
Thesis for the Degree of Doctor of Philosophy

MULTI-DIMENSIONAL PERFORMANCE-BASED
ONTOLOGY MATCHING OVER PARALLEL

PLATFORMS

Muhammad Bilal Amin

Department of Computer Engineering
Graduate School

Kyung Hee University
South Korea

August 2015

MULTI-DIMENSIONAL PERFORMANCE-BASED
ONTOLOGY MATCHING OVER PARALLEL

PLATFORMS

Muhammad Bilal Amin

Department of Computer Engineering
Graduate School

Kyung Hee University
South Korea

August 2015

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

For the dreams of my father,
the efforts of my mother,

the trust of my wife,
and

the love of my daughter,

I succeed, I prevail, I achieve.
	

Abstract

Ontology matching is among the core techniques used for heterogeneity resolution by informa-

tion and knowledge-based systems. However, due to the excess and ever-evolving nature of data,

problems regarding information heterogeneity have emerged. Although, resolutions for data het-

erogeneity are quite trivial but in the case of semantic heterogeneity, resolutions involve data’s

intend, making the integration a challenging opportunity. The volume of data makes manual an-

notation of concepts unrealistic; consequently, automated solutions based on ontologies are used

by software agents. The most prominent solution for semantic heterogeneity resolution is ontology

matching; however, adjacent to the abundance of information, the ontologies representing these

resources are also becoming large-scale and complex, leading to performance bottlenecks during

the matching process.

Over the years, ontology matching systems and techniques have taken performance aspects

of ontology matching into consideration and proposed various resolutions. However, these reso-

lutions are matching effectiveness centric, i.e., accuracy of the matching algorithms. The perfor-

mance aspect of matching these ontologies is concentrated on optimization of the matching algo-

rithms and partitioning of larger ontologies into smaller chunks for performance benefits. Due to

the trade-off between performance and effectiveness of matching algorithms (accuracy measures,

precision, recall, and F-Measure), ontology-matching problem can go to a certain extent in gaining

performance by optimizing only the matching algorithms. Furthermore, the performance improve-

ment based-on exploitation of newer hardware technologies has largely been missed. Among these

technologies are affordable parallelism-enabled systems, which are easily available as stand-alone

(desktop) and distributed platforms (cloud).

In contrary to current state-of-the-art implementations for ontology matching, work presented

i

ii

in this thesis regards with a multi-dimensional methodology to achieve performance-gain dur-

ing the ontology matching process. The proposed methodology identifies candidate performance

bottlenecks from end-to-end in the ontology matching process and presents resolutions without

impacting the accuracy aspects of the matching algorithms. Thus, preserving the accuracy of

the whole matching process in parallel to performance-gain. Presented methodology contributes

from four dimensions towards the performance aspect of ontology matching: (i) Memory space,

the memory stress on the matching environment. For resolution proposed methodology decom-

poses complex ontologies into smaller, simpler, and scalable subsets depending upon the needs

of matching algorithms. Accessing ontology resources from these subsets in following stages is

significantly faster due to their smaller size, independent nature, and data structures that can be

readily partitioned for parallel and distributed matching. This approach effectively contributes

to overall performance-gain especially when matching large-scale ontologies. Ontology subsets

are serialized and cached in repositories, preventing the re-generation of ontology subsets of al-

ready serialized ontologies for future matching requests. Furthermore, execution of matching

algorithms is aligned for the minimization of the matching space during the matching process.

This method contributes to the performance by reducing the number of matching tasks to un-

matched resources only, thus avoiding redundant expensive matching operations for subsequent

algorithm executions; (ii) Execution time, effectiveness-independent performance-gain by parallel

and distributed matching. Matching process over the candidate ontology subsets is divided from

granular to finer level abstraction of independent matching requests, matching jobs, and match-

ing tasks, running in parallel over parallelism-enabled platforms. Matching Requests are assigned

to participating node(s), matching jobs are the division of one matching request over available

computing cores within a node, and each core is assigned with a set of equal numbers of match-

ing tasks to complete the whole matching process. Matching task invokes assigned matching

algorithm for effectiveness-independent matching. This method contributes to our systems perfor-

mance by distributing matching tasks over participating computing cores and executing them in

parallel at finer level with optimal computing resource utilization; (iii) Performance-based ontol-

ogy matching runtime, the proposed methodology has been implemented as a performance-based

parallel and distributed ontology matching runtime decoupled from ontology matching libraries;

iii

(iv) service and a platform, non-monolithic ontology matching runtime is deployed as an ontology

matching service and a platform with interface for matching algorithm libraries. Service is used

by the heterogeneity resolution clients for ontology matching and performance-based ontology

matching platform is used by semantic-web experts to evaluate their matching algorithms over

parallel platforms.

Proposed methodology presented in this thesis has been evaluated comprehensively over on-

tology datasets of real-world ontology matching problems of diverse scope, complexity, and

sizes provided by Ontology Alignment Evaluation Initiative (OAEI). Furthermore, an ontology

matching runtime built on the proposed methodology has also been evaluated by OAEI cam-

paign. Results from these evaluations have shown a substantial performance-gain achieved with

effectiveness-independence by the whole ontology matching process by adopting the proposed

methodology. Moreover, the implemented runtime has already been in production as a service,

where it is utilized by semantic web experts for heterogeneity resolution.

Acknowledgement

First and foremost, I would like to thank the Almighty Allah for showering His blessings on me

and my family. He gave me patience, strength, and courage during my doctoral study.

I would especially like to thank my advisor, Respected Professor Sungyoung Lee for providing

me the opportunity to pursue my education further and become a Ph.D. His guidance, support, and

encouragement has been the key to my success and achievements. Above of all, his kindness

towards me as a father-figure is what I cherish the most. I am nothing but grateful.

I am grateful to Respected Professor Byeong Ho Kang from the University of Tasmania, Aus-

tralia. He has been a huge source of guidance and ideas for me. His critique and evaluation have

always kept me on track, resulting in the completion of my objectives.

I am also grateful to my dissertation evaluation committee (Prof. Jinsung Cho, Prof. Eui-

nam huh, and Prof. Young-Koo Lee from KHU and Prof. Hyonwoo Seung from Seoul Women’s

University) for their time and valuable suggestions. Their input has been a great source of im-

provement not only in my dissertation but also in my skill-set.

I would like to thank Mrs. Kim for being available and helping me in many regards. Even

though she has always been extremely busy, but always been kind when asked for help.

I would like to acknowledge my colleagues and seniors, especially Dr. Asad Masood Khattak

and Dr. Zeeshan Pervez for their guidance and critique. Dr. Wajahat Ali Khan, Mr. Shujaat Hus-

sain, and Mr. Mahmood for their help, support, and availability. Their kindness truly means a lot

to me. I would also like to thank our UCLab team members, Dr. Banos, Dr. Han, Dr. Fahim, Mr.

Muhammad Idris, Mr. Bilal Rizvi, Mr. Bui Dinh Mao, Mr. Maqbool Hussain, Mr. Muhammad

Afzal, Mr. Taqdir Ali, Mr. Jamil Hussain, Mr. Rahman Ali, Mr. Tae Ho Hur, Mr. Jae Hun Bang,

Mr. Byung Gill Go, and Mr. Hameed Siddiqi for their support. Working with them has been noth-

iv

v

ing but pleasurable. I would also like to thank Mr. Omar Farooq from Biomedical Engineering,

Dr. Waqas Nawaz and Mr. Kifayat ullah Khan from DKE Lab, Dr. Muhammad Aazam from

ICNS Lab, Dr. Amjad Ali from Electronics and Communication Engineering, Mr. Dildar Hussain

from Biomedical Engineering, and Dr. Muhammad Rizwan from Nuclear Engineering for giving

me moments to enjoy and feel blessed.

In the end, I would like to express my sincere gratitude to my family. My brother Farrukh,

my sister Nida and her husband Aitisam for taking care of our parents in my absence, something

I have been missing greatly. My in-laws for their prayers and support. Two strong women of my

life, my mother and my wife Rabia. One who brought me up to what I am and the other one who

ensures that I stay on track towards our reach. Without their prayers, patience, and support this

would not be possible. My daughter Zuhaa for just being there in my life, there is nothing more

pleasurable and priceless than her presence. Finally, my father, who deserves my title more than

me. There is no one I have more regards in my life than him. I wish i could be as selfless and kind

as you, the rarest of the qualities a person can have. I hope to become a father like you.

Table of Contents

Abstract i

Acknowledgment iv

Table of Contents vi

List of Figures x

List of Tables xiii

Chapter 1 Introduction 1

1.1 Motivation . 4

1.2 Contributions . 11

1.3 Thesis Organization . 14

Chapter 2 Related Work 16

2.1 Generic Ontology Matching Systems, Tools, and Techniques 16

2.1.1 Falcon-AO . 17

2.1.2 Agreement Maker . 18

2.1.3 LogMap . 18

2.1.4 AROMA . 18

2.1.5 GOMMA . 19

2.2 Biomedical Ontology Matching . 20

2.2.1 SAMBO . 20

2.2.2 ASMOV . 21

vi

vii

2.2.3 ServOMap . 21

2.3 Candidate platforms for Parallel Ontology Matching 21

2.3.1 Big Data for Ontology Matching . 21

2.3.2 Flynn’s Taxonomy and Ontology Matching 22

Chapter 3 Effectiveness-independent Performance-gain in Ontology Matching 24

3.1 Memory Footprint Reduction . 24

3.1.1 Matching Algorithm-based Ontology Subset Generation 24

3.1.2 Eager Matching Space Reduction . 27

3.2 Parallel and Distributed Ontology Matching . 28

3.2.1 Matching Task . 29

3.2.2 Matching Process Abstractions . 31

3.3 Summary . 35

Chapter 4 Performance-based Ontology Matching Runtime 36

4.1 SPHeRe: System for Parallel Heterogeneity Resolution 36

4.2 Execution Phases . 37

4.2.1 Phase-I: Pre-Matching . 37

4.2.2 Phase-II: Parallel Matching . 39

4.2.3 Phase-III: Post-Matching . 40

4.3 Stack Design . 41

4.4 Core Component Details . 43

4.4.1 Init Daemon . 43

4.4.2 Ontology Model . 45

4.4.3 File IO . 47

4.4.4 Distributor . 53

4.4.5 Aggregator . 60

4.5 Summary . 60

Chapter 5 Ontology Matching as a Service and a Platform 61

5.1 Ontology Matching over Cloud Platforms . 63

viii

5.1.1 Ontology Matching as a Service . 63

5.1.2 Ontology Matching as a Platform . 66

5.2 Summary . 69

Chapter 6 Evaluations and Discussions 70

6.1 Load Time and Memory footprint evaluation . 70

6.2 Scalability evaluation . 75

6.3 Performance comparison with GOMMA . 76

6.4 Anatomy track . 77

6.5 Library track . 81

6.6 Large Biomedical Ontologies track . 83

6.6.1 Task 1: FMA-NCI small fragments . 83

6.6.2 Task 2: FMA-NCI whole Ontologies 86

6.6.3 Task 3: FMA-SNOMED small fragments 89

6.6.4 Task 4: FMA whole Ontology with SNOMED large fragment 91

6.6.5 Task 5: SNOMED-NCI small fragments 93

6.6.6 Task 6: NCI whole Ontology with SNOMED large fragment 95

6.7 Conference track . 97

6.8 Evaluation Summary . 104

6.8.1 Independent of Ontology Domain . 105

6.8.2 Performance-based Ontology Matching over various size of Matching

Problems . 106

6.8.3 Effectiveness-independent Performance-gain 107

6.8.4 Matching Library Interface . 107

Chapter 7 Conclusion and Future Directions 108

7.1 Conclusion . 108

7.2 Future Work . 110

Bibliography 112

Appendix A List of Publications 124

ix

Appendix B MSRA 2013, Accepted Proposal 130

B.1 Abstract . 130

B.2 Problem Statment . 131

B.3 Technical Importance . 131

B.4 Objectives . 132

B.5 Methodology . 132

B.6 Social Impact . 136

B.7 Adoption of Technologies . 137

Appendix C Azure4Research 2014, Accepted Proposal 138

C.1 Abstract . 138

C.2 Problem Statment . 139

C.3 Importance . 139

C.4 Implementation Overview . 140

C.5 Contributions . 142

C.6 Utilization of Microsoft Azure Platform . 142

List of Figures

1.1 Ontology Matching Process . 2

3.1 Algorithm-based Ontology Subsets for Matching 25

3.2 Eager Matching Space Reduction . 27

3.3 Matching Tasks between two concepts of Candidate Ontologies 30

3.4 Matching Abstractions for Parallel and Distributed Matching 31

4.1 Execution flow of SPHeRe . 38

4.2 Stack Design . 42

4.3 Barrier Read sequence diagram . 45

4.4 Socket Tables in a tri-node (2 cores/node) environment 45

4.5 Ontology Model class diagram . 46

4.6 Ontology Subset Replication sequence diagram 48

4.7 Ontology Change Request sequence diagram 48

4.8 File IO class diagram . 50

4.9 Matching Request Distribution in a tri-node environment 54

4.10 Ontology Matching Request sequence diagram 57

4.11 Distributor Components class diagram . 58

5.1 Classification between Matching Library and Performance 62

5.2 Ontology Matching as a Service and a Platform 64

5.3 Matchable Interface and Matching Libraries . 67

5.4 String Bridge Matching algorithm using Matchable Interface 68

x

xi

6.1 Ontology Load time for Serialized Subsets . 73

6.2 Ontology Load time comparison . 73

6.3 Memory Footprint comparison . 74

6.4 Scalability comparison . 75

6.5 Performance comparison with GOMMA . 76

6.6 Parallel flow for Anatomy track over single-node 78

6.7 Results from Anatomy track . 79

6.8 Sequential flow on a single-node . 80

6.9 Results from Library track . 82

6.10 Parallel flow for Large Biomedical Ontologies track over single-node 83

6.11 Results from Large Biomedical Ontologies track, task 1 85

6.12 Parallel flow for Large Biomedical Ontologies track over multi-node 86

6.13 Results from Large Biomedical Ontologies track, task 2 88

6.14 Results from Large Biomedical Ontologies track, task 3 90

6.15 Results from Large Biomedical Ontologies track, task 4 92

6.16 Results from Large Biomedical Ontologies track, task 5 94

6.17 Results from Large Biomedical Ontologies track, task 6 96

6.18 Parallel flow for Conference track over dual core single-node Azure VM 97

6.19 cmt-iasted . 98

6.20 conf-edas . 98

6.21 conference-iasted . 99

6.22 confOf-edas . 99

6.23 confOf-iasted . 100

6.24 confOf-sigkdd . 100

6.25 ekaw-sigkdd . 101

6.26 iasted-sigkdd . 101

6.27 edas-ekaw . 102

6.28 edas-iasted . 102

6.29 edas-sigkdd . 103

xii

6.30 ekaw-iasted . 103

6.31 Results Summary . 105

B.1 Architecture . 133

C.1 Proposed Methodology . 140

List of Tables

4.1 Terminologies and Notations used . 37

6.1 Completeness of Ontology Model . 72

6.2 Evaluation Summary . 104

xiii

Chapter 1
Introduction

Overview

In the era of globalization and automation, integration of information has become a key tool for

providing knowledge driven services. For automated knowledge aggregation, integration of data

and information from heterogeneous sources is the key [1]. With the abundance of available infor-

mation over ubiquitous platforms, contributed by various domains using various input devices has

substantially increased the amount of disparate information; consequently, heterogeneity issues

have emerged. The heterogeneity is classified into two types: data heterogeneity and semantic

heterogeneity [2]. Data heterogeneity has solutions based on data definitions, types, formats, and

precision [2]. Tools like Microsoft Biztalk Server [3] are also used for data integration and hetero-

geneity resolution as described in [4] and [5]. Semantic heterogeneity; however, involves data’s

intend [2], making it a challenging opportunity for integration [1]. The volume of data, makes

manual annotation of concepts unrealistic; consequently, automated solutions based on ontologies

are used by software agents [6]. The primary solution for semantic heterogeneity problem is on-

tology matching. It determines correspondence between semantically related ontologies. Concept

behind ontology matching process is illustrated in Fig 1.1, where heterogenous data resources are

annotated by ontologies and later matched by libraries of complex ontology matching algorithms

ranging from entity-based matching to relationship-based matching for correspondence determi-

nation [7]. This correspondence is termed as mappings or alignment, whereas the encapsulation

of these mappings is represented as a bridge ontology [8]. These mappings are further used by in-

formation systems, electronic commerce systems, knowledge-based systems, search engines and

social networking systems.

