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A Smoothed Naïve Bayes-Based Classifier  
for Activity Recognition

A. M. Jehad Sarkar, Young-Koo Lee and Sungyoung Lee
Department of Computer Engineering, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, Korea

Abstract

A number of classifiers have been proposed by the researchers for activity recognition using binary and 
ubiquitous sensors. Many researchers have shown that the hidden Markov model (HMM) and the condition-
al random field (CRF)-based activity classifiers work well to classify activities in comparison with the widely 
used naïve Bayes-based activity classifier. However, it would not be an exact verdict if a naïve Bayes-based 
activity classifier is properly smoothed. Parameter estimation plays the central role in the performance of 
a naïve Bayes activity classifier. Data sparsity puts substantial challenges in parameter estimation because 
the sizes of the real-life activity datasets are relatively small. The distribution of the sensors may not be even 
among the activity classes. Additionally, some of the sensors would appear during testing but would not 
appear while training. This is called zero-frequency problems which assign zero probability of a sensor for 
a given activity. To prevent such estimation problems, we propose two smoothing techniques for adjusting 
the maximum likelihood to produce more precise probability of a sensor given an activity. We performed 
three experiments using three real-life activity datasets. It is observed that our proposed mechanism yields 
significant improvement in the accuracy of activity classification in comparison with its existing counterparts. 
We achieved the class accuracy ranging between 63% and 83%.

Keywords
Activity recognition, Naïve Bayes-based classifier, Simple and ubiquitous sensors, Smoothing,  Zero-probability.

1. Introduction

The recognition of everyday activities of individuals 
like walking, sleeping, cooking, etc., is one of the cur-
rent focuses of the researchers due to its strength in 
providing personalized support for many different 
applications [1-4]. A typical application of an activity 
recognition system (ARS) would be to assist sick or 
elderly people.

The sensor-based ARS integrates wireless sensor 
 networks with machine learning and data mining 
methods to model a broad range of human activities [5]. 
Three types of sensors have been tried by the research-
ers to classify human activities: Video based, wearable 
sensors based, and based on sensors deployed in the 
environment embedded with the home appliances (e.g., 
door, light, and closet). Video-based methods have the 
disadvantage of breaking user’s privacy, whereas wear-
able sensors require the user to wear sensors and their 
accuracy depends on the position of the attachments. 
Therefore, activity detection methods based on sensors 
deployed in the environment are getting more focus. In 
this paper, we propose a successful and accurate AR sys-
tem using simple, low-cost “tape on and forget” sensors.

A number of classifiers have been proposed by the 
researchers for activity classification using binary and 
ubiquitous sensors. Many researchers have shown that 
the hidden Markov model (HMM) [6] and the conditional 
random field (CRF) [3,6] based activity classifier worked 
well in comparison with the widely used naïve Bayesian 
(NB)-based classifiers. However, it would not be an exact 
verdict if the parameters of NB-based activity classifiers 
are properly smoothed.

The parameter estimation for probabilistic models uses 
the method of maximum likelihood (ML). Data sparsity 
is a major problem in estimating ML in AR because the 
size of the training data is relatively small in comparison 
with the other machine learning datasets. The distribu-
tion of the observed sensors in a dataset may not be 
always even between the activities. Additionally, some 
sensors would appear during testing but would not 
appear while training. This is called zero-frequency [7] 
problems which assign zero probability of an unseen 
 sensor for an activity.

To prevent such estimation problem, smoothing is 
required to adjust the maximum likelihood of a model to 
make it more accurate. At the very least, it is required to 
not assign zero probability to the unseen sensor. When 
estimating a ML based on a limited amount of sensors, 
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such as a single activity instance, smoothing of the ML 
is extremely important.

Most of the probabilistic methods like, the NB, the HMM, 
and the CRF suffer from the zero-probability problem. 
However, in this paper, we focused on smoothing the 
NB-based activity classifier. 

A set of smoothing techniques have been proposed 
in the field of speech recognition (SR) and informa-
tion retrieval (IR) [8]. The Jelinek-Mercer (JM) [9] (also 
referred to as the linear interpolation language model) 
and the Bayesian smoothing (BS) using Dirichlet priors 
[10] are two commonly used smoothing techniques used 
in IR to retrieve documents based on user’s query. To 
our best knowledge, no smoothing techniques have been 
proposed in the field of AR. In this paper, we proposed 
two smoothing techniques which are based on JM and BS.

Our contributions in this paper are twofold. First, we 
propose two smoothing techniques for adjusting the 
maximum likelihood of the probabilities to produce a 
more precise activity model. Second, we perform a series 
of experiments with three real-life activity datasets. And 
we proved that our proposed mechanism yields signifi-
cant improvement in the accuracy of activity classifica-
tion in comparison to its existing counterparts.

The rest of the paper is organized as follows. In  section 2, 
we present the reviews of previous works related to AR. 
In section 3, we discuss the background associated with 
the smoothing techniques proposed in the field of IR. In 
section 4, we discuss the overview of our proposed sys-
tem. In section 5, we discuss our proposed algorithms. In 
section 6, we present our experimental results to support 
our claims. In section 7, we conclude our paper with a 
direction of future work.

