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The trust network is a social network where nodes are inter-linked by their trust relations. It has been
widely used in various applications, however, little is known about its structure due to its highly dynamic
nature. Based on five trust networks obtained from the real online sites, we contribute to verify that the
trust network is the small-world network: the nodes are highly clustered, while the distance between
two randomly selected nodes is short. This has considerable implications on using the trust network in
the trust-aware applications. We choose the trust-aware recommender system as an example of such
applications and demonstrate its advantages by making use of our verified small-world nature of the
trust network.
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1. Introduction

The trust-aware recommender system (TARS) is the recom-
mender system that suggests the worthwhile information to the
users on the basis of trust, in which trust is the measure of willing-
ness to believe in a user based on its competence and behavior
within a specific context at a given time. TARS has recently been
proposed for use since it is able to solve the well-known data
sparseness problem of the collaborative filtering (CF) [1,2]. This is
because trust is transitive. It means, if A trusts B and B trusts C, A
trusts C to some extend. So even if there is no direct trust between
the active users and the recommenders, the active users can build
up some indirect trust relationships with the recommenders via
the trust propagations. This contributes to the high rating predic-
tion coverage of TARS. Moreover, the rating prediction accuracy
of TARS is no worse than the classical CF [1].

Despite of its high rating prediction accuracy and high rating pre-
diction coverage, the conventional TARS model suffers from the
problem that it is not optimized: its computational complexity can
be exponentially more expensive by achieving similar rating predi-
cation accuracy and rating prediction coverage, and its rating predic-
tion coverage can be significantly worse by achieving similar rating
predication accuracy. This is because little is known about the topol-
ogy of the trust networks used in TARS. The trust network is highly
dynamic: a user can join the trust network at anytime by stating
ll rights reserved.
its trust on any user of the trust network. This irregular growth leads
to the complex structure of the trust network. Since the topology of
the trust network is the important information to optimize TARS,
this research motives to make clear the structure of the trust net-
work. Furthermore, based on the topology of the trust network, we
motive to optimize the conventional TARS model.

The contributions of this paper are mainly in two-fold:

– We conduct experiments to verify the small-world topol-
ogy of the trust network, which can facilitate its usage in
various trust-aware applications. Though the trust network
has been assumed to be a small-world network by some
existing works [3–5], to the best of our knowledge, no
one has verified its small-worldness experimentally or the-
oretically. By analyzing five trust networks extracted from
the real online sites, we contribute to verify that the trust
network is the small-world network: on one hand, the
nodes of the trust network are highly clustered, which is
similar to the regular network; on the other hand, the dis-
tance between two randomly selected nodes of the trust
network is short, which is similar to the random network.

– We propose a novel TARS model which can effectively
overcome the weakness of the conventional TARS model.
This is achieved by leveraging our verified small-worldness
of trust networks. Experimental results clear show that:
our proposed model is superior to the conventional one
since it is able to achieve the maximum rating prediction
accuracy and the maximum rating prediction coverage
with the minimum computational complexity.

http://dx.doi.org/10.1016/j.knosys.2009.12.004
mailto:yklee@khu.ac.kr
http://www.sciencedirect.com/science/journal/09507051
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The organization of this paper is as follows: in Section 2, we
introduce the most popular TARS model in details and analyze its
limitations; in Section 3, we verify the small-worldness of the trust
networks; in Section 4, we present a novel TARS model which is
based on the small-world topology of the trust network; the last
section concludes this paper and points out our future research.

2. Related works

A number of researches [1,6–9] have focused on extending
the recommender system with the trust-awareness. Among these
works, the TARS model proposed by Massa and Avesani
[1,2,10,11] is the most popular one. In addition, their model has
already been used in a practical application named Moleskiing.it
[12]. Due to its popularity, their TARS model is used as the basis
of analysis in this research. The conventional TARS model specifi-
cally refers to their model in this research.