Due to the greater benefits of ontology matching, ontologies are extensively utilized in multiple

1

CHAPTER 1. INTRODUCTION 2

C
C’A’

B’

Ontology
Matching

A
B

Semantic Web Experts

Integration Clients

Third-party Servers

M
ap

pi
ng

s

Structural
Matchers

Entity
Matchers

Figure 1.1: Ontology Matching Process

domains. For example, in biomedicine, ontologies are used for representing medical knowledge

and clinical guidelines [9], standardization of medical data formats [10], clinical data integration

and medical decision-making [11]. Consequently, biomedical ontologies like the Gene Ontology

(GO) [12], the National Cancer Institute Thesaurus (NCI) [13], the Foundation Model of Anatomy

(FMA) [14], and the Systemized Nomenclature of Medicine (SNOMED-CT) [15] have emerged;

furthermore, infrastructures like OBO Foundry [16] and BioPortal [17] are promoting the usage of

ontologies in biomedicine. Similarly, in electronic commerce, ontologies are used for mediation

among two or more web services [18] and their discovery [19]. The vast usage of ontologies has

compelled researchers and experts to invest more in development of newer ontologies and provide

continuity to the already created ones. As a result, ontologies are becoming larger in size, complex

in structure, and their matching process has become computationally expensive.

Ontology matching systems developed over the years have taken the performance into con-

sideration and have implemented possible resolutions. However, these systems are design time

CHAPTER 1. INTRODUCTION 3

resolutions with performance aspect focused only on optimization of the matching algorithms

and partitioning of larger ontologies into smaller chunks for performance benefits [20]. These

resolutions are categorized as effectiveness-dependent ontology matching solutions, as a distinc-

tive trade-off between matching accuracy and performance exists. Furthermore, these resolutions

are monolithic in nature, i.e., neither their platform nor results are sharable among the clients and

semantic web experts for re-usability. Implementation of these resolutions fails to incorporate ben-

efits available in the form of newer hardware technologies for the sake of performance-gain during

the matching process. Among these technologies are affordable parallel systems that are easily

available as stand-alone and distributed platforms [21].Current state-of-the-art ontology matching

systems have taken the execution time into consideration and have implemented possible reso-

lutions. However, the performance aspect of these systems is tightly coupled with the accuracy

and complexity of matching algorithms. Their implemented resolutions are more focused on opti-

mization of the matching algorithms and partitioning of larger ontologies into smaller chunks for

performance benefits [20]. In these implementations, a clear distinction between the resolutions

for accuracy and performance does not exist. Furthermore, an explicit and decoupled runtime has

not been proposed yet which can improve the performance factors without inflicting any changes

in the effectiveness of matching algorithms. Therefore, these resolutions fall into the category

of effectiveness-dependent solutions where a trade-off between matching effectiveness (accuracy

measures, precision, recall, and F-Measure) and execution time (performance) exists. Moreover,

the performance improvement based-on exploitation of newer hardware technologies has largely

been missed. Among these technologies are affordable parallel systems that are easily available as

stand-alone and distributed platforms [21].

In earlier years, parallelism and distributed platforms were associated with High Performance

Computing (HPC) [22]. To support HPC, expensive platforms have been developed over the years.

These platforms are not only scarce, but also have higher costs and skill-set requirements, mak-

ing them incurious for average developers and platform administrators. However, more recently,

parallelism has been applicable over personal computing devices like desktop PCs, laptops, and

even over smart phones because of the advent of multicore processors [23]. These processors are

equipped with multiple cores on a single die, enabling each core to serve as a virtual microproces-

CHAPTER 1. INTRODUCTION 4

sor, providing parallelism at the hardware level. Cloud computing [24] has recently emerged as a

computing platform with reliability, ubiquity, and availability in focus [25]. The utility of cloud

as a resource and service provider has already been investigated; however, the benefits of cloud’s

commodity hardware based distributed infrastructure are still overlooked [25]. Moreover, with the

arrival of Cloud computing as a backbone platform for ubiquitous computing [26], multicore pro-

cessors are always available as distributed platforms of commodity machines with utility-based

pricing model. With these readily available, yet affordable parallel platforms, an opportunity

emerges for their utilization in ontology matching. This utilization can lead to an effectiveness-

independent performance-gain ontology matching solution where the accuracy of the matching

algorithms remains preserved and performance-gain is extracted from smarter use of available

computing resources. Furthermore, the ubiquitous access to cloud platform can provide ontology

matching as a service and a platform, reusable among the heterogeneity resolution clients and

semantic web experts.

1.1 Motivation

Ontology matching is a two-fold problem where challenges and issues are classified into two

categories; (i) accuracy that deals with the effectiveness of the matching algorithms and (ii) per-

formance that is based upon scalability, resource utilization, and overall execution time of the

whole matching process [21]. Although the trade-off between accuracy and overall execution time

exists, by implementing scalable and optimal resource utilization techniques, performance of the

ontology matching process can be largely improved with effectiveness independence.

Effective ontology matching is a computationally intensive operation requiring Resource-

based matching algorithms (Name-based, Hierarchy-based, Annotation-based, and Property-

based) to be executed over candidate ontologies. As mentioned in [20], ontology matching be-

tween two ontologies is a Cartesian product of all the concepts and their relationships leading to

quadratic complexity. In case of medium (∼3,000 concepts) to large-scale (10,000+ concepts)

ontologies [20], computation and memory utilization peaks due to the size of the ontology and

relationships among its concepts. In our experiments on relatively medium size ontologies (Adult

Mouse Anatomy [27] with anatomical part of the NCI Thesaurus [13]), matching algorithms have

CHAPTER 1. INTRODUCTION 5

taken 20 minutes to obtain required matched results. Over very large ontologies (whole FMA [14]

with whole NCI [13]), executing matching algorithms have taken several days to produce desirable

matched results. This delay makes ontology matching ineffective for applications like interactive

semantic web systems and systems with intelligent information retrieval tasks where in-time pro-

cessing is a must [28]. Apart from computation needs, memory requirements for matching oper-

ations are also higher. Matching algorithms evaluating over the relationships of concepts require

concept-graphs in the main memory, producing memory strains in gigabytes during execution.

During our experiments over the whole FMA with NCI matching, JVM heap crashes and out-of-

memory errors have occurred quite often even with 2 GB of heap memory available. This delay

in ontology matching and unreliable nature of the matching process due to memory issues, makes

ontology matching ineffective for dynamic applications with performance-based processing de-

mands.

Current state-of-the-art ontology matching systems have taken the execution time into con-

sideration and have implemented possible resolutions. However, the performance aspect of these

systems is tightly coupled with the accuracy and complexity of matching algorithms. Their imple-

mented resolutions are more focused on optimization of the matching algorithms and partitioning

of larger ontologies into smaller chunks for performance benefits [20]. In these implementations,

a clear distinction between the resolutions for accuracy and performance does not exist. Further-

more, an explicit and decoupled runtime has not been proposed yet which can improve the perfor-

mance factors without inflicting any changes in the effectiveness of matching algorithms. There-

fore, these resolutions are classified into the category of effectiveness-dependent solutions where

a trade-off between matching effectiveness (accuracy measures, precision, recall, and F-Measure)

and execution time (performance) exists. Moreover, the performance improvement based-on ex-

ploitation of newer hardware technologies has largely been missed. Among these technologies are

affordable parallel systems that are easily available as stand-alone and distributed platforms [21].

Current ontology matching systems are design time tools which are not optimized for resource

consumption [21]. Therefore, no substantial performance-gain is recorded by deploying them

over parallelism-enabled stand-alone and distributed platforms. The monolithic implementation

of these systems discourages the result and platform sharing. Bridge ontologies and mappings

CHAPTER 1. INTRODUCTION 6

generated by these systems can be manually shared by the individual user; however, they do not

provide a ubiquitous service like platform which clients can use for bridge generation and semantic

web experts can execute and evaluate their matching algorithms.

Approaches

Ontology Matching has been an area of interest for researchers in the last decade; consequently,

many approaches have emerged over the years. From a performance perspective, current state-

of-the-art ontology matching approaches can be classified into two broader categories, i.e.,

effectiveness-dependent performance-based and effectiveness-independent performance-gain on-

tology matching solutions.

In the effectiveness-dependent performance-based category, solutions exist where the core of

performance extraction is primarily driven by the optimization of ontology matching algorithms

only. Although secondary techniques like structural partitioning, fragmentation, and divide-and-

conquer approaches are utilized; however, due to the strong coupling between accuracy and perfor-

mance, the performance of the system always degrades with the increase of matching complexity.

Furthermore, with the absence of explicit computational resource utilization, these systems do not

scale even in the presence of parallelism enabled hardware [29]. Moreover, the memory consump-

tion aspect of ontology matching has been entirely missed. Considering the fact that the volatile

memory is considerable cheap, proposed solutions recommend its excessive utilization. Due to the

fact that reading ontology resources from the memory is considerably fast, implementations tend

load as many resources as possible, by increasing the possible heap size. This approach inflicts

performance degradation instead due to garbage collection by the programming language run-

time [30]. Thus, in case of commodity machines with optimal heap size of 2 Gb, completing the

ontology matching process in one automated execution becomes a challenge. After a comprehen-

sive review on apparent ontology matching techniques and approaches it is quite clear that most

of the approaches exist in this category, including state-of-the-art systems like Falcon-AO [31]

which uses a segmentation approach called Anchor-Flood is proposed by [32], LogMap [33] with

its axiom classification technique, AROMA [34] with its incremental discovery of rules approach,

and AgrMaker [35] with its iterative execution of matching algorithms.

CHAPTER 1. INTRODUCTION 7

On the other hand effectiveness-independent performance-gain [36] category includes solu-

tions which evaluate ontology matching process from end-to-end and provide resolutions to can-

didate bottlenecks without inflicting any changes in the matching library of the system. In this

category, a clear distinction between matching accuracy and performance of the execution exists

logically and physically. Thus, accuracy of the matching process is preserved without the cost of

substantial performance-gain. In current ontology matching systems, this category is largely un-

explored. A plausible reason can be the background of researchers and developers building these

systems, as most of them are from the semantic web background with a focus on highly accurate

matching techniques. Consequently, current resolutions are more focused on optimization of the

matching algorithms [20]. Thus, performance-gain from faster ontology loading, caching ontol-

ogy resources. effective memory utilization through-out the matching process, matching space

reduction, and scaling for parallel and distributed matching has been completely missed.

The innovation of hardware architecture has brought parallel computing over personal and

ubiquitous platforms; however, the utilization of these resources requires parallel programming

techniques. Ontology matching being a compute intensive task can be resolved by several parallel

programming paradigms including Message Passing over high-end hardware and communications

devices [37], Task Parallelism, and Data Parallelism [38]. Message passing requires inter-process

communication that is appropriate for iterative problems where dependency between operations

exists [39]. In task parallelism, independent threads execute different operations on same data.

However, data parallelism is one such technique where the same or different autonomous oper-

ations are performed on the same or different pieces of data repeatedly [40]. Looking from the

perspective of ontology matching problem, data parallelism is a candidate technique in which

these ontologies can be divided into smaller pieces and assigned over to computing resources for

executing matching algorithms in parallel. The data parallel implementation over other parallel

paradigms affects the ontology matching performance by large. By implementing data parallelism,

thread-level parallelism gets implemented with a set of independent matcher threads executing the

same matching algorithm on a separate part of candidate ontologies. This mechanism may enable

matching space reduction as every following set of matching threads will only match ontology

resources left unmatched by the previous set with another algorithm. Moreover, unlike message-

CHAPTER 1. INTRODUCTION 8

passing, data parallel resolves ontology matching by independent threads with zero inter-thread

communication and network I/O during matching. In case of task parallelism for matching on-

tologies, matcher threads cannot be truly independent because: (i) redundant matching on same

part of candidate ontologies will occur, i.e., a concept matched by one algorithm will be matched

in parallel by another algorithm, unless communicated. Redundant matching not only costs extra

computation time at matching but also has an aggregation overhead; (ii) higher chances of idle

cores, i.e., as the computational complexity and overall time taken by an algorithm running by a

thread on same part of candidate ontologies will be different from other algorithms running by

other threads, therefore one thread will finish early and wait in idle for others to finish unless

a costly load redistribution is performed at runtime. Data parallelism with its better scalability,

matching space reduction, and no communication overhead is more performance efficient than

other parallel paradigms for ontology matching. In addition, work distribution among a set of

threads running the same algorithm is based on having an equal amount of workload per thread,

which reduces the chances of idle processing cores to a bare minimum, i.e, no runtime load redis-

tribution required. Due to considerable benefits of data parallelism for ontology matching, pro-

posed methodology presented in this thesis utilizes it as the foundation for parallel and distributed

ontology matching.

From the perspective of cloud and parallelism, a suggested solution can be the use of cloud-

based data-intensive parallel platform called Hadoop [41]. Hadoop with its MapReduce [42] pro-

gramming model, queries efficiently on distributed data. In case of large-scale ontology matching,

it may be considered a candidate technology over cloud platform; however, the essence of perfor-

mance efficiency in hadoop is coupled with the amount of available data typically in gigabytes and

terabytes [43]. The ideal size of a single chunk of data in Hadoop is 64 MB, which is relatively

equivalent to a single OWL file making an ontology too small to be distributed over hadoop file

system (HDFS) [43], inflicting performance degradation instead.

Contrary to other ontology matching systems; GOMMA, is one of the most performance effi-

cient ontology matching tools [44]. It proposes inter and intra-matcher parallelism which utilizes

parallel and distributed infrastructure to achieve better performance for ontology matching [20].

However, its proposed parallelism is embedded within the matching algorithms; furthermore the

CHAPTER 1. INTRODUCTION 9

effective memory utilization has been ignored. Therefore the authors of [20] have stated the limi-

tations which include, slower performance than expectation due to the complexity of the matchers

with higher memory requirements.

Apart from the above discussed categorization, a missing element in the apparent approaches

is the reusability aspect of performance runtime for ontology matching. The effectiveness-

independent performance-gain approach over ubiquitous and parallel platforms like cloud brings

an opportunity for sharable ontology platforms. The clear distinction between accuracy and per-

formance, encourages the semantic web experts to develop their matching algorithms and deploy

over the reusable platform for evaluation; furthermore, generating bridge ontologies without wor-

rying for the performance-gain. This strategy can further be employed to matching algorithm

evaluation and a resource for ontology matching as a service over cloud.

