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Abstract The fundamental problem of the existing Activ-
ity Recognition (AR) systems is that these are not general-
purpose. An AR system trained in an environment would
only be applicable to that environment. Such a system would
not be able to recognize the new activities of interest. In this
paper we propose a General-Purpose Activity Recognition
System (GPARS) using simple and ubiquitous sensors. It
would be applicable to almost any environment and would
have the ability to handle growing amounts of activities and
sensors in a graceful manner (Scalable). Given a set of activ-
ities to monitor, object names (with embedded sensors) and
their corresponding locations, the GPARS first mines activ-
ity knowledge from the web, and then uses them as the basis
of AR. The novelty of our system, compared to the exist-
ing general-purpose systems, lies in: (1) it uses more robust
activity models, (2) it significantly reduces the mining time.
We have tested our system with three real world datasets.
It is observed that the accuracy of activity recognition us-
ing our system is more than 80%. Our proposed mechanism
yields significant improvement (more than 30%) in compar-
ison with its counterpart.
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1 Introduction

The purpose of an Activity Recognition (AR) system is to
recognize everyday activities (e.g. walking, sleeping, and
cooking) of one or more individuals from a series of ob-
servations [1–6]. It is now one of the current focuses of
the researchers due to its strength in providing personalized
support for many diverse applications such as medicine and
healthcare.

An AR system requires training. The dataset to train an
AR system is usually obtained through annotation. Context-
aware experience sampling tool (ESM) [6–8] is the typical
annotation technique. When using ESM, the participants ei-
ther carry a PDA (with an ESM software installed on it) or
wear a headset to report the current persuasion of an activity
to a server (with an ESM software installed on it). Despite
the simplicity of ESM, it has several disadvantages [9]: it
may appear burdensome to the participants, it could be in-
timidating if the participants are not familiar with the sys-
tem or device. Another major problem of such techniques is
that it is not always possible to annotate all the activities. In
any environment there could be hundreds of activities. Given
such a large number of activities, it is impossible to label all
such activities for the end users without expert knowledge.

The above problems greatly reduce the applicability and
easiness of an AR system. Such a system is not general pur-
pose for three reasons. First, an AR system trained in an en-
vironment would not be applicable to another environment.
Second, it would not be able to recognize new activities.
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Third, it requires extensive interaction with the experts, es-
pecially in the training phase.

To overcome the aforementioned limitations, we need an
alternate source of the training data and an efficient method
to extract such data. Advancement of the Internet and the
WWW encourages millions of users to promote billions of
web pages with varieties of contents [10]. A fraction of these
pages describe in detail how to perform daily activities. They
do not only state the activity but also depict where to per-
form this activity and what objects to use. An AR system
would be broadly applicable and scalable by its very design
if it can use such web pages to be trained by itself.

A few efforts have been made to train an AR system from
the web (or Train From Web (TFW)) rather than from the
environment (or Train From Environment (TFE)) [11, 12].
The system in [11] is packaged with thousands of activity
models for different domains. It significantly limits the ap-
plicability and the accuracy of the system because the sys-
tem fails to capture the idiosyncrasies of the environment
to which it will be deployed. Although the system in [12]
can focus on a particular environment to increase the ap-
plicability of their system, the mining method is complex
and extremely time-consuming. It might take hours to mine
a single activity.

Additionally, the accuracy of activity recognition of the
above approaches is not up to the mark. One of the main
reasons is that their activity model is only the Object-usage
Based Model (OBM). The problem of using only OBMs is
that in any environment there could be hundreds of objects,
many of these objects could be used for different activities.
For example, door could be used for kitchen activities or it
could be used for bathroom activities. It would be hard for an
AR system to discriminate such activities using only OBMs.
Therefore, only the OBM is not enough for an AR system to
produce highly accurate recognition results.

To overcome these limitations, in this paper, we first pro-
pose two activity models, Location-and-Object-usage Based
Model (LOBM), and Object-usage Base Model (OBM). We
then introduce a novel two-layer activity recognition frame-
work. The first layer narrows down the scope for the recog-
nition task, and the second layer does the actual recognition.
More specifically, the first layer uses the LOBM to recog-
nize a group of (location specific) activities from a set of
activities, and the second layer uses the OBM to recognize
the actual activity from that group.

We develop a novel and a straightforward algorithm to
mine each of the models parameter from the web. It uses the
advance operators of a search engine (we use Google for our
experiment) to mine object-usage (how frequently an object
is used to do an activity) and location-usage probabilities
from the web. It not only reduces the mining time dramat-
ically, but also makes the system easy to use-and-configure
and highly scalable.

We performed four experiments with three real-world
activity datasets to validate our system’s performance. We
demonstrate that our proposed system achieved higher
recognition accuracy and significantly reduces the mining
time in comparison with its counterpart.

The rest of the paper is organized as follows. In Sect. 2,
we present the reviews of previous works related to AR. In
Sect. 3, we describe the proposed GPARS. In Sect. 4, we
present our experimental results to support our claims. In
Sect. 5, we discuss the key issues related to our system. In
Sect. 6, we conclude our paper with a direction of future
work.

2 Related work

Many research groups have been investigating how to con-
struct smart living environments that target medical care to
the individual. Intel Research group in Seattle and the Uni-
versity of Washington have built a prototype system that can
infer a person’s activities of daily livings (ADLs) [13]. Uni-
versity of Rochester is building the Smart Medical Home,
which is a five-room house equipped with infrared sensors,
computers, bio-sensors, and video cameras for use by re-
search teams to work with research subjects as they test
concepts and prototype products [14]. Georgia Institute of
Technology builds an Aware Home as a prototype for an in-
telligent space [15]. Massachusetts Institute of Technology
(MIT) and TIAX are working on the PlaceLab initiative,
which is a part of the House_n project [16]. The mission
of House_n is to conduct research by designing and build-
ing real living environments—“living labs”—that are used
to study technology and design strategies in context. Many
projects are building body networks for the collection of vi-
tal signs, such as AMON. All these systems demonstrate the
excitement and need for activity recognition systems [17].

To the best our knowledge, Tapia et al. [5] first em-
ployed simple and ubiquitous sensors for activity recogni-
tion. The authors provided the ESM in a PDA to the user
to annotate their daily activities. Naïve Bayes classifier was
used to recognize activities. They have showed an excel-
lent promise, even though their mechanism suffers from low
recognition accuracy.

Kasteren et al. [6] used the similar settings, except their
annotation technique was quite innovative. They employed
predefined set of voice commands to start and end points
of an activity through a bluetooth enabled headset combined
with speech recognition software. The problem of this anno-
tation technique is that, it can not be guaranteed that the start
and end points of an activity will always be marked properly
by the participants. They did not even alert the participants
to label the start and end points.

Perkowitz et al. [11] introduced the notion of mining the
generic activity models from the web. They have shown that
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it is possible to convert natural-language recipes into activity
models. And these models can be used in conjunction with
RFID tags to detect activity. Their model consists of a se-
quence of states and is based on a particle filter implementa-
tion of Bayesian reasoning. Their model extractor works as
follows:

– Select a set of websites like, http://www.ehow.com/,
http://www.epicurious.com/ that describes activities, and
understand the HTML structure of such websites,

– search for a page that describes an activity and extract the
activity direction from this page,

– set the title of the direction as the label of the activity,
– parse and extract the object phrases from the direction,
– remove the phrases that do not have noun sense,
– calculate the object-usage probability using the Google

Conditional Probability (GCP),

GCP(oi) = hitcount(object activity)

hitcount(activity)

where hitcount(x y) is the number of pages Google re-
turns if we search with x and y,

– finally filter the tagged object (object with embedded
RFID tags) from the phrases.

