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Abstract This paper presents a new approach for identify-
ing and eliminating mislabeled training instances for super-
vised learning algorithms. The novelty of this approach lies
in the using of unlabeled instances to aid the detection of
mislabeled training instances. This is in contrast with ex-
isting methods which rely upon only the labeled training
instances. Our approach is straightforward and can be ap-
plied to many existing noise detection methods with only
marginal modifications on them as required. To assess the
benefit of our approach, we choose two popular noise de-
tection methods: majority filtering (MF) and consensus fil-
tering (CF). MFAUD/CFAUD is the new proposed vari-
ant of MF/CF which relies on our approach and denotes
majority/consensus filtering with the aid of unlabeled data.
Empirical study validates the superiority of our approach
and shows that MFAUD and CFAUD can significantly im-
prove the performances of MF and CF under different noise
ratios and labeled ratios. In addition, the improvement is
more remarkable when the noise ratio is greater.
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1 Introduction

The goal of an inductive learning algorithm is to form
a good generalization model constructed on training in-
stances. Generally, two main factors which determine the
quality of a generalization model are the quality of the train-
ing data and the appropriateness of the biases of the chosen
learning algorithm for the training data. When the learning
algorithm is given, the quality of the generalization model
mainly depends on the quality of the training data. Consid-
ering that training data usually include noises which tend
to degrade the quality of the generalization model, effective
noise handling is one of the most important problems in in-
ductive learning.

In order to minimize the downside of noisy training in-
stances, people mainly take either of the two approaches:
noise tolerance and noise elimination. Noise tolerant tries
to control the negative effect of noisy instances without re-
moving them, usually by designing robust algorithms that
are insensitive to noise. The typical methods in the category
include rule truncation [1] and tree pruning [2]. On the con-
trary, noise elimination tries to improve the quality of train-
ing data by identifying and eliminating the noisy instances
prior to applying the learning algorithm. One typical method
in this category is to use an ensemble of classifiers and treat
the training instance that is misclassified as noise. It has been
argued by [3] that the noise tolerance is less effective than
noise elimination. In this work, we focus on noise elimina-
tion.

The noisy training instances mainly include two types: at-
tribute noise and class noise. Attribute noises are the errors
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introduced in the attribute values of the instances. For class
noises, they are also called mislabeled noises since they are
caused by the mislabeling. Quinlan [4] has comprehensively
analyzed the two types of noises and demonstrated that, for
higher levels of noise, removing noise from attribute infor-
mation decreases the predictive accuracy of the resulting
classifier if the same attribute noise is present when the clas-
sifier is subsequently used. However, for class noise, the op-
posite is true: cleaning the training data will result in a clas-
sifier with a higher predictive accuracy. Our focus is iden-
tifying and eliminating class noises (mislabeled instances),
thereby increasing the classifier’s predictive accuracy.

Up to now, many research efforts have been made
on eliminating mislabeled instances for effective learning.
Guyon [5] provided an approach that uses an information
criterion to measure an instance’s typicality; and atypical
instances are then presented to a human expert to determine
whether they are mislabeled instances or exceptions. The
noise detection algorithm of Gamberger [6] is based on the
observation that the elimination of noisy examples reduces
the CLCH (Complexity of the Least Complex correct Hy-
pothesis) value of the training set. They called their noise
elimination algorithm the Saturation filter since it employs
the CLCH measure to test whether the training set is satu-
rated. Brodley and Friedl [7, 8] simplified noise elimination
as a filtering operation, where multiple classifiers learned
from noisy training data are used to identify noise, and the
noise is characterized as the instances that are incorrectly
classified by the multiple classifiers. Two major filtering
methods they proposed are majority filtering and consensus
filtering. In addition, there are some noise detection methods
specially proposed for nearest neighbor classifiers. Wilson
[9] used a three-nearest neighbor classifier (3-NN) to se-
lect instances that then used to form a 1-NN. Aha, Kibler,
and Albert [10] demonstrated that filtering instances based
on records of their contribution to classification accuracy
in an instance-based classifier improves the accuracy of the
resulting classifier.

The noise identification process of above methods can
be represented by the expression: R(t) = f (t, T ), wherein
f (.) denotes the noise identification function which depends
on a particular noise measure, such as instances typical-
ity [5], reduction of CLCH [6], number of misclassification
[7, 8], improvement of classification accuracy [10] and so
on; t denotes the training instance in training set T ; R(t)

denotes the identification & elimination result for instance
t that consists of two values: 0 (eliminate) and 1 (retain).
For above methods, no matter which kind of identification
function employed, there are always two parameters with
the identification function: training set T and the instance
t to be evaluated. In other words, given the identification
function, the identification result for a training instance is
only based on training set and this instance itself. Above

methods do not consider the wide availability and potential
utility of unlabeled data to noise identification.

The novelty of our approach is to make use of unlabeled
data to aid the noise detection in training data. This is in
contrast to the previous methods which rely upon only the
training set. Let U denote the unlabeled set and then our
approach can be expressed as: R(t) = f (t, T ,U). The ad-
vantages of our approach include the use of unlabeled data
that are often convenient to obtain in many applications with
only marginal modifications required to existing methods.
Another merit of our approach lies in its wide applicability.
It can be used with many various noise detection methods
including those mentioned above.

To assess the benefit of our approach, two popular meth-
ods are chosen which are majority filtering (MF) and con-
sensus filtering (CF). Based on our approach, the variant of
MF (and CF) is proposed and called MFAUD (and CFAUD)
which means majority (and consensus) filtering with the
aid of unlabeled data. MF, CF, and our proposed MFAUD,
CFAUD apply to a set of noisy data sets for comparison.
Empirical study shows that MFAUD and CFAUD can sig-
nificantly improve the performances of MF and CF under
different noise levels and labeled ratios. In addition, the im-
provement is in direct proportion to the noise level.