In contrast with the above-mentioned approaches, this thesis presents an effectiveness-

independent performance-gain methodology for ontology matching. This methodology provides

a multi-dimensional resolution to the performance aspects of ontology matching, i.e., space, time,

re-usable runtime, and ontology matching as a service. Presented methodology provides end-

to-end resolution from faster loading of ontologies, their decomposition for reducing structural

complexity, memory utilization, matching space reduction to parallel and distributed matching.

Furthermore, proposed methodology encapsulates presented resolutions as a high performance

ontology matching runtime, deployed over cloud platforms, providing ontology matching as a

service and a platform.

Problem Statement

Ontology matching is the most utilized and efficient resolution for semantic heterogeneity among

diverse data and information resources. However, effective ontology matching is a two-fold prob-

lem where challenges exist in the accuracy and performance aspects. Due to the excess of data,

the complexity of their represented ontologies has considerably increased; consequently, algo-

rithms matching these ontologies have also become comprehensive and complex, making ontol-

ogy matching a computationally intensive matching task. For example, in case of medium (∼3,000

concepts) to large-scale (10,000+ concepts) ontologies [20], computation and memory utilization

CHAPTER 1. INTRODUCTION 10

peaks due to the size of the ontology and relationships among its concepts. On relatively medium

size ontologies (Adult Mouse Anatomy [27] with anatomical part of the NCI Thesaurus [13]),

matching algorithms have taken 20 minutes to obtain desirable matched results. Over very large

ontologies (whole FMA [14] with whole NCI [13]), executing matching algorithms has taken sev-

eral days to produce desirable results. This delay makes ontology matching ineffective for appli-

cations with in-time processing demands like interactive semantic web systems and systems with

intelligent information retrieval tasks [28]. Apart from computation needs, memory requirements

for matching operations are likewise higher. Matching algorithms evaluating over the relationships

of concepts require concept-graphs in the main memory, producing memory strains in gigabytes

during execution. During our experiments over the whole FMA with NCI matching, JVM heap

crashes and out-of-memory errors have occurred quite often, even with 2 GB of heap memory

available. Therefore; more recently, performance aspects of ontology matching have been under

discussion as a separate research issues [21].

Primary motivation of current state-of-the-art ontology matching systems is higher accuracy

complemented by efficiency in terms of performance; however, the core techniques for achieving

better performance are either related to the optimization of matching algorithms or the fragmenta-

tion of ontologies for these matching algorithms [20]. These systems are design time monolithic

solutions categorized as effectiveness-dependent matching systems as accuracy of the matching

process varies inversely with variation in performance. From this retrospect, a methodology is

required which implements explicit performance measures for end-to-end performance-gain with

accuracy preservance. This methodology must identify the candidate bottleneck areas throughout

the ontology matching process and propose resolutions without impacting the implementation of

matching algorithms, thus presenting an effectiveness-independent performance-gain approach.

Furthermore, this methodology must be available and non-monolithic, such that not only clients

utilize it for heterogeneity resolution but also semantic-web experts can utilize it for plugging-in

their matching algorithms for execution and evaluation.

To achieve the goal of effectiveness-independent performance-gain, a set of objectives are re-

quired to be achieved as a resolution. These objectives include; resolution for faster ontology

loading and access, effective not excessive memory stress during ontology matching process, it-

CHAPTER 1. INTRODUCTION 11

erative matching process with possible matching space reduction for every subsequent matching

algorithm execution, and exploitation of available computational resources for performance-gain

benefits, i.e., parallel and distributed matching. Furthermore, all the resolutions must be incor-

porated as a non-monolithic ontology matching runtime, which can be shared as a service and

platform.

The main challenges of successfully achieving the goal of performance-based ontology match-

ing in perspective of above mentioned objectives are: (i) Effective memory utilization and com-

pletion of matching process within the bounds of optimal heap memory; (ii) Optimal computa-

tional resource utilization during the matching process for performance-gain in ontology matching

process with accuracy preservance; (iii) Implementation of a high performance ontology match-

ing runtime with parallel and distributed ontology matching (iv) availability of this runtime as

non-monolithic ontology matching resolution as a service and a platform . This thesis presents

one such multi-dimensional performance-based ontology matching methodology that caters these

challenges and provides a substantial performance-gain for the whole matching process.

1.2 Contributions

In consideration to the problem statement and accumulating the mentioned opportunities, i.e., de-

lay in ontology matching, design-time effectiveness-dependent nature of current ontology match-

ing systems, absence of exploitation of parallelism-enabled stand-alone and ubiquitous platforms

for effectiveness-independent performance-gain during matching, and monolithic nature of cur-

rent systems, provides the motivation for a performance-based ontology matching methodology.

This thesis contributes by presenting one such methodology which provides end-to-end perfor-

mance resolutions for the ontology matching process with effectiveness-independence. Presented

methodology decouples the performance aspect from accuracy and explicitly provides resolution

to earlier mentioned performance challenges of ontology matching. Consequently, no change is

inflicted in the implementation of matching algorithms, keeping the accuracy preserved. More-

over, with the availability of better computational resources, faster-matched results are achieved.

Furthermore, the proposed methodology is implemented as a high performance runtime for ontol-

ogy matching and extended as non-monolithic ontology matching service, accessible over cloud

CHAPTER 1. INTRODUCTION 12

platform by clients for heterogeneity resolution and as a platform for ontology matching algo-

rithms execution and evaluation. The main contributions of the thesis are briefly described in the

following subsections.

Smaller Memory Footprint during Ontology Matching Process

Ontologies being structurally complex tend to be slow in loading and stress on the memory of the

runtime during the matching process. As a resolution, the presented methodology decomposes the

complex ontologies into smaller Resource-based ontology subsets depending upon the needs of

matching algorithms. These subsets are independent and simpler (reduced structural complexity)

with performance and scalability-friendly data structures. This method contributes to the matching

performance by only loading the ontology resources required by matching algorithms as data

structures that can be easily partitioned. These subsets are also preserved by serialization to reduce

the matching effort for future matching requests of the same ontologies. Furthermore, matching

process loads ontology subsets by deserialization in parallel over parallelism-enabled platforms

which improves the ontology resource access substantially faster in later stages of execution.

Matching process represents an execution of several matching algorithms implementing their

own strategy to deliver the matched results. However, due to decoupled execution of algorithms,

redundant matching and late redundancy checking is probable for multiple bridge instances in

the generated bridge ontology. The presented methodology aligns the execution of matching al-

gorithms to reduce the matching space for every following matching algorithm execution during

the whole matching process. This method contributes in performance by reducing the amount of

matching tasks to unmatched resources only, thus avoiding redundant expensive matching opera-

tions with no requirement of redundancy checking for multiple bridge instances at the end of the

process.

Performance-gain by Parallel and Distributed Ontology Matching

Ontologies by default are not parallelism-friendly due to their intensive cohesive nature. However,

due to our scalability-friendly subsets, presented methodology implements division of a match-

ing process over these subsets into three levels of abstractions (independent matching requests,

CHAPTER 1. INTRODUCTION 13

matching jobs, and matching tasks) over a parallel platform. Matching Requests are assigned to

participating node(s), matching jobs are the division of one matching request over available com-

puting cores within a node, and each core is assigned with a set of equal numbers of matching

tasks to complete the whole matching process. Matching task invokes assigned matching algo-

rithm for effectiveness-independent matching. This method contributes to matching performance

by distributing matching tasks over participating computing cores and executing them in parallel

at finer level with optimal computing resource utilization.

High Performance Ontology Matching Runtime

Current state-of-the-art ontology matching systems fail to encapsulate the performance aspects of

matching as a re-usable component that is not dependent on matching libraries and algorithms. On

the contrary, presented methodology implements a high performance ontology matching runtime

that utilizes the above mentioned methods for effectiveness-independent performance-gain during

matching. With explicit thread-level parallelism for data parallel ontology matching, presented

runtime can effectively scale over parallel platforms including multicore desktop and multi-node

cloud computing infrastructures. This runtime does not depend on the scope, complexities, and

size of the ontologies to be matched.

Ontology Matching as a Service and a Platform

Current ontology matching approaches are design time tools with monolithic implementations.

However, presented methodology implements a decoupled non-monolithic resolution where per-

formance runtime is deployed over cloud platform with interfaces not only at the service level

but also at the platform level. Clients for mapping generation as bridge ontology use an SOA-

based ontology matching service to submit their matching requests. Semantic web and ontology

matching algorithm experts use platform level Matchable interface to plug-in their matching al-

gorithms. These algorithms are executed over parallelism-enabled cloud platform with above

proposed performance-gain strategies. By this resolution, an author of the matching algorithm

needs not to provide any parallel code within the implementation of the matching algorithm.

Presented methodology has been comprehensively evaluated with dataset of real world ontolo-

CHAPTER 1. INTRODUCTION 14

gies from diverse knowledge domains, having various sizes and complexities. Matching problems

used for evaluation on these ontologies are carefully curated and particularly designed by Ontol-

ogy Alignment Evaluation Initiative (OAEI) for evaluation of ontology matching systems. Pre-

sented methodology has been implemented as a runtime for our ontology matching system called

SPHeRe (System for Parallel and Heterogeneity Resolution). For ontologies from Anatomy track

(Adult Mouse Anatomy with human anatomy part of NCI Thesaurus), SPHeRe has been able to

achieve an impressive performance speedup of 4 times over the desktop and 5 times over the cloud

platform (single-node). For ontologies from Library track, SPHeRe has been able to achieve an

impressive performance speedup of 3.9 times over the desktop and 6.3 times over the cloud plat-

form (single-node). For all six tasks of Large Biomedical Ontologies track, SPHeRe has been

able to achieve an impressive performance speedup of 4.4, 4.7, and 5.3 times over the desktop and

6.5, 7.5, and 7.25 times over the cloud platform for tasks 1, 3, and 5 respectively (single-node).

For tasks 2, 4, and 6, SPHeRe has been able to achieve an impressive performance speedup of

14.65, 15.64, and 15.19 times over desktop and 21.6, 21, and 21.93 times over cloud platform

respectively (multi-node). We have further evaluated SPHeRe with small ontologies from Con-

ference track over a dual-core Microsoft Azure public cloud virtual machine. We have executed

12 different tasks from this track and recorded an average performance speedup of 1.25 times.

Furthermore, we have compared SPHeRe with GOMMA’s [45] parallel matching techniques. For

large category, SPHeRe outperforms intra-matcher by 5.2% on desktop and 55% over cloud plat-

form. For very large category, SPHeRe outperforms intra-matcher by 4.6% on desktop and 47.7%

over cloud platform. SPHeRe also outperforms Intra&Inter multi-node matcher by 12.8%.

1.3 Thesis Organization

This dissertation is organized into chapters as following.

• Chapter 1: Introduction. Chapter 1 provides introduction of the research work on ontol-

ogy matching and its performance bottleneck. Furthermore, it provides a review of current

approaches for ontology matching performance resolutions. This chapter focuses on the

problems in the area of performance during ontology matching process and discusses the

CHAPTER 1. INTRODUCTION 15

objectives for the resolution from a multi-dimensional prospective.

• Chapter 2: Related Work. The background detail is provided in this chapter about the

ontology matching techniques and approaches where performance has been given a vital

importance. Systems and techniques built from generic to specific ontology matching prob-

lems are reviewed with the limitations in contrast with proposed methodology.

• Chapter 3: Effectiveness-independent Performance-gain in Ontology Matching. This

chapter describes the proposed methodology for memory space reduction and effectiveness-

independent performance-gain by parallel and distributed matching. This chapter also pro-

vides overview of the concepts used in the thesis related to proposed methodology.

• Chapter 4: Performance-based Ontology Matching Runtime. This section presents a

comprehensive runtime implemented for performance-based ontology matching using the

approaches from chapter 3 as foundation steps. Details regarding the execution steps and

technical implementation aspects of participating components is also presented in this chap-

ter.

• Chapter 5: Ontology Matching as a Service and a Platform. This section extends the

implementation of Performance-based Ontology Matching Runtime as a Service and a Plat-

form. The runtime is deployed over cloud platform and used by clients for bridge ontology

and semantic web experts for their ontology matching algorithm evaluation.

• Chapter 6: Evaluations and Discussion. The evaluations performed on the presented

methodology are comprehensively described and discussed in this chapter. OAEI’s standard

datasets are used for this comprehensive evaluation.

• Chapter 7: Conclusion and Future Directions. This chapter concludes the thesis and also

provides future directions in this research area. The main contribution of the thesis is also

highlighted in this chapter.

Chapter 2
Related Work

Nowadays, Internet has grown to become a huge public resource for large and ever-growing het-

erogeneous data [46]. This excess of knowledge provides a great opportunity for integration by

heterogeneity resolution; consequently, researchers have developed ontology matching systems

and techniques. As our work is related to performance, In this section we have discussed perfor-

mance aspect of two types of ontology matching systems, i.e, generic ontology matching systems

and ontology matching systems implemented in particular for biomedical ontologies due to their

usage, complexity, and size. Furthermore, we have also discussed candidate parallel techniques

and their feasibility for ontology matching.

2.1 Generic Ontology Matching Systems, Tools, and Techniques

From the technique perspective, a considerable amount of research has been done towards opti-

mizing ontology matching algorithms for better performance [20]. Consequently, various struc-

tural partitioning approaches for ontologies have emerged. Falcon-AO [47], a famous ontology

matching tool provides a divide-and-conquer approach called PBM [48]. Similarly, an ontology

segmentation approach called Anchor-Flood is proposed by [49]. However, in both of these tech-

niques, performance is coupled with the complexity of the partitioning approach. None of these

techniques benefits from readily available parallelism-enabled platforms for ontology matching.

Among the generic ontology matching strategies and systems, multi-agent systems based on

the semantic negotiation have also been proposed in [50] and [51]. These works are based on se-

mantic negotiation protocols HISENE [52] and HISENE2 [53]. In [50], an algorithm is proposed

to compute the ontology-based similarity and an agent-based system to perform this computation

in a distributed fashion called clustering method. For agent deployment, JADE (Java Agent DE-

16

CHAPTER 2. RELATED WORK 17

velopment Framework) [54] is utilized. Although the semantic negotiation has shown promising

results in efficiency; however, its performance is dependent on the amount of communication over

an asynchronous message passing protocol, required for negotiation between distributed agents.

In case of a homogenous cluster of agents, this mechanism is efficient; however, in case of in-

creased heterogeneity the communication among the agents will increase, adding the network I/O

overhead. In a decentralization approach proposed in [51], the communication cost for large multi-

agent systems has been reduced but the semantic negotiation is a learning process that is based on

strong collaboration among agents over iterative communication. Thus, communication overhead

can be reduced but will fluctuate during the ontology evolution. Furthermore, behavior scheduling

of an agent is not pre-emptive, making an agent to be a single Java threaded instance [54] . Al-

though this can be efficient in limited computational resource environment, but under-utilization

of computational resources in current multicore systems.

In current state-of-the-art generic ontology matching systems, i.e., AgrMaker [35], LogMap

[33], and GOMMA [45], performance has been given a considerable focus to complement accu-

racy of these systems.