2. Related Works

Many research groups have been investigating how to 
construct smart living environments that target medi-
cal care for the individual. The Intel Research Group in 
Seattle and the University of Washington have built a 
prototype system that can infer a person’s activities of 
daily living (ADLs) [11]. In their system, the sensors are 
embedded on everyday objects such as a toothbrush or 
coffee cup. University of Rochester is building the Smart 
Medical Home, which is a five-room house outfitted with 
infrared sensors, computers, biosensors, and video cam-
eras for use by research teams to work with research sub-
jects as they test concepts and prototype products  [12]. 
Georgia Tech built an Aware Home as a prototype for an 
intelligent space [13]. Massachusetts Institute of Technol-
ogy (MIT) and TIAX are working on the PlaceLab initia-
tive, which is a part of the House_n [14] projects. The mis-

sion of House_n is to conduct research by designing and 
building real  living environments—“living labs” that 
are used to study  technology and design strategies in 
context. Many  projects are building body networks for 
the collection of vital signs, such as AMON. All these 
systems demonstrate the excitement and need for such 
systems [15].

AR based on sensors can be categorized into three  different 
types: An AR system that uses simple and  ubiquitous 
sensors which are deployed in the  environment embed-
ded with appliances, an AR  system that uses video 
cameras which are deployed in  environment  usually 
screwed in a wall or roof and an AR system that uses 
wearable sensors (e.g., accelerometer) which are attached 
with the body of an individual. In simple sensor-based 
AR, an activity is recognized through a stream of sensory 
data acquired from different sensors. In video camera-
based AR, sequences of video frames obtained from one 
or more cameras are used to determine the activity. In 
accelerometer-based AR, acceleration signals in three 
axes (x, y, and z) are used to infer a user’s activity.

To our best knowledge, Intille et al. [16] were the first 
to employ simple and ubiquitous sensors for AR. The 
authors provided the context-aware experience sampling 
tool (ESM) [17,18] in a PDA to the users to annotate 
their daily activities. A NB classifier was used recognize 
activities. The authors have shown an excellent promise, 
even though their mechanism suffers from low recogni-
tion accuracy.

In [6], the authors used similar settings, except that 
their annotation technique was quite innovative. They 
employed a predefined set of voice commands to start 
and end an activity through a Bluetooth-enabled headset 
combined with speech recognition software. The prob-
lem of this annotation technique is that no one can guar-
antee that the start and the end point of an activity will 
always be marked properly by the participants. It does 
not even alert the participants to label the start and the 
end point. In addition to these, their proposed classifiers 
are not general purpose. They utilized hidden Markov 
model (HMM) and conditional random field (CRF) as the 
classifiers. The HMM or the CRF can be computationally 
very expensive because the number of observed variable 
grows as the number of sensors does. For example, if 50 
state-change (binary) sensors are used, the number of 
emission for each state in HMM or CRF would be 250.

In [19], the authors introduced the simultaneous  tracking 
and activity recognition (STAR) to perform accurate 
tracking and activity recognition for multiple people 
in a home environment using anonymous and binary 
sensors (motion detectors, break-beam sensors, pressure 
mats, and contact switches). They employed a Rao-
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Blackwellized particle filter approach to determine which 
rooms were occupied, and to count the  occupants in a 
room, identify the occupants, track occupant  movements, 
and recognize whether the occupants were  moving or 
not.

Activities can also be detected through audio, video 
 sensors or body-attached sensors. For example, Zajdel 
et al. [20] used audio video sensors for aggression detec-
tion. They first performed an independent analysis of the 
audio and video streams to get the descriptors of a scene 
like “scream,” “passing train,” or “articulation energy.” 
Next, they used a dynamic Bayesian network (DBN) [21] as 
a fusion mechanism that produces an aggregate aggression 
indication for the current scene. In [22], the authors showed 
how body-attached sensors can be used to recognize activi-
ties of assembly tasks. The glitches of these approaches 
are (i) difficulties in signal analysis, (ii) people not always 
comfortable wearing sensors, and (iii) expensive solution.

In [23], the authors considered a sensor network in office 
environment. The concept of hierarchical feature extrac-
tion is used to detect a user’s activity from aggregated 
sensor data. The naïve Bayesian inference engine is used 
to take input from the feature extractor and gives a user’s 
activity as an output.

Also, many mobility-based and object-usage-based 
 activity classification mechanisms have been proposed. 
For example, in [1], the authors used a Bayesian filter to 
infer and predict a user’s transportation mode, such as 
“walking,” “driving,” or “taking a bus” from GPS data. 
In [24], the authors used a DBN to classify user activi-
ties such as “using the bathroom,” “making coffee,” etc., 
based on object usage (with embedded RFID tags).

Our proposed ARS is closely related to the AR systems 
proposed in [16] and [6]. The differences are the way of 
estimating model parameters and activity classification. 
We used the NB-based classifier with two smoothing 
techniques to improve the parameter estimation  accuracy.

3. Background

Our smoothing techniques are based on two popular 
smoothing techniques used by the language models for 
IR. In this section, we describe the theories related to the 
language models and the smoothing techniques.

IR is the way to retrieve relevant documents based on 
the user’s query. In order to come up with good queries 
to retrieve the relevant documents, we need to think of 
the words (or terms) that would likely appear in these 
documents. In IR, the language modeling approach directly 
models that idea: If the document model is likely to  generate 
a query, it will be a good match for the query, and it will 

happen if the document contains the query words often [7].