They use a Sequential Monte Carlo (SMC) approximation
to infer activities probabilistically. They borrowed the in-
ference engine from [4]. Despite their good performance in
classifying hand-segmented object-use data, they suffered
from low accuracy and limited applicability. In addition to
this, they used specific web sites whose formats were known
before mining the activity models [12].

Wyatt et al. developed an Unsupervised Activity Recog-
nition System (UARS) using mined model from the web
[12]. They developed two algorithms to mine activity infor-
mation from web. The document genre classifier that would
identify the pages describing an activity. The object identifi-
cation algorithm that would extract objects from a page and
calculate the object’s weights within the page.

Their algorithm of mining for an activity works as fol-
lows:

– It first queries the Google with the activity name along
with “how to” as the discriminating phrase. The Google
would return the number of pages it has indexed in its
server for the query.

– The algorithm then retrieves P pages as the top z pages
within the total pages returned by Google. In their paper
they did not define the optimal value of z. The efficiency
of mining is clearly related to z, the larger the value of z

is the more efficient the mining would be.
– It then determines P̃ , a subset of P , as the activity pages

using the genre classifier.

– For each page p in P̃ , it extracts the objects mentioned
in the page and calculates their weights, ŵ using object
identification algorithm.

– Finally, the algorithm calculates the objects usage proba-
bilities for that activity using following formula:

p(object|activity) = 1

|P̃ |
∑

p

wobject,p

They assemble a Hidden Markov Model (HMM), M ,
from the mined information. It has the traditional 3 para-
meters: (1) prior probabilities for each state, π , were uni-
formly distributed, (2) the transition probability matrix, T

(each of the elements of this matrix is set to a constant prob-
ability), and (3) the observation probability matrix B , where
Bji = p(objecti |activityj ).

Our work is closely related to the above two experiments.
We developed an AR system using simple and ubiquitous
sensors that would be broadly applicable, and easy-to-use.
Our system also mines activity knowledge from the web to
be trained by itself. Despite these similarities, we have sev-
eral differences which are summarized below:

– Activity models: The GPARS integrated the Location-
usage Based Model (LBM) with the object-usage based
model. The location (e.g. kitchen) of persuading an ac-
tivity is an important factor to determine the activity.
We usually use different locations to do different activi-
ties, for example, kitchen is for cooking, bathroom is for
bathing. Therefore, utilizing both the location-usage and
the object-usage in the same model would increase the
accuracy of activity classification.

– Mining the Model parameters: Our proposed method to
mine the model parameters is completely unsupervised in
comparison with [11] and [12]. It does not need any su-
pervision to identify the pages describing activity perfor-
mances. It uses the advance operators of a search engine
to identify such pages. It also uses advance operators to
determine the object-usage and the location-usage likeli-
hoods. The benefits of using such technique are,
– It not only dramatically reduces the mining time, but

also makes the system easy to use and configure. To
configure the system, it only requires the object names,
their corresponding locations and the activities to mon-
itor. Once the above parameters are provided, it will
automatically mine the model parameters and make the
system workable within a very short period of time.

– It makes the system highly scalable. To add a new ac-
tivity or a new object, the system only takes the new
activity name or the object name and re-configures it-
self.

– Type of sensors: Our system uses a set of small and simple
state-change (or switch) sensors (but not limited to). Us-
ing such sensors has several advantages over RFID tags
such as,

http://www.ehow.com/
http://www.epicurious.com/
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– error free sensor readings,
– no need to wear RFID reader.

In summary, the GPARS uses a more sophisticated ac-
tivity model to improve the accuracy of activity classifi-
cation. It uses a straightforward algorithm to mine activity
knowledge from the web and dramatically reduces the min-
ing time.

3 Activity recognition system

In this section, we first give an overview of the components
of our system, and then give detailed descriptions of the ma-
jor components of the system.

3.1 Overview

We developed an activity recognition system that is scalable,
easy-to-use and can recognize a large number of activities
concerning different environments. Given a set of activities
to monitor, object names and their corresponding locations,
our proposed GPARS mines the activity knowledge from the
web and stores this knowledge into a repository. From the
mined data, it then estimates the location-usage and object-
usage likelihoods. Once we have all the likelihoods, the sys-
tem is thus ready to recognize activities in real-time. The
overview of our proposed system is shown in Fig. 1.

The GPARS consists of five components:

1. The environment (e.g. home) to which a number of sim-
ple and ubiquitous sensors (or state-change sensors) are
embedded into the appliances like door, cabinet, and
desk.

2. The Activity Classifier (AC), which make’s a classifica-
tion decision based on the likelihoods learned from the
web and the stream of data captured from the environ-
ment through sensors. The GPARS uses Naïve Bayes-
based (NB) two-layer classifier to recognize an activity.

Fig. 1 Overview of the General-Purpose Activity Recognition System

3. The Activity Mining Engine (AME), which mines activity
knowledge from the web.

4. The Parameter Estimator estimates the model parame-
ters using the activity knowledge mined by the AME.

5. The Visualizing tool provides a Graphical User Interface
(GUI) to monitor the day-to-day activities. This is a web-
based tool that shows in detail (e.g. Activity label, Object
used, date/time) of an activity such that an authenticated
person can access a secure website where he/she can scan
a check-list.

3.2 Activity Classifier (AC)

In this subsection, we first justify the need for adopting two
activity models and two-layer classifier. This is followed by
describing the activity models and the classification methods
in each layer.

Most of the ACs [6, 11, 12, 18] utilize only the OBM to
classify activities. The downside of such an approach is that
as the number of activities to monitor grows, the number
of distinguishing objects between activities decreases. Such
systems would produce more confusion between activities.
Therefore, only the OBMs would not be enough for a highly
accurate AR system.

Location of a person provides important context informa-
tion for activity recognition and thus could be very helpful
to make the classification decision [19, 20]. It is common
to use a specific location to do an activity. For example, the
kitchen is for cooking and the bathroom is for bathing. The
group of activities are limited for a given location (an exam-
ple is shown in Fig. 2).

In this paper, we propose a two-layer classifier, in which,
the first layer classifies the group of activities (e.g., kitchen
activities) using the LOBM, and the second layer classifies
the individual activity (e.g., doing laundry) within the ac-
tivity group using the OBM. We use object with location
in the first layer to resolve any location-confusion. A sub-
ject (or user) may switch among locations while perform-

Fig. 2 An example: Location specific activities
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ing an activity (e.g., moving back and forth between living-
room and kitchen while cooking). Such a situation could be
named as location-confusion. It restricts the system’s ability
to recognize the true activity group. Therefore, the GPARS
employs the object information at the first layer along with
the location information to resolve any resulting location-
confusion. For example, the use of stove as the object infor-
mation would increase the probability of the activity group
to which the cooking belongs to.