2.1.1 Falcon-AO

Ontology Matching has been an area of interest for researchers in the last decade. Many tools

and techniques have evolved over the years. From techniques perspective, considerable amount

of research has been driven towards optimization of ontology matching algorithms for better per-

formance [20]. Consequently, various structural partitioning approaches have emerged. Falcon-

AO [31], a famous tool for ontology matching proposes an effective divide-and-conquer approach

called PBM [31]. Similarly a segmentation approach called Anchor-Flood is proposed by [32].

However, [31] and [32] does not benefit from the exploitation of newer hardware for ontology

matching. For better performance during ontology matching, implementation of parallelism over

multicore platform like cloud has been missed.

CHAPTER 2. RELATED WORK 18

2.1.2 Agreement Maker

AgrMaker with its effectiveness-dependent performance-gain implementation tightly integrates

matching algorithms and the system’s user interface and relies on user interactions and feedback.

Performance of AgrMaker depends upon the iterative execution of matching algorithms as the

sample set for the following matching algorithms gets reduced. However, with no parallelism at

all, baseline performance of AgrMaker depends upon the complexity of the first matching algo-

rithm. From OAEI 2011.5 campaign, AgrMaker scored highest precision but lagged over perfor-

mance. It did not participate in 2012 and 2013s OAEI campaign.

2.1.3 LogMap

Analogous to AgrMaker, LogMap is another generic ontology matching system. Its implementa-

tion is claimed as highly scalable from the perspective of ontology matching; however, this scala-

bility is not of any parallel or distributed nature. From the anatomy of LogMap described in [33],

it is clear that LogMap is based on a step-by-step matching process (from the lexical indexation

to compute overlapping) with a core iterative process for mapping repair and discovery. Although

it uses highly optimized data structures for lexical and structural indexing, the whole matching

process is sequential in nature. The performance of the system varies with the effectiveness of the

matching process; thus, accuracy of the system cannot be preserved for performance-gain.

2.1.4 AROMA

AROMA, as described in [34], is a simple and adaptable ontology matching tool which utilizes

Knowledge Discovery in Databases (KDD) [55] model. AROMA itself does not implement any

concurrency control; however, KDD discusses parallel clustering technique for incremental dis-

covery of rules and structures in [56]. A presumption can be driven that such an implementation

might be utilized by AROMA which in-fact contributes to its better reduction score, though [34]

fails to mention any parallelism or concurrency involved for the benefit of AROMA’s performance.

CHAPTER 2. RELATED WORK 19

2.1.5 GOMMA

GOMMA is another ontology matching tool that is considered the most performance efficient.

The researchers of GOMMA understand the benefit of parallelism-enabled platforms and pro-

vide an effectiveness-independent performance-gain implementation in [57] and [20]. In [57],

authors acknowledge the fact that very little research has been performed in devising parallelism

for matching problems; furthermore, it describes size-based partitioning scheme to perform paral-

lel matching. Research presented in [57] discusses entity matching in general. However, in [20],

authors specifically discuss parallelism techniques pertaining to life science ontologies. They

propose inter- and intra-matcher parallelism techniques, which uses parallel and distributed in-

frastructure for ontology matching to improve performance. Inter-matcher parallelism processes

independent matchers on a parallel platform. However, as acknowledged by the authors, inter-

matcher has memory requirements as matchers evaluate on complete ontologies creating memory

strains during execution. In this case, a matcher thread is loading the ontology information which

may not be required for its matching algorithm (e.g., a synonym-based matcher does not require

ontology’s structure information). On the other hand, intra-matcher parallelism deals with the de-

composition of ontology resources into several finer parts with limited complexity so that matcher

on these parts can be executed in parallel (e.g., tokenization of concept names). However, defining

the granularity for decomposition is not a one-size-fits-all solution. Some ontology concepts may

not require to be decomposed. In this case, parallelism technique becomes subjective to the com-

plexity of the ontology resource. By over or under decomposing ontology resources can end up

inflicting performance degradation instead. Moreover, neither inter- nor intra-matcher guarantees

the optimal computational resource utilization and ontologies used for their evaluation are only of

smaller to medium size, i.e., AdultMouseAnatomy MA (2,737 concepts) with anatomical part of

NCI Thesaurus (3,289 concepts) and two GO sub-ontologies Molecular Function (9,395 concepts)

with Biological Processes (17,104 concepts).

CHAPTER 2. RELATED WORK 20

2.2 Biomedical Ontology Matching

Due to the excessive utilization of ontologies in biomedical and bioinformatics, some of the on-

tology matching systems are developed particularly for matching biomedical ontologies [58].

2.2.1 SAMBO

Among them, SAMBO [59] is a pioneering system which provides a framework for aligning

and merging biomedical ontologies. SAMBO’s implementation is focused towards its matcher

algorithms, i.e., a terminological matcher that uses WordNet [60] as thesaurus, a structural matcher

that matches the hierarchies, a domain knowledge matcher that uses UMLS as Meta-thesaurus, a

learning matcher that generates PubMed [61] abstracts for alignments, and a combination matcher

for using more than one matcher for an integrated execution. Despite the fact that integration with

third-party thesauri and resources is highly beneficial for the effectiveness, slow nature of these

resources creates performance bottlenecks while matching over millions of concepts. Besides

that, SAMBO’s sequential nature of execution, limits its abilities to overcome its performance

bottlenecks with better and parallel platforms. In [59], authors failed to mention any performance

related aspect of SAMBO while integrating third-party resources. Furthermore, authors have used

very small subsets of biomedical ontologies GO (57 and 73 terms) with SigO (10 and 17 terms)

[62], and MeSH (15, 39, and 45 terms) [63] with MA (18, 77, and 112 terms) [27] for system

evaluation and have not provided any benchmarks regarding large-scale biomedical ontologies.

However, results of OAEI 2008 [64] provides performance evaluation of SAMBO, it took 12

hours to complete the anatomy track of biomedical ontologies NCI and MA.

Similar to SAMBO, a hybrid ontology matching strategy for biomedical ontologies is ex-

plained in [65]. This technique also utilizes UMLS thesaurus for lexical matching during its

sequential execution. The authors failed to mention any aspect related to performance and reper-

cussions associated while using a third-party thesaurus.

CHAPTER 2. RELATED WORK 21

2.2.2 ASMOV

Another ontology matching system with the motivation of producing alignments for biomedical

ontologies is ASMOV [46]. With its effectiveness dependent performance, authors of [46] ac-

knowledged that effort is required to improve the computational complexity of the system. With

high coupling between ASMOV’s performance and computational complexity of matching al-

gorithms and its sequential execution, it is incongruous for ASMOV to avail any performance

benefits from parallel platforms. Evaluation of ASMOV is provided in [46]. It is evaluated over

anatomy parts of NCI (3304 classes) with Adult Mouse Anatomy (2744 classes) which are far

smaller subset of biomedical ontologies. Even for such a small matching task, ASMOV took 3

hours to complete the matching process.

2.2.3 ServOMap

ServOMap [66] is another biomedical ontology matching system but built with the motivation of

matching large-scale biomedical ontologies. Instead of using lexical resources like WordNet and

UMLS, ServOMap relies on information retrieval and an ontology repository technique. Ontology

repository acts as a server of semantic indexes that later contributes to perform similarity opera-

tions between ontology entities. Moreover, ServOMap uses lexical and context-based matching

algorithms for mapping generation. ServOMap has been able to record better performance over

large-scale biomedical ontologies FMA, NCI, and SNOMED-CT; however, from [66] it is under-

stood that this performance gain is because of the absence of third-party resources and thesauri.

ServOMap does not implement any performance gain techniques that can exploit parallelism over

available multicore platforms for the benefit of large-scale biomedical ontology matching.

2.3 Candidate platforms for Parallel Ontology Matching

2.3.1 Big Data for Ontology Matching

From the perspective of data parallelism over distributed platforms, BigData technologies like

Hadoop with its MapReduce programming model, queries over distributed data with larger vol-

umes. From this regard, it can be considered as a candidate technology for ontology matching;

CHAPTER 2. RELATED WORK 22

however, the performance benefits of Hadoop and MapReduce are primarily coupled with two

aspects, i.e., the size of the data that is typically in gigabytes and terabytes [67] and the structure

of the data as Hadoop is unsuitable in situations where structure of the data is important as the

data itself [68]. The ideal size of single chunk of data in Hadoop is 64 MB, which is relatively

equal to whole larger-size ontologies; for example, large-scale biomedical ontologies like FMA

= 46 MB, NCI = 50 MB, SNOMED extended = 142.6 MB, making an ontology too small to be

distributed over HDFS (Hadoop File System). If distributed, it will inflict performance degrada-

tion instead. Furthermore, Hadoop is built for unstructured data, distributed in binary format over

participating nodes. On the other hand, ontologies are graph like constructs. During matching,

relationships among the ontology resources are of vital importance; in case of the binary distribu-

tion these relationships are lost. To preserve these relationships, the resources need to be labeled

prior to distribution, adding an additional storage and processing overhead. In MapReduce, map-

pers have to classify whether an incoming ontology resource belongs to which candidate ontol-

ogy before matching in the reducers at runtime, adding more processing overhead and increased

memory footprint. In our experiments, Hadoop-MapReduce based matching has shown 5 times

slower performance in contrast with our proposed system due to the stated reasons. From these

aspects, Hadoop and Hadoop-like solutions (e.g., CloudBLAST [69]) are unsuitable for the ontol-

ogy matching problem. Moreover, Hadoop-MapReduce has yet to be equipped with an efficient

RDF and OWL plugin. Projects like Reasoning-Hadoop [70], Heart [71], and Hadoop Distributed

RDF Store (HDRS) [72] have yet to prove their efficiency and performance.

2.3.2 Flynn’s Taxonomy and Ontology Matching

Parallel ontology matching has been theoretically discussed in [37]. It provides a generic ontology

distribution mechanism for selecting a priority ontology and matching it with other candidate

ontologies over participating nodes. For parallelization, authors propose the data distribution from

the standard parallelization provided by Flynn’s taxonomy [73], i.e., SCMD, MCSD, and MCMD.

For actual parallel implementation, authors recommend generic techniques like Message Passing

and Hadoop-MapReduce. The limitations of both of these approaches in perspective of ontology

matching have been discussed earlier; furthermore, [37] fails to provide any details of how an

CHAPTER 2. RELATED WORK 23

ontology matching system should be using Message Passing middleware or Hadoop-MapReduce

platform. Also, it does not provide any evaluation to complement the proposed theoretical details.

In contrast with the above-mentioned techniques and systems, our proposed methodology

implements data parallelism over parallelism-enabled platforms for effectiveness-independent

performance-gain during ontology matching. It decomposes complex ontologies into smaller and

simpler resource-based scalable subsets depending upon the needs of the matching algorithms.

These subsets are serialized to preserve the parsing effort for future matching requests of the same

ontologies and their usage reduces memory strains during execution as subsets required by the

matching algorithms are loaded instead of whole ontologies. Furthermore, our approach aligns

the execution of matching algorithms to minimize the matching space; consequently, contributing

in performance-gain by large. Our methodology also provides three levels of abstraction for the

distribution of matching process, enabling every computing resource to be used at a finer level

for effectiveness-independent parallel matching. Equal number of independent matching tasks is

assigned to all matching jobs, reducing the chances of idle cores and ensuring the optimal utiliza-

tion of computing cores during execution. Moreover, the proposed methodology is implemented

as a performance-based ontology matching runtime and exposed at service and platform level for

usage.

Chapter 3
Effectiveness-independent Performance-gain in Ontology

Matching

This chapter provides details regarding the two foundation dimensions, i.e., space and time,

catered by the presented methodology for an effectiveness-independent performance-gain in on-

tology matching process.

3.1 Memory Footprint Reduction

The space dimension of ontology matching performance is catered by the presented methodology

with two approaches, i.e., Ontology subset generation and eager space reduction technique.

3.1.1 Matching Algorithm-based Ontology Subset Generation

By default ontologies are not scalable structures from the perspective of performance ([74], [75],

and [76]). Therefore, the ontology subset generation approach is proposed where candidate on-

tologies (Source Ontology: OS) and (Target Ontology: OT) are converted into simple subsets with

performance and scalability-friendly data structures. These subsets are generated depending upon

the needs of the matching algorithms making them encapsulated and independent (equation 3.1,

3.2, and 3.3).

i ∈ Algorithms : Algorithms = {String, Label, Properties, ..., Child} (3.1)

24

CHAPTER 3. EFFECTIVENESS-INDEPENDENT PERFORMANCE-GAIN IN ONTOLOGY MATCHING 25

Source Ontology

Concept Relationships Properties Labels

String-
based

concept
Matcher

Child-based
Structural
Matcher

Properties
Matcher

Label
Matcher

Target Ontology

Concept Relationships Properties Labels

Ontology
Matching
Process

Figure 3.1: Algorithm-based Ontology Subsets for Matching

Oi
x ← f i (Ox) : x ∈ {source : s, target : t} (3.2)

Ox =
n⋃

j=1

Oj
x : n = NumberOfAlgorithms (3.3)

For example, consider a matching process between two candidate ontologies (source and tar-

CHAPTER 3. EFFECTIVENESS-INDEPENDENT PERFORMANCE-GAIN IN ONTOLOGY MATCHING 26

get) as illustrated in Fig 3.1. To complete the whole matching process, a library consisting upon

four matching algorithms (string-based concept matcher, child-based structural matcher, proper-

ties matcher, and label matcher) is evaluated over candidate ontologies. Instead of loading whole

ontologies four times, presented approach creates subsets of candidate ontologies and loads the

required subset(s) needed for matching algorithm to execute. String-based concept matching al-

gorithm for concept names only requires a linear data structure of concepts. As a result, two

subsets of candidate ontologies with only concept names will be loaded in the memory. At any

given execution of matching algorithm, the memory of the runtime will host the subset(s) required

based on the needs of the current matching algorithm. Accessing ontology resources from these

subsets is significantly faster due to their smaller size, independent nature, and data structures that

can be readily partitioned. This approach effectively contributes in overall performance-gain espe-

cially when matching large-scale ontologies. Theoretical evidence regarding the completeness of

this matching algorithm based subset generation is provided by the following theorem (Theorem

3.1.1).

Theorem 3.1.1 For a candidate ontology OS with N subsets, if a set of Algorithms A completely

matches OS with OT and produces the Accurate bridge Ontology OB , then the generation of the

subsets provide no loss of required ontology information for matching

Proof Consider a candidate ontology OS to be completely matched with OT by a set of matching

algorithms A.

OS has x subsets such that for every algorithm a∃n. Although n1 ∪ n2 ∪ n3..nx ⊆ OS; however,

as (A) 7→ Bridge Ontology OB . Thus, generation of N subsets provide adequate ontology infor-

mation.

Conclusively, Generating the subsets according to the matching algorithms for an accurate bridge

ontology provides no loss of ontology information

In the experiments, working with ontology subsets instead of whole ontologies for match-

ing, we have recorded as much as 8 times faster ontology resource loading with 4 times smaller

memory footprint. These subsets are serialized and persisted in repositories, preventing the re-

generation of ontology subsets for already serialized ontologies for future matching requests.

CHAPTER 3. EFFECTIVENESS-INDEPENDENT PERFORMANCE-GAIN IN ONTOLOGY MATCHING 27

String-
based
Matcher

Child-
based

Structural
Matcher

- +

Figure 3.2: Eager Matching Space Reduction

3.1.2 Eager Matching Space Reduction

Apart from matching algorithm-based subset generation, presented methodology proposes eager

matching space reduction approach. This approach aligns the execution of matching algorithms to

minimize the matching space for every following matching algorithm execution (equation 3.4 and

3.5).