The architecture of TARS is shown in Fig. 1. The inputs are the
trust matrix and the rating matrix. The output is the predicted
ratings on the items for different users. The trust matrix is the
collection of the trust relations between the users of the recom-
mender system. Each element of the trust matrix describes the
trust between two users. The rating matrix records the users’ rat-
ings on the items. Each element of the rating matrix is the rating
given by a user on a particular item.

The rating prediction mechanism of the conventional TARS
model is similar as that of CF. The difference is that CF weights each
recommendation based on the active user’s similarity with the rec-
ommender, while TARS weights each recommendation based on
the active user’s trust on the recommender:

pa;i ¼ ra þ
Pk

u¼1wa;u ru;i � ru
� �

Pk
u¼1wa;u

; ð1Þ

where pa,i is the predicted rating on the item i for the active user a,
ra is the active user’s average rating on its rated items, ru is the rec-
ommender u’s average rating on its rated items, ru,i is the recom-
mender u’s recommendation on the item i, and k is the number of
recommenders. wa,u is the weight of the recommender u with re-
spect to the active user a, it is calculated as

wa;u ¼
dmax � da;u þ 1

dmax
; ð2Þ

where dmax is the maximum trust propagation distance (MTPD) be-
tween users of the recommender system. The value of MTPD is pre-
set by the administrator of TARS. da,u is the active user a’s trust
propagation distance to the recommender u. In TARS, the trust
propagation distance refers to the number of hops in the shortest
trust propagation path from the trustor to the trustee.

As shown in the prediction mechanism of the conventional
TARS model, MTPD is the fundamental parameter for the rating
Fig. 1. Trust-aware recommend
prediction. However, existing works of TARS did not propose any
mechanism to set MTPD. They just randomly choose some value
for this extremely important parameter. For example, in [1], the
authors randomly set the value of MTPD as 1, 2, 3 and 4 to conduct
different experiments of TARS. They did not verify whether these
values are the suitable values. And they did not consider the rela-
tionship between the value of MTPD and the scale of TARS. On one
hand, if the value of MTPD is set too small, TARS might lose some
valuable recommendations. On the other hand, the computational
complexity of constructing trust networks for TARS is Oðkdmax Þ, in
which k is the number of trusts stated per user, and dmax is the va-
lue of MTPD, so if the value of MTPD is set too big, the computa-
tional complexity of TARS increases exponentially. Intuitively, the
optimized value of MTPD for TARS should have some relationship
with the topology of the trust network. We therefore analyze the
characteristics of the trust network and optimize the conventional
TARS model based on the topology of the trust network.

3. Finding small-world properties in trust networks

Based on five trust networks extracted from the real online
sites, we verify in this section that the trust network is the
small-world network.

3.1. Definition of small-world networks

The small-world network is a kind of network between the reg-
ular network and the random network. The regular network is
highly clustered yet has long distance between two randomly se-
lected nodes. The random network is not clustered yet has short
distances between nodes. The small-world network is defined as
the network that has [13]: (1) Large clustering coefficient, which
is much larger than that of its corresponding random network,
and (2) short average path length, which is almost as short as that
of its corresponding random network, in which a network’s corre-
sponding random network refers to the random network that has
the same number of nodes and same number of edges per node
as this network. The relationship between the regular network,
the random network and the small-world network is summarized
in Table 1. We further list the explanations of the notations used in
this section in Table 2.

The clustering coefficient C represents the cliquishness of a typ-
ical neighborhood [13], i.e., how close the node and its neighbors
are to be a complete network. The clustering coefficient of a net-
work is the mean of the clustering coefficient of each node, in
which the clustering coefficient of a node is the fraction of the
allowable edges and the edges that actually exist between the
neighbors of this node [13]:

C ¼ 1
n

Xn

i¼1

Ci ¼
1
n

Xn

i¼1

number of connected neighbor pairsð Þ
ki ki � 1ð Þ : ð3Þ
er system architecture [1].



Table 3
Description of the trust networks used in this research.

Number of nodes Number of edges per node

Epinions 49,288 9.88
Kaitiaki 64 2.41
Squeakfoundation 461 5.85
Robots 1646 2.1
Advogato 5412 9.98

Table 1
The comparison between the regular network, the random network and the small-
world network.