It would be possible to design a one-layer classifier that
uses object information along with the location information
to classify an activity. However, if we design such a clas-
sifier to discriminate all activities, some activities with no
specific location may not be well classified. For example, the
activity, doing laundry, is usually performed with a washing
machine (object) which could be located in locations like,
kitchen, foyer and bathroom, may not be well classified us-
ing a one-layer classifier. The reason is, as we are mining
activity information from the web, the probability of a lo-
cation given an activity with no specific location would be
relatively low compared to other activities specified for that
location. For example, the probability of using kitchen for
doing laundry will be low with respect to other kitchen ac-
tivities (e.g., dinner). For such activities, both of the object
and location would not be appropriate because using loca-
tion with object in a model reduces the influence of object
to that model. An activity has its own key object(s), for ex-
ample, washing machine is the key object for doing laundry.
If we reduce the influence of such object(s) for an activity, it
will reduce the probability of classifying that activity.

In order to overcome such situation, we use a two-layer
classifier, in which the first layer uses the object information
along with the location information to classify a group of
(location specific) activities, and the second layer uses the
object information to recognize the actual activity from that
group.

In our current version of the GPARS the activity groups
are constructed manually based on the external input. The
location at which an activity is performed is highly depen-
dent on an individual and an environment to which the sys-
tem is applied. Therefore, we choose to construct the groups
manually using user’s preference of an activity/location and
the environment.

3.2.1 The goal of the classifier

Let A = {a1, a2, . . . , am} be the set of activities, O =
{o1, o2, . . . , ot } be the set of objects and L = {l1, l2, . . . , lq}
be the set of locations in the environment. Where, m, t , and
q are the total number of activities, objects, and locations re-
spectively. Let Θ = {θ1, θ2, . . . , θn} ∈ O be the set of object-
usage (activated object) sequence at any given time, and
lθ1, lθ2 , . . . , lθn ∈ L be the corresponding locations. Where,

Fig. 3 An overview of activity classification

Fig. 4 An example: Two-layer activity classification

n is the total number of object-usage. The goal is to map the
observation sequence (i.e. object-usage sequence, Θ) into
predefined activity labels.

In the first layer classification, the GPARS classifies a
group of activities, Aj ∈ A, using the LOBM. The individ-
ual activity, ai ∈ Aj , is classified in the second layer using
only on the OBM.

Figure 3 shows an overview of two-layer classification
and an example is shown in Fig. 4.

3.2.2 Activity models

The activity models are Naïve Bayes-based probabilistic
models.

Location-and-Object-usage Based Model (LOBM): We
now formally define the LOBM.

Definition 1 The LOBM is a mixture model which involves
a linear interpolation of the location and the object, using a
Influential Coefficient (IC), 0 < α < 1, to control the influ-
ence of each.

PLOBM(Aj |Θ) ∝
|Θ|∏

k=1

(αP (lθk
|Aj) + (1 − α)P (θk|Aj)) (1)
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where, lθk
is the location of θk , P(lθk

|Aj ) and P(θk|Aj ) are
the probabilities of using a location and an object respec-
tively for a given activity group.

In Sect. 3.4, we describe how we estimated the probabil-
ities for this model.

The LOBM produces a movement of probability mass
from the object to location. A large value of α means more
emphasis on location and a small value of α means more em-
phasis on object. The IC can be set to a value that maximizes
the average performance of the classifier or to a value that
can represent the importance of the locations in a dataset. In
Sect. 3.4, we describe how we can estimate the IC.

Object-usage Based Model (OBM): The OBM is based
on the model we proposed in [21].

In a Naïve Bayes-based classifier for activity recognition,
the model parameters are usually approximated using the
relative frequencies of the object-usage in a training set. This
is called likelihood estimation of the probabilities. If a given
activity and the object-usage value never occur (unseen ob-
ject) together in the training set then the estimated likelihood
will be zero. This is problematic since it will wipe out all in-
formation in the other object-usage probabilities when they
are multiplied. To prevent such estimation problem, in [21],
we proposed a smoothing technique which is based on the
Jelinek-Mercer (JM) [22] (also referred as the linear inter-
polation language model) smoothing technique used in In-
formation Retrieval.

Before defining the OBM, we need to define two terms.

Definition 2 An Activity Model (AM) = {v1, v2, . . . , vn} is
an observation vector of n number of objects for an activity.
Where, vi , being the observed frequency of ith object for an
activity.

Definition 3 A Collective Model (CM) = {AM1,AM2, . . . ,

AMm} is a collection of observation vectors of m number
of activities. Where, AMi , being the activity model for ith
activity.

Let us consider an activity dataset shown in Table 1. Each
cell of the table represents the number of times t th object,
ot , triggers for an activity. Each row of this table represents
an AM, Mai

for ith activity, ai . Entire table represents the
Collective Model (CM), Mc, for the activity collection, c.

Definition 4 The OBM is also a mixture model which in-
volves a linear interpolation of the AM and with the CM,
using a Smoothing Coefficient (SC), 0 < λ < 1, to control
the influence of each:

POBM(ai |Θ) ∝ P(ai)

|Θ|∏

k=1

(λP (θk|Mai
)

+ (1 − λ)P (θk|Mc)) (2)

Table 1 An example dataset: Each cell represents how many times an
object triggers for an activity

Activity Objects

o1 o2 o3 o4 o5 . . . ot

Going out 2 17 21 1 5 . . . 2

Toileting 1 40 195 0 0 . . . 16

Bathing 0 68 1 0 0 . . . 0

Sleeping 0 15 13 0 0 . . . 44

Breakfast 7 1 0 2 38 . . . 0

Dinner 5 0 4 4 23 . . . 0

Drink 0 0 0 17 30 . . . 1

where P(ai) is the Prior Probability (PP) of an activity,
P(θk|Mai

) is the probability of using an object given an AM
and P(θk|Mc) is the probability of using an object given
a CM.

In Sect. 3.4, we describe how we estimated the probabil-
ities for this model.

In (2), 0 < λ < 1 is the smoothing parameter. Smaller
values of λ means more smoothing. The smoothing method
produces a movement of probability mass from seen objects
to unseen objects. λ can be set to a value that maximizes the
average performance of the classifier or to the average num-
ber of zero-frequencies in a dataset. In Sect. 3.4, we describe
how we can determine λ.

3.2.3 Classification of activity group

In the first-layer classification, the GPARS uses the NB
based classifier to classify a group of activities from a set
activities based on the LOBM (shown in (1)). To classify the
activity group of Θ , PLOBM(Ai |Θ) is evaluated for each ac-
tivity group Ai ∈ A. The classifier predicts that the activity
group of the vector Θ is the activity group Ai if and only if

PLOBM(Ai |Θ) > PLOBM(Aj |Θ) for 1 ≤ j ≤ q, j �= i

where, q is the total number of activity groups.

3.2.4 Classification of individual activity

Similarly, in the second layer classification, the GPARS uses
the NB based classifier to classify the individual activity
from the activity group, Aj (from the first-layer classifier),
using only on the OBM (shown in (2)). To classify the ac-
tivity label of Θ , POBM(ai |Θ) is evaluated for each activity
ai ∈ Aj . The classifier predicts that the activity label of vec-
tor Θ is the activity ai if and only if

P(ai)POBM(ai |Θ) > P(aj )POBM(aj |Θ)

for 1 ≤ j ≤ g, j �= i
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where, g is the total number of activities in the activity
group, Aj .