O1
b ← (m× n)i=1 ∀ i ∈ Algorithms, m ∈ Oi

s & n ∈ Oi
t (3.4)

OB ←
t⋃

i=2

((
mi −

(
mi ∩Oi−1

b

))
×
(
ni −

(
ni ∩Oi−1

b

)))
| Oi

b ≥ Oi+1
b (3.5)

As illustrated in Fig 3.2, a matching process with two matching algorithms is described where

element-level string-based matching algorithm determines more matching results than structural-

level child-based matching algorithm. Therefore, string-based algorithm is executed first and gen-

CHAPTER 3. EFFECTIVENESS-INDEPENDENT PERFORMANCE-GAIN IN ONTOLOGY MATCHING 28

erates its intermediate bridge ontology (ON
b). In the following execution (child-based), ontology

resources that are already matched and now part of ON
b are removed from ontology subsets, gen-

erating much smaller subsets (OC
s and OC

t) prior to matching. By this method, the number of

expensive matching operations is reduced as they only execute on ontology resources that are

still unmatched; consequently, reducing the matching space, eliminating chances of redundant

matching task, and improving overall matching performance during run-time. Furthermore, this

approach also eliminates the chances of redundant matches in the final bridge ontology (OB).

Theoretical evidence for reduced matching space by the presented approach is provided by the

following theorem (Theorem 3.1.2).

Theorem 3.1.2 For a matching space of n matching tasks (MTn), matched by a set of Algorithms

A. If intermediate bridge ontology Ob is subtracted from MTn then every following execution of

an algorithm will have a reduced matching space.

Proof Consider a matching space MTn, matched by a set of Algorithms A.

For A1, intermediate bridge ontology is f(m × n)1 = O1
b . For following executions of A, the

concepts yet to be matched in source ontology OS are mi − (mi ∩ Oi−1
b), Similarly the concepts

yet to be matched in target ontology OT are ni − (ni ∩ Oi−1
b). For every Oi

b ≥ Oi+1
b , f(mi −

(mi ∩Oi−1
b)× ni − (ni ∩Oi−1

b)) < f(mi − (mi ∩Oi
b)× ni − (ni ∩Oi

b))

Conclusively, By Eager Matching space reduction every following matching algorithm will execute

on a smaller matching space

3.2 Parallel and Distributed Ontology Matching

The time dimension of ontology matching is catered by the presented methodology with parallel

and distributed matching. The primary objective of this approach is to implement effectiveness-

independent performance-gain by drawing abstractions over the ontology matching process. De-

pending upon these abstractions the matching process is distributed among available computing

resources for parallel and distributed matching. These abstractions are drawn from higher to a

primitive level such that an independent execution can invoke any matching algorithm without

inflicting a change in the implementation of the algorithm.

CHAPTER 3. EFFECTIVENESS-INDEPENDENT PERFORMANCE-GAIN IN ONTOLOGY MATCHING 29

3.2.1 Matching Task

Matching Task (MT) is the unit of the matching process; defined as, a single independent execution

of a matching algorithm over a resource from source (OS) and target ontologies (OT). These

matching tasks are distributed over available computing cores and become the foundation of our

data parallelism based parallel and distributed ontology matching. Equations (3.6, 3.7, and 3.8)

describe this distribution

MT i ∩MT i+1 ∩MT i+2.... ∩MTn = ∅ (3.6)

MT Total ≥ m× n ∀ m ∈ OS & n ∈ OT (3.7)

MTCore ←
MTTotal

CoresTotal
(3.8)

A primitive example of MT is illustration in Fig 3.3, where a concept C0 of a source ontology

is matched with C0 of target ontology. Four independent matching tasks perform the complete

matching process, i.e., MT1, MT2, and MT3 perform element-level string-based, properties-

based, and annotation-based matching respectively andMT4 performs structural-level child-based

relationship matching. All these matching tasks are mapped to individual cores available in a

single- (e.g., multicore desktop) or multi-node parallel platforms (e.g., cloud).

In a single-node, all the matching tasks execute within the computational capacity the node

offers. On multi-node platform, the request receiving node becomes the primary node, and it com-

municates with other participating (secondary) node(s) by sending and receiving control messages

for distributed matching.

Apart from gaining performance from parallel and distributed matching, the independent na-

ture of the matching tasks benefits the ontology matching process by avoiding the inter-matching

CHAPTER 3. EFFECTIVENESS-INDEPENDENT PERFORMANCE-GAIN IN ONTOLOGY MATCHING 30

C0

C1

C2

A0A1A2

P0P1
C0

C1
C3

A0A1

P0 P1

C2

P2

MT1

MT2

MT3

MT4

Source Ontology
Target Ontology

Figure 3.3: Matching Tasks between two concepts of Candidate Ontologies

communication during execution of a matching algorithm. With zero communication overhead,

no matching task waits for any other task to be completed. Theoretical evidence of this approach

is provided by the following theorem (Theorem 3.2.1).

Theorem 3.2.1 For a matching process of n independent matching tasks in a distributed environ-

ment, if matching tasks are independent, then the communication overhead is none

Proof Consider a matching process of candidate ontologies OS and OT with n matching tasks

(MT) to be completed.

As all the matching tasks are independent, i.e., MT1 ⊥ MT2 ⊥ MT3, . ⊥ MTn. A matching

job (MJx) collection of MTx ⊆ MT . Intersection of multiple matching job MTx ∩MTy = φ ,

Thus a matching process based on independent matching jobs having independent matching tasks

require no dependency among themselves whether on same machine or another.

Conclusively, Set of independent matching tasks in a matching process with require zero or no

communication between participating nodes or jobs.

CHAPTER 3. EFFECTIVENESS-INDEPENDENT PERFORMANCE-GAIN IN ONTOLOGY MATCHING 31

Parallel and Distributed Matching

Matching Request
Matching Request

Matching Request
{ Matching Job

Matching Job

Matching Job
{Matching Task

Matching Task

Matching Task

Level - 1
AbstractionsLevel - 2

AbstractionsLevel - 3
Abstractions

1
2

#nodes

1
2

#cores

1
2

n
: :

:

{

core
X

Su
bs

et

G
en

er
at

io
n

Ag
gr

eg
at

io
n]

Figure 3.4: Matching Abstractions for Parallel and Distributed Matching

3.2.2 Matching Process Abstractions

Depending upon the available computing resources, abstractions are defined on the ontology

matching process. Data parallelism, being the foundation of presented parallel and distributed

matching approach, requires each processing core to perform the matching task on a separate piece

of candidate ontologies. To enable this, the total number of matching tasks is determined from se-

rialized subsets of ontologies. As illustrated in Fig 3.4, by distribution abstractions over matching

process, these matching tasks are distributed among the participating nodes as matching requests

(single request per node) and their cores (single job per core). As described in equation 3.8, num-

ber of matching tasks across all matching jobs is equal. This strategy ensures the reduced chances

of having an idle processing core during later stages of parallel matching and optimal computing

resource utilization. Due to size based partitioning, in case of uneven distribution, the number of

undistributed matchable tasks will always be less than the amount of computing resources. These

undistributed tasks can be matched by any matching job within the matching process. Theorem

3.2.2 and corollary 3.2.3, and theorem 3.2.4 and corollary 3.2.5 provide theoretical evidence for

this approach.

CHAPTER 3. EFFECTIVENESS-INDEPENDENT PERFORMANCE-GAIN IN ONTOLOGY MATCHING 32

Theorem 3.2.2 For all matching problems on a single-node multicore platform, if total ontology

matching tasks (MTT) ≥ available computing cores (CT) then a Multicore distribution algorithm

distributes no more than MTT /CT +R, matching tasks per core where 0 < R < CT

Proof Consider a participating node P with CT number of cores.

Candidate ontologiesOS andOT with m and n matchable concepts respectively have total match-

ing tasks (MTT = m × n). Distribution of MTT over P is MTT /CT = matching task per core

MTpC + remainderR, where 0 ≤ R < CT

Conclusively, All cores will have no more than MTT /CT +R Matching Tasks to compare

Corollary 3.2.3 For Large scale matching problems on a single-node multicore platform, if total

ontology matching tasks (MTT) >> available computing cores (CT) then a multicore distribu-

tion algorithm distributes the matching tasks evenly.

Proof From Theorem 3.1.4, Distribution of MTT over P is MTT /CT= Matching Task per Core

MTpC + remainder R. If CT << MTT => R << CT , thusR << MTT , The Computational

Cost of R is so small in MTpC +R such that it can be ignored, thus MTT /CT =MTpC.

Conclusively, For very large scale matching problems, Multicore Distribution distributes all

matching tasks even between the computing cores

Theorem 3.2.4 For all matching problems on a multi-node multicore platform, if total ontology

matching tasks (MTT) ≥ available computing cores (NT) then a Multi-node distribution algo-

rithm distributes no more than MTT /NT +R, matching tasks per node where 0 < R <
∑N

1 CT

Proof Consider a multi-node platform with participating nodes N. having CT number of cores =∑
CT .

Candidate ontologiesOS andOT with m and n matchable concepts as total respectively have total

matching tasks (MTT = mxn).Distribution of MTT over N is MTT /CT = matching task per

core per node MTpCpN + remainder R, where 0 ≤ R < CT

Conclusively, All cores will have no more than MTT /CT +R Matching Tasks to compare

CHAPTER 3. EFFECTIVENESS-INDEPENDENT PERFORMANCE-GAIN IN ONTOLOGY MATCHING 33

Corollary 3.2.5 For Large scale matching problems on a multi-node multicore platform, if to-

tal ontology matching tasks (MTT) >> available computing cores
∑

(CT) then a multi-node

distribution algorithm distributes the matching tasks evenly.

Proof From Theorem 3.1.6, Distribution of MTT over N is MTT /CT= Matching Task per Node

MTpCpN + remainder R. If CT << MTT => R << CT , thusR << MTT , The Computational

Cost of R is so small in MTpCpN +R such that it can be ignored, thus MTT /CT =MTpC.

Conclusively, For very large scale matching problems, Multi-node Distribution distributes all

matching tasks even between the computing cores of participating nodes

On a single-node parallel platform, matching tasks are only distributed among existing cores

as matching jobs; however, on a multi-node parallel platform, distribution is among the partici-

pating nodes as matching requests. Each set of matching tasks is assigned to a computing core

with knowledge of the matching algorithm to be executed on them. Subsequently, all cores in par-

ticipating nodes are invoked in parallel for the matching process. Following equations (3.9, 3.10,

3.11, and 3.12) describe this distribution abstraction implemented by presented methodology:

MR←
n∑

i=1

MRi : n = TotalNodes (3.9)

MRi ←
c∑

i=1

MJ i : c = TotalCoresPerNode (3.10)

MJ i ←

{
t⋃

i=1

MT i

}
: t = TotalTasksPerCore (3.11)

MT i ← m× n ∀ m ∈ OS & n ∈ OT (3.12)

CHAPTER 3. EFFECTIVENESS-INDEPENDENT PERFORMANCE-GAIN IN ONTOLOGY MATCHING 34

After completion of parallel and distributed matching, i.e., all the parallel matchers have fin-

ished their respective matching jobs over their assigned cores in a single- or multi-node platform,

aggregation of all bridge instances is invoked. For this step, all the matched results are aggregated

and the final mediation bridge ontology is generated. In a multi-node platform, the primary node

waits for all the secondary nodes to submit their match results before generating the aggregated

bridge ontology. Following equations (3.13, 3.14, and 3.15) describe this process in a multi-node

platform.

OJob
b ←

t⋃
i=1

(m× n)i : m× n 6= ∅, t = TotalTasksPerCore (3.13)

ONode
b ←

j∑
i=1

OJob=i
b : j = TotalJobsPerNode (3.14)

OB ←
n∑

i=1

ONode=i
b : n = TotalNodes (3.15)

On a single-node platform, where utilization of computing resources scales down to multicore,

generation of mediation bridge ontology is a two-step process (described in equations 3.16 and

3.17):

OJob
b ←

t⋃
i=1

(m× n)i : m× n 6= ∅, t = TotalTasksPerCore (3.16)

OB ←
j∑

i=1

OJob=i
b : j = TotalJobs (3.17)

Firstly, results of matching tasks are combined (
⋃

) to become an intermediate bridge ontology

CHAPTER 3. EFFECTIVENESS-INDEPENDENT PERFORMANCE-GAIN IN ONTOLOGY MATCHING 35

per matching job. Secondly, these intermediate bridge ontologies are accumulated (
∑

) to generate

a formal mediation bridge ontology (OB). The finalized OB is delivered to the client as the

matching response.

3.3 Summary

This chapter presented the overview of the two approaches dealing with space and time dimensions

of effectiveness-independent performance-based ontology matching methodology. For space,

presented methodology provides resolutions for reduced memory footprint during the ontology

matching process. For time, presented methodology provides a data parallel approach with ab-

stractions over the matching process for parallel and distributed ontology matching. In both reso-

lutions, accuracy of the ontology matching process has been preserved as performance is gained

by effective resource utilization.

These approaches becomes the foundation for the implementation of the comprehensive High

Performance Ontology Matching Runtime presented in chapter 4.

Chapter 4
Performance-based Ontology Matching Runtime

This chapter covers the third dimension of the presented methodology, i.e., performance-based

ontology matching runtime. In this chapter implementation details of the runtime based upon the

space and time resolutions of our methodology are discussed. This includes the overall execution

flow, the stack design of the runtime and the details regarding its core components. This runtime

is implemented and incorporated as the core of our ontology matching system called SPHeRe.

4.1 SPHeRe: System for Parallel Heterogeneity Resolution

SPHeRe is an implementation of computation intensive data parallelism, i.e., each processing core

performs ontology matching on a separate piece of candidate ontologies. Matching algorithm ex-

ecutes across multiple cores and processors over parallel computing platforms. For performance

improvement, SPHeRe implements parallelism at operational level, i.e., ontologies are not just

matched in parallel, they are loaded, parsed, cached, and delivered in parallel too. Fig 4.1 il-

lustrates the multiphase design of SPHeRe’s execution flow and table 4.1 describes the notations

used. From left to right, it can be seen that system’s execution has been divided into 3 phases: (i)

Pre-Matching; (ii) Parallel Matching; and (iii) Post-Matching. All phases are equipped with com-

ponents to perform parallel operations according to the requirements of the running tasks. This

design eases the development and addition of newer components by following the standard input

output interfaces among all the phases. Functionalities of each phase are described in following

subsections.