Regular
network

Small-world
network

Random
network

Clustering coefficient Large Large Small
Average path length Long Short Short

Table 2
Notations used in the small-worldness verification.

Symbol Explanation

n Size of the network
k Average degree of the nodes in the network
ki Degree of node i
Ci Clustering coefficient of node i
C Clustering coefficient of the network
CR Clustering coefficient of the random network
L Average path length of the network
LR Average path length of the random network

D

A

C

B

Fig. 2. A network with 4 nodes and 7 edges.
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We use the network shown in Fig. 2 as an example to explain
the calculation of Eq. (3). Node A has 3 neighbors, i.e., B, C and D,
so at most 6 edges can exist between A’s neighbors. Four edges
actually exist in A’s neighborhood: BC, CB, CD and DB. So we get
CA = 4/6 = 2/3, and similarly CB = 1/2, CC = 1/2 and CD = 2/3. The
clustering coefficient of the network is: C = (CA + CB + CC + CD)/
4 = 7/12.

The clustering coefficient of a random network with n nodes
and k edges per node is calculated as [13]:

CR ¼ k
n
: ð4Þ

The average path length L is defined as the number of edges in
the shortest path between two nodes, averaged over all pairs of
nodes [13]. The average path length of a random network with n
nodes and k edges per node is calculated as [13]:

LR ¼ lnðnÞ
lnðkÞ : ð5Þ
1 http://www.trustlet.org/wiki/Datasets.
2 http://www.epinions.com/.
3 http://www.advogato.org/.
4 http://www.kaitiaki.co.nz/.
5 http://www.squeak.org/Foundation/.
6 http://robots.net/.
3.2. Experimental verifications on the small-worldness of trust
networks

We experimentally verify the small-worldness of the trust
networks using data extracted from the real applications. The
experimental verification methodology is used since it is the most
popular way to verify the small-world topology of various net-
works [13–18].

3.2.1. Experimental setup
Five trust networks are used in this research to verify the

small-worldness. They are named as Epinions, Kaitiaki, Squeak-
foundation, Robots and Advogato respectively. These networks
are extracted from the trust network datasets released at
trustlet.org1.

Epinions consists of 49,288 users and 487,183 trust statements.
The data is extracted from epinions.com2 from November to
December of 2003. Epinions.com is a recommender system that rec-
ommends items based on other users’ ratings. In addition to the rat-
ings on the items, the users are required to explicitly express their
trust on other users. The trustor evaluates its trust on the trustee
as 1 if the trustor consistently finds the ratings given by the trustee
are valuable, otherwise, the trustor evaluates its trust on the trustee
as 0.

Advogato consists of 5412 users and 54,012 trust statements.
The data is extracted from advogato.org3 on June 1, 2009. Advoga-
to.org is an online community site dedicated to free software devel-
opment. On advogato.com users can certify each other as several
levels: Observer, Apprentice, Journeyer or Master [19]. Masters are
supposed to be excellent programmers who work full-time on free
software, Journeyers contribute significantly, but not necessarily
full-time, Apprentices contribute in some way, but are still acquiring
the skills needed to make more significant contributions, and
observers are users without trust certification. These certifications
are regarded as the trust statements of Advogato.

Kaitiaki consists of 64 users and 154 trust statements. The data
is extracted from kaitiaki.org4 on September 1, 2008. The trust
statements of Kaitiaki are weighted at four different levels: Kaitiro,
Te Hunga Manuhiri, Te Hunga Käinga, Te Komiti Whakahaere.
Squeakfoundation consists of 461 users and 2697 trust statements.
The data is extracted from squeak.org5 on November 1, 2008. The
trust statements of Squeakfoundation are weighted at three different
levels: Apprentice, Journeyer, and Master. Robots consists of 1646
users and 3456 trust statements. The data is extracted from robot-
s.net6 on March 1, 2009. The trust statements of Robots are weighted
at three different levels: Apprentice, Journeyer, and Master. Kai-
tiaki.org, squeak.org and robots.net are all web community sites
which use the same software which powers the Advogato web com-
munity site, mod virgule. These three datasets are much smaller
than the Advogato dataset.