In other words, in the language modeling approach to 
IR, we can consider the probability of a query as being 
generated by a probabilistic model based on a document. 
For a query q q q qn= 1 2, ,�  and a document d, this prob-
ability is denoted by p(q|d) [8]. In order to rank docu-
ments, the posterior probability p(d|q) is estimated by 
the Bayes formula,

P d q P q d P d( ) ( ) ( ) ∝

where p(d) is the prior probability of a document for any 
query and p(q|d) is the likelihood of the query for a given 
document d. In IR, the p(d) is considered to be uniform and 
therefore ignored. The likelihood p(q|d) is calculated as

P q d P q d
tf

Li
i

n
qi d

di

n

( ) ( ) ,= =
= =
∏ ∏

1 1

where tfqi,d
 is the term frequency of the term qi in a 

 document d, L tfd t d t d= ∈∑ ,
is the length of the  document, 

and t is a term. This is called the query likelihood model 
which is the original and basic method of language 
modeling in IR.

The classic problem of language modeling is one of 
estimation: The terms appear sparsely in the docu-
ments. In particular, if a query term qi does not appear 
in the  document then P(q|d) will be 0. This is called 
zero-probability estimation problem [7]. Such a problem 
leads researchers to smooth probabilities in document 
language models to discount nonzero probabilities and 
to give some probability mass to unseen terms.

A wide variety of smoothing techniques have been 
 proposed. The JM [9] (also referred as the linear inter-
polation language model) and the BS using Dirichlet 
priors [10] are two popular smoothing methods used in 
language models. The main idea behind these methods 
is to discount the probability of the words seen in the 
document and assign the extra probability mass to the 
unseen terms according to some “fallback” model.

Jelinek-Mercer smoothing: It is a simple idea but works 
extremely well in practice. It usages a mixture between 
a document-specific and entire collection-specific 
 multinomial distribution:

P t d P t M P t Mmle d mle c( | ) ( | ) ( ) ( | )= + −λ λ1

where 0  , l , 1 is the smoothing parameter and Md and 
Mc are the language models derived from a document 
and from the entire document collection, respectively.
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Bayesian smoothing using Dirichlet priors: An  alternative 
of JM smoothing is to use a language model built from 
the whole collection as a prior Bayesian distribution in 
a Bayesian updating process. This is written as

P t d
tf P t M

L
t d mle c

d

( | )
( | ),=

+
+




where m is the smoothing parameter. A large value of m 
means more smoothing.

3.1 Other Smoothing Techniques

Laplace or additive smoothing [25] is the simplest 
smoothing method which works by adding an extra 
count to every term. The probability mass of a term given 
in a document is calculated as

P t d
tf

L
t d

d

( | ) ,=
+1

 

The problem of the Laplace smoothing is that it gives too 
much probability mass to unseen terms.

An improved smoothing method is the Good-Turing 
smoothing [26] which reestimates the frequency of the 
term that occurs tf times [27] as

tf tf
n

nt t
tf

tf

t

t

* ( )= +
+

1
1

where ntf t
 is the number of terms that occur exactly tft 

times in the training data. Good-Turing is often used 
in combination with the backoff and interpolation 
 algorithms rather than using it itself.

A more sophisticated smoothing technique known as 
Katz smoothing [28] extends Good-Turing estimation. 
The Katz smoothing method is a well-known backoff 
method which works by discounting and redistributing 
probability mass only for the less common terms. Such 
a technique is popular in speech recognition.

Absolute discounting [29] is another smoothing method 
used in IR. The idea is similar to the interpolation 
method. It works by discounting the probability of 
seen terms by subtracting a constant instead of mul-
tiplying it.

4. Activity Recognition System

4.1 Overview

Figure 1 shows the overview of our ARS. The proposed 
ARS consists of three major phases: 

(1)  The data gathering phase: The goal of this phase is to 
deploy a number of sensors in the  environment (e.g., 
home) and annotate their triggering pattern under hu-
man action for a prespecified period of time. An ARS 
uses the activity labeling tool (ALT) (e.g., ESM) and 
the merging tool (MT) to annotate the participant(s) 
activity.

(2)  The training phase: The goal of this phase is to es-
timate the likelihoods of the sensors for an activity 
and a set of activities using the  maximum likelihood 
estimator (MLE).

(3)  The classification and visualization phase: The goal 
of this phase is to return the likelihood of current 
activities using an activity classifier (AC) and to 
provide a graphical user interface (GUI) to monitor 
the day-to-day activities using an activity visualizer 
(AV).

4.2	 Naïve	Bayesian	Classifier	for	AR

Studies comparing classification algorithms show that 
a simple Bayesian classifier known as the NB classifier 
exhibits extremely good performance in various machine 
learning applications [30].

The NB-based activity classifier assumes that the effect of 
an object on a given activity is independent of the other 
object. This assumption is called activity conditional 
independence. For classification, the classifier computes 
the posterior  probability P (A|Q) using the Bayes rule:

P a P a P ai i k i
k

( | ) ( ) ( )
| |

Θ
Θ

∝  
=
∏

1

where ai Î A represents an activity (e.g., bathing), 
A  represents the set of activities, and P(ai) is the prior 
probability (PP) of an activity, P(uk|ai) is the ML of θk 
given an activity ai, Θ⊂ 0 is the vectors of activated sen-
sors (as the subject interact with objects with embedded 
sensors) at a given time frame, O is the set of objects with 
embedded sensors.

Figure 1: Activity recognition system overview.