36

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 37

Table 4.1: Terminologies and Notations used
Notation Description
OS Source Ontology provided by the user for

matching
OT Target Ontology provided by the user for

matching
OX |x ∈ {s, t} Candidate Ontologies, set of ontologies to be

matched
O′

xC |x ∈ {s, t},O′
xC ⊆ Ox Serialized subset of candidate ontologies, col-

lection of concept names
O′

xH |x ∈ {s, t},O′
xH ⊆ Ox Serialized subset of candidate ontologies, Hi-

erarchical data structure of concepts describ-
ing relationships

O′
xL |x ∈ {s, t},O′

xL ⊆ Ox Serialized subset of candidate ontologies, col-
lection of concepts with labels

O′
xP |x ∈ {s, t},O′

xP ⊆ Ox Serialized subset of candidate ontologies, col-
lection of concepts with properties

O′
s = O′

sC ∪O′
sH ∪O′

sL ∪O′
sP ∪O′

sn Parsed source ontology, serialized to be per-
sisted in ontology cache

O′
t = O′

tC ∪ O′
tH ∪ O′

tL ∪ O′
sP ∪ O′

sn Parsed target ontology, serialized to be per-
sisted in ontology cache

Oi Updated ontology instance to be serialized
and persisted in ontology cache

Ti Thesaurus instance to be used for matching
Ai Matching algorithm instance
Sw,m Word-match set
Mr Matched results, mappings between candidate

ontologies
OB Bridge Ontology
O′

B Aggregated Bridge Ontology from various
matching algorithms and computing nodes

mc Control Message sent to participating nodes

4.2 Execution Phases

4.2.1 Phase-I: Pre-Matching

Source (OS) and target (OT) ontologies are provided to the system either by using SPHeRe’s web-

based UI or SPHeRe’s ontology matching web-service. These ontologies are loaded in parallel by

multithreaded ontology load interface (OLI). OLI is responsible for parallel loading of candidate

ontologies (Ox), OWL file parsing to create object model (ontology model), and ontology model

serialization and deserialization tasks. Prior to any parallel matching, necessity is a performance

friendly and thread-safe ontology representation. Without such representation, data parallelism

over multithreaded execution in Phase II cannot be achieved. OLI’s parser owns this responsi-

bility by generating a thread-safe performance friendly ontology model object. This ontology

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 38

Deserializer
Thread

Deserializer
Thread

Deserializer
Thread

Deserializer
Thread

Serializer
Thread

Serializer
Thread

Serializer
Thread

Serializer
Thread

Serializer
Threads

Matcher
Thread

Matcher
Thread

Ontology Load
Interface (OLI)

Serializer
Threads

Ontology
Cache

Deserializer
Threads

Deserializer
Thread

Ontology
Distribution

Interface (ODI)

Ontology
Accumulation
Interface (OAI)

Delievery

Ot

Os

O't

O's
OB

OB

OtOs

Phase I. Pre-Matching Phase II. Parallel Matching Phase III. Post-Matching

Update
Manager

Matcher
Threads

Thesaurus
Interface

Matcher
Interface

Matcher
Thread

Matcher
Thread

Matcher
Algorithms

wordnet

W
Sw,mTi

Ai

Ai

Mr

O't

O's
O's

O't

O'x

O'uOu
O'u

O'u

Ou

Ti

Serializer
Thread

Serializer
Thread

Serializer
Threads

Ontology
Cache

Deserializer
Thread

Deserializer
Thread

Deserializer
Thread

OB

O'B

O'B

O'B

Regular System Flow
Conditional System Flow I, if O' and O' exists in Ontology Cache
Conditional System Flow II, if O' exists in Ontology Cache

s t
B

Figure 4.1: Execution flow of SPHeRe

model facilitates our system with the following benefits. Firstly, an ontology representation with

the knowledge of total associated information an OWL file is encapsulating (classes, class rela-

tionships, properties, axioms and annotations). Distribution and matching phase effectively uses

this knowledge while task distribution. Secondly, an ontology representation with thread-safety

by providing immutable objects in a multithreaded environment. Thirdly, division of ontology

into multiple subsets according to the needs of matching algorithms, preventing the system from

loading information not required for matching. This technique reduces the memory strain, avoid-

ing the possibility of JVM heap crashes during execution. Fourthly, no file IO during matching

phase, avoiding the huge performance bottleneck of accessing OWL files numerously during the

matching process. Lastly, reducing the size of ontology by removing redundant information and

unnecessary data, creating smaller memory footprint. For example, the namespace URI is redun-

dant over an OWL file, keeping a single attribute in an ontology model that stores the namespace

URI reduces the actual size of concept names which are essentially used entities while matching

in Phase II.

After parsing the candidate ontologies, OLI invokes parallel threads of custom serializer (de-

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 39

scribed in [77]) for ontology model caching. A single ontology is serialized into subsets based

on matching algorithms. In current implementation, four subsets of Ox are created: (i) collec-

tion of class names for name-based ontology matching (O′xC); (ii) hierarchical data-structure for

relationship-based ontology matching (O′xH); (iii) collection of classes with their corresponding

labels for label-based ontology matching (O′xL); and (iv) collection of classes with their prop-

erties for property-based ontology matching (O′xP). All these serialized subsets are individually

persisted in ontology cache. OLI’s parser and serializer only get executed when a new ontology

is provided by matching request, i.e., in case of O′s and O′t already been available in ontology

cache, Conditional System Flow I (illustrated in Fig 4.1) gets executed. Parsing and serialization

steps are skipped until a massively updated version of a previously serialized ontology is received.

Ontology cache provides persistence to serialized ontologies and their corresponding MD5 [78]

hash values. OLI verifies whether the ontologies have already been serialized by calculating the

hash values of candidate ontologies. In case of smaller partial updates, update manager renews

ontology contents of serialized ontologies and persists update ontology instance Oi in ontology

cache. An Oi can be obtained following the strategies mentioned in [79] and [80]. Multiple seri-

alized versions of a particular Os and Ot are maintained by ontology cache. In case of multiple

SPHeRe nodes, ontology cache is replicated over every node, keeping all nodes synchronized. O′s

and O′t are loaded in parallel by deserializer threads, providing a single-step ontology loading and

feeding to distribution and matching phase.

4.2.2 Phase-II: Parallel Matching

Serialized subsets of source (O′s) and target (O′t) ontologies are loaded in parallel by multithreaded

ontology distribution interface (ODI). ODI is responsible for task distribution of ontology match-

ing over parallel threads (Matcher Threads). ODI currently implements size-based distribution

scheme to assign partitions of candidate ontologies to be matched by matcher threads. These

threads can be running over multicore or multi-node platforms on single and multiple computing

nodes. In a single node, matcher threads correspond to the number of available cores for the run-

ning instance. In multi-nodes, each node performs is its own parallel loading and internode control

messages (mc) are used to communicate regarding the ontology distribution and matching algo-

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 40

rithms. A set of matcher threads is assigned by ODI to execute matching algorithm instance (Ai)

over individual ontology partitions. ODI also facilitates matcher threads with a thesaurus interface

to assign thesaurus instance (Ti). Multiple dictionaries and thesaurus can be plugged into ODI

via thesaurus interface. SPHeRe is currently using word-net dictionary [60] and also provides an

open-end web-service interface to plugin web-based and remote dictionaries. Remote resources;

however, can result in bandwidth issues and inflict performance degradation for matcher threads

as multiple http requests will be generated for an individual case of possible concept matching.

ODI also facilitates matching threads with a matching algorithm interface. Multiple algorithms

can be plugged into ODI via matcher interface. Matcher threads are customized to use single and

multiple matching algorithms concurrently on O′s and O′t subsets. Matched results (Mr) provided

by matcher threads are submitted to accumulation and delivery phase for creation and delivery of

bridge ontology (OB).

4.2.3 Phase-III: Post-Matching

Ontology Aggregation Interface (OAI) accumulates Mr provided by matcher threads. OAI is re-

sponsible for OB creation by combining Mr as mappings and delivering OB via cloud storage

platform. OAI offers a thread-safe mechanism for all matcher threads to submit their matched

results. After completion of all matched threads, OAI invokes OB creation process which accu-

mulates all the matched results in a single OB instance. In case of multi-node distribution, OAI

also accumulates results from remote nodes after completion of their local matcher threads. OB

creation is customizable from single OB per matching algorithm to an aggregated bridge ontology

OB from all matching algorithms running locally and remotely.

OAI also persists OB in ontology cache for future matching requests. For unchanged OS

and OT matching requests, Conditional System Flow II (illustrated in Fig 4.1) gets executed. In

this execution flow; loading and management, and distribution and matching phases are skipped

and URL to OB is provided to the user. This mechanism prevents the system from performing

redundant operations and preserves memory usage and CPU cycles.

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 41

4.3 Stack Design

Our proposed runtime has a layered architecture, following a stack design. With agility in mind,

this design supports incremental development and over-the-time updates without propagating im-

plementation changes across the system. The stack view of runtime’s layers and components is

illustrated in Fig 4.2. This stack is deployed as an integrated system on all participating nodes

involved in ontology matching.

Our runtime provides two interfaces to interact with the client, i.e., a web service and a graph-

ical user interface (GUI). If a third party system, service, or a client wants to use the parallel

matching facility, they can interact by utilizing Ontology Matching Request Interface. This in-

terface is hosted by a SOAP-based web service to be consumed by client programs and systems.

Adjacent to the request interface is a GUI-based interaction component which facilitates the uti-

lization of our system by an individual researcher via browser. In parallel, there is an Ontology

Change Request interface that is used to implement the evolution process of ontology’s design.

Ontology change request interface receives the change updates for serialized ontologies to support

continuity in ontology change management. These interfaces and GUI rely on lower-level core

components for actual parallel matching and change implementation, executing over single- and

multi-node parallel platforms.

The core of our runtime consists upon six loosely coupled components (File IO, Init Dae-

mon, Multi-node Distributor, Aggregator, Communication1, and a Multicore Distributor) and an

ontology repository. These components with their focused responsibilities are integrated with an

intermediate workflow layer called Matcher Workflow. This workflow layer hosts two paths for

execution, i.e., a matcher execution for parallel matching request and a change implementation to

support ontology’s design evolution. Among the core components, init daemon is responsible for

setting up the multi-node environment by providing a socket table for all the participating nodes.

This setup is required, prior to any distributed matching. File IO component is used for parsing

and loading candidate ontologies. It is responsible for serializing candidate ontology subsets and

implementing CRUD operations on these subsets for change implementation. Multi-node distrib-

utor is responsible for distribution of the matching process as matching requests over participating
1Utilization of communication by each core component is described in the components explanation.

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 42

Multicore Microprocessor

Operating System

Ontology Matching System

External System / Researcher / Service ….

Multicore Distributor

Matcher Thread

Matching Task
Distributor

Ontology
Respository

(Cache)

Java Runtime
Concurrency

Matcher
Thread

Aggregator

Remote Local

Intermediate Bridge
Ontology Aggregator

. . . .

CPU
Core

Init
Daemon

Socket
Table

Collection

Multi-node Distributor

Remote Local

Matching Request
Distributor

File IO

Serializer DeSerializer

Matcher
Library

Interface

NIO

Communication

Ontology Sync
Service

Messaging

send receive

Message Buffer

Control Msg
Service

Matcher Workflow

Matcher
Thread

Matcher
Thread

CPU
Core

CPU
Core

Stream

SocketPort

Ontology Matching Request
Interface

Ontology Change Request
Interface

Ontology Matching
GUI

Matcher ExecutionChange Implementation

File IO Controller

Ontology
Model

Figure 4.2: Stack Design

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 43

nodes via control messages. These messages are sent and received by the communication compo-

nent. This component also hosts an ontology synchronization service to replicate ontology changes

over secondary repositories hosted by the participating nodes. For local distribution of matching

tasks as matching jobs over available cores, multicore distributor is used. This component exploits

the existing cores by implementing thread-level parallelism. Each matcher thread is assigned to

its matching job coupled with instance of matching algorithms over candidate ontologies.

For the utilization of parallel platforms, a programming language is required with a strong em-

phasizes on concurrency and platform independence. Java is one such language that is equipped

with an effective multithreading model and is available for most of the computing platforms. Keep-

ing these facts in perspective, we have provided our runtime’s implementation in Java and used its

concurrency, collection, NIO and stream libraries for our benefit.

4.4 Core Component Details

This section provides details regarding the inner workings of the core components of the presented

runtime.

4.4.1 Init Daemon

Initialization Daemon (Init Daemon) is responsible for creating the environment for the match-

ing process. It executes in pre-matching stage of the system. On a multi-node platform, init

daemon is responsible for providing communication objects of every participating node in a col-

lection called socket table. This table is generated at every node and contains the collection of

socket objects for every other node, distinguished by unique identifiers (UUID). From a higher

level abstraction, each UUID represents a running instance of a participating node in a multi-node

environment.

Algorithm 1 describes the details of init daemon’s socket table creation. Prior to execution,

each daemon holds a text file containing ranks (unique integer values) of participating nodes and

their respective IP addresses. Algorithm 1 enables each node to generate its own UUID, attach

it with information regarding available computational resources on that node and shares it among

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 44

Algorithm 1 Generate Socket Table algorithm
Require: node ≥ 2
temp = 1
uuidMsg← generateUUID()
cores← Runtime.getNumberofCores()
rank← getRankforThisNode()
while temp < ShiftLeft(1, nodes) do

if temp ≥ nodes then
stop

end if
sender = rank
receiver ←XOR(rank, temp)
socket←getSocket(receiver)
if sender > receiver then

sendMessage(socket, uuidMsg, cores)
socketTable.add(socket,receiveMessage(socket))

else
socketTable.add(socket,receiveMessage(socket))
sendMessage(socket, uuidMsg)

end if
temp = temp + 1

end while

the participating nodes; consequently, each daemon receives a UUID with available number of

cores over a particular node on a socket object. All the receiving UUIDs with their corresponding

number of cores and socket objects are stored as a socket table in every node’s main memory.

At the communication level, sharing of UUIDs among the nodes is performed by a barrier read.

This communication is illustrated in the sequence diagram of Fig 4.3. Barrier read is initiated

by invoking a 24 byte control message, sent from one node to the other node(s). This message

contains the respective UUID of the sending node (16 bytes), number of available computing cores

(4 bytes), and ctrl key (3 bits). Every receiving node acknowledges the control message by similar

reply and subsequently attaches the receiving port number with the received UUID and forwards it

to its socket table. Fig 4.4 provides a depiction of socket tables in a tri-node environment after init

daemon setup. This strategy enables the system to avoid unnecessary file access and re-creation of

socket objects for every communication. Socket tables are further used by each node to send and

receive control, ontology change and synchronization messages during system execution.

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 45

add to
socket table add to

socket table

Node 1 Node 2

0 0 0 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4

Ctrl Key UUID
MSB LSB

cores

barrier read send

barrier read receive

acknowledge

Figure 4.3: Barrier Read sequence diagram

Primary Node
Rank 0

Socket Table

540a89 socket1

927f02 socket2

Secondary Node
Rank 1

Socket Table

210b91 socket0

927f02 socket2

Secondary Node
Rank 2

Socket Table

540a89 socket1

210b91 socket0

2

2

2

2

2

2

Figure 4.4: Socket Tables in a tri-node (2 cores/node) environment

4.4.2 Ontology Model

Ontology Model of the presented runtime is an object-oriented representation of an ontology file

(OWL). Ontology model’s design has been kept generic yet concise to support the requirements

of the system. It is reused by all phases of SPHeRe as it encapsulates the OWL file by providing

higher-level abstraction to ontology resources, annotations, and axioms for matching algorithms.

For correctness, expert evaluation of this ontology model has been done at design, implemen-

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 46

BridgeOntology

MatchedRecord Concept

<< abstract >>
Resource

Thinghas a1 n

has a

1

1

uses

n

has a

1

is a

has a

1

n

OModel

<< enum >>
Model Type

uses

is a

AxiomsAnnotation

Property

uses uses

has a

1

n

Figure 4.5: Ontology Model class diagram

tation, and testing stages. Ontology model represents the object model for serialized subsets of

candidate ontologies. Furthermore, finalized bridge ontology is also serialized as ontology model

by ontology cache. Ontology model’s class diagram is illustrated in Fig 4.5.