The rest of the paper is organized as follows. Section 2
describes the works related to identifying mislabeled train-
ing instances, which include majority filtering and consen-
sus filtering. Then we present MFAUD and CFAUD in Sect.
3. Section 4 discusses the experiments by using bench-
mark data. Section 5 summarizes our conclusions and future
work.

2 Related works on identifying mislabeled training data

There are many methods for identifying and eliminating
mislabeled training instances. Herein, we consider Brodley’s
majority filtering (MF) and consensus filtering (CF) due to
their wide-spread and popular use in the literature.

The general idea of MF and CF is as follows: They em-
ploy ensemble classifier to detect mislabeled instances by
constructing a set of base-level classifiers and then using
their classifications to identify mislabeled instances. The
general approach is to tag an instance as mislabeled if x of
the m base-level classifiers cannot classify it correctly. MF
tags an instance as mislabeled if more than half of the m

base level classifiers classify it incorrectly. CF requires that
all base-level classifiers must fail to classify an instance as
the class given by its training label for it to be eliminated
from the training data.

The reason to employ ensemble classifiers in MF and
CF is that ensemble classifier has better performance than
each base-level classifier on a dataset if two conditions hold:
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Fig. 1 Majority filtering Algorithm 1: MajorityFiltering (MF)
Input: E (training set)
Parameter: n (number of subjects), y (number of learning algorithms)

A1,A2, . . . ,Ay (y kinds of learning algorithms)
Output: A (detected noisy subset of E)
(1) form n disjoint almost equally sized subsets of Ei , where

⋃
i Ei = E

(2) A ← ∅
(3) for i = 1, . . . , n do
(4) form Et ← E\Ei

(5) for j = 1, . . . , y do
(6) induce Hj based on examples in Et and Aj

(7) end for
(8) for every e ∈ Ei do
(9) ErrorCounter ← 0
(10) for j = 1, . . . , y do
(11) if Hj incorrectly classifies e

(12) then ErrorCounter ← ErrorCounter + 1
(13) end for
(14) if ErrorCounter >

y
2 , then A ← A ∪ {e}

(15) end for
(16) end for

(1) the probability of a correct classification by each individ-
ual classifier is greater than 0.5 and (2) the errors in predic-
tions of the base-level classifiers are independent.

Shown in Fig. 1, majority filtering begins with n equal-
sized disjoint subsets of the training set E (step 1) and the
empty output set A of detected noisy examples (step 2). The
main loop (steps 3–16) is repeated for each training sub-
set Ei . In step 4, subset Et is formed which includes all ex-
amples from E except those in Ei , which then is used as the
input an arbitrary inductive learning algorithm that induces
a hypothesis (a classifier) Hj (step 6). Those examples from
Ei for which majority of the hypotheses does not give the
correct classification are added to A as potentially noisy ex-
amples (step 14).

Consensus filtering algorithm is shown in Fig. 2. Its only
difference with MF is at step 14. In CF, the example in Ei

is regarded as a noisy example only when all the hypothe-
ses incorrectly classify it. Compared with MF, CF is more
conservative due to the severer condition for noise identifi-
cation, and which results in fewer instances being eliminated
from the training set. The drawback of CF is the added risk
in retaining bad data.

3 Our approach: MFAUD and CFAUD

Both majority filtering and consensus filtering employ mul-
tiple classifiers to detect the noisy instances through n-cross-
validation. In cross i, subset i is extracted and checked. The
combination of other subsets is used as training data to con-
struct a set of classifiers based on the learning algorithms,

which further classify the instances in subset i to detect
the noises. The reliability of these classifiers therefore is
crucial and the noise detection performance is expected to
improve when the classification accuracies of these classi-
fiers are increased. Our approach is to utilize the unlabeled
data to increase the classification accuracies of these classi-
fiers.

As the learning algorithms in MF and CF are supervised,
in order to utilize unlabeled data, the first phase therefore is
to predict the labels for them. Then the second phase is to
employ the unlabeled data with predicted labels to augment
the classifiers’ predictive ability, thereby improving the per-
formance of noises detection. The two phases are presented
in Sects. 3.1 and 3.2 respectively.

3.1 Phase 1: predicting labels for unlabeled data

In machine learning, semi-supervised classification can pro-
vide a solution for this phase. Traditional classifiers use only
labeled data to train. Alternatively, semi-supervised classifi-
cation uses unlabeled data together with labeled data to train
better classifiers. Semi-supervised classification uses unla-
beled data to either modify or reprioritize hypotheses ob-
tained from labeled data alone.

Semi-supervised classification can utilize unlabeled data
in a variety of ways: we, however, are only interested in the
way which explicitly predicts labels for unlabeled data so
that the training set is enlarged.

Generally, there are two straightforward and popular
semi-supervised methods following this way. They are self-
training and co-training. In self-training [11], initially a
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Fig. 2 Consensus filtering Algorithm 2: ConsensusFiltering (CF)
Input: E (training set)
Parameter: n (number of subjects), y (number of learning algorithms)

A1,A2, . . . ,Ay (y kinds of learning algorithms)
Output: A (detected noisy subset of E)
(1) form n disjoint almost equally sized subsets of Ei , where

⋃
i Ei = E

(2) A ← ∅
(3) for i = 1, . . . , n do
(4) form Et ← E\Ei

(5) for j = 1, . . . , y do
(6) induce Hj based on examples in Et and Aj

(7) end for
(8) for every e ∈ Ei do
(9) ErrorCounter ← 0
(10) for j = 1, . . . , y do
(11) if Hj incorrectly classifies e

(12) then ErrorCounter ← ErrorCounter + 1
(13) end for
(14) if ErrorCounter = y, then A ← A ∪ {e}
(15) end for
(16) end for

base learner is trained on labeled set and then it iteratively
chooses to label several instances that it is most confident of
in the unlabeled set. After that it enlarges its labeled train-
ing set with these self-labeled instances. Co-training [12]
requires that features can be split into two sets; each sub-
set is sufficient to train a good classifier; the two sets are
conditionally independent given the class. Initially two sep-
arate classifiers are trained with the labeled data on the two
sub-feature sets respectively. Each classifier then classifies
the unlabeled data and aids the other classifier with the se-
lected unlabeled instances (with their predicted labels) they
are most confident of. Each classifier is retrained with the
additional training instances given by the other classifier and
the process repeats.