3.3 Activity Mining Engine (AME)

In this subsection we first define the goals of the AME and
then we describe the algorithm utilizes by the AME to ac-
complish these goals.

Before defining the goals of the AME, we need to define
activity knowledge.

Definition 5 Activity Knowledge is the information asso-
ciated with the object-usage and location-usage which are
specific to an activity.

3.3.1 Goals of the AME

We can see from (1) and (2) that during training we need
to estimate the following likelihoods: P(lθk

|Aj), P(θk|Aj ),
P(ai), P(θk|Mai

) and P(θk|Mc). The goal of the AME is to
provide sufficient activity knowledge such that these can be
used by the PE to estimate the likelihoods.

To facilitate the understanding of how the AME mines
activity knowledge we need to know the structure of an Ac-
tivity Page (AP). An AP in general has a title that portrays
what the activity is, and has a detailed description section
that describes how to do such activity. In description sec-
tion, an AP contains object and locations names. For exam-
ple, as shown in Fig. 5, the web page with title “How to
Prevent Bathing Injuries Among the Elderly” describes the
sequence of steps require to prevent bathing injuries among
the elderly. In detail description section, it mentioned the
terms like, “Bathroom”, “Tub faucet”, and “Water heater”.

Fig. 5 A sample web page that describes an activity

The AME finds such APs and determine how many of
these pages (i.e. Page Count (PC)) contain the given objects
and how many of these pages contain the given locations,
and generate a table like Table 2.

3.3.2 Mining of activity knowledge

The AME uses Google to search such pages and determines
the PCs. Searching on Google is simple, choosing the ap-
propriate search terms is the key to find the required infor-
mation [23]. Google supports a bunch of advanced opera-
tors, which are query words and have special meaning for
Google. We can modify our search in some way, or even
instruct Google for a different search [24]. For instance, “in-
title:” is a special operator, and the query [intitle:Bathing]
does not do a normal search, instead finds all the web pages
that have Bathing in their title. Table 3 shows the modifiers
and operators we use to mine likelihoods.

Figure 6 shows how the AME mines activity data from
the web using Google. The corresponding algorithm is
shown in Algorithm 1. For each ai ∈ A, the AME would
first search the number of potential pages that describe ai ,
using the query intitle :“ai”. Let the set of activity pages
indexed (API) by Google be Ω for the given query. The
cardinality of Ω is denoted by |n| = |Ω|. Next step is to
determine the number of pages indexed by Google for a lo-
cation (or location pages indexed (LPI)) lj ∈ L within the
activity pages. The AME uses the query, intitle :“ai”+“lj ”

Table 2 An example of PCs for Activity = Bathing and number of
APs for Bathing = 694,000

Location PC for location Object PC for object

Kitchen 20,400 Cups 11,100

Bathroom 27,500 Door 14,500

Table 3 Google Query Modifiers and Operators

Name Description

“” The quotes forces Google to search for the exact phrase. For
example, the query [“Preparing dinner”] would find the pages
containing the exact phrase “Preparing dinner”

intitle If we include [intitle:] in our query, Google would return
all the web pages containing the word in the title of the
web pages. For instance, the query [intitle:“Preparing dinner”]
would find all the web pages that have “Preparing dinner” in
their title

+ By attaching a + immediately before a word, we can in-
struct Google to match that word precisely (without includ-
ing synonyms). For instance, the query [intitle:“Preparing din-
ner” + “Butler pantry” would find all the pages containing the
phrase “Preparing dinner” in their title and containing the ex-
act phrase “Butler pantry” in their text
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Fig. 6 Activity Mining

Algorithm 1: AME(A, O , L). The activity mining en-
gine to mine activity knowledge from the web.

Data: List of activities A, List of objects O , List of
locations L

Result: Activity Pages Indexed (API), Location Pages
Indexed (LPI) and Object Pages Indexed (OPI)

for i ← 1 to length(A) do1

APIi =this ← SG(“intitle :“ai””); /* SG2

(Search Google) would return the
number of pages indexed by Google
for the given query */;
for j ← 1 to length(L) do3

LPIij =this ← SG(“intitle :“ai” +“lj ””);4

end5

for k ← 1 to length(O) do6

OPIik =this ← SG(“intitle :“ai” +“ok””);7

end8

end9

to return the number of pages containing the lj in their
text for a given activity pages. Let Google return m ⊆ Ω

pages that contain an occurrence of lj . Similarly, let p ⊆ Ω

be the pages returned by Google for an object (or ob-
ject pages indexed (OPI), if the AME searches with the
query, intitle :“ai”+“ok”. The AME finally saves API(ai) =
|n|, LPI(lj |ai) = |m| and OPI(ok|ai) = |p| into reposi-
tory such that the PE can estimate the model parame-
ters.

3.3.3 Number of queries required for mining

Given a set of activities A, objects O and their correspond-
ing locations L, the total number of queries, r , required by
the AME to mine activity knowledge from the web is:

r = m + m(q + t) (3)

Where, m, t , and q are the total number of activities, objects,
and locations respectively. As we can see in Algorithm 1, for

m activities, the AME required m queries to mine APIs, for
q locations and m activities, the AME required mq queries
to mine LPIs, and for t objects and m activities, the AME
required mt queries to mine OPIs.

For example, if we consider an environment where 20
objects are embedded with sensors in 5 different locations
and there are 10 activities to monitor. To mine the model
parameters, the AME would need 260 queries in total.

3.4 Parameter Estimator (PE)

The main task of the PE is to transform the activity knowl-
edge mined by the AME into likelihoods such that the AC
could use these to classify activities. Additionally, it esti-
mates the coefficients associated with the models.

3.4.1 Estimation of likelihoods

The PE uses the following formulas to calculate the likeli-
hoods:

P(oj |Ai) =
∑

ak∈Ai
OPI(oj |ak)∑

ak∈Ai,oc∈O OPI(oc|ak)

P (lj |Ai) =
∑

ak∈Ai
LPI(lj |ak)∑

ak∈Ai,lc∈L LPI(lc|ak)

P (oj |Mai
) = OPI(oj |ai)∑

oc∈O OPI(oc|ai)

P (oj |Mc) =
∑

ai∈A OPI(oj |Mai
)

∑
ak∈A,oc∈O OPI(oc|Mak

)

It is to be noted here that to estimate the conditional prob-
ability we use

∑
oc∈O OPI(oc|ai) and

∑
ak∈A, oc∈O OPI(oc|

Mak
) instead of API(ai) and

∑
ak∈Ai

API(ak) respectively,
as the denominators.

For example, let “Preparing Breakfast”, “Preparing din-
ner” be two activities, and “Fridge”, “Oven” be two objects.
After mining the activity knowledge, we have,

API(Preparing breakfast) = 53

API(Preparing dinner) = 119

OPI(Fridge|Preparing breakfast) = 3

OPI(Oven|Preparing breakfast) = 4

OPI(Fridge|Preparing dinner) = 3 and

OPI(Oven|Preparing dinner) = 5

The PE estimates,

P(Oven|MPreparing breakfast) = 4/(4 + 3) = 0.571

instead of 4/53 = 0.075.
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Similarly, it estimates,

P(Oven|Mc) = 4/((4 + 3) + (3 + 5)) = 0.26

instead of 4/(53 + 119) = 0.023.
It means that the PE considers only the activity pages

containing the specified objects or locations. It reduces the
noise associated with the number of APs returned by Google
(APIs). As we can see in Algorithm 1, we use the query,
intitle :“ai”, to mine the number of pages describing an ac-
tivity. It does not always guarantee that the Google would re-
turn only the pages that describe the activity, ai . Therefore,
to reduce such noise, the PE uses only the pages containing
given objects or locations.