Sarkar AMJ, et al.: A Smoothed Naïve Bayes-Based Classifier for Activity Recognition
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During training, we estimate the following  probabi lities:

P o a P o a P o a P a a Ai i t i i i( | ), ( | )... ( | ), ( ) .1 2 ∀ ∈

where o1, o2..., ot Î O and t is the total number of objects 
(with embedded sensors) in the environment. In order 
to classify the activity label of Θ Θ, ( ) ( | )P a P ai i  is evalu-
ated for each activity ai. The classifier predicts that the 
activity label of vector is the activity ai if and only if

P a P a P P a for j m j ii i j j( ) ( | ) ( ) ( | ) ,Θ Θ Θ> ≤ ≤ ≠1

where m is the total number of activities. In other words, 
the classified activity label is the activity ai for which 
P a P ai i( ) ( | )Θ  is the maximum.

4.3 Smoothing Techniques

In a NB-based classifier for AR, the ML is estimated as 
follows:

P a
SF a

SF a
k i

k i

j ij

n( )
( )

(





|

|

|
=

=∑ )
1

where SF (θk|ai) implies the observed sensor frequency 
(SF) of the kth sensor for an activity ai in the training data.

The MLE will generally underestimate the  probability 
of any sensor that is not triggered for an activity  during 
training. For example, Figure 2 shows the observed 
 frequencies of three sensors: “kitchen cabinet,”  “medicine 
cabinet,” and “containers” for 10 activities in an activity 
dataset [31]. We can see that all the three  sensors have 
zero frequency for many activities. Hence simple ML 
 estimation will result in many zero  probabilities. So 
the main purpose of smoothing is to assign a  nonzero 
 probability to the unseen sensors and improve the 
 accuracy of sensor probability estimation in general.

We propose two smoothing techniques to estimate 
 precise MLs which are based on JM and BS (described in 
 section 3). Before explaining these methods, we define two 
terms: An activity model (AM) Mai

 (each row of Table  1) 
which is associated with an activity ai within a collection 
of activities and the collective model (CM) Mc which is 
derived from the collection of activities c (entire Table 1).

The main idea behind the proposed smoothing methods 
is to discount the probability of the sensors seen in the 
activity and assign the extra probability mass to the 
unseen sensors.

JM-based method: This is a simple mixture method which 
involves a linear interpolation of the AM with the CM, 
using a coefficient l to control the influence of each:

P a P a P M P Mi i k a k ci
( | ) ( )( ( | ) ( ) ( | ))Θ ∝ λ θ λ θ+ −1  (1)

BS-based method: This is a multinomial distribution, for 
which the conjugate prior for Bayesian analysis is the 
Dirichlet distribution. The parameters of the Dirichlet are

µ θ µ θ µ θP M P M P Mc c n c( ) ( ) ( )1 2| , | , , |�  

Thus, the method is given by

P a P a
SF M P M

lengthi i
k a k c

a

i

i

( ) )
( ) ( )

| (
| |

Θ ∝
θ µ θ

µ
+

+
 (2)

where

P a
Total number of times activity a are pursued

Total time T ini
i( )

" "
=

sseconds

P M
SF M

SF M
k a

k a

k ak

ni

i

i

( | )
( | )

( | )





=

=∑ 1

P M
SF M

SF M

length a

k c

k ai

m

k ai

m

k

n
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( | )
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( | )
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
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==
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11

and

SSF Mk a
i
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i
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=
∑

1
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Figure 2: An example: Data sparsity.

Table 1: An example of Ma and Mc (each column represents 
how many times the kth sensor triggers for all the activities)
Sensors 
activity

O1 O2 O3 O4 O5 ... On

Leaving 2 17 21 1 5 ... 2
Toileting 1 40 195 0 0 ... 16
Showering 0 68 1 0 0 ... 0
Sleeping 0 15 13 0 0 ... 44
Breakfast 7 1 0 2 38 ... 0
Dinner 5 0 4 4 23 ... 0
Drink 0 0 0 17 30 ... 1
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length a SF Mi k a
k

n

i
( ) ( )=

=
∑ q

1

where n and m are the number of sensors and activities, 
respectively, and length a SF Mk ak

n
( ) ( | )=

=∑ θ
1

 is the  activity 
length (AL).

In equations (1) and (2), 0 , l , 1 and µ are the 
 smoothing parameters.

Comparing equations (1) and (2), distinct features of these 
smoothing techniques can be observed. Two types of prob-
abilities are considered by both methods, one associated 
with an activity and other with the collection of activi-
ties. And both of these methods produce a movement of 
probability mass from seen sensors to unseen sensors. 
But the movement is done in different ways. In Bayesian 
smoothing using Dirichlet prior-based smoothing, the 
movement is activity-length-dependent but in the Jelinek-
Mercer based method, the movement is independent of 
the activity length. In other words, in the BS method, µ is 
involved in the activity length which is opposite to  in the 
JM method. If the length of an activity is sufficiently large, 
the µ can be omitted in the BS-based method.

5. Algorithms

In this section, we describe our algorithms for training 
and inference. During the training phase, the goal is 
to determine P Mk ai

( | )  for an AM. This is followed by 
estimating the maximum likelihood, P Mk c( )   for the 
CM. And the goal of inference is to rank the activities 
based on the sensors triggered for a given time period 
and finally produce the top-ranked activity as the output.