However, both self-training and co-training also present
some problems. For self-training, on one hand, the classifier
requires some measures to evaluate the “confidence” of un-
labeled data. But many classifiers like k-nearest neighbors
can not give this measure easily. On the other hand, even if
the classifier could measure the confidence, its own predic-
tion on the unlabeled data might not be as correct as two
classifiers of co-training. In case of co-training, it lacks gen-
erality since it only works for the data sets which can be
represented by two sufficient and independent views.

In this section, we propose ensemble-based co-training
(En-co-training) method through combining ensemble learn-
ing and co-training.

As shown in Fig. 3, multiple classifiers (more than two)
are employed instead of the single classifier of self-training
and two classifiers of co-training. En-co-training overcomes

the limitations of self-training and co-training. Explicit mea-
sures of confidence are not required due to the ensemble
voting of these classifiers. In addition, the diversity of two
classifiers in co-training is achieved by using different sets
of features. This process requires two views of features. But
in En-co-training, the diversity of classifiers is achieved by
using different algorithms. For example, three various algo-
rithms are employed in our experiment: k-nearest neighbor,
naive Bayes and decision tree. At the beginning of En-co-
training, a small number of examples U ′ are randomly se-
lected from U and then at the end of each iteration, more
examples are replenished into U ′. Related work [12] shows
that this kind of setting is better than dealing with the whole
U directly.

3.2 Phase 2: Utilizing unlabeled data and their predicted
labels

Let TU denote the output of phase 1, which includes the se-
lected unlabeled instances and their predicted labels by En-
co-training. In this part, the variants of majority filtering and
consensus filtering are devised that use TU to aid the noise
detection in training data T . As shown in Figs. 4 and 5, TU

is utilized by our proposed MFAUD and CFAUD with only
marginal modifications on MF and CF are required.

Always keep it in mind that there is no free lunch and it
is usually risky to use unlabeled data. We shouldn’t take for
granted that the using of unlabeled data can definitely im-
prove the performance of noise detection in a training set.
The reason is as follows: although semi-supervised method
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Fig. 3 En-co-training algorithm Algorithm 3: Ensemble-based Co-training (En-co-training)
Input: E (training set), U (unlabeled set)
Parameter: k (number of iterations), y (number of learning algorithms)

n (number of initially selected unlabeled instances)
A1,A2, . . . ,Ay (y kinds of learning algorithms)

Output: TU (selected unlabeled instances from U with predicted labels)
(1) create U ′ by choosing u instances at random from U

(2) TU ← ∅
(3) for i = 1, . . . , n do
(4) U ← U\U ′, numbefore ← |TU |
(5) for j = 1, . . . , y do
(6) induce Hj based on instances in L and algorithm Aj

(7) end for
(8) for every t ∈ U ′ do
(9) for j = 1, . . . , y do
(10) plj (t) ← Hj(t)// predicted label of Hj on t

(11) end for
(12) if pl1(t) = pl2(t) =, . . . ,ply(t)
(13) then TU ← t ∪ pl1(t), U ′ ← U ′\t
(14) end for
(15) L ← L ∪ TU

(16) numafter ← |TU |, �num ← numafter − numbefore

(17) if |u| >= �num
(18) then randomly choose �num instances from U to replenish U ′
(19) if 0 < |U | < �num
(20) then choose all instances of U to replenish U ′
(21) if |U | = 0
(22) then exit;
(23) end for

including our En-co-training can predict the labels for some
selected unlabeled data, the predicted labels are usually with
errors. The unlabeled instances with correctly predicted la-
bels tend to improve the noise detection performance, yet
the noisy labels from prediction could potentially degrade
the classifiers’ predictive accuracies, which further leads to
the performance degradation of noise detection in the train-
ing set. With this caveat in mind, we now proceed to an em-
pirical evaluation.

4 Empirical study

The main objective of the empirical study is to assess the
benefit of unlabeled data for noise detection in training
data. Section 4.1 explains the experimental setup. After-
wards Sect. 4.2 presents the experimental results.

4.1 Experimental setup

Existing MF, CF, and our proposed MFAUD, CFAUD are
tested on the benchmark data sets from the Machine Learn-
ing Database Repository [13]. Information of these data sets

is tabulated in Table 1. These data sets are collected from
different real-world applications in various domains. Each
data set is divided into training set and test set. A noise de-
tection method works on the training set and outputs a fil-
tered training set. Afterwards the test set is classified by the
classifiers which are trained on various filtered training sets.
Classification error rate is the measure to evaluate the per-
formance of each noise detection method on the classifier,
where

classification error rate

= No. of incorrect classifications on testing instances

No. of testing instances

When two noise detection methods are applied to the
same data set with the same learning algorithm, lower clas-
sification error rate indicates that the noise detection perfor-
mance is better. To obtain the classification error rate, each
data set D is processed as follows:

1. D is randomly partitioned into two parts: labeled set L

and unlabeled set U .
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Fig. 4 Majority filtering with
the aid of unlabeled data