Ontologies are structures with an abstract root concept called Thing. All the resources exist

under the umbrella of Thing, which is defined, but not a usable concept. The proposed ontology

model follows the similar representation and provides Thing object that aggregates triples of indi-

vidual ontologies. ModelType enumeration classifies a Thing object as a collection of concepts,

collection of concepts with annotations, collection of concepts with properties, and a hierarchical

data structure for triples. For a single ontology file, subsets of ontology models exist simultane-

ously. This technique stores redundant concepts in all subsets; however, a set of matching threads

will load the subset required by its matching algorithm. For distribution and matching phase,

ontology model provides accessor methods to all resources via read-only interface preventing mu-

tability for thread-safety, avoiding the possibility of inconsistency in a multithreaded execution

environment.

Resource, Property, and Concept implements Composite design pattern [81]. This im-

plementation facilitates Concept to mimic triples and Property to aggregate objects of its own

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 47

type, providing a self-containing-object data structure. Resource abstract class is extended by

Concept and Property object which aggregates itself as sub-concepts and sub-properties re-

spectively. Concept and Property object also provides iterators to their respective associated

instances, i.e., providing Concept with a concept name will return the required Concept object,

its sub-concepts, annotations, axioms, and associated properties. Annotation object encapsulates

associated labels and comments to Resource. Axiom object encapsulates associated constraints

to Resource.

MatchedRecord represents a single matched result (concept names and similarity) evaluated

as a matching task. BridgeOntology contains a thread-safe collection of MatchedRecord ob-

jects fed by individual matcher threads. Thing object is an aggregation to a single ontology;

however, OModel object provides a higher level aggregation over multiple ontologies (collection

of Thing) and their corresponding OB .

4.4.3 File IO

File IO component is responsible for ontology loading, subset creation, and providing an interface

to the ontology repository for ontology persistence. It also executes in pre-matching stage. File IO

provides serialization and deserialization operations. When the runtime receives a new ontology,

i.e., a candidate ontology that has not been converted into subsets, file IO parses it to create its

respective object model. This object model is persisted as serialized subsets according to the

needs of matching algorithms along with the ontology hash value. For matching request of already

serialized ontology, deserializer loads the required subsets into respective ontology models and

provides these models to distributor component for parallel matching operations.

To facilitate parallel matching on a multi-node platform, ontology subsets need to be available

on every participating node; therefore, the ontology subsets are replicated over secondary repos-

itories with the help of connectivity information provided by the init daemon. Communication

between primary and secondary node(s) for subset replication is illustrated in the sequence dia-

gram of 4.6. Unlike barrier read, control messaging for ontology subset replication is a two-step

process. Firstly, primary node sends a 24 byte message to the secondary node(s) containing on-

tology UUID (16 byte), size of the subset to be sent (4 bytes) and ctrl key (3 bits). Secondary

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 48

persist
subset in

local ontology
repository

0 0 1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4

Ctrl Key ontology UUID subset size

create
receive buffer

Primary Node Secondary Nodes

subset send request

acknowledge
subset send

acknowledge

Figure 4.6: Ontology Subset Replication sequence diagram

implement
change

create
receive buffer

deserialize
ontology

0 1 0 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4

Ctrl Key ontology UUID change size
Primary Node Secondary Nodes

change send request

acknowledge
change send

acknowledge

Figure 4.7: Ontology Change Request sequence diagram

node(s) receive this message and create receiving buffers of size of the subset and send prompt

acknowledgments to the primary node. Secondly, the primary node sends the subset to the sec-

ondary node(s). By this method, matching threads only load subsets from their local repositories,

avoiding the internode communication during matching.

File IO is also responsible for implementing ontology changes. To implement a change, the

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 49

ontology must be loaded inside nodes memory as an instance of the ontology model. Ontology

change request interface through matcher workflow provides file IO with the UUID for ontology

to be updated. Deserializer loads the required ontology from the repository into an ontology model

instance. This instance is returned to file IO for change implementation. Matcher workflow re-

ceives the instance of the ontology model to be updated from ontology change request interface.

A change can be of many types, from a triple update to an addition of an entirely new hierarchy.

Operations for change implementation are classified into Create, Update, and Delete types. These

operations are used by file IO over ontology model instance for change implementation. After

the change implementation, updated subsets are serialized back in the repository and in case of

multi-node platform, these changes are replicated over repositories of secondary nodes. Commu-

nication between primary and secondary node(s) for change implementation is illustrated in the

sequence diagram of Fig 4.7. Similar to subset replication, change implementation request is also

a two-step process. Firstly, primary node sends a 24 byte message to secondary nodes containing

information regarding the ontology that needs to be updated (16 bytes), the size of updates that

needs to be implemented (4 bytes), and ctrl key (3 bits). Secondary node(s) receive this message

and deserialize the candidate ontology into an ontology model object; subsequently, they create

receiving buffers of size of the updates and send a prompt acknowledgment to the primary node.

Secondly, the primary node sends the actual changes to the secondary nodes. After the change im-

plementation, updated ontology model instance is sent to file IO for persistence. File IO serializes

the ontology model and stores it back in the ontology repository.

Class diagram for file IO component described in Fig 4.8. Classes are packaged into two

categories; (i) ontology loading and (ii) ontology management. Ontology loading package is re-

sponsible for parsing new ontologies into ontology models, serializing, and deserializing them for

distribution and matching.

Candidate ontologies are received via OLI . Utility class is used by OLI to calculate hash

values for candidate ontologies and match the values against persisted ontologies hash values in

ontology cache. If serialized versions of any or both candidate ontologies are already present in

ontology cache, OLI invokes Deserializer object for loading O′s and O′t in parallel for distribu-

tion and matching phase. Algorithm 2 for owlLoad method describes this process.

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 50

ontologymodel

OModel

Parser ParserThread

Serializer
Thread

Deserializer Deserializer
Thread

OLI

Utility

Ontology
Cache

Update
Manager

<< abstract >>
Command

Create Delete

is ais a

uses

nhas a1

n
has a

1

nhas a1

uses

uses

has a

1

1

has a

1

1

has a

1

n

uses

uses

Ontology Loading

Ontology Management

<< interface >>
Parsable

Property
Parser

NameParser

Hierarchy
Parser

is a

uses

uses

uses

LabelParser

Figure 4.8: File IO class diagram

In case of absence of serialized versions for candidate ontologies, Parser object is invoked.

Parser object has a composition relationship with ParserThread and SerializerThread ob-

jects, i.e., parser and serializer threads are created with the creation of Parser object. Number

of threads to be created for parsing and serialization can be customized by request, by default it

is the number of cores on an available processor; however, a single thread parses a single sub-

set of Ox. Parser object loads the ontology in memory and assign parsing algorithms to parser

threads via Parsable Interface. Parsable is an implementation of Strategy design pattern [81].

Parsing algorithms can be plugged according to the needs, adding to the agility, extensibility, and

customization of the system over time.

Four algorithms currently implement Parsable interface: (i) Name parser; (ii) Hierarchy

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 51

Algorithm 2 OwlLoad algorithm
Require: Os 6= NULL and Ot 6= NULL
Hashs ←Utility.calculateHash(Os)
Hasht ←Utility.calculateHash(Ot)
ontologyCache←OntologyCache.getInstance()
parser ←Parser.createInstance()
if Hashs , Hasht !in ontologyCache then

parser.parse(Os, Ot)
parser.serialize(Os, Ot)

else
if Hasht !in ontologyCache and Hashs in ontologyCache then

parser.parse(Ot)
parser.serialize(Ot)

else if Hashs !in ontologyCache and Hasht in ontologyCache then
parser.parse(Os)
parser.serialize(Os)

end if
end if
deserialize(Hashs, Hasht)
return

Algorithm 3 NameParser algorithm
Require: Ox 6= NULL, x ∈ {s, t}
thing ←Thing.createInstance(url)
while Ox has classes do
concept←OClass.createInstance(currentClassName)
thing.addConcept(&concept)

end while
return thing

parser; (iii) Label parser; and (iv) Property parser. Name, Label, and Property parser pro-

vide implementation by reading the class-names (described in Algorithm 3, their labels (described

in Algorithm 4) and properties (described in Algorithm 5) respectively. However, the hierarchy

parser implements multi-step bottom-up ontology parsing approach. All classes from the ontology

are read with reference to their parent classes. A class may not have a child; however, every class

has a parent. Parent class references are maintained by every class in the hierarchy. Algorithm 6

describes the implementation of hierarchy parser.

UpdateManager is part of ontology management package with a command pattern [81] imple-

mentation. Apart from agility, this pattern provides undo and redo operations for ontology subset

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 52

Algorithm 4 LabelParser algorithm
Require: Ox 6= NULL, x ∈ {s, t}
thing ←Thing.createInstance(url)
while Ox has classes do
concept←OClass.createInstance(currentClassName)
while currentClass has labels do
label←Annotation.createLabel(labelName)
concept.addAnnotation(&label)

end while
thing.addConcept(&concept)

end while
return thing

Algorithm 5 PropertyParser algorithm
Require: Ox 6= NULL, x ∈ {s, t}
thing ←Thing.createInstance(url)
while Ox has classes do
concept←OClass.createInstance(currentClassName)
while currentClass has properties do
property ←OProperty.createInstance(propertyName)
concept.addProperty(&property)

end while
thing.addConcept(&concept)

end while
return thing

change implementation.

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 53

Algorithm 6 HierarchyParser algorithm
Require: Ox 6= NULL, x ∈ {s, t}
thing ←Thing.createInstance(url)
while Ox has classes do
concept←OClass.createInstance(currentClassName)
while currentClass has parents do

if !thing.exists(parent) then
parent←OClass.createInstance(parentName)
thing.addConcept(&parent)

else
parent←thing.getConcept(parentName)

end if
concept.addConcept(&parent)

end while
thing.addConcept(&concept)

end while
return thing

4.4.4 Distributor

Distributor components (multicore and multi-node distributors) are collectively responsible for

the distribution of matching process over computational resources for invoking parallelism on

candidate ontologies (OS , OT) in parallel matching stage. To accomplish this responsibility, the

matching process is layered into three levels of abstraction, i.e., from macro-level matching request

(MR) and grainer-level matching jobs (MJ) to finer-level matching task (MT).

The distribution process for implementing data parallelism in a multi-node environment is

illustrated in Fig 4.9. A whole matching request (classified as a matching process) received by the

primary node is divided among participating nodes depending upon their computational resources.

A matching request received by an individual node is further subdivided into matching jobs such

that each job on a node contains an equal number of matching tasks. Subsequently, a matching

job is assigned to execute over a processing core available on a participating node. This technique

provides three major benefits to our system: (i) better scalability, as chances of idle cores are

minimal because each core is assigned with equal number of matching tasks; (ii) implementing

the most efficient scenario of parallel execution, i.e., one job per core; and (iii) matching tasks

are independent among themselves, other matching jobs, and other matching requests running

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 54

Secondary Node

M.R3

Secondary Node

M.R

Primary Node

M.R

Core Core

M.J M.J

Core Core

M.J M.J

Core Core

M.J M.J

Core Core

M.J M.J

1 2

1 2 3 4

21

1

2

Os
Ot

Candidate Ontologies

M.R2

M.R
3

M.R Matching Request
M.J Matching Job

Matching Task
Os Source Ontology
O t Target Ontology

Figure 4.9: Matching Request Distribution in a tri-node environment

remotely, ensuring no communication required between nodes during parallel matching. These

three characteristics of the distribution are the foundation of achieving data parallelism for parallel

matching.

In the case of single-node, distribution process scales down to multiple cores on one node.

Multicore distributor divides a whole matching request into matching jobs with an equal number

of independent matching tasks. Each job is assigned to run over a particular core; consequently,

achieving data parallelism.

Algorithms 7, 8, and 9 describe the distribution of matching tasks on single- and multi-node

platforms. In the case of single-node platform, multicore distributor (Algorithm 8) is invoked. It

identifies the number of participating cores from the native runtime and calculates the partition slab

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 55

Algorithm 7 Distributor algorithm
Require: nodes > 0

if nodes=1 then
MulticoreDistributor(OS , OT)

else
Multi-nodeDistributor(OS , OT)

end if

Algorithm 8 Multicore Distributor algorithm
Require: nodes > 0
cores←Runtime.getNumberOfCores()
if nodes=1 then
start=0
bigOnt← (sizeS ≥ sizeT)?OS : OT

smallOnt← (sizeS < sizeT)?OS : OT

Partitionslab = dbigOnt.size/corese
SPAWN MATCHER THREADS:
for i = 1 to cores do
end = start+ Partitionslab
if end ≤ bigOnt.size then
end = bigOnt.size

end if
MatchingJob.create(MatchingTasks[start, end), big, small,matcher)
thread.run(matchingJob)
start = end

end for
else

RECEIVE MATCHING REQUEST:
controlMessage.receive(matchingRequest)
Partitionslab = (end− start)/cores
GOTO SPAWN MATCHER THREADS

end if

by dividing the size of the bigger ontology with the number of cores and taking its ceiling value

in case of fraction. A matching job per core is created and invoked by thread-level parallelism.

For example, in case of matching conference ontology “iasted” having 140 concepts with another

conference ontology “cmt” with 29 concepts over a quad-core single-node platform, Algorithm 8

first calculates the partition slab (140/4 = 35). First 35 concepts of iasted ontology are assigned

to be matched with all the 29 concepts of cmt ontology as first matching job with a total number of

35×29 = 1015 matching tasks. This matching job is invoked as first matching thread. In parallel,

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 56

Algorithm 9 Multi-node Distributor algorithm
Require: nodes > 1
nodes←initDaemon.getNoOfNodes()
participatingCores =

∑
node.#cores

start=0
end=0
bigOnt← (sizeS ≥ sizeT)?OS : OT

smallOnt← (sizeS < sizeT)?OS : OT

Distributionslab = dbigOnt.size/participatingCorese
for node← nodes do
end = start+Distributionslab × node.#cores
if end ≤ bigOnt.size then
end = bigOnt.size

end if
MatchingRequest.create([start, end), big, small,matcher)
if node.isLocal then

local.MulticoreDistributor(matchingRequest)
else

controlMessage.send(matchingRequest)
end if
start = end

end for

next 35 concepts of iasted ontology are matched with all the 29 concepts of cmt ontology as second

matching job with the same number of 1015 matching tasks, invoked as second matching thread.

Similarly, third and fourth matching threads are also assigned in parallel with their respective

matching jobs of 1015 matching tasks each, thus distributing the whole matching process of 4060

matching tasks evenly among 4 cores for parallel matching.

In multi-node environments, distribution algorithm invokes the multi-node distributor (Algo-

rithm 9) which receives the information regarding the available computational resource of partic-

ipating nodes from init daemon. Distribution slab is calculated and control messages are created

sent with matching requests to the secondary nodes. The size of these control messages is 64 bytes

containing information regarding source and target ontologies (32 bytes), start index (4 bytes), par-

tition slab (4 bytes), matcher algorithm id (16 bytes), and ctrl key (3 bits). In reply, a single byte

acknowledge message is received by the primary node. This process is illustrated in the sequence

diagram of Fig 4.10. To elaborate the execution of Algorithm 9, consider the example of matching

process between two biomedical ontologies, “adult mouse anatomy (2,744 concepts)” with “NCI

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 57

0 0 1 1 2 3 16 1 2 3 4

Ctrl Key

1 2 3 16 1 2 3 4.. ..
start partition

Secondary
Nodes

Primary
Node

Secondary
Nodes

matching request send

acknowledge execute
matching

O UUID O UUIDS T

1 2 3 16

matcher algo id

..