3.4.2 Estimation of the Prior Probability (PP)

In our current approach, the PP, P(ai), of an activity, ai , is
estimated based on the external input. The frequency of pur-
suing an activity per day(e.g. two showers/day) is the input,
which is then converted into per minute to get the PP. It is
to be noted that we were not able to find a suitable way to
mine and estimate PPs from the web because it is highly sub-
ject dependent. If we consider, P(ai) = API(ai )∑

aj ∈A API(aj )
, which

would not be an accurate measurement, because it would be
biased to the number of pages indexed by Google. For ex-
ample, Google would return n = 694,000 for “Bathing” and
n = 1220 for “Toileting”, using the above formula, the prob-
ability of “Toileting” would be � then “Bathing”. In real
life, frequency of “Toileting” is much higher than “Bathing”.

On the other hand, if we use some existing datasets to
compute the PPs, it would limit the applicability and scala-
bility of the system.

3.4.3 Estimation of coefficients

In (1), the coefficient 0 < α < 1 is used to control the influ-
ence of location. We need to estimate how much influence
would be optimal (or nearly optimal) for a given dataset. In
other words, we need to calculate the importance of the lo-
cations for all the activity groups. If we calculate the sum of
average number of times the locations appeared in the activ-
ity documents, it would give us the importance. Therefore,
we can calculate α as,

α =
∑q

i=1

∑
ak∈Ai ,lc∈L LPI(lc|ak)∑

ak∈Ai
API(ak)

q

Where, q is the number of activity groups.
In (2), we use the coefficient 0 < λ < 1 to control the

smoothing. The smoothing is clearly related to the number
of zero-frequencies in a dataset. In other words, the smooth-
ing is proportional to the number of zero-frequencies. The

more zero-frequencies we have in a dataset, the more
smoothing is required. Therefore, if we calculate the λ as
the average of the average number of objects with zero-
frequencies in each activity, it will give us the optimal (or
nearly optimal) λ. That is,

λ =
∑

ai∈A

∑
oc∈O δ(OPI(oc|ai ))

t

m
, δ =

{
1 if OPI(oc|ai) == 0
0 otherwise

Where, m and t are the number of activities and objects re-
spectively.

4 Evaluation

4.1 Objectives

Our objective is to validate the performance of the GPARS.
We performed four experiments to test our system: First, we
verify the efficiency of mining method by checking the like-
lihoods estimated by PE with the help of the AME. Second,
we evaluate the classifier’s performance in classifying activ-
ities of three datasets (described in next subsection). Third,
we analyze the impact of the coefficients (α and λ) in ac-
tivity classification, and evaluate the proposed methods of
estimating these coefficients. And finally, we compare dif-
ferent classifiers in terms of their classification accuracy and
mining time.

4.2 Experimental setup

4.2.1 Setup for mining

The AME uses the site, http://ajax.googleapis.com/ (devel-
oped by Google for applications to retrieve data from the
Google server asynchronously), instead of the original site,
http://www.google.com/, to mine the activity knowledge.
For example, to mine the API for “Cooking”, the AME
would send a query as, http://ajax.googleapis.com/ajax/
services/search/web?v=1.0&q=Cooking. In response, Goo-
gle would return a page that would contain the format-
ted results like, the estimatedResultCount (i.e. API), the
links of few (usually 4) result pages, the link for more re-
sults etc. Searching with Ajax would retrieve a bit old data
with respect to the original site. It is to be noted here that
Google would not allow automated search using their origi-
nal site.

4.2.2 Setup for evaluating system’s performance

We use the data gathered by Tapia et al. [5] at MIT Place-
Lab (we call it PlaceLab dataset), and by Kasteren et al. [6]
at Intelligent Systems Lab Amsterdam (ISLA) (we call it

http://ajax.googleapis.com/
http://www.google.com/
http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=Cooking
http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=Cooking
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Fig. 7 The activities and their grouping

ISLA dataset), to evaluate the performance of GPARS. Tapia
et al. utilized 77 and 84 sensory data collection boards
equipped with reed switch sensors, deployed these in two
single-person’s (i.e. Subject one, Subject two) apartments,
and collected data for two weeks. The sensors were installed
in everyday objects such as drawers, refrigerators, contain-
ers to record activation/deactivation events (opening/closing
events) as the subject carried out everyday activities. Their
data were collected by a base station and labeled using an
ESM. Kasteren et al. deployed 14 digital sensors in a house
of a 26-year-old man, attached these sensors to doors, cup-
boards, a refrigerator, and a toilet flush, and they collected
data for 28 days. Their activities were chosen from Katz
ADL index [25]. Figure 7 shows the ISLA and the PlaceLab
activities and their grouping we use to validate the system’s
performance.

As the activity instances are imbalanced between classes,
two types of measurements are used to evaluate the perfor-
mance of our system, similar to [6]. The time slice accuracy
is measured by,

∑N
i=1 detectedi == true

N

and Class Accuracy is measured by,

1

C

C∑

c=1

{∑Nc

i=1 detectedi == true

Nc

}

where, N is the total number of activity instances, C is the
number of classes and Nc is the total number of instances
for class c.

Even though the time-slice accuracy is a typical way of
evaluating classifier’s accuracy [6], it is not always true for
AR classifiers because the dataset would contain dominant
classes that appear a lot frequently than others. For exam-
ple, let us consider the ISLA dataset, in which total number
of instances of “Toileting” is 114 and that of “Dinner” is 10.
If a classifier correctly classify 110 instances of “Toileting”
(accuracy = 96.491%) and 4 instances of “Dinner” (accu-
racy = 40%) then the time-slice accuracy would be ≈ 92%,
whereas the class accuracy would be ≈ 68%. Therefore, the

class accuracy should be the primary way to evaluate the
activity classifiers performance. However, in this paper we
report both the time-slice and the class accuracy.

4.3 Experiment 1: effectiveness of activity mining engine

The purpose of this experiment is to evaluate the effective-
ness of the AME in mining activity knowledge from the web.
We say that the mining would be effective, if the likelihoods
estimated from the mined data are realistic. Table 4 shows
the calculated object-usage likelihoods for the ISLA activi-
ties. The likelihoods are estimated by the PE in conjunction
with the AME. Most of these likelihoods are highly expected
as shown in these tables. For example, in Table 4, the like-
lihoods of using a “Microwave” to “Prepare breakfast” or
“Prepare dinner” are considerably high with respect to other
activities and the likelihood of using a “Toilet flush” for
“Toileting” is reasonably higher than other activities. There-
fore, we can say that the mining method is effective.

4.4 Experiment 2: activity recognition accuracy

The purpose of this experiment is to see how accurate our
proposed method is to classify the activities. Additionally,
we compare the performance of the two-layer classifier with
the one-layer classifier.

In two-layer classifier, the first layer classifies a group of
activities, Aj ∈ A, based on the LOBM (shown in (1)). The
second layer classifies the individual activity, ai ∈ Aj , based
only on the OBM (shown in (2)).