5.1 Training

The training phase begins after the deployment of 
the  sensors and their triggering pattern under human 
actions is recorded for a prespecified period of time 
(e.g., 30 days).

In this phase, various model parameters like 
P M P Mk a k ci

( | ), ( | )  and lengthai
 are estimated.

Algorithm 1 shows our proposed algorithm for training.

The algorithm first calculates the relative frequencies 
of the sensors for all the activities, i.e., SF (sk|Mai

). This 
is followed by calculating maximum likelihoods for the 
activity models, i.e., MLAM. And finally it calculates the 
maximum likelihoods for the collective model, i.e., MLCM.

5.2	 Activity	Classifier

The system would be ready to recognize an activity in 
real time, as soon as all the model parameters have been 
estimated. This is called inference phase. In this phase, 

activities are inferred by an inference engine (or classifier) 
which uses sensory data coming from triggered sensors 
(as humans interact with the object with an embedded 
sensor).

Algorithm 2 shows our proposed classifier (based on 
the Jelinek-Mercer method) which used equation (1). 
It takes following inputs: The maximum likelihoods of 
the activity models, i.e., MLAM, the maximum  likelihoods 
of  collective models, i.e., MLCM, the list of sensors, 
S, deployed in the environment, the list of activities we 
are dealing with, and the list of triggered sensors, Θ, at a 
given time. It classified most probable activity as output 
using Naïve Bayesian based classifier.

We only show the algorithm that adopted Jelinek-Mercer 
smoothing. We omit the similar algorithm that used 
Bayesian smoothing using Dirichlet priors.

Sarkar AMJ, et al.: A Smoothed Naïve Bayes-Based Classifier for Activity Recognition

Algorithm 1: Training
 Data: Activity Instances I for training, list of 
       sensors S in the environment, list of activities 
     A to monitor
 Result: MLAM, MLCM ] Two m x n matrices of
        the MLs for AM and CM respectively, LA ] 

       An m x 1 matrix with activity lengths
  /* m = number of activities           */;
1 m = length (A);
  /* n  = number of sensors             */;
2 n = length (S);
  /* The sensor frequency SF(sk|Mai

)
  estimation                    */;
3 for l  1 to length(I) do
   /* Determine the ith activity       */;
4   i = getActivityIndex(Il,A);
5   for k  1 to n do
6    if IsON(Il, sk) then   /*  IsON = true if
     kth sensor is triggered for the
     given instance of an activity */
7     SFi,k = SFi,k + 1;
8     end
9   end
10 end
  /* The ML P(sk|Mai

) estimation       */;
11 for i  1 to m do

   Lai
 = 
L SFa ik

k

n

i
=

=
∑ ;

1

   /* The Lai
 is the length of an

   activity ai               */;
13  for k  1 to n do
     MLAMi,k  = SFi,k /Lai 

;
15  end
16 end
  /* The ML P(sk|Mc) estimation        */;

T = SF i K
i

m

k

n
( , );

== ∑∑ 11

18 for k  1 to n do

   total = SF i k
i

m
( , );

=∑ 1

20  for i  1 to m do
   MLCMi k,

 = total/T;
22  end
23 end
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5.2.1 Using external input

There are similar activities like “preparing breakfast,” 
“preparing lunch,” and “preparing dinner” which have 
certain time boundaries. A group of same objects are 
used to pursue these activities. Our inference engine 
uses time boundary to further distinguish alike activi-
ties. It imposes extra weight to an activity if the activ-
ity is performed within a prespecified time boundary. 
For example, if the classifier classifies that the activity 
is “preparing a meal” and the activity is performed 
between 8 am and 11 am, then it gives 70% more weight 
to “preparing breakfast.”

6. Evaluation

In order to validate our methods, we performed a series 
of experiments using three real world data sets. In this 
section, we present the results of these experiments.

The objectives are to discover

• Whether it is possible to use these smoothing methods 
to classify activities of daily living

• How accurate the methods would be to classify activi-
ties

• How sensitive the classifier’s performance is with the 
different settings of smoothing parameters

• Whether our proposed mechanism yields an im-
provement in the accuracy of activity classification 
in comparison with other methods

6.1 Experimental Setup

To evaluate the performance of our methods, we used 
data gathered by Tapia et al. at MIT Place Lab [31] and 
by Kasteren et al. [6]. In MIT’s experiment [31], 77 and 
84  sensory data collection boards equipped with reed 
switch sensors were used. The authors deployed these 
sensors in two single-person apartments and collected 
data for 2 weeks. The sensors were installed in every-
day objects such as drawers, refrigerators, containers 
to record activation/deactivation events (opening/
closing events) as the subject carried out everyday 
activities. Their data was collected by a base station (BS) 
and labeled using ESM [32]. Kasteren et al. deployed 14 
digital sensors in a house of a 26-year-old man. They 
attached these sensors to doors, cupboards, a refrigera-
tor, and a toilet flush. The data collection lasted for 28 
days. A total of 245 activity instances were annotated by 
the participant with 2120 sensor events. Their data was 
collected by a BS and labeled using a Bluetooth-enabled 
headset with speech recognition software installed in 
the BS. And the activities were chosen from the Katz 
ADL index [33].

We separated the training and testing data using the 
“leave 1 day out” strategy. In this strategy, 1 day was used 
for testing and remaining days were used for training.