Algorithm 4: Majority Filtering with the Aid of Unlabeled Data (MFAUD)
Input: E (training set), U (unlabeled set)
Parameter: n (number of subjects), y (number of learning algorithms)

k (refer to Alg, of En-co-training)
n (refer to Alg, of En-co-training)
A1,A2, . . . ,Ay (y kinds of learning algorithms)

Output: A (detected noisy subset of E)
(1) form n disjoint almost equally sized subsets of Ei , where

⋃
i Ei = E

(2) A ← ∅
(3) for i = 1, . . . , n do
(4) form Et ← E\Ei

(5) TU = En-co-training(Et ,U, k,u,A1,A2, . . . ,Ay)

(6) Et ← Et ∪ TU

(7) for j = 1, . . . , y do
(8) induce Hj based on examples in Et and Aj

(9) end for
(10) for every e ∈ Ei do
(11) ErrorCounter ← 0
(12) for j = 1, . . . , y do
(13) if Hj incorrectly classifies e

(14) then ErrorCounter ← ErrorCounter + 1
(15) end for
(16) if ErrorCounter >

y
2 , then A ← A ∪ {e}

(17) end for
(18) end for

Fig. 5 Consensus filtering with
the aid of unlabeled data

Algorithm 5: Consensus Filtering with the Aid of Unlabeled Data (CFAUD)
Input: E (training set), U (unlabeled set)
Parameter: n (number of subjects), y (number of learning algorithms)

k (refer to Alg, of En-co-training)
n (refer to Alg, of En-co-training)
A1,A2, . . . ,Ay (y kinds of learning algorithms)

Output: A (detected noisy subset of E)
(1) form n disjoint almost equally sized subsets of Ei , where

⋃
i Ei = E

(2) A ← ∅
(3) for i = 1, . . . , n do
(4) form Et ← E\Ei

(5) TU = En-co-training(Et ,U, k,u,A1,A2, . . . ,Ay)

(6) Et ← Et ∪ TU

(7) for j = 1, . . . , y do
(8) induce Hj based on examples in Et and Aj

(9) end for
(10) for every e ∈ Ei do
(11) ErrorCounter ← 0
(12) for j = 1, . . . , y do
(13) if Hj incorrectly classifies e

(14) then ErrorCounter ← ErrorCounter + 1
(15) end for
(16) if ErrorCounter = y, then A ← A ∪ {e}
(17) end for
(18) end for
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Table 1 UCI data sets used in
the experiments Data set Attribute Size Class Class distribution

iris 4 150 3 50/50/50

voting 16 435 2 267/168

heart2 13 294 2 188/106

horse 15 368 2 232/136

sonar 60 208 2 111/97

wine 13 178 3 59/71/48

breast 9 1000 2 700/300

yeast 8 1484 10 463/429/244/163/51/44/37/30/20/5

australian 14 690 2 383/307

bupa 6 345 2 145/200

diabetes 8 768 2 500/268

echo 7 131 2 88/43

german 24 1000 2 700/300

glass 9 214 6 70/76/17/13/9/30

magic 10 2000 2 1000/1000

credit 15 690 2 307/383

spect 44 267 2 212/55

wdbc 31 569 2 357/212

ecoli 7 336 8 143/77/52/35/20/5/2/2

ionosphere 34 351 2 225/126

2. Ten trials derived from ten-fold cross-validation on L are
used to evaluate the performance of each noise detec-
tion method. At each trial, 90% of L is firstly selected
and it is denoted by Ttemp. Most data sets here are ex-
perimental data sets where the ratio between noisy data
to the whole data might be very small and even can be
neglected. However, the performance of noise removing
methods need to be evaluated on noisy data sets. To this
end, we artificially generate some noises in Ttemp by se-
lecting some instances at random and then incorrectly
changing their labels. The number of selected instances,
that is the number of generated noises, is based on the
defined noise ratio, which is the ratio between noisy data
to the data in Ttemp. Let T denote the data after adding
noises in Ttemp. T is used as the training set and it will
be processed by MF, CF, MFAUD, and CFAUD respec-
tively. The remaining 10% of L is used as test set to be
classified by the algorithms that are trained on each fil-
tered set of T .

3. The average classification error rates of each algorithm
with different noise filtering methods are obtained by av-
eraging ten trials’ error rates.

4. Considering that the partition of data set could influence
this average classification error rate, we execute the par-
tition five times and get five classification error rates (ex-
ecute step 1–3 five times).

5. Finally, the reported error rates of each algorithm with
different noise filtering methods are the further averaged
value of these five values.

In this experiment, the four noise detection methods (MF,
CF, MFAUD, and CFAUD) follow the same configuration
which is as follows: n, that is the number of subsets, is set
to 5; y, that is the number of learning algorithms, is set to
3; A1, A2, and A3, representing three learning algorithms,
refer to k-nearest neighbor (1-NN), naive Bayes, and deci-
sion tree. The additional parameters in MFAUD and CFAUD
are for En-co-training algorithm and configured as follows:
k, that is the number of iterations, is set to 4; u, that is the
number of initially selected unlabeled instances, is equal to
the number of training data.

After filtering noises from the training set, a classifica-
tion algorithm is trained from the filtered training set and
then classfies the test data to evaluate the performance of
each noise detection method. Generally when evaluating
the performance of noise detection, the simple classifica-
tion algorithms are more convincing than sophisticated al-
gorithms. This is because the simple algorithm is not ro-
bust to noises; therefore, if a simple classification algo-
rithm can achieve better performance with a certain noise
detection method, it indicates that the performance of that
noise detection method is better. Although the simple clas-
sification algorithms are preferred here, our work can be
stronger and more persuasive if it is tested by both sim-
ple and sophisticated algorithms. Therefore, we select both
simple and sophisticated algorithms to assess our work.
Three simple and widely used classification algorithms are
selected, which include k-nearest neighbor (1-NN), naive
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Bayes, and decision tree. On the other hand, we also select
three more sophisticated classification algorithms, including
support vector machines [14], Multilayer Perception, and
KStar [15].