But in one-layer classifier, the classifier classifies the in-
dividual activity, ai ∈ A, based on a slightly different (with
respect to two-layer classifier) version of the LOBM (we
named it, LOBMol),

PLOBMol
(ai |Θ)

∝ P(ai)

|Θ|∏

k=1

(αP (lθk
|ai)

+ (1 − α)(λP (θk|Mai
) + (1 − λ)P (θk|Mc))) (4)
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Table 4 The likelihoods of object-usage generated by the PE in conjunction with the AME for ISLA activities

Objects Activities

Going out Toileting Bathing Sleeping Breakfast Dinner Drink

Microwave 0.0088164 0.0025294 0.0132640 0.0153710 0.0909570 0.0578950 0.0323460

Door 0.2135000 0.1782600 0.1725600 0.2063300 0.1591700 0.1030200 0.1305400

Cups 0.0214200 0.0707970 0.1789800 0.0295520 0.0549320 0.0984660 0.1345800

Fridge 0.0137750 0.0012652 0.0082012 0.0206340 0.0861020 0.0377920 0.0606490

Plate 0.0477970 0.0303420 0.0434270 0.0403930 0.0480340 0.2671300 0.1207200

Dishwasher 0.0037889 0.0037937 0.0093421 0.0114370 0.0141810 0.0341450 0.0135750

Flush 0.0117090 0.0657410 0.0199670 0.0118910 0.0043699 0.0036114 0.0206210

Freezer 0.0085409 0.0012652 0.0047072 0.0100550 0.0188310 0.0388860 0.0391620

Pans 0.0098495 0.1074600 0.0146190 0.0131850 0.0098119 0.0264860 0.0174440

Washing machine 0.0038577 0.0037937 0.0111960 0.0154060 0.0286160 0.0022119 0.0026637

Groceries 0.0164610 0.0000010 0.0060620 0.0067505 0.0074869 0.0212900 0.0361010

Fig. 8 The accuracies per class for three datasets, two-layer classifier (left), one-layer classifier (right). The rightmost two pairs of bars compare
the overall timeslice accuracy (OTA) and the overall class accuracy (OCA)

where P(ai) is the Prior Probability (PP) of an activity,
ai , and P(lθk

|ai), P(θk|ai) are the probabilities of using a
location and an object given an activity respectively. The
P(θk|Mai

) is the probability of using an object given an AM
and P(θk|Mc) is the probability of using an object given an
CM. The IC, α, is calculated as,

α =
∑m

i=1

∑
lc∈L LPI(lc|ai )

API(ai )

m

Where, m is the total number of activities. The SC, λ, is
calculated as it is done for two layer classifier.

Similar to [5], we measured the probability that an activ-
ity is correctly classified for the duration of labeled activity.

Figures 8(a), (b) and (c) summarize the accuracies per
class for three datasets. Each pair of bars shows the over-
all accuracy for both the two-layer (left bar) and the one-

layer (right bar) classifier. The rightmost two pairs of bars
in Figs. 8(a), (b) and (c), compare the overall timeslice ac-
curacy (OTA) and the overall class accuracy (OCA). Table 5
shows the summary of the accuracies (of both classifiers)
for three datasets. The estimated coefficients (we discussed
more about the effect of α and λ in the next subsection) are
shown in Table 6.

The GPARS achieves an overall class accuracy of 80.12%
(timeslice accuracy is 84.03%) for the ISLA dataset us-
ing the two-layer classifier. However, using the one-layer
classifier, the GPARS achieves an overall class accuracy
of 55.17% (timeslice accuracy is 66.81%). The GPARS
achieves an overall class accuracy of 69.97% (timeslice ac-
curacy is 78.97%) for the PlaceLab dataset (Subject one)
using the two-layer classifier. On the otherhand, using one-
layer classifier, the GPARS performs worse in classifying
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the PlaceLab dataset (Subject one). It achieves an overall
class accuracy of 37.10% (timeslice accuracy is 56.41%).
The overall classification accuracy of the GPARS for the
PlaceLab dataset (Subject two) using the two-layer classi-
fier is not that significant. It achieves an overall class accu-
racy of 70.46% (timeslice accuracy is 70.92%). Whereas it

Table 5 The summary of the accuracies for all the datasets

Datasets Two-layer classifier One-layer classifier

Timeslice Class Timeslice Class

ISLA 84.034 80.120 66.807 55.172

PlaceLab 78.974 69.448 56.410 37.101

(Subject one)

PlaceLab 70.922 70.460 67.376 64.021

(Subject two)

Table 6 The estimated α and λ for three datasets

Datasets α λ

Two-layer One-Layer

ISLA 0.3343 0.5663 0.0051

PlaceLab (Subject one) 0.1529 0.5116 0.1475

PlaceLab (Subject two) 0.3642 0.4775 0.1224

achieves an overall class accuracy of 64.02% (timeslice ac-
curacy is 67.38%) using the one-layer classifier.

In Tables 7, 8, 9, we show the corresponding n × n con-
fusion matrices. The ith row, and the j th column represents
the number of times an activity, ai , is recognized as activ-
ity aj . The numbers with parenthesis and without parenthe-
sis are the counts for the one-layer classifier and the two-
layer classifier respectively.

For the ISLA dataset, the two-layer classifier performs
better in classifying “Going out”, “Bathing”, and “Sleeping”
with respect to the one-layer classifier (shown in Table 7).
On the other hand, the one-layer classifier gives better ac-
curacy in classifying “Toileting”, “Breakfast” and “Dinner”.
Both of these classifiers exhibit same performance in classi-
fying “Drink”.

For the PlaceLab dataset (Subject one), the two-layer
classifier performs better in classifying all the activities ex-
cept “Bathing” and “Preparing lunch” in comparison with
the one-layer classifier (shown in Table 8). For the Place-
Lab dataset (Subject two), the one-layer classifier performs
better in classifying “Toileting”, “Preparing Breakfast”,
“Preparing lunch” and “Preparing dinner” (shown in Ta-
ble 9).

Although, the one-layer classifier exhibits slightly better
performance in classifying some of the activities (e.g. Toi-
leting), it performs worse in some cases. For example, it per-
forms poorly in classifying “Going out”, for the ISLA and
the PlaceLab dataset (subject one). The overall performance

Table 7 The Confusion matrix for the ISLA dataset: two-layer classifier (one-layer classifier)

Going out Toileting Bathing Sleeping Breakfast Dinner Drink

Going out 34(0) 0(32) 0(1) 0(0) 0(0) 0(0) 0(1)

Toileting 0(0) 97(110) 16(3) 0(0) 0(0) 0(0) 0(0)

Bathing 0(0) 0(16) 23(7) 0(0) 0(0) 0(0) 0(0)

Sleeping 0(0) 4(11) 5(1) 10(4) 0(2) 0(1) 0(0)

Breakfast 1(0) 0(0) 0(0) 0(0) 19(20) 0(0) 0(0)

Dinner 1(0) 0(0) 0(0) 0(0) 0(0) 8(9) 1(1)

Drink 0(1) 0(0) 1(0) 0(0) 3(3) 6(6) 9(9)

Table 8 The Confusion matrix for the PlaceLab dataset (Subject one): two-layer classifier (one-layer classifier)

Going out Toileting Bathing Dressing Preparing breakfast Preparing lunch Preparing dinner Doing laundry