The characteristics of our explored trust networks are summa-
rized in Table 3. All users involved in these trust networks act as
the trustors, the trustees or both.
3.2.2. Experimental results
Experiments are held on the above trust networks to verify their

small-worldness.
Firstly, we verify that trust networks have large clustering coef-

ficients. Using Eqs. (3) and (4), we get the clustering coefficients of
our explored five trust networks and their corresponding random
networks, which are summarized in Table 4. Comparing the

http://www.trustlet.org/wiki/Datasets
http://www.epinions.com/
http://www.advogato.org/
http://www.kaitiaki.co.nz/
http://www.squeak.org/Foundation/
http://robots.net/


Table 4
The clustering coefficients of the trust networks and their corresponding random
networks.

n k C CR

Epinions 49,288 9.88 0.22 2 � 10�4

Kaitiaki 64 2.41 0.24 3.77 � 10�2

Squeakfoundation 461 5.85 0.44 1.27 � 10�2

Robots 1646 2.1 0.22 1.28 � 10�3

Advogato 5412 9.98 0.23 1.84 � 10�3
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Fig. 3. The distribution of the trust networks’ path lengths.

Table 5
The average path lengths of the trust networks and their corresponding random
networks.

n k L LR

Epinions 49,288 9.88 3.96 4.71
Kaitiaki 64 2.41 2.16 4.73
Squeakfoundation 461 5.85 2.85 3.47
Robots 1646 2.1 3.94 9.98
Advogato 5412 9.98 3.80 3.74
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Fig. 4. The small-world characteristics of the trust networks and some well-known
small-world networks.
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clustering coefficients of the trust networks with those of their cor-
responding randomly networks, it is obvious that the trust net-
works have much larger (higher order of magnitude) clustering
coefficients than their corresponding random networks. This satis-
fies the first condition of the small-world network’s definition.

Secondly, we verify that trust networks have short average path
lengths. For large networks, measuring all-pair distances is compu-
tational expensive, so an accepted procedure is to measure it over a
random sample of nodes [20]. The average path lengths for the lar-
ger networks (Epinions and Advogato) in Table 3 are measured on
a random sample of 5%. The average path lengths for the smaller
networks (Kaitiaki, Squeakfoundation and Robots) in Table 3 are
measured on all pairs of nodes. The distributions of the five trust
networks’ average path lengths are given in Fig. 3. It shows that
the trust networks have very small number of direct trusts, i.e.,
where the path length equals to 1. By propagating trust, users
can build up their trust relationships with others within several
hops. Another important observation is that very small number
of the trust propagations has long distance, e.g. the probabilities
that the path lengths are longer than 8 hops (if any) are less than
1%. The path lengths of most trust propagations are from 2 hops
to 6 hops. In more details: (1) the maximum path length of Epi-
nions is 11 hops, and its average path length is 3.96 hops; (2) the
maximum path length of Kaitiaki is 5 hops, and its average path
length is 2.16 hops; (3) the maximum path length of Squeakfoun-
dation is 6 hops, and its average path length is 2.85 hops; (4) the
maximum path length of Robots is 11 hops, and its average path
length is 3.94 hops; (5) the maximum path length of Advogato is
9 hops, and its average path length is 3.8 hops.

Using Eq. (5), we get the average path lengths of our explored
five trust networks’ corresponding random networks, which are
summarized in Table 5. Comparing the average path lengths of
the trust networks with those of their corresponding random net-
works, it is obvious that the trust networks have similar (the same
order of magnitude) average path lengths as their corresponding
random networks. This satisfies the second condition of the
small-world network’s definition.