In addition to above parameters, there are two major pa-
rameters in above experiment flow which can influence the
experiment. The first parameter determines data partitioning
(step 1 of above experiment flow) and it is the ratio between
labeled data to whole data, referred to labeled ratio. The sec-
ond parameter determines the noise level in the training set
T and it is noise ratio (step 2 of above experiment flow).
Considering that the data sets obtained from the real appli-
cations might have different labeled ratios and noise levels,
we have performed several experiments varying the two pa-
rameters to make the experiments comprehensively. The ex-
periments include two parts:

Experiment A: We fix the labeled ratio to 50% and vary the
noise ratios including 10%, 20%, 30%, and 40%. The exper-
iments here show the comparisons between original noise
detection methods and our proposed ones under different
noise ratios. The objective is to test whether our proposed
methods are robust to the noise ratio.

Experiment B: We fix the noise ratio to 20% and vary the
labeled ratios including 10%, 20%, 30%, 40%, and 50%.
The experiment in B shows the comparisons between orig-
inal noise detection methods and our proposed ones under
different labeled ratios and the objective is to test whether
our proposed methods are robust to the labeled ratio.

4.2 Experimental results

Experiment A: Evaluation under different noise ratios

A-1: MF versus MFAUD under different noise ratios

The experiments in this part include the comparisons be-
tween MF and MFAUD under four different noise ratios.
To avoid the tedious result presentation for each noise ratio
with details, we select the minimal noise ratio 10% as the
representative for analyzing purpose. Considering the sim-
ple classification algorithms are more suitable for assessing
the performance of noise detection, we mainly present the
experimental results based on the three simple algorithms
(1-NN, naive Bayes, and decision tree). Afterwards, the ex-
perimental results from the sophisticated algorithms will be
presented concisely.

In Table 2 we show the classification error for each data
set of the classifiers formed by each of the three algorithms
tested using no filter (None), majority filtering (MF), and
majority filtering aided by unlabeled data (MFAUD) when

noise ratio is 10%. The second last row reports the aver-
age classification error across all the data sets of above clas-
sifiers. The last row reports the average improvement of
MFAUD over MF with respect to reduction of classifica-
tion error when they are used by each of the three simple
algorithms. Table 2 shows for each of the three simple al-
gorithms, on average its performance with noise filtering is
better than that without noise filtering. Moreover MFAUD
is better than MF for each of the algorithms. Concretely, for
1-NN, the improvement of MFAUD over MF is 4.5%; for
naive Bayes, the improvement is 1.3%; for decision tree, the
improvement is 4.0%.

Table 3 summarizes the comparisons between MF and
MFAUD under four different noise ratios. As shown in this
table, both MF and MFAUD could improve the classification
performance of the three simple algorithms under any noise
ratios, while MFAUD is even better than MF. In addition,
for each of the algorithm, the improvement of MFAUD over
MF is in direct proportion to the noise ratio. For example, for
1-NN, the improvement of MFAUD over MF is 4.5% when
noise ratio is 10%, while the improvement is significantly
increased to 25.6% when noise ratio is 40%.

We further summarize the comparisons based on the
other three relatively sophisticated algorithms in Table 4.
The similar observations as Table 3 are obtained: MFAUD
outperforms MF over different noise ratios. Moreover, the
improvement of MFAUD on MF is more remarkable when
the noise ratio is greater.

A-2: CF versus CFAUD under different noise ratios

Same as before, we select the minimal noise ratio 10% as
representative for analyzing purpose. In Table 5 we show
the classification error for each data set of the classifiers
formed by each of the three algorithms tested using no fil-
ter (None), consensus filtering (CF), and consensus filtering
aided by unlabeled data (CFAUD) when noise ratio is 10%.
As shown in this table, both CF and CFAUD can provide im-
provement on the three algorithms. When CF and CFAUD
are compared, we find that CFAUD defeats CF. However,
the improvement of CFAUD over CF is not very remarkable
and limited in 6%.

Table 6 shows the summarizations of CFAUD versus CF
under four different noise ratios from 10% to 40% based on
the three simple algorithms. This table indicates that both
CF and CFAUD can provide consistent improvement on
each of the three algorithms under each of the four noise
ratios. In addition, for each of the three algorithms, the im-
provement of CFAUD over CF increases as the noise ratio
increases. Averaged on the four noise ratios, the improve-
ment of CFAUD on CF is around 12% for each of the three
classifiers.
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Table 2 MF versus MFAUD when noise ratio is 10%

