt + dXt , which
can be calculated from X0, dX0, and Xt with some multi-
plication and addition.
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Fig. 4 The Euclidean distance from a point to an ellipsoid

The mathematical details of finding the nearest point in
an ellipsoid surface to a given point are described in Appen-
dix A.

3 Estimating 3-D human body posture from 3-D stereo
data

This section presents our algorithm to estimate 3-D human
body posture from the 3-D stereo data. First, we establish
a comprehensive conditional probabilistic distribution be-
tween the human pose specified by the kinematic parameter
θ = (θ1, θ2, . . . , θn) and the given 3-D data and RGB im-
age. Then, we show how to estimate the optimal kinematic
parameter θ∗ that maximizes the distribution by the EM al-
gorithm. The estimated parameter θ∗ will correspond to the
most suitable human posture with the given information.

3.1 Probabilistic relationship between the model
parameters and the stereo data

We use D = (X1,X2, . . . ,XM) to denote M points of the 3-
D data and I for the RGB image. Since our model is created
with multiple ellipsoids, the supplementary variables are in-
troduced to determine to which part of the body (i.e., el-
lipsoid) each point should belong. Let V = (v1, v2, . . . , vM)

denote the body part assignments or labels of each point.
The posterior probability of the label V and the model pa-
rameter θ given the 3-D data and RGB image is expressed
by

P(V, θ |I,D) ∝ P(V )P (I |V )P (D|V )P (D|V, θ). (6)

The elements of (6) are sequentially defined in the fol-
lowing sections.

3.1.1 Smoothness energy

The smoothness prior P(V ) is derived in the form of the
Potts model [3],

P(V ) =
M∏
i=1

∏
j⊂Ni

P (vi, vj ) (7)

where Ni is a set of neighbors of point i and P(vi, vj ) is,

P(vi, vj ) =
{

eγ if vi = vj ,

1 if vi 	= vj

(8)

where γ (in our case γ = 0.5) is a real positive constant.
P(vi, vj ) is used to drive the label of each point toward the
same label of its neighbors. This causes the labeling results
to become smooth and eliminates the outliers. The simplest
way to locate the neighbors bounded by the radius d of one
point is via a mask. We predefine the binary mask based
on the distance d and perform an operation via the AND
operator with the binary silhouette to find the neighbors of
each point. We set d = 2 for all of our experiments.

3.1.2 Image likelihood

Some partial regions in the RGB image can provide extra
information to identify the body components. Generally, the
image likelihood term is derived as

P(I |V ) =
M∏
i=1

φ(I |vi). (9)

One might utilize the shape of the binary silhouettes or
texture information to detect body parts. In our approach,
we apply face detection to locate the head. Potential face ar-
eas are ascertained by detecting skin in the HSV color space
and thermal infrared domains [5]. Some regions lying out-
side the binary silhouette or having unsuitable shapes (too
small or appearing to be limbs) are considered outliers and
removed. Estimation of the binary silhouette that relies only
on background subtraction is not enough to obtain the cor-
rect result due to the effects of lighting conditions and shad-
ows. As shown in Fig. 5, after the stereo computation, based

Fig. 5 Binary silhouette extraction. (a) Input image. (b) Background
substraction. (c) Refined silhouette
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Fig. 6 Illustration of the factors that affect label assignments. (a) Im-
age likelihood for detecting the face and torso. (b) Geodesic distance
preserved with human movements

on the estimated distance between the person and the cam-
era, some pixels remaining outside the ranges are removed
to refine the silhouette. φ(I |vi = head) evaluating the like-
lihood of point i to be assigned the label ‘head’ gets a value
of ec (c = 1) for the pixel marked as ‘faces’ and a value of
one in other cases.

Together with face detection, an additional function
f (xi ) (related to the concept of soft objects [18]) is de-
fined to estimate the torso location. If we let the center of
the body Obody lie at a middle point between the center of
the face and the center of the silhouette. f (xi ) is computed
in the following way:

f (xi ) = κe−d(xi ) (10)

where d(xi ) is the algebraic distance from the point
xi = [x, y,1]T to the ellipse with the centroid Obody and
κ (κ = e) is a positive constant. In the coordinate system
attached to the origin Obody, d(xi ) = xi

T QT
e DeQexi − 1

where De and Qe are the 3 × 3 matrices that determine the
shape and orientation of the ellipse. The likelihood for iden-
tifying a single point as ‘torso’ is given by