We further compare the trust networks with some well-known
small-world networks documented in the literature: the World
Wide Web [14], the human language network [16], the e-mail net-
work [15], the human brain network [17,18], the film actors net-
work [13], the power grid network [13], and the C. elegans
network [13]. The comparison on the small-world characteristics
of these networks is presented in Fig. 4, in which the axes repre-
sent the ratios of the selected networks and their corresponding
random networks. Note that most small-world networks are con-
centrated around where the average path length ratio equals to
1. This means that the selected networks have similar average path
lengths as their corresponding random networks. In addition, most
clustering coefficient ratios of the networks are greater than 10.
This means that the selected networks have much larger clustering
coefficients than their corresponding random networks. The com-
parison clearly show that the trust networks have the same prop-
erties as other well-known small-world networks: they are highly
clustered yet have small average path lengths. We therefore draw
the conclusion that the trust network is the small-world network.
4. Improving TARS using small-worldness of trust networks

Using our verified small-world topology of the trust networks,
we propose a novel TARS model which optimizes the conventional
model by suggesting the values of MTPD. Our proposed method is
straightforward and requires little computational efforts.
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Table 6
Our proposed rating prediction algorithm.

Algorithm: Our proposed rating prediction algorithm
Input: T (trust matrix), R (rating matrix)
Parameter: a (active user), i (item), dmax (the maximum trust propagation

distance), n (size of the trust network), k (average degrees of the trust
network)

Output: pa,i (a’s predicted rating on i)
Phase 1: MTPD calculation
Phase 2: Recommender searching
Phase 3: Recommender weighting
Phase 4: Rating calculation
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4.1. Our proposed TARS model

For different sized TARS, it is hard to directly point out the value
of MTPD between two randomly selected users. However, since the
trust network of TARS is the small-world network, it is easy to get
the approximate average trust propagation distance between two
randomly selected users of the trust network: it is similar to the
average path length of the trust network’s corresponding random
network. We only need to know the size and the average degrees
of the trust network. Since the value of MTPD is unknown and
the average path length of the trust network is the only available
information about the distance between two users, it is interesting
to explore whether there is some relationship between these two
values. For this purpose, we compare the trust propagation dis-
tances from the active users to the recommenders with that be-
tween two randomly select users.

We use the Epinions dataset for the experiments of TARS. This
dataset is chosen since the inputs of TARS are the trust data and
the rating data, while other datasets shown in Section 3.2.1 only
have the trust data, and only the Epinions dataset has these data
simultaneously. The Epinions trust network, which is given in Sec-
tion 3.2.1, acts as the trust data of the TARS inputs. The ratings gi-
ven by the users of Epinions on various items act as the rating data.
The rating data is given in the ‘‘epinions dataset”.7 It consists of
20,157 users’ ratings on 139,633 items. Each user averagely rated
32.94 items, and each item got around 4.76 ratings. Note that not
all users in the trust network are involved in the rating matrix
since some users do not give any ratings on the items. E.g. only
around 40% users of Epinions are involved in rating matrix. The val-
ues of ratings in the rating matrix are integers from 1 to 5, in which
1 means the user likes the item least, and 5 means the user likes
the item most. The ratings are predicted on each user’s predicted
items, in which all other users’ ratings on this item are regarded
as the recommendations.

The comparison of the trust propagation distances between dif-
ferent users of TARS is given in Fig. 5. It shows that a user tends to
has shorter trust propagation distance with the recommender than
with a randomly selected user, and the maximum trust propaga-
tion distance from the active user to the recommender is shorter
than that between two randomly selected users. Therefore, the
7 http://www.trustlet.org/wiki/Downloaded_Epinions_dataset.
average path length of the trust network is a value between the ac-
tive users’ average trust propagation distances to the recommend-
ers and the active users’ maximum trust propagation distances to
the recommenders. In addition, due to small-worldness of the trust
network, the active users’ maximum trust propagation distances to
the recommenders are short – within limited number of hops. So
the maximum trust propagation distance from the active user to
the recommender can not be significantly greater than the average
path length of the trust network.

Inspired by the above observations, we heuristically choose the
average path length of the trust network as the value of MTPD for
TARS. We therefore propose our TARS model by improving the con-
ventional one based on the small-worldness of the trust networks.
The rating prediction algorithm of our proposed TARS model is
shown in Table 6.