Dataset 1-NN Naive Bayes Decision Tree

None MF MFAUD None MF MFAUD None MF MFAUD

iris 0.174 0.068 0.049 0.092 0.073 0.054 0.109 0.095 0.090

vote 0.165 0.133 0.151 0.161 0.125 0.132 0.109 0.102 0.087

heart2 0.296 0.221 0.203 0.212 0.209 0.214 0.215 0.218 0.171

horse 0.328 0.224 0.211 0.269 0.217 0.226 0.242 0.169 0.170

sonar 0.25 0.268 0.270 0.360 0.345 0.350 0.302 0.304 0.298

wine 0.143 0.055 0.051 0.020 0.025 0.023 0.183 0.097 0.103

breast 0.128 0.056 0.056 0.067 0.069 0.066 0.119 0.079 0.079

yeast 0.508 0.410 0.401 0.471 0.420 0.422 0.450 0.410 0.400

australian 0.273 0.174 0.162 0.207 0.198 0.196 0.176 0.159 0.160

bupa 0.435 0.377 0.376 0.466 0.450 0.443 0.380 0.374 0.382

diabetes 0.359 0.269 0.259 0.260 0.267 0.257 0.293 0.263 0.270

echo 0.419 0.322 0.275 0.286 0.286 0.269 0.381 0.322 0.306

german 0.336 0.29 0.263 0.247 0.243 0.239 0.316 0.282 0.252

glass 0.329 0.376 0.350 0.547 0.477 0.449 0.4 0.423 0.403

magic 0.308 0.253 0.259 0.342 0.343 0.352 0.236 0.234 0.239

credit 0.239 0.195 0.171 0.234 0.214 0.216 0.177 0.157 0.149

spect 0.329 0.328 0.315 0.408 0.286 0.280 0.271 0.254 0.230

wdbc 0.117 0.051 0.054 0.077 0.081 0.080 0.107 0.078 0.075

ecoli 0.278 0.163 0.158 0.183 0.165 0.158 0.219 0.193 0.179

ionos 0.194 0.176 0.176 0.171 0.188 0.195 0.161 0.144 0.140

Ave. 0.280 0.221 0.211 0.254 0.234 0.231 0.242 0.218 0.209

Imp. 4.5% 1.3% 4.0%

Table 3 Summarizations of MF versus MFAUD under different noise ratios on the simple classification algorithms

Algorithm Noise Ratio

10% 20% 30% 40% Ave.

1-NN None 0.280 0.340 0.386 0.442 0.362

MF 0.221 0.240 0.262 0.324 0.262

MFAUD 0.211 0.220 0.222 0.241 0.224

Imp. 4.5% 8.1% 15.4% 25.6% 13.4%

NB None 0.254 0.264 0.276 0.319 0.278

MF 0.234 0.245 0.254 0.299 0.258

MFAUD 0.231 0.238 0.246 0.247 0.241

Imp. 1.3% 2.5% 3.2% 17.1% 6.03%

DT None 0.242 0.277 0.320 0.396 0.309

MF 0.218 0.228 0.251 0.319 0.254

MFAUD 0.209 0.216 0.223 0.240 0.222

Imp. 4.0% 5.4% 11.2% 24.8% 11.4%

We further summarize the comparisons between CF and
CFAUD based on the other three relatively sophisticated al-
gorithms in Table 7. The similar observations as Table 6 are
obtained: CFAUD outperforms CF over different noise ra-
tios. Moreover, in most cases, the improvement of MFAUD
on MF increases when the noise ratio is greater.

Experiment B: Evaluation under different labeled ratios

In Experiment A, the labeled ratio is fixed, and the noise
ratio is changed. While in Experiment B, the noise ratio is
fixed, and the labeled ratio is altered. This is the only differ-
ence between these two experiments. To avoid tedious ex-
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Table 4 Summarizations of MF versus MFAUD under different noise ratios on the sophisticated classification algorithms

Algorithm Noise Ratio

10% 20% 30% 40% Ave.

SVM None 0.251 0.268 0.300 0.369 0.297

MF 0.228 0.234 0.255 0.313 0.258

MFAUD 0.223 0.226 0.230 0.264 0.236

Imp. 2.1% 3.4% 9.7% 15.8% 7.75%

MP None 0.240 0.278 0.328 0.387 0.308

MF 0.213 0.229 0.249 0.324 0.254

MFAUD 0.205 0.217 0.227 0.267 0.229

Imp. 3.8% 5.1% 9.0% 17.6% 8.88%

KStar None 0.288 0.331 0.385 0.433 0.359

MF 0.237 0.257 0.296 0.335 0.281

MFAUD 0.229 0.241 0.264 0.269 0.251

Imp. 3.4% 6.4% 10.7% 19.7% 10.1%

Table 5 CF versus CFAUD when noise ratio is 10%

Dataset 1-NN Naive Bayes Decision Tree

None CF CFAUD None CF CFAUD None CF CFAUD

iris 0.174 0.055 0.074 0.092 0.073 0.068 0.109 0.095 0.076

vote 0.165 0.130 0.123 0.161 0.123 0.107 0.109 0.095 0.085

heart2 0.296 0.232 0.205 0.212 0.220 0.208 0.215 0.218 0.187

horse 0.328 0.272 0.256 0.269 0.258 0.240 0.242 0.196 0.176

sonar 0.25 0.251 0.256 0.360 0.357 0.340 0.302 0.288 0.318

wine 0.143 0.068 0.060 0.021 0.035 0.018 0.183 0.103 0.120

breast 0.128 0.062 0.052 0.067 0.064 0.064 0.119 0.079 0.080

yeast 0.508 0.425 0.414 0.471 0.436 0.428 0.450 0.403 0.406

australian 0.273 0.196 0.184 0.207 0.201 0.202 0.176 0.156 0.156

bupa 0.435 0.415 0.394 0.466 0.470 0.443 0.380 0.403 0.352

diabetes 0.359 0.300 0.277 0.260 0.258 0.256 0.293 0.281 0.265

echo 0.419 0.358 0.289 0.286 0.272 0.261 0.381 0.308 0.322

german 0.336 0.293 0.272 0.247 0.249 0.239 0.316 0.284 0.258

glass 0.329 0.335 0.317 0.547 0.485 0.481 0.4 0.366 0.419

magic 0.308 0.264 0.26 0.342 0.349 0.350 0.236 0.228 0.218

credit 0.239 0.195 0.179 0.234 0.225 0.223 0.177 0.156 0.146

spect 0.329 0.317 0.328 0.408 0.329 0.314 0.271 0.308 0.252

wdbc 0.117 0.067 0.054 0.077 0.077 0.080 0.107 0.081 0.075

ecoli 0.278 0.180 0.158 0.183 0.156 0.144 0.219 0.186 0.173

ionos 0.194 0.176 0.182 0.171 0.179 0.182 0.161 0.152 0.140

Ave. 0.280 0.230 0.217 0.254 0.241 0.232 0.242 0.219 0.211

Imp. 5.6% 3.5% 3.7%

perimental results, we concisely give the summarizations of
MF versus MFAUD and CF versus CFAUD under five dif-
ferent labeled ratios in Tables 8 and 9 respectively.