φ(I |vi = torso) =
{

f (xi ) if d(xi ) ≤ 1,

1 otherwise.
(11)

3.1.3 Pairwise geodesic relationship among 3-D points

The Euclidean distance between any two points is only pre-
served within a rigid object. With a non-rigid object like the
human body, the Euclidean distance will be changed due to
the non-linear deformations of various body parts while the
object is moving. However, with regard to the geodesic dis-
tance between a pair of points in space, this distance always
retains its value during the movement of a human body. The

Fig. 7 Assigning points into cells. (a) Sampling on the grid. (b) Points
grouped by cells

preservation of geodesic distance has been successfully ap-
plied by the ISOMAP algorithm [27] to determine the man-
ifold of high-dimensional data in a lower dimension. Here,
we attempt to represent the geodesic relationships between
each point and others in our probabilistic model. Some con-
straints are established to restrict the probability of incorrect
label assignments. Assigning the pixels into groups called
cells, as illustrated in Fig. 7, can help us save the computa-
tional time. All of the elements belonging to the same cell
receive the same geodesic constraints. The geodesic distance
between two cells is approximated by the shortest path dis-
tance in a graph using Dijkstra’s algorithm [6]. The compat-
ible probability P(D|V ) of the 3-D data with the geodesic
constraints is given by

P(D|V ) =
M∏
i=1

Mc∏
jc=1

Pgeo(D|vi, vjc ),

Pgeo(D|vi, vjc ) =
{

e−α d(vic , vjc ) < dmin(vic , vjc ),

e−β d(vic , vjc ) > dmax(vic , vjc )

(12)

where ic is the cell that holds pixel i, d(vic , vjc ) is the geo-
desic distance between the cell ic and jc, Mc is the number
of cells, and α and β are two positive constants. Two val-
ues, dmin(vic , vjc ) and dmax(vic , vjc ), define the lower and
upper bounds for the geodesic distance between a pair of
labels. Two related labels that are too far or too close are pe-
nalized to decrease the belief in those labels. The constant
values α and β are taken to be α = β = 0.04Mc/Mvjc

, lim-
iting the maximum number of cells which can ascertain to
the label of the pixel i to 4% of the total. The maximum
number of cells receiving the same label vjc , Mvjc

, appears
in the denominator as a normalized constant to ensure that∏Mc

jc=1 Pgeo(D|vi, vjc ), the total effects to the pixel i, is ap-
proximately invariant to the size of body parts.
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3.1.4 Reconstruction error

To co-register the ellipsoid model with the observations,
we need to minimize the differences between them. The
last term accounts for the compatible probability between
the model specified by θ and the data D consisting a set
of points X1,X2, . . . ,XM . Let’s denote d(Xi, θ, vi) as the
Euclidean distance between a point Xi(xi, yi, zi) and an el-
lipsoid vi , as we already discussed in Sect. 2.3. P(D|V, θ)

is defined as

P(D|V, θ) =
M∏
i=1

e
− d2(Xi ,θ,vi )

2σ2 (13)

where σ denotes the variance (σ 2 is chosen to be 0.1 in our
experiments). The distance between the point Xi and the el-
lipsoids is also one of the factors that decides the body seg-
ment of Xi . Hence, in a sequence of frames, the estimated
model from the current frame presents a good initial model
to derive the label on the next frame.

3.2 Estimating the model parameters

Our main goal is to find the optimal kinematic parameter θ∗
that maximizes the posterior probability of θ given the data.
This problem can be rewritten as

θ∗ = argmax
θ

∑
V

P (V, θ |I,D) (14)

where V is considered the latent variable in this framework.
The EM algorithm is a good choice for estimating the op-
timal values of the probabilistic problem with the appear-
ances of unobserved variables. By introducing the distrib-
ution Q(V ) over the variable V [2], the problem in (14),
equivalent with maximizing

∑
V logP(V, θ |I,D), can be

decomposed into

argmax
θ,Q

∑
V

Q(V ) log
P(V, θ |I,D)

Q(V )

−
∑
V

Q(V ) log
P(V |θ, I,D)

Q(V )
. (15)

The EM algorithm is an iterative procedure whose each
iteration consists of the following two main steps:

(i) Assuming that the current value of θ is θold , the E-step
evaluates the analytical expression of posterior distribu-
tion Q(V ) as

Q(V ) = P(V |θ, I,D). (16)

(ii) The M-step maximizes

EQold(V )[logP(V, θ |I,D)] (17)

with respect to θ where Qold(V ) is found from the pre-
vious E-step.