As the activity instances were imbalanced between 
classes, two types of measurements were used to evalu-
ate the performance of our system, similar to [6]. The 
time-slice accuracy was measured by

detected true

N
ii

N ==
=∑ 1

and the class accuracy was measured by

1 1

C

detected true

N
ii

N

c

c

=∑ ==

where N is the total number of activity instances, C is the 
number of classes, and Nc the total number of instances 
for class c.

Even though the time-slice accuracy is the typical way 
of evaluating a classifier’s accuracy [6], it is not always 
the perfect measurement for AR classifiers because the 
dataset would contain dominant classes that appear 
a lot frequently than others. For example, the total 
instances of “toileting” were 114 and the total instances 
of “dinner” were 10 in the dataset acquired by Kasteren 
et al. And if a classifier correctly classifies 110 instances 
of “toileting” (accuracy 5 96.491%) and 4 instances of 
“dinner” (accuracy 40%), then the time-slice accuracy 
would be <92%, whereas the class accuracy would be 

Algorithm 2: Activity classifier (Based on Jelinek-Mercer)

  Data: MLAM, MLCM ] Two m x n matrices of
      the MLs for AM and CM respectively, PA ]
     Prior probabilities, S ] List of sensors and
     Q ] Activated sensors
  Result: C ] The classified activity
1 [m, n] = size(MLAM);/* m = number of
  activities, n = number of sensors        */;
2 l = 0.7; /* Smoothing parameter       */;
3 for k  1 to n do
4   if IsActivated(Q, sk) then /* IsActivated =
   true if sk Î S is triggered */
5   for i  1 to m do
6     if rsi > 0 then
7      rsi =

       rsi *(l*MLAMi,k  +(12l) *MLCMi k, );
8     else

9      rsi* = l*MLAMi,k  +(12l) *MLCMi k,  ;
10    end
11    end
12  end
13 end
14 for i  1 to m do
15  rsi = rsi * Pai 

;
16 end
17 C = Max(rs);/* max would return the index
  of an activity with the maximum
  probability.                */

Sarkar AMJ, et al.: A Smoothed Naïve Bayes-Based Classifier for Activity Recognition
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68%. Therefore, the class accuracy should be the primary 
way to evaluate an activity classifier’s performance. 
However, in this paper we report both the time-slice 
and the class accuracy.

6.2 Experiment 1: Activity Recognition Accuracy

The purpose of this experiment was to see how well our 
methods work to classify activities. We measured the 
probability that an activity is correctly classified for the 
duration of a labeled activity, similar to [31].

To see the impact of external inputs, two types of  settings 
were considered: With external inputs and without 
external inputs. The results we obtained are shown in 
Figures 3, 4, and 5. The summary of the time-slice and the 
class accuracy is shown in Table 3. The external inputs 
(i.e., time boundaries) were not used for the Kasteren 
et al. dataset. However, using an external input gave 
us around 3% of improvement. The external inputs as 
shown in Table 2 are used for MIT datasets to make 
similar activities more distinguishable.

We performed the experiment using both smoothing 
methods. The method that uses the JM method works 
well in comparison with the method that uses BS with 
Dirichlet priors. We set l 5 0.7 for the JM-based method 
to give enough probability mass to unseen sensors. And 
we used  5 10 for the BS-based method. In subsec-
tion 6.3, we discuss more about the effect of smoothing 
parameters.

6.3 Experiment 2: Varying Smoothing Parameters

The purpose of this experiment was to determine the 
impact of the smoothing parameters (l and ) on the 
accuracy of activity classification.

For the JM-based smoothing, we ran the test with λ 
 values 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1, 
and for the BS-based smoothing, we ran the test with 

m values 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. 
The performance results are shown in Figures 6 and 
7, respectively.

Figure 3: Accuracy for the Place Lab dataset for subject 1.

Figure 4: Accuracy for the Place lab dataset for subject 2.

Figure 5: Accuracy for the Kasteren dataset.
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Table 2: External input
Activity MIT subject one MIT subject two
Preparing breakfast 06 am-11 am 05 am-08 am
Preparing lunch 11 am-05 pm 11 am-02 pm
Preparing dinner 05 pm-10 pm 04 pm-08 pm 

Table 3: The timeslice and class accuracies for the JM 
and the BS based smoothing methods(for the JM based 
smoothing we used l 5 0.7 and for the BS based smoothing 
we used m 5 7)
Datasets Timeslice accuracy (%) Class accuracy (%)

JM BS JM BS
MIT Subject one 72.464 70.29 64.157 63.432
MIT Subject two 66.082 65.497 62.718 62.278
Kasteren et al. 89.076 89.496 83.052 82.591
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Both of the smoothing methods were sensitive to 
 smoothing parameters. However, the BS-based method 
was not exceptionally sensitive to the different  values 
because in this method the movement of probability mass 
from seen sensors to unseen sensors is activity length 
dependent. And the activity lengths were sufficiently 
large with respect to the sensor frequencies to ensure 
enough smoothing.

The best performance for the JM- and BS-based method 
was observed for l 5 0.7 and  5 10, respectively.

The JM-based smoothing method works well in 
 comparison with the BS-based method.

6.4 Experiment 3: Comparison with Other Methods

The goal of this experiment was to determine how effective 
the proposed method is in comparison with other meth-
ods. We have compared our system with two commonly 
used classifiers in activity recognition systems, naïve 
Bayesian (without smoothing) and  hidden Markov model.