Going out 12(1) 0(11) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Toileting 0(0) 80(81) 0(0) 0(1) 0(0) 0(0) 1(1) 2(0)

Bathing 0(0) 15(17) 3(1) 0(0) 0(0) 0(0) 0(0) 0(0)

Dressing 0(0) 3(22) 0(0) 20(2) 0(0) 0(0) 0(0) 1(0)

Preparing breakfast 1(1) 1(1) 0(0) 1(3) 10(8) 1(1) 0(0) 0(0)

Preparing lunch 0(1) 0(0) 0(0) 1(1) 0(0) 10(14) 1(1) 5(0)

Preparing dinner 1(2) 0(0) 0(0) 1(2) 0(0) 0(0) 4(3) 2(1)

Doing laundry 1(2) 2(3) 0(0) 1(1) 0(3) 0(8) 0(2) 15(0)
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Table 9 The Confusion matrix for the PlaceLab dataset (Subject two): two-layer classifier (one-layer classifier)

Toileting Preparing breakfast Preparing lunch Preparing dinner Washing dishes Watching TV Listening music

Toileting 28(34) 2(0) 1(1) 1(0) 2(1) 2(0) 1(1)

Preparing breakfast 0(0) 10(16) 1(1) 0(0) 7(1) 0(0) 0(0)

Preparing lunch 0(0) 0(0) 14(19) 0(0) 6(1) 0(0) 0(0)

Preparing dinner 0(0) 0(0) 0(0) 12(13) 2(1) 0(0) 0(0)

Washing dishes 0(1) 0(4) 1(10) 2(4) 16(1) 1(0) 0(0)

Watching TV 1(5) 1(0) 0(0) 1(1) 1(2) 11(5) 0(2)

Listening music 0(2) 0(0) 3(6) 0(1) 5(1) 0(0) 9(7)

of the one-layer classifier is worse in comparison with the
two-layer classifier. The two-layer classifier yields signifi-
cant improvement (in some cases it is more than 30%) in
comparison with the one-layer classifier.

4.4.1 Discussion

The two-layer classifier makes more confusion between the
activities which were performed in a same location using
similar objects. This is expected because, the objects within
that location are equally likely to be used for these activities.
For example, as we can see in Table 8, the classifier made
more confusion between “Toileting” and “Bathing” because,
most of the instances of these activities were performed in
“Toilet”, the number of distinguishing objects are low and
the prior probability of “Toileting” is high.

It is to be noted here that the prior probabilities are es-
timated based on the external input (frequency of persua-
sion). The frequency of “Toileting” is set to 3/day, 6/day
and 4/day for the ISLA dataset, PlaceLab dataset for Sub-
ject one and two respectively. For the rest of the activities,
the frequency of persuasion is set to 1/day.

The one-layer classifier tends to classify better for an ac-
tivity with high prior probability. For example, the activity,
“Toileting” is better classified, because the prior probability
of “Toileting” is high. This is expected because, the LOBM
can only provide the high-level view of an activity. The dif-
ferences between the activities would be marginal between
similar activities and the prior probability would be the de-
cision parameter.

The one-layer classifier performs poorly in classifying
the activities with no obvious locations. For example, it per-
forms worse in classifying the “Going out” and the “Do-
ing laundry” (referring Figs. 8(a) and (b)). The reason is
that, generally, either of these two activities does not have
an obvious location. As we trained our system from the
web, the location usage probability of such activities are low
with respect to other activities. On the other hand, the two-
layer classifier performs well in classifying these activities.
The “doing laundry” is well classified because the two-layer
classifier uses the OBM in the second layer to discriminate

the actual activity from a group of activities. The “Going
out” is properly classified because of the grouping of activi-
ties (referring Figs. 7(a) and (b)).

4.4.2 Observations

It is observed that the two-layer classifier performance is
proportional to the number of objects utilized in an environ-
ment. The more objects we utilize, the more likely it is to
create confusion. For example, the classifier performs best
in classifying the ISLA activities, with a classification ac-
curacy of 80.12%. This is because, in their experiment they
only utilized 14 objects, and the number of objects per loca-
tion was limited. Nevertheless, for the other two datasets,
PlaceLab Subject one and PlaceLab Subject two, the ac-
curacy of classifications are 69.448% and 70.460% respec-
tively. They have utilized 84 objects for Subject one and 77
objects for Subject two.

It is observed that a group of similar activities is more
distinguishable (by the two-layer classifier) if performed in
different locations. For example, “Toileting” and “Bathing”
(or “Showering”) in the ISLA dataset are more distinguish-
able (as shown in Table 7) than in the PlaceLab dataset (as
shown in Table 8) because “Toilet” and “Bathroom” are two
different locations in the ISLA setup.

4.5 Experiment 3: varying the model coefficients

The goal of this experiment is two-folds: Analyze the impact
of the coefficients (α and λ) in accuracy of activity classifi-
cation and to see whether the proposed methods of estimat-
ing the coefficients can determine the nearly optimal values
or not. We ran the test with α and λ values: 0.0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. The results are shown in
Figs. 9(a), (b) and (c) for the ISLA, PlaceLab (Subject One)
and PlaceLab (Subject Two) datasets respectively.

As expected, all the three datasets are sensitive to the α

values. For example, as we can see in Figs. 9(a)–(c), for
α = 0.0, the accuracies of activity classification are rela-
tively low with respect to α = 0.1. It indicates that incor-
porating the LOBM significantly improve the activity clas-
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Fig. 9 Activity recognition accuracy with different α and λ settings

sification accuracy. But only the LBM is not always suffi-
cient for first-layer classification. For example, as shown in
Figs. 9(a)–(b), the accuracies are relatively low when α is
set to 1.0.

The activity recognition accuracy is sensitive to λ values
for all the datasets except the ISLA dataset. This is because
they used only 14 sensors and the AME was able to mine
the activity knowledge efficiently (e.g. number of unseen
objects are almost zero).

The estimated coefficient, α, for the ISLA dataset and
for the PlaceLab dataset (Subject One) as shown in Table 6,
are near their optimal values. For example, as we can see
in Fig. 9(a) that the maximum performance for the ISLA
dataset is observed for α = 0.2 and the estimated α for this
dataset is 0.3343, which is near optimal. However, for the
MIT (Subject Two) dataset, the estimated α is not near to
the optimal value. As we can see in Fig. 9(c), the best perfor-
mance is observed for α = 1. There are two reasons behind
this. The number of activity groups (as shown in Fig. 7(c))
are low and the switching between locations (by the subject)
while doing an activity was relatively less.

The estimated coefficient, λ, as shown in Table 6, are
near their optimal values. For example, in Fig. 9(c), we can
see that the maximum performance for the PlaceLab dataset
(Subject two) is observed when the λ = 0.1 and the esti-
mated λ for this dataset is 0.1224, which is nearly opti-
mal.

4.6 Experiment 4: comparison with the other methods

The goal of this experiment is two-fold:

1. Compare the performance of the GPARS in classifying
the activities with the both TFW and TFE based methods.

2. Compare the time complexity of our proposed mining
technique with the mining technique proposed in [12].

4.6.1 Performance comparison of the classifiers

Activity recognition based on sensors is a challenging task
due to the inherent noisy nature of the input. Thus, the tem-
poral probabilistic models are the state-of-the-art to solve
this task. A set of probabilistic models have been proposed
for activity recognition, for example, the Naïve Bayesian
(NB) in [5, 21, 26], the Hidden Markov Model (HMM)
in [6, 12, 27, 28] and the Conditional Random Field (CRF)
in [2, 3, 6, 29, 30].