Tables 8 and 9 clearly show that our proposed noise de-
tection methods MFAUD & CFAUD outperform the tradi-
tional MF & CF under all the five explored labeled ratios.

In other words, our methods are robust to the labeled ra-
tio.

Experiments summarization The results in Experiments A
and B show that MFAUD and CFAUD could consistently
improve MF and CF under different noise ratios and differ-
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Table 6 Summarizations of CF
versus CFAUD under different
noise ratios on the simple
classification algorithms

Algorithm Noise Ratio

10% 20% 30% 40% Ave.

1-NN None 0.280 0.343 0.386 0.442 0.363

CF 0.230 0.263 0.288 0.362 0.286

CFAUD 0.217 0.230 0.233 0.273 0.238

Imp. 5.6% 12.4% 18.8% 24.6% 15.4%

NB None 0.254 0.264 0.276 0.319 0.278

CF 0.241 0.252 0.269 0.304 0.267

CFAUD 0.232 0.244 0.250 0.256 0.246

Imp. 3.5% 3.3% 7.3% 16.0% 7.5%

DT None 0.242 0.277 0.320 0.396 0.309

CF 0.219 0.241 0.278 0.349 0.272

CFAUD 0.211 0.218 0.230 0.255 0.229

Imp. 3.7% 9.3% 17.2% 27.1% 14.3%

Table 7 Summarizations of CF
versus CFAUD under different
noise ratios on the sophisticated
classification algorithms

Algorithm Noise Ratio

10% 20% 30% 40% Ave.

SVM None 0.251 0.268 0.300 0.369 0.297

CF 0.235 0.252 0.273 0.346 0.277

CFAUD 0.227 0.231 0.256 0.269 0.246

Imp. 3.4% 8.3% 6.2% 22.3% 10.1%

MP None 0.240 0.278 0.328 0.387 0.308

CF 0.211 0.232 0.262 0.318 0.256

CFAUD 0.206 0.215 0.229 0.257 0.227

Imp. 2.4% 7.3% 12.6% 19.2% 10.4%

KStar None 0.288 0.331 0.385 0.433 0.359

CF 0.237 0.262 0.295 0.358 0.288

CFAUD 0.223 0.249 0.266 0.283 0.255

Imp. 5.9% 5.0% 9.8% 20.9% 10.4%

ent labeled ratios. In other words, the mislabeled instances
detection performance could achieve consistent improve-
ment with the aid of unlabeled data. Recall the discussion
in Sect. 3, using unlabeled data is not free because their
predicted labels might be noisy. On one hand, the unla-
beled data with correctly predicted labels tend to improve
the classification accuracy of ensemble classifiers, thereby
upgrading the performance of mislabeled instances detec-
tion. On the other hand, the unlabeled data with incorrectly
predicted labels tend to degrade the classification perfor-
mance of ensemble classifiers, thereby degrading the perfor-
mance of mislabeled instances detection. The experimental
results show that the positive effect of using unlabeled data
defeats its negative effect. One possible explanation is as
follows: both MF and CF employ n-cross-validation method
for noise detection. For each cross, all the data except this
cross are used to train ensemble classifiers based on differ-
ent learning algorithms and then these constructed ensem-

ble classifiers classify the data in this cross to detect noises.
This process determines that the performance of noise de-
tection is expected to improve when the predictive accuracy
of ensemble classifiers increase. Existing works on semi-
supervised learning have already shown that the predictive
accuracy of each classifier (also ensemble classifiers) can
be improved by using unlabeled data. Based on PAC the-
ory [16], although there might be some noisy predicted la-
bels for unlabeled data, the negative effect of them could
be compensate if the amount of newly labeled examples is
sufficient.

There is another useful result shown in the experiments.
When the noise ratio increases, the improvement of MFAUD
over MF and CFAUD over CF also increases. That is to say,
unlabeled data give more remarkable improvement of noise
detection in case that noise ratio is greater.

Note that, since the relative but not the absolute perfor-
mance of the proposed methods is concern, the configuration
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Table 8 Summarizations of MF versus MFAUD under different labeled ratios

Algorithm Labeled ratio

10% 20% 30% 40% 50% Ave.