Our proposed TARS model consists of four phases:
The first phase is the MTPD calculation. In this phase, we use the

average path length of the trust network used in TARS as the value
of MTPD. Due to small-worldness of the trust network, this value
approximately equals to the average path length of this trust net-
work’s corresponding random network:

dmax ¼ Ld e � LR
l m

¼ lnðnÞ
lnðkÞ

� �
; ð6Þ

where d � e represents the ceiling of selected value, e.g. dLe is the
ceiling of the average path length of the trust network. The value
of LR is calculated by Eq. (5). For the simulation data used in this re-
search, we get dmax = dLe � dLRe = d4.71e = 5 for TARS.

The second phase is the recommender searching. In this phase,
TARS searches all valid recommenders based on our selected
MTPD. A recommender is valid if (1) there is at least one trust
propagation path from the active user to the recommender in the
trust network, and (2) the trust propagation distance from the ac-
tive user to the recommender is no longer than dLe.

The third phase is the recommender weighting. In this phase,
the valid recommenders are weighted based on the relationship
between the active users’ trust propagation distances to the rec-
ommenders and our selected MTPD. We use the similar weighting
mechanism as the conventional TARS model, as shown in Eq. (2).
The difference is that our model explicitly points out the value of
MTPD, which is calculated by Eq. (6). The weighting mechanism
of our model is

wa;u ¼
Ld e � da;u þ 1

Ld e �
LR
l m

� da;u þ 1

LR
l m : ð7Þ

The last phase is the rating calculation. In this phase, we predict
the ratings by aggregating the recommendations given by the valid
recommenders. Each recommendation is weighted with respect to
the weight of the recommender, which is calculated by Eq. (7). The
aggregation mechanism used in our model is the same as the con-
ventional TARS model, which is also the one used in CF, as shown
in Eq. (1).

http://www.trustlet.org/wiki/Downloaded_Epinions_dataset
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4.2. Experimental results

We examine the performance of our proposed TARS model in
three aspects to verify its effectiveness. These three aspects include
the rating prediction accuracy, the rating prediction coverage and
the computational complexity. The data used for simulations are
those shown in Section 4.1.

The rating prediction accuracy is measured by the error of the
predicted ratings of TARS. Specifically, we calculate the mean abso-
lute error (MAE) since it is very appropriate and useful for evaluat-
ing prediction accuracy in offline tests [1]. To calculate MAE, the
predicted rating is compared with the real rating and the difference
(in absolute value) is the prediction error, this error is then aver-
aged over all predictions to obtain the overall MAE. By predicting
the rating on each rated item of our explored experimental data,
we report the MAE of TARS with different values of MTPD in
Fig. 6. Since the conventional TARS model did not mention how
to choose the value of MTPD, its MAE can be any of the nine dots
shown in Fig. 6. The rectangular dot shown in Fig. 6 represents
the MAE of our proposed model, in which dL e is selected as the va-
lue of MTPD. The experimental results show that: (1) If MTPD is set
to be smaller than our suggested value, the rating prediction accu-
racy of TARS is getting worse. (2) If MTPD is set to be greater than
our suggested value, the rating prediction accuracy of TARS dose
not significantly change.