For many years NB and HMM have been used in several
field of artificial intelligence including activity recognition.
In recent years, the CRF becomes a very popular choice. The
CRF was originally proposed for natural language process-
ing. It has recently been used in a wide varieties of appli-
cations like, image processing, motion tracking and activity
recognition.

We compare our classifier’s performance with a TFW
based classifier, proposed by Wyatt et al. in [12], which uses
HMM as the classifier. We also compare the performance
of the classifier with the TFE based classifiers proposed by
Tapia et al. [5] and by Kasteren et al. [6] for activity recog-
nition. In [5], Tapia et al. utilized a NB based classifier and
in [6], Kasteren et al. utilized a HMM and a CRF for activity
recognition.

We separate the training and testing data using “leave one
day out” strategy to train and test the TFE based systems. In
this strategy, one day is used for testing and remaining days
are used for training. The comparison results are shown in
Table 10.

It is observed that the GPARS achieved superior perfor-
mance for all the datasets other methods except the Naïve
Bayes (NB) based classifier for ISLA dataset. This is ex-
pected because Kasteren et al. only used 14 sensors, focused
on 7 activities and the number of unseen objects are almost
zero to improve by smoothing.
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4.6.2 Mining time comparison

To the best of our knowledge, only two systems [11, 12],
have been proposed to train an AR system from the web. We
compare the proposed mining technique with the technique
used in [12] (we call their system UARS). It is not feasible
to perform a direct comparison to the technique used in [11].
Their models were mined from a single web site, they had
to manually map their models to the activities found in their
data as well as map the tagged object (object with embed-
ded sensors) names with the mined object names [12]. Our
method has a strict one-to-one match between activities. We
do not need to map any object names since we only mine the
information associated with the tagged object.

The Fig. 10, shows the time required for mining by both
the GPARS and the UARS for three datasets. As expected,
the GPARS outperforms for all the datasets.

We analyze the total time, t , the GPARS and the UARS
would take to mine an activity knowledge. For this purpose,

Table 10 Comparison with other methods (class accuracies are used to
compare)

Dataset Accuracies of the classifiers (%)

TFW TFE

GPARS UARS NB HMM CRF

ISLA 80.12 63.26 82.80 71.75 67.57

PlaceLab 69.45 50.86 31.27 66.18 54.40

(Subject one)

PlaceLab 70.46 54.56 32.47 57.35 64.44

(Subject two)

let us consider an environment to which there are 20 objects
in 5 different locations, and we are trying to monitor 1 ac-
tivity (e.g. “Going out”).

The GPARS would take t = 1 + 1(5 + 20) = 26 (us-
ing (3)) seconds to mine activity information regarding “Go-
ing out”, assuming that Google would take 1 second to pro-
vide the search result for each query.

We calculate total time, t , UARS would take to the mine
activity knowledge, using following steps (in Sect. 2, we de-
scribe the mining method):

1. The UARS would first search Google with the query
“How to” “Going out”. Google would return P̂ pages.
Let us assume that |P̂ | = 10,700,000 and we set t = 1
(assuming that Google would take 1 second for each
query).

2. It then retrieves P ⊂ P̂ pages. Let |P | = 10,700 (0.1%
of |P̂ |).

3. It then determines P̃ ⊂ P , as the activity pages. Let
P̃ = 107 (1% of |P |). To determine P̃ , the UARS needs
to load and check all the pages in P and it would
take 2 seconds in average for each page. Therefore, we
set t = 1 + 10700 ∗ 2 = 21401.

4. For each page p ∈ P̃ , it extracts the objects mentioned
in the page and calculate their weights. Let us assume
that UARS would take 2 seconds (on average) per
page to extract and calculate objects weights. So, we
set t = 21615.

Therefore, the UARS would take 21615 seconds (or around
6 hours) to mine a single activity knowledge, whereas the
GPARS would only take 26 seconds.

Fig. 10 Mining time comparison between the GPARS and the UARS,
(a) for the ISLA dataset (Mining is performed in the sequence as
shown in the first column of Table 7, i.e. 1. Going out, 2. Going out +
Toileting, 3. Going out + Toileting + Bathing, and so on), (b) for the
PlaceLab dataset Subject one (Mining is performed in the sequence as
shown in the first column of Table 8, i.e. 1. Going out, 2. Going out +

Toileting, 3. Going out + Toileting + Bathing, and so on), (c). for the
PlaceLab dataset for Subject two (Mining is performed in the sequence
as shown in the first column of Table 9, i.e. 1. Toileting, 2. Toileting
+ Preparing breakfast, 3. Toileting + Preparing breakfast + Preparing
lunch, and so on)
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5 Discussion

5.1 Providing activity name, object name and location
name

One of the most important components of the GPARS is to
choose the names of the activities, objects and locations be-
cause the efficiency of the AME depends on choosing appro-
priate names. For the current version of the GPARS we have
chosen the names manually. For example, for the PlaceLab
datasets we used the exact activity names as they used in
their paper. But for the ISLA dataset we changed the ac-
tivity “Leaving” to “Going out” to make it more sensible
and consistent to other datasets. For object name we tried to
keep the name in one word however for objects like “Wash-
ing machine”, “Shower faucet” we kept the entire name to
make it meaningful.

5.2 Choosing the right object vs accuracy

Choosing the right object to embed a sensor is an important
factor for accuracy of activity classification. For example,
embedding a sensor in the “shower faucet” would increase
the classification accuracy of “Bathing”, because it is highly
likely that “shower faucet” would be used while “Bathing”.
In Kasteren et al.’s setup, they did not place any sensor to
“shower faucet”. Replacing the “bathroom door” with the
“shower faucet” would improve the classification accuracy
of “Bathing”. Additionally, if we use both of these sensors,
the accuracy could be improved further.

6 Conclusion and future work

In this paper we present an Activity Recognition System
which is broadly applicable and easy-to-use. We consider
a set of simple and ubiquitous sensors is deployed in an en-
vironment, embedded with the daily life objects.

We first address the problems of acquiring activity data
from the environment to train an AR system and discuss how
we can use WWW as the alternate source of such data. We
then address the problems associated with the current state
of the art techniques to train an AR system from WWW.
Finally, we propose a novel way to mine human activity
knowledge from WWW. We have shown that it is possible to
train an AC using such knowledge. One of the major advan-
tages of such technique is that it eliminates the amount of
human effort in labeling the activities while still achieving
high recognition accuracy. Another advantage of this tech-
nique is that it is possible to label thousands of activities
within a very short period of time.

We also present a two-layer Naïve Bayes-based activity
classifier with a smoothing technique to improve the accu-
racy of activity classification. We perform four experiments

to ensure the validity of our proposed technique. We demon-
strate that our method can classify the activities with high
accuracy. We compared our proposed technique with both
“Train From Web” and “Train from Environment” based
methods. It is observed that our proposed mechanism yields
significant improvement on activity classification in compar-
ison to its existing counterparts.

The performance of our system is sensitive to the names
of activities, objects and locations. In our current version we
do not have any technique that would automatically check
for the best names. We would incorporate such a technique
in our next version of the GPARS.
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