We provide the technical details of the E-step and M-step
in the next sections, 3.2.1 and 3.2.2.

3.2.1 The E-step

The true distribution of Q(V ) in (16) is intractable to com-
pute. Therefore, we perform the mean field approximation
of Q(V ), which can be expressed as,

logP(V |θ, I,D) ∝
M∑
i=1

fi(vi) +
M∑
i=1

∑
j⊂Ni

fij (vi, vj )

+
M∑
i=1

Mc∑
jc=1

gij (vi, vjc ). (18)

In this equation, f (vi) is the sum of the logarithms of
the image likelihood term in (9) and the reconstruction er-
ror term in (13). f (vi, vj ) is determined by the logarithm
of the compatible probability from the Potts model in (7).
The pairwise g(vi, vjc ) is determined by the logarithm of
the geodesic potential in (12), such that

g(vi, vjc ) = logPgeo(D|vi, vjc ). (19)

As in [28], the belief qi(vi) = P(vi |θ, I,D) is iteratively
updated until convergence:

qistep+1(vi) = 1

Zistep(vi)
exp

{
Mc∑

jc=1

∑
vjc

q
jc
step(vjc )gij (vi, vjc )

+
∑

j⊂Ni

∑
vj

qjstep(vj )fij (vi, vj ) + fi(vi)

}

(20)

where q
jc
step(vjc ) = E[qjstep(vjc )] is an average belief of all

pixels j ⊂ the cell jc and Zstep(vi) = ∑
vi

qistep(vi) is a nor-
malization factor. To reduce the amount of computation re-
quired, set q

jc
step(vjc = ε) = 1 for the maximum probability

of the cell jc pertaining to the ellipsoid ε and q
jc
step(vjc ) = 0

for vjc 	= ε. fi(vi) is used to initialize the value of qi(vi) in
the first iteration, where

qi0(vi) = 1

Zi0(vi)
exp{fi(vi)}. (21)

In Fig. 8, we show the results of running the E-step on
two examples in which the label of each point is selected
by the label with the maximum belief. At the first iteration,
using only the image likelihood and the distance provides
incorrect labeling results because some pixels belonging to
an arm are near to the torso or the head. After the E-step con-
verges (three or four iterations), we obtain a correct labeling
assignment.
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Fig. 8 The results of running
the E-step on two examples (a)
and (b). Corresponding from left
to right: the initial human
models, the label assignments
found by the first iteration of the
E-step, and the last iteration

3.2.2 The M-step

Once the distribution of the random variable vi has been ob-
tained, the kinematic parameter θ becomes the solution of
the following optimization problem:

argmax
θ

EQ(V )[logP(D|θ,V )]. (22)

Here, the components independent of θ in (6) are elim-
inated. By taking the logarithm of P(D|θ,V ), (22) can be
rewritten as

− argmax
θ

Nε∑
ε=1

M∑
i=1

qi(vi = ε)d2(Xi, θ, vi = ε) (23)

where Nε is the number of ellipsoid, d(Xi, θ, vi = ε) =
‖Xi − Zi(θ)ε‖2, and Zi(θ)ε is the nearest point of Xi ly-
ing on the surface of the ellipsoid ε. We formulate (23) in an
alternative way as

argmin
θ

Nε∑
ε=1

M∑
i=1

qi(vi = ε)‖Xi − Zi(θ)ε‖2. (24)

For simplification of the M-step, set qi(vi = ε) = 1 for
the maximum probability that the point i pertains to the el-
lipsoid ε and qi(vi) = 0 for vi 	= ε. The least square prob-
lem with a nonlinear function like (24) can be efficiently
solved by the Levenberg-Marquardt method. This estimator
requires the computation of the Jacobian matrix J of Zi(θ)ε

with respect to θ [13, 17, 25] that is explained in Appen-
dix B.

4 Experiments

We have evaluated our proposed techniques with simulated
and real data.

4.1 Experiments with simulated data

In generating the simulated data, we manually defined some
joint angle trajectories as depicted by the dashed lines in
Fig. 10. Only the rotational angles corresponding to the el-
bow and shoulder joints were tested in our experiments; the
values of other rotational angles were fixed. From the pre-
defined angle trajectories, we created a sequence of human
postures and their disparity images up to 110 frames. Some
samples of the disparity images are shown in the first and
third rows in Fig. 9.