The coverage of TARS is measured by both the rating coverage
and the recommender coverage. The rating coverage is the portion
of items that TARS is able to predict, i.e., the portion of items that
the active user can get at least one recommendation. However, this
quantity is not always informative about the quality of TARS. TARS
is sometimes good on the rating coverage, but only involve small
portion of recommenders. This is because an item usually has a
number of recommendations, so a good rating coverage does not
necessarily imply a good coverage on the recommenders. Since it
facilities the rating prediction by involving as many recommenda-
tions as possible in TARS, we introduce the term recommender
coverage. The recommender coverage is the portion of recom-
menders that could be involved in TARS. By using different values
of MTPD, the rating coverage and the recommender coverage of
our explored experimental data are given in Fig. 7. Since the con-
ventional TARS model did not mention how to choose the value
of MTPD, its rating coverage and the recommender coverage can
be any of the nine dots shown in the lines of Fig. 7. The rectangular
dots shown in Fig. 7 represent the rating coverage and the recom-
mender coverage of our proposed model, in which dLe is selected as
the value of MTPD. The experimental results show that: (1) If
MTPD is set to be smaller than our suggested value, both the rating
coverage and the recommender coverage of TARS decrease, in
which the recommender coverage decreases significantly. (2) If
MTPD is set to be greater than our suggested value, the rating cov-
erage and the recommender coverage of TARS do not significantly
change. This is because the rating coverage and the recommender
coverage of TARS are both very high, more than 99%, by using our
suggested value of MTPD.

The computational complexity of constructing the trust net-
work for TARS is Oðkdmax Þ, as mentioned in Section 2. Therefore, if
MTPD (represented by dmax) is set to be smaller than our suggested
value, the computational complexity of constructing trust net-
works for TARS is exponentially less expensive. On the other hand,
if MTPD is set to be greater than our suggested value, the compu-
tational complexity of constructing trust networks for TARS is
exponentially more expensive.

To sum up, though setting MTPD smaller than our suggested va-
lue is computational less expensive, the rating prediction accuracy
and the rating prediction coverage of TARS are worse; while setting
MTPD greater than our suggested value leads to similar rating pre-
diction accuracy and similar rating prediction coverage of TARS,
but it is computational exponentially more expensive. We there-
fore draw the conclusion that dLe is a good estimation of MTPD
which provides the maximum rating prediction coverage and the
maximum rating prediction accuracy with the minimum computa-
tional complexity. This verifies the effectiveness of our proposed
model.
5. Conclusions and future work

Analyzing five trust networks obtained from the real online
sites, we verify that the trust network is the small-world network.
This means that it is able to build up the trust relationship between
two randomly selected users of the trust network within limited
number of hops, and the average path length of the trust network
is similar to that of the random network that has the same number
of users and same number of edges per user as the trust network.
This verified small-world nature of the trust network can facilitate
its usage in various applications. In this paper, we use TARS as an
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example of the applications, and show how the small-worldness of
the trust network contributes to the applications. Specifically, we
propose a novel TARS model by using dLe as MTPD for TARS. The
simulation results show that: by involving recommenders that
are within dLe hops away from the active user, it is possible to
achieve high rating coverage and recommender coverage; while
it is computational exponentially less expensive than using a great-
er value of MTPD. On the other hand, by using dLe as MTPD, the er-
ror of the predicted ratings is less than the error of using a smaller
value of MTPD. These simulation results verify the effectiveness of
our proposed methodology of TARS.

Our future work focuses on several aspects. Firstly, we will
improve the existing TARS models with the implicit trust net-
work. Existing works of TARS focus on using the explicit trust,
while it is sometimes time consuming or expensive to get the ex-
plicit trust. Explicit trust refers to the trust that should be explic-
itly pointed out by the users. These explicit trust statements are
then used as the inputs of TARS with the recommendations to
predict the ratings. Though the explicit trust based TARS models
have high rating prediction coverage and high rating prediction
accuracy, the explicit trust statements are not always available.
Therefore, we will try to use other cheap and easy available trust
sensitive information to generate the implicit trust statements for
TARS. Secondly, we will focus on how to filter out the unfair rec-
ommendations for TARS. TARS suggests information to the active
users based on the recommendations given by various recom-
menders. However, there may exist some self-interested recom-
menders who give unfair recommendations to maximize their
own gains (perhaps at the cost of others). So it is essential to
avoid or reduce the influence of the unfair positive or negative
recommendations from the self-interested recommenders. For
this purpose, we intend to introduce the users’ distrust state-
ments into our TARS model. By analyzing the recommendations
given by each user’s distrusted recommenders and the relation-
ship between the trust statements and the distrust statements,
the reliable recommendations will be chosen for the rating aggre-
gations of our proposed TARS model.
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