HMM is a sequential model which is a probabilistic 
 function of the Markov chain as shown in Figure 8.

It consists of a hidden state at and the observations θt 
on each state. The hidden state at time t depends on the 
previous state at time t 2 1. And the observed variable 
at time t depends on the state at time t. The goal is to 
find the joint probability distribution:

P a P a a P at t t t
t

T

( ) ( ) ( ), | | = −
=
∏ 1

1
 (3)

In HMM, we use a first-order Markov chain to generate 
a hidden state sequence. That is, given some probability 
of the first state a1 and then given a1, we generate a2 and 
so on. For each time we create an output θt  which is a 
function of state at.

For inference, the Viterbi algorithm is used to determine 
the label for a new observed sequence [6].

We compare the performance of our proposed methods 
with the NB based classifier (used by Tapia et al. in [31], 
without smoothing) using all the three datasets. We 
also compare with the HMM based classifier (used by 
Kasteren et al. in [6]). Although Kasteren et al. utilized 
both HMM and CRF, we only compare with HMM since 
the classification accuracy (class) of HMM was better 
than CRF. Figure 9 shows the comparison results. The 
class accuracy was used to compare the accuracy.

Figure 6: Varying smoothing parameter l for Jelinek-Mercer.

Figure 7: Varying smoothing parameter for Bayesian  smoothing.
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Figure 8: Hidden markov model graphical model.

Figure 9: Comparison with other methods.

Kasteren et al. MIT Subject one
Datasets

MIT Subject two
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

BS Based method
JM Based method
Naive Bayes without smoothing
Hidden Markov Model



116 IETE TECHNICAL REVIEW  |  VOL 27  |  ISSUE 2  |  MAR-APR 2010

It is observed that our methods achieved superior 
results in all cases with respect to other methods. 
However, for the Kasteren et al. dataset, the achieve-
ment was not extremely significant in comparison with 
the NB-based classifier (without smoothing). This is 
expected because the authors used only 14 sensors, 
focused only on 7 activities, and the number of unseen 
sensors was low.

7. Discussion

In the first experiment, we showed how well our 
smoothing techniques work to classify activities. The 
corresponding confusion matrices for three datasets are 
shown in Tables 4, 5, and 6. We only show the confusion 
matrices generated by the JM-based classifier.

As expected, the classifier made more confusion between 
the activities which were performed in the same loca-
tion using similar objects. For example, as we can see in 
Table 4, the classifier made more confusion between “toi-
leting,” “bathing,” and “grooming” because most of the 
instances of these activities were performed in the same  
location.

In other words, it is observed that groups of similar 
activities are more separable if performed in  different 
locations. For example, toileting and bathing are more 

separable in the Kasteren et al. dataset (as shown in 
Table 6) than in MIT’s dataset (as shown in Table 4) 
because “toilet” and “bathroom” are two different 
 locations in Kasteren et al.’s dataset.

The classifier without external inputs tends to make more 
confusion between similar activities which is expected. For 
example, as we can see in Table 6, the classifier made more 
confusion between “preparing breakfast” and “preparing 
dinner” because no external inputs (time boundaries) were 
used for this dataset. This is opposite for the datasets for 
which time boundaries were used. Therefore, adding an 
external input can improve the accuracy of activity deter-
mination for similar activities like these.

The proposed classifier is not instance length biased as 
opposed to the NB (without smoothing) or the HMM-
based classifiers. In other words, the classifier has exhib-
ited a high accuracy for an activity with fewer instances 
in the dataset. For example, the number of instances of 
“going out” in the MITs dataset for subject 1 was 12 and 
the classifier correctly classified 11 instances and the 
accuracy was º 91.667%.

Choosing the right object to embed a sensor is an 
 important factor for the accuracy of activity classification. 
For example, it is highly likely that a “shower faucet” will 
be used for “bathing.” Therefore, embedding a sensor 

Table 5: The Confusion matrix for MIT’s dataset for subject two (using JM based smoothing method with λ 5 0.7)
Toileting Taking 

medication
Preparing 
breakfast

Preparing 
lunch

Preparing 
dinner

Preparing a 
snack

Washing 
dishes

Watching 
TV

Listening 
music

Toileting 30 3 0 1 0 0 1 1 1
Taking medication 3 6 1 0 0 2 1 0 1
Preparing breakfast 0 0 17 1 0 0 0 0 0
Preparing lunch 0 0 0 15 0 2 3 0 0
Preparing dinner 2 1 0 0 9 1 1 0 0
Preparing a snack 1 3 1 2 2 3 1 0 3
Washing dishes 2 0 0 1 1 1 14 0 1
Watching TV 3 0 0 0 0 1 2 8 1
Listening music 1 1 0 2 1 1 0 0 11

Table 4: The Confusion matrix for MIT’s dataset for subject one (using JM based smoothing method with λ 5 0.7)
Going 
out