We applied our algorithm to recover the human postures
from the synthetic disparity images. Due to the nature of
simulated data, the cues of RGB images were not available,
so we eliminated them from computation. Some samples of
the recovered human poses are depicted in the second and
fourth rows in Fig. 9. To validate our algorithm, we plot-
ted the estimated angle trajectories as solid lines to compare
against the synthetic angle trajectories plotted as the dashed
line in Fig. 10. The results show the good estimation of the
kinematic parameters achieved by our method.

4.2 Experiments with real data

Experiments were implemented with stereo data acquired by
the stereo camera (Bumblebee 2.0 of Point Grey Research).
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Fig. 9 The results of recovering
human postures (the second and
fourth rows) from the synthetic
disparity images (the first and
third rows). The number below
each picture indicates the frame
index number

In Sect. 2.1, we described the use of the GCS algorithm to
extract the disparity image and compute the 3-D data for
each frame. The subjects were asked to perform some dis-
tinguishable activities about 2–4 meters from the camera,
producing several video sequences. The reconstructed body
poses were validated by visually checking the trajectories of
certain joint angles.

In the first experiment, we assessed the movements of el-
bows in both horizontal and vertical directions, as shown in
Fig. 11. In each figure, the sequence of activities is illus-
trated in a video stream from top to bottom in a column. Ob-
serving the real pictures, the angle changes between the up-
per arm and lower arm were approximately 90◦. In Fig. 12,
the recovered angle of the second joint precisely reflects
the arm motion in the real data. The joint angles may re-
ceive positive or negative values, depending on the way that
two joint angles at the elbow are combined to drive the arm
movements.

In the next test dataset, as shown in Fig. 13(a), the
activity of the person in the video was related to the move-
ments of the knee joint. The right leg was lifted until
it made a 90◦ angle between the upper leg and lower
leg, then this was followed by the same motion of the

left leg. The kinematic motion parameters were estimated
and are depicted in Fig. 15(a). One may notice that the
switching between the two legs happens from frame 70 to
frame 80.

In order to track the changes of two joint angles at
the same time, we considered the sequence of activities in
Fig. 13(b). We assumed that the whole arm laid along the
x-axis and that the two joint angles of the shoulder were
related to the rotation of the arm around the z-axis and
x-axis, respectively. One can observe both trajectories of
the two measured joint angles from Fig. 15(b), with the up-
per curves reflecting the rotational angles around the z-axis
and the lower curves reflecting the rotational angles around
the x-axis. To explain the meaning of the plot, we visualize
the overall progress in Fig. 14. First, the whole arms were
rotated around the z-axis from 180◦ to 360◦ (+π ), corre-
sponding to the vertical movement within the frames 1–45.
At the second stage, the second joint angles changed their
values from 180◦ to 270◦ (+π/2), while the arms retained
their positions from frames 45 to 60. Finally, to be horizon-
tally extended to the left or right side, the two arms were
continuously rotated around the z-axis (the first joint angles)
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Fig. 10 A comparison between
the estimated and the
ground-truth joint angles in the
simulated experiments
(synthetic data). (a) and (b)
show two joint angles of the
shoulders. (c) and (d) show two
joint angles of the elbows

Fig. 11 Real experiments with
elbow motion in two different
directions. (a) Horizontal
movements. (b) Vertical
movements. From left to right:
the RGB images, disparity
images, and reconstructed
human models (front view and
+45◦ view)

from 360◦ to 270◦ (−π/2) or 450◦ (+π/2), corresponding

to frames 60 to the end.

To quantitatively evaluate the reconstruction errors of

these experiments, we needed to generate ground-truth us-

ing the given data. Applying the same method presented in

[7, 12], the locations of some distinct points (e.g., hands, el-

bows, or shoulders) were hand-labeled in the RGB images.

We used the 3-D information from these points to calcu-
late the necessary ground-truth angles between two limbs.
The angles reconstructed by the kinematic parameters were
compared against the ground-truth by the average error εθ

εθ =
∑n

t=1 |θest
t − θ

grd
t |

n
(25)
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Fig. 12 The estimation of the
second joint-angle trajectories
for the left and right elbows
corresponding to: (a) horizontal
elbow movement and
(b) vertical elbow movement

Fig. 13 Real experiments with
other motions: (a) Knee
movements. (b) Shoulder
movements. From left to right:
the RGB images, disparity
images, and reconstructed
human models (front view and
+45◦ view)

Fig. 14 The changes in two
joint-angles during the
movements of the shoulders
(experiment depicted in
Fig. 13(b))

Fig. 15 The estimation of the
joint-angle trajectories for the
left and right sides of: (a) knee
movements and (b) shoulder
movements
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Fig. 16 The qualitative
evaluation of the reconstructed
human body postures from:
(a) walking sequences and
(b) arbitrary activity sequences.