1-NN None 0.394 0.350 0.344 0.351 0.340 0.356

MF 0.337 0.289 0.275 0.268 0.240 0.282

MFAUD 0.307 0.255 0.244 0.240 0.220 0.253

Imp. 8.9% 11.8% 11.3% 10.4% 8.1% 10.1%

NB None 0.340 0.287 0.286 0.279 0.264 0.291

MF 0.334 0.274 0.261 0.261 0.245 0.275

MFAUD 0.305 0.251 0.243 0.251 0.238 0.258

Imp. 8.7% 8.4% 6.9% 3.8% 2.5% 6.06%

DT None 0.375 0.310 0.308 0.303 0.277 0.315

MF 0.342 0.290 0.268 0.258 0.228 0.277

MFAUD 0.318 0.262 0.242 0.237 0.216 0.255

Imp. 7.0% 9.7% 9.7% 8.1% 5.4% 7.98%

SVM None 0.327 0.294 0.289 0.285 0.268 0.293

MF 0.324 0.283 0.278 0.257 0.234 0.275

MFAUD 0.303 0.250 0.249 0.241 0.226 0.254

Imp. 6.5% 11.7% 10.4% 6.2% 3.4% 7.64%

MP None 0.355 0.311 0.315 0.301 0.278 0.312

MF 0.331 0.273 0.261 0.242 0.229 0.267

MFAUD 0.301 0.246 0.240 0.229 0.217 0.247

Imp. 9.1% 9.9% 8.0% 5.4% 5.1% 7.5%

KStar None 0.394 0.355 0.345 0.335 0.331 0.352

MF 0.367 0.295 0.284 0.279 0.257 0.296

MFAUD 0.332 0.257 0.261 0.258 0.241 0.270

Imp. 9.5% 12.9% 8.1% 7.5% 6.4% 8.88%

of En-co-training has not been finely tuned. Based on our
observations in experiments, En-co-training could achieve
better performance by tuning the parameters such as the
number of learning algorithms and iterations. Therefore, our
proposed method is expected to work better in the real ap-
plications for which En-co-training is finely tuned.

Although the advantage of our proposed methods have
been verified through a set of experiments, it does not mean
that our methods are free of limitations. The first step of our
methods is to obtain the initial classifier based on the train-
ing data and then predict the labels for some “confident” un-
labeled data. The new labeled data are then used to aid the
noise detection in the training data. With such a work flow,
it is easy to understand that the quality of new labeled data
(accuracy of the predicted labels with them) is an important
factor in our method, while this factor is determined by the
quality of the initial classifier. Heuristically, a better initial
classifier leads to more accurate predicted labels (for unla-
beled data), which consequently leads to better noise detec-
tion performance. Although we prefer the initial classifiers
with high performance, it is true that these ideal initial clas-

sifiers are sometimes difficult to obtain since the amount of
training data is not enough in many applications. Because
the initial classifiers and their new labeled data are only used
as the assistant of original training data, we only have an
easy, rather than difficult, requirement on them. That is, the
number of training data cannot be too small to build the ini-
tial classifiers with at least acceptable performance. For var-
ious applications, the number of training data to achieve the
acceptable initial classifiers are also various. But through the
experimental analysis, we find that it is usually easy to meet
the requirement about the number of training data.

In fact, the above requirement on the number of training
data is common for most existing noise detection methods.
This is because most noise detection algorithms compose of
two phases, wherein the first phase is to build a classifier
with some of the training data; this classifier is then used
in the second phase to detect the noises in the remaining
samples of the training data according to a certain strategy.
Therefore to use noise elimination, the number of training
data also must reach some value to generate the classifier
with at least acceptable performance.
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Table 9 Summarizations of CF versus CFAUD under different labeled ratios

Algorithm Labeled ratio

10% 20% 30% 40% 50% Ave.

1-NN None 0.394 0.350 0.344 0.351 0.343 0.357

CF 0.337 0.279 0.255 0.253 0.263 0.277

CFAUD 0.305 0.251 0.238 0.244 0.230 0.254

Imp. 9.5% 10.0% 6.7% 3.6% 12.4% 8.44%

NB None 0.340 0.287 0.286 0.279 0.264 0.291

CF 0.345 0.281 0.264 0.259 0.252 0.280

CFAUD 0.321 0.257 0.246 0.249 0.244 0.263

Imp. 7.0% 8.5% 6.8% 3.9% 3.3% 5.90%

DT None 0.375 0.310 0.308 0.303 0.277 0.315

CF 0.346 0.296 0.264 0.251 0.241 0.280

CFAUD 0.319 0.258 0.241 0.233 0.218 0.254

Imp. 7.8% 12.8% 8.7% 7.2% 9.3% 9.16%

SVM None 0.327 0.294 0.289 0.285 0.268 0.293

CF 0.339 0.279 0.265 0.258 0.252 0.279

CFAUD 0.303 0.248 0.241 0.239 0.231 0.252

Imp. 10.6% 11.1% 9.1% 7.4% 8.3% 9.30%

MP None 0.355 0.311 0.315 0.301 0.278 0.312

CF 0.320 0.261 0.250 0.238 0.232 0.260

CFAUD 0.249 0.229 0.233 0.226 0.215 0.230

Imp. 22.2% 12.3% 6.8% 5.0% 7.3% 10.7%

KStar None 0.394 0.355 0.345 0.335 0.331 0.352

CF 0.372 0.292 0.282 0.274 0.262 0.296

CFAUD 0.321 0.269 0.261 0.258 0.249 0.272

Imp. 13.7% 7.9% 7.4% 5.8% 5.0% 7.96%

5 Conclusions and future works

This article presents a new approach for identifying misla-
beled instances, which considers the wide availability and
potential utility of unlabeled instances and makes use of
them to improve the performance of existing methods.

Majority filtering (MF) and consensus filtering (CF) are
two popular mislabeled instance detection methods and they
are chosen to assess the benefit of our approach. To this end,
firstly we proposed the variants of MF and CF which are
aided by unlabeled data and called MFAUD and CFAUD.
The results of an empirical evaluation demonstrated that
MFAUD and CFAUD can significantly improve the classi-
fication performance of MF and CF. Moreover, our exper-
iments show that as the noise ratio increases, the improve-
ments of MFAUD over MF and CFAUD over CF increase.

In this work the superiority of our methodology is val-
idated on MF and CF. Our future work is to further vali-
date our approach based on other mislabeled instance detec-
tion methods. Moreover, we will consider how our work can
contribute to other machine learning topics, including, for

instance, active learning, ensemble learning, and feature se-
lection. The reason is that these topics also need to deal with
noisy training instances to achieve good performance.
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