Toileting Bathing Grooming Dressing Preparing 
breakfast

Preparing 
lunch

Preparing 
dinner

Preparing 
a snack

Preparing a 
beverage

Washing 
dishes

Cleaning Doing 
laundry

Going out 11 0 0 1 0 0 0 0 0 0 0 0 0
Toileting 0 67 1 11 0 0 0 0 1 1 0 1 1
Bathing 0 4 12 2 0 0 0 0 0 0 0 0 0
Grooming 0 7 0 29 0 0 0 0 0 0 0 0 1
Dressing 0 1 1 1 20 0 0 0 0 0 0 0 1
Preparing breakfast 0 0 0 0 0 9 0 0 4 1 0 0 0
Preparing lunch 1 0 0 0 0 0 13 1 1 0 0 1 0
Preparing dinner 0 0 0 0 0 0 0 5 1 2 0 0 0
Preparing a snack 0 0 0 0 0 2 1 3 7 0 0 0 1
Preparing a beverage 0 1 0 0 1 1 0 0 2 9 0 1 0
Washing dishes 0 0 0 0 0 0 2 0 0 0 2 3 0
Cleaning 0 0 1 1 0 0 2 0 1 0 1 1 1
Doing laundry 1 1 1 0 1 0 0 0 0 0 0 0 15
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in the “shower faucet” would increase the classification 
accuracy of “bathing.” In Kasteren et al.’s setup, they did 
not place any sensor on the “shower faucet.” Replacing 
the “bathroom door” with the “shower faucet” would 
improve the classification accuracy of “bathing.” Also, 
if we use both of these sensors, the accuracy could be 
improved further.

8. Summary and Future Work

In this paper, we have proposed two smoothing 
 techniques to improve the accuracy of a NB-based 
 activity classifier using simple and ubiquitous sensors. 
Our proposed methods eliminate the data sparsity issue 
of the NB-based activity classifier. These techniques are 
based on two well-known smoothing techniques used in 
the language model of information retrieval. We consid-
ered home settings where a number of sensors embed-
ded with home appliances (e.g., door, light, faucet, etc.). 
We performed three experiments to ensure the validity 
of our models. We demonstrated that our methods can 
classify activities with a high accuracy (63-83%). We com-
pared our methods with other methods using the same 
settings. It is observed that our proposed mechanism 
yielded significant improvement (more than 10-70%) in 
the accuracy of activity determination in comparison to 
its existing counterparts.

One of the disadvantages of our proposed AR system is 
that it requires a dataset for training which would ac-
quire from a home setting in real time. In other words, 
our system requires to learn from the environment 
(LFE) to which it will be deployed. Such a technique 
has severe limitations: 
First, the participants are required with an  annotation 
tool to annotate activities. Typical annotation 
 techniques include ESM, a Bluetooth-enabled headset 
with speech recognition software [6]. When using these 
tools,  participants either carry a PDA (with ESM soft-
ware installed on it) or wear a headset that is used as a 
self-reported current persuasion of an activity. In ESM, 
alerts are given after every time interval (prespecified), 
and participants must respond to an alert by annotat-
ing their current activity. In a Bluetooth-enabled head-
set, participants are required to annotate their activity 

Table 6: The Confusion matrix for Kasteren et al. dataset 
(using JM based smoothing method with λ 5 0.7)

Going 
out

Toileting Bathing Go to 
bed

Break 
fast

Dinner Get a 
drink

Going out 33 1 0 0 0 0 0
Toileting 0 103 4 6 0 0 0
Bathing 0 0 23 0 0 0 0
Go to bed 0 2 4 13 0 0 0
Breakfast 0 0 0 0 18 2 0
Dinner 0 0 0 0 6 4 0
Get a drink 0 0 0 0 1 0 18

via dialogs. Despite the simplicity of these techniques, 
they have several disadvantages [34]. Wearing a head-
set or carrying a PDA may appear cumbersome to par-
ticipants. If the participants are not familiar with the 
system or device, it might be intimidating. Participants 
have to carry the device throughout the study period. 
Other challenging issues involve marking activity end 
points, data storage stability, and relying on partici-
pants to charge the device. A more sophisticated anno-
tation technique like using video cameras could also be 
used [35]. However, the technique is computationally 
very expensive and also violates user’s privacy.
Secondly, in any environment (house, hospital, or office) 
there could be hundreds or even thousands of activi-
ties. Given such a large number of activities and users 
without expert knowledge, it is impossible to annotate 
all the activities. Even if it is possible by experts, it will 
be very costly and therefore not feasible.

Therefore, an alternate and unique approach is required 
to train an ARS. The advancement of Internet and World 
Wide Web (www) encourages millions of users to pro-
mote billions of web pages of varieties of contents [36]. 
Fortunately a fraction of these pages describe in details 
how to perform daily activities. For example, the web 
page http://www.wikihow.com/Cook illustrates the 
sequence of steps required for cooking. Web pages like 
these portray how to just do everything. They not only 
state the activity but also depict what objects to use 
for a particular activity, how to use them, and in what 
sequence.

Our future goal is to develop an ARS that would learn 
its model parameters from www. Such a system would 
grab activity pages like http://www.wikihow.com/
Cook and discover the relationship between activities 
and object (with the embedded sensors) usage. We are 
planning to use Google (the web search engine) to extract 
such associations (a quantified relative Google seman-
tics) and translate these relationships into mathematical 
activity models.

The advantages of such system would be as follows:

• Elimination of the required amount of human  effort 
in labeling activities while maintaining the high 
 recognition accuracy

• A large amount of activities in different environments 
(e.g., home, office, and hospital) would be recognized

• The system would be scalable by nature
• It would be the least expensive solution.

Our initial investigation shows that such a technique 
would also suffer from the zero-probability problem. 
Therefore, we will use our proposed smoothing tech-
niques to eliminate such estimation problem.
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