Table 1 The average reconstruction error of the joint angles of the first four experiments. Note that these experiments only consider the local
movements of some body limbs

Experiment Elbow movement Elbow movement Knee movement Shoulder movement

(horizontal direction) (vertical direction)

Evaluated angle Upper arm & Upper arm & Upper leg & Whole arm & Whole arm &

lower arm lower arm lower leg x-axis z-axis

Average reconstruction Left Right Left Right Left Right Left Right Left Right

error (◦) 8.21 7.58 6.79 7.64 8.03 13.81 5.66 5.72 9.08 9.97

where n is the number of frames, t is the frame index, θ
grd
t

is the ground-truth, and θest
t is the estimated angle. In par-

ticular, the shoulder movements were related to two kine-
matic parameters, and therefore the correct arm directions
were validated by measuring the angles between the arms
and the x-axis or z-axis. The coordinate system (x, y, z) in
this case had the x-axis and z-axis aligned with the ver-
tical and horizontal directions of the image plane, respec-
tively. The average errors of all four experiments are given in
Table 1.

Figure 16 shows the results of testing our algorithm on
some free movements. The subjects performed complicated
activities with all of their arms and legs. Here, we depict
only three images out of the sequence and their estimated
poses in the second and third rows with two alternative view
angles. The 3-D locations of the body parts and the correct
human poses were successfully identified. In these experi-
ments, it is more convenient to evaluate the estimated whole
body pose, rather than the local changes of individual limbs.
The average distance between each 3-D point and the near-
est ellipsoid of the reconstructed model can be considered

Table 2 The mean and standard derivation of the average distance (the
average Euclidean distance between a set of 3-D points of the observed
data and the ellipsoids of the reconstructed model) of the last two se-
quences

Sequences Walking Arbitrary activity

Mean (m) 0.062 0.037

Std. dev. (m) 0.003 0.002

the overall error measurement of the reconstructed pose in
each frame. The average distance Dt of the frame t is com-
puted by

Dt =
∑M

i=1 dt (i)

M
(26)

where dt (i) is the Euclidean distance from the point i to the
nearest ellipsoid and M is the number of points. The means
and standard derivations of Dt in the two last sequences are
provided in Table 2.
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5 Conclusion and discussion

This paper describes a novel approach for recovering 3-D
human body posture information from images acquired by
a stereo camera. The technique is formulated in a unique
probabilistic framework with the combination of various po-
tentials including the smoothness term, image likelihoods,
reconstruction errors, and geodesic distance constraints, and
implemented by the two-stage optimization of the EM algo-
rithm. Through experiments using synthetic and real data,
we demonstrated that our algorithm can reconstruct human
body posture from stereo video even for complicated move-
ments. Analyzing the performance, we detected an average
error of about 6–14◦ of the estimated kinematic angles and
an average distance (i.e., difference) of about 0.04–0.06 m
between the reconstructed body model and the given 3-D
data. However, in certain cases, some limitations of our
technique might exist. For example, the self occlusion of
the human body may affect the accuracy of the algorithm.
Moreover, solving the inverse kinematic problem by the
Levenberg-Marquardt least-square estimator in the M-step
may return the local optima.

For future development, we plan to utilize other cues such
as edges, binary silhouette shapes, or optical flows to better
detect the body parts and handle occlusion. A tracking algo-
rithm using a particle filter can be used to discover the den-
sity distribution of kinematic parameters by sampling and
can also take the temporal information into account. In fact,
integrating a tracking algorithm into our probabilistic frame-
work might allow faster recovery of posture information and
overcome the local optima problem.

In practice, to be useful for a broad range of applications,
camera perspectives also need to be considered in the imple-
mentation of this system. A frontal view, as examined in the
present study, is suitable for various applications related to
human-machine interaction such as games and remote con-
trols using body gestures. In order to be applied to track-
ing and monitoring applications, cameras might be installed
with proper view angles to obtain wider views of subjects
and to avoid occlusions. In such cases, the global transfor-
mation of the whole body from the global coordinate system
estimated by our algorithm should be able to handle varia-
tion in camera perspectives. Also, the known location of the
cameras represented by the perspective transformation ma-
trix could be integrated into the computation of the global
transformation matrix to improve the accuracy and speed of
the algorithm.
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Appendix A: Locating the nearest point in an ellipsoid
surface to a given point

In Fig. 4, the transformation of X0 into the local coordinate
system (x′, y′, z′) attached to the ellipsoid is obtained as

[x′
0, y

′
0, z

′
0,1]T = SQθ [x0, y0, z0,1]T . (27)

In the 2-D coordinate system of the plane P (the origin
of the plane P lies at the centroid of the ellipsoid), these co-

ordinates are converted to (

√
x′2

0 + y′2
0 , z′

0). The intersection
between the plane P and the ellipsoid will be an ellipse with
the major axis c and the minor axis a. Hence, the nearest
point Xt belonging to the ellipsoid surface of X0 in the plane
P has the 2-D coordinate (u, v) as the roots of the equation

f (u, v) = u2

a2
+ v2

c2
− 1 = 0,

(√
x′2

0 + y′2
0 − u

)∂f (u, v)

∂v
= (z′

0 − v)
∂f (u, v)

∂u
.

(28)

This equation can be converted to a fourth-degree poly-
nomial equation to find u and v. The coordinate of Xt in
(x′, y′, z′) is given by

x′
t = u

x′
0√

x′2
0 + y′2

0

, y′
t = u

y′
0√

x′2
0 + y′2

0

, z′
t = v.

(29)

We expand the updated rules for computing Xt(x
′
t , y

′
t , z

′
t )

when X0 moves to X0 + dX0 in the local coordinate system
(x′, y′, z′). Let k = a2/c2 be a constant. Let

u =
√

x′2
t + y′2

t , v = z′
t ,

r ′
0 =

√
x′2

0 + y′2
0 ,

cosγ = x′
0/r

′
0, sinγ = y′

0/r
′
0.

(30)

The new value of Xt(x
′
t , y

′
t , z

′
t ) corresponding to X0 +

dX0 = (x′
0 +dx′

0, y
′
0 +dy′

0, z
′
0 +dz′

0) in the local coordinate
system (x′, y′, z′) is computed by

ξ = kv(cosγ dx′
0 + sinγ dy′

0) − udz′
0

(1 − k)(kv2 − u2) − k(vz′
0 + ur ′

0)
,

u = u − kvξ, v = v + uξ,

x′
t = u cosγ, y′

t = u sinγ, z′
t = v.

(31)

Note that when the point moves from outside into the el-
lipsoid or vice versa, x′

t , y
′
t , and z′

t need to be recomputed
from (28) and (29).
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Transforming Xt(x
′
t , y

′
t , z

′
t ) back to the global coordinate

system (x, y, z), the coordinate of Xt is given by

[xt , yt , zt ,1]T = Q−1
θ S−1[x′

t , y
′
t , z

′
t ,1]T .

Appendix B: Computation of the Jacobian matrix
for the inverse kinematic problem

In this appendix, we focus on the computation of the
Jacobian matrix J of Zi(θ)ε with respect to θ . Assum-
ing that the ellipsoid ε depends on the nε parameters
θ1, θ2, . . . , θnε , [Zi(θ)ε,1]T must satisfy equation (3) with
θ = (θ1, θ2, . . . , θnε ). Because Zi(θ)ε belongs to an ellipsoid
surface in the global coordinate system, we apply a series of
transformations to Zi(θ)ε to get one point Z0ε

i , independent
of θ , lying in an ellipsoid surface in the local coordinate
system

SQnε
(θnε )Qnε−1(θnε−1) . . .Q1(θ1)[Zi(θ)ε,1]T = [Z0ε

i ,1]T

or [Zi(θ)ε,1]T = Q1(θ1)
−1Q2(θ2)

−1 . . .Qnε
(θnε )

−1

S−1[Z0ε
i ,1]T . (32)

The Jacobian matrix J consists of nε columns, where
each column i, ∂Zi(θ)ε/∂θi is given by

[
∂Zi(θ)ε

∂θi

,0

]T

= Q1(θ1)
−1Q2(θ2)

−1 . . .
∂Qi (θi)

−1

∂θi

Qi+1(θi+1)
−1 . . .Qnε

(θnε )
−1

S−1[Z0i
ε,1]T

= Q1(θ1)
−1Q2(θ2)

−1 . . .
∂Qi (θi)

−1

∂θi

Qi (θi) . . .Q2(θ2)Q1(θ1)[Zi(θ)ε,1]T .

(33)
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