Figure 4.10: Ontology Matching Request sequence diagram

human anatomy (3,304 concepts)” over the tri-node environment illustrated in Fig 4.9. Algorithm

9 first calculates the distribution slab by dividing the size of the bigger ontology (NCI human

anatomy) with the total number of participating cores (3,304/8=413). Request for matching first

826 concepts of NCI human anatomy ontology with all the concepts of adult mouse anatomy is

created. This matching request is distributed over the local node by calling multicore distributor

(Algorithm 8) which calculates the partition slab for 2 available cores (826-0/2=413). Conse-

quently, two matching jobs are invoked by thread-level parallelism starting from concepts [0 to

413) and [413 to 826) of NCI human anatomy ontology respectively. As first secondary node

is a quad-core resource, second matching request is generated for matching next 1,652 concepts

of NCI human anatomy ontology starting from [826 to 2,477) with all the concepts of mouse

anatomy. This matching request is sent via control message using communication protocol illus-

trated in Fig 4.10. and received by the multicore distributors (Algorithm 8) of first secondary node.

Matching request is extracted from the control message and four matching jobs are created each

with 413 concepts of NCI human anatomy ontology ([826 to 1,239), [1,239 to 1,652), [1,652 to

2,065), and [2,065 to 2,478)) to be matched with all the concepts of mouse anatomy. Similar to

second matching request, third matching request is generated for the other secondary node which

distributes it between two matching jobs ([2,478 to 2,891), and [2,891 to 3304)), thus distribut-

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 58

ontologymodel

ontologymodel

ODI

<< interface >>
Distributable

uses

Distributor

is a

Matcher
Thread

Matched
Result

Bridge
Ontology

has a1 1 has a1 1

uses

<< abstract >>
MatcherFactory

Primary Secondary Complimentary

is a is a is a

uses

<< interface >>
Matchable

LabelBased PropertyBasedChildBased

is a

uses

Hyponym Synonym

Polysemousis a

StringBased

Overlap

<< interface >>
Thesaurus

uses

Figure 4.11: Distributor Components class diagram

ing the whole matching process of over nine million matching tasks (9,066,176), evenly among 3

nodes for parallel matching.

From the description of multi-node distributor algorithm, it is quite clear that our distribution

component assumes the multi-node environment to be homogenous. Although distribution slab

calculated by Algorithm 9 precisely considers the parallelism ability of participating nodes, i.e.,

number of computing cores per node; however, in case of heterogeneity among the computational

ability (processor frequency, memory size, and IO performance) of participating nodes, idle core

can exist as one node might complete its matching request prior to the others.

Distributor components also provide an interface to matching library. Matching algorithms can

be plugged in and out of the system or can be executed as suites based on software engineering

design principles. This interface ensures the effectiveness-independent performance-gain aspect

of our system and decouples the performance of the system from the effectiveness and accuracy

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 59

of the system. By default, system provides a library of element-level and structural-level matching

algorithms. Furthermore, matching algorithms provided by various semantic web experts have

been incorporated for evaluation.

The class diagram of distributor compoenents is described in Fig 4.11. O′x are fed to ODI

that invokes a distribution strategy fromDistributable interface. Distributor object implements

Distributable interface and encapsulates distribution algorithm. Distributor object currently

implements static distributor based on ontology size. Size-based partitioning is an optimal mech-

anism for distributing matching tasks among available computational resources, as every resource

gets an equal share of workload. Distributor object and Distributable interface is an imple-

mentation of Strategy design pattern which increases the flexibility and extensibility of the system

by providing interface to add more distributor objects over time without propagating changes.

Distributor object has two responsibilities: (i) Create matcher threads. Distributor eval-

uates the current runtime for the availability of computation resources and creates multithreaded

environment of matcher threads to execute. Each MatcherThread records a MatchedResult

object of ontology model in a thread-safe collection of matched records in BridgeOntology ob-

ject. (ii) Assign matching algorithms to matcher threads. Distributor implements two design

patterns, i.e., Abstract Factory [81] and strategy to assign instances of matcher algorithms to indi-

vidual matcher threads.

Matching algorithms are implemented with two levels of abstraction, a fine grain implementa-

tion of matching algorithms and a coarse grain aggregation of family of matching algorithms based

on utilization. Individual matching algorithms implement Matchable interface. Strategy pattern

is again utilized here for systems flexibility and extensibility. Plug-n-play nature of strategy pattern

facilities the system to add more algorithms for matching to improve accuracy. Coarse grain aggre-

gation of individual algorithms is implemented viaMatcherFactory (Abstract Factory). Individ-

ual algorithms are classified into three categories; Primary, Secondary, and Complimentary

algorithms. Primary family instantiates a set of algorithms that are executed for every matching

request that currently are; StringBased, LabelBased, and ChildBased. Secondary family in-

stantiates a set of algorithms that are executed by request to dig deeper into ontologies for higher

accuracy, this set currently includes, PropertyBased, Synonym, and Hyponym algorithms.

CHAPTER 4. PERFORMANCE-BASED ONTOLOGY MATCHING RUNTIME 60

Complementary family instantiates a set of algorithms that are executed by request in context

with domain; for example, two ontologies from medical domain have higher chances of match-

able concepts, so by executing complimentary set of algorithms might contribute in the accuracy.

These algorithms currently are Overlap and Polysemous.

4.4.5 Aggregator

This component is responsible for aggregating matched results from participating nodes and gen-

erating the required mappings in post-matching stage. Depending upon the deployment platform

(single- or multi-node), aggregator accumulates matched results from two different interfaces (lo-

cal and remote) and creates a formal representation of mappings called Mediation Bridge Ontology

(MBO). MBO is a pattern-based bridge ontology that provides mediation between different can-

didate ontologies. Type and structure of the MBO can be changed depending upon the needs by

customization of bridge ontology definition.

In a single-node, aggregator receives the intermediate bridge ontologies from each core as a

result of a matching job via local interface. All the intermediate bridge ontologies are aggregated

to generate the formal and final mediation bridge ontology.

In the case of multi-node environment, the primary node receives the intermediate bridge on-

tologies from local interface and remote interface where secondary nodes send their intermediate

bridge ontologies as matching response. Aggregator at primary node aggregates all these interme-

diate bridge ontologies to generate the formal and final mediation bridge ontology.

4.5 Summary

This chapter presented the implementation details of the high performance ontology matching

runtime. The core components built for performance of the runtime are based on space and time

efficiencies achieved by the presented methodology. This runtime is particularly designed and

built for parallel platforms with abstractions of parallelism at the ontology matching process and

thread-level parallelism at the core.

Chapter 5
Ontology Matching as a Service and a Platform

Over the recent years, semantic web technologies especially ontologies are contributing in data

and information systems for greater benefit. For example, in the field of biomedical sciences,

these ontologies are getting used for annotation of medical records [82], standardization of med-

ical data formats [10], medical knowledge representation and sharing, clinical guidelines (CG)

management [9], clinical data integration and medical decision making [11]. Therefore, biomed-

ical community has in depth ontology repository like Open Biomedical Ontologies (OBO) [16];

furthermore, biomedical ontologies like the Gene Ontology (GO) [12], the National Cancer Insti-

tute Thesaurus (NCI) [13], the Foundation Model of Anatomy (FMA) [14], and the Systemized

Nomenclature of Medicine (SNOMED-CT) [15] have emerged.

Similarly in other domains of sciences, use of ontologies has increased by large [36]. They

are vastly becoming accustomed in information systems, social networks, search engines, and e-

commerce. As a consequence of this vast usage, researchers and developers are investing more

time in generating more and comprehensive ontologies. Adjacent to this vast usage of ontologies,

their matching requests have also gained momentum to drive overlapping information. Utilization

of this information is necessary for the integration, aggregation, and interoperability; for exam-

ple, the plethora of web-based medical information resources provides related information over

the Internet. If these resources are annotated by ontologies, software agents can automatically

aggregate information for biomedical professionals and biomedical querying systems. For exam-

ple, NCI ontology defines the concept of “Myocardium” related to the concept “Cardiac Muscle

Tissue”, which describes the muscles surrounding the human heart. Concept “Cardiac Muscle

Tissue” is defined in FMA ontology; therefore, a biomedical professional or a system integrat-

ing knowledge regarding human heart requires mappings between candidate ontologies FMA and

61

CHAPTER 5. ONTOLOGY MATCHING AS A SERVICE AND A PLATFORM 62

Presented
Methodology

Semantic Heterogeneity
Resolution

Ontology Matching

Performance from
Matching Algorithm

Effectiveness Independent
Performance-gain

GOMMA FALCONAgreement
Maker

LogMapAROMA Matching
Algorithm

Matching
Technique

Performance

Di
st

rib
ut

or
de

-c
ou

pl
e M

atcher

Matcher
Library

Figure 5.1: Classification between Matching Library and Performance

NCI [58]. Likewise, GO is a highly organized structure of medical knowledge facilitating medical

genetics. It is widely used by biomedical researchers in numerous genetical research fields in-

cluding gene group-based analysis for discovering the hidden links overlooked by the single-gene

analysis [83]. Finding mappings between GO ontology and FMA ontology can be used by molec-

ular biologist in understanding the outcome of proteomics and genomics in a large-scale anatomic

view [84]. Moreover, mappings by ontology matching have also been used for heterogeneity res-

olution among various health standards [85].

Ontology matching systems developed over the years have resolutions for the ontology match-

ing problem in isolated execution environments. Most the systems are monolithic implementa-

tions with least reusability in terms of result and platform sharing. Consequently, initiatives like

SOMET [86] and OntoMediate [87] were proposed. These initiatives encourage collaborative

CHAPTER 5. ONTOLOGY MATCHING AS A SERVICE AND A PLATFORM 63

ontology matching environments, where semantic-web experts can participate with interventions.

These projects did not evolve and were decommissioned due to their semi-automatic and purely

design time implementation. Furthermore, handling complex and large ontologies was not catered.

In contrast, technology has changed considerably over the years with the implementation of cloud

computing. Ontology matching systems with confined deployments, limited computational abili-

ties, and scalability of local computational resources can extend themselves for ubiquitous access.

Therefore, an opportunity emerges for implementing an ontology matching platform that should

not be confined as a localized deployment. Presented methodology avails this opportunity and

extends its high performance ontology matching runtime with interfaces at service level and plat-

form level. Consequently, this approach is non-monolithic in terms of resource and result sharing

for researchers, developers, semantic web experts and systems to benefit from.

Fig 5.1 illustrates presented approach that provides explicit classification between ontology

matching algorithms and performance-gain initiatives in contrast with current ontology matching

systems. Presented approach provides an ideal environment where matching runtime deployed

over cloud platforms is exposed by interfaces at service and platform level, and matching libraries

and algorithms can be plugged-in for execution and evaluation.

5.1 Ontology Matching over Cloud Platforms

The deployment of presented runtime over cloud is illustrated as a high-level stack-like diagram in

Fig 5.2. The primary objective of this runtime is to exploit the available computational resources

of cloud’s parallel platform and provide a service-based interaction, i.e., ontology matching as

a service, taking the benefit of the ubiquitous nature of the cloud platform. Furthermore, pro-

viding decoupled interface between performance runtime and matching algorithms, i.e., ontology

matching as a platform.

5.1.1 Ontology Matching as a Service

Request of matching ontologies can be generated from several resources including, developers and

researchers, information systems, or even third-party information services running over other plat-

CHAPTER 5. ONTOLOGY MATCHING AS A SERVICE AND A PLATFORM 64

Cloud Platform

...

Consumer Interaction

Matching
Web service

Parallel Ontology
Loader

Bridge Ontology
Aggregator

Matching Task Distributor

Multi-core Multinode

Runtime

Networking Lib. Concurrency Lib.

Hypervisor

Communication H/W C1 C2 C3. . .

User Interface

Matcher Threads

Matcher Lib.

Ontology Model
OWLS,T

Matching Algorithm(s)Matching Tasks

Matched Results

Ontology
Patterns

Ontology Matching
Request

Ontology
Repository

Matched Results

Figure 5.2: Ontology Matching as a Service and a Platform

forms. Match request encapsulates the ontologies to be matched as source and target ontologies.

Matched results are returned to the consumer as bridge ontology.

Starting from the top of the stack illustrated in 5.2, Consumer Interaction component provides

an ontology matching RESTful [88] web service for clients to consume. The matching service

provides four trivial methods as service bindings for consumption.

1. match (sourceOntologyURI/File, targetOntologyURI/File)

CHAPTER 5. ONTOLOGY MATCHING AS A SERVICE AND A PLATFORM 65

2. match (sourceOntologyURI/File, targetOntologyURI/File, returnEmail)

3. match (sourceOntologyURI/File, targetOntologyURI/File, matchingAlgorithms [])

4. match (sourceOntologyURI/File, targetOntologyURI/File, matchingAlgorithms [], re-

turnEmail)

Among the arguments, collection of matching algorithms and return email are extended param-

eters used for matching request customization. In case of first request, all the algorithms present

in the matching library will execute. This matching will take more time; however, will have higher

accuracy. Incase of trivial and far less complicated ontologies, consumer can select the matching

algorithms to be executed as collection of matching algorithms. For large-scale ontologies, where

the evaluation time can exceed from 20 minutes or later, URL of the bridge ontology to-be is pro-

vided and can be returned over a particular email address. After matching, the active URL will

reference the bridge ontology.

Adjacent to the Web service, Consumer Interaction component encapsulates the matching

web service in a user interface (UI). This UI provides a web-based direct interaction between

a developer or a researcher who wants to benefit from matching service.

Parallel Ontology Loading benefits from the multicore nature of cloud instances and loads the

source and target ontologies by utilizing the performance-based ontology loading and subset gen-

eration, i.e., ontologies are parsed in parallel and populated in multiple thread-safe ontology model

objects. Each object encapsulates the information required by a single matching algorithm during

runtime. Furthermore, redundancy like URI based names of concepts etc., is removed during this

process. This prevents the runtime from loading un-necessary and redundant information in main

memory during execution, avoiding memory strains during the matching process.

Matcher Library provides a library of ontology matching algorithm. These algorithms are

classified into primary, secondary, and complementary type. Primary algorithms execute for every

matching request, secondary algorithms execute for higher accuracy, and complimentary algo-

rithms execute with respect of ontology scope. Matcher Library also utilizes external third-party

resources, i.e., WordNet [60] and UMLS [89] for higher accuracy in secondary and complemen-

tary type algorithms. However, by service, client can override the default matching algorithm

CHAPTER 5. ONTOLOGY MATCHING AS A SERVICE AND A PLATFORM 66

execution model of the runtime.

Matching Task Distributor partitions the candidate ontologies as subsets and assigns over to

the computing cores available. For local resources, matcher threads are assigned to perform par-

allel matching invoking available cores by multicore distributor. For remote resources, control

messages are generated for participating nodes regarding their chunk of partition to work and

matching algorithm to execute by multi-node distributor. Each node after receiving the control

message loads performs parallel matching over their available computing cores.

Every participating node(s) generates their respective matched results. Bridge ontology aggre-

gator, accumulates these results and generate a bridge ontology file. Bridge ontology aggregator

provides an interface to bridge ontology patterns to be used for pattern-based bridge ontology gen-

eration. Bridge ontology file is returned as a response or a URL to physical file to the consumer.

This ontology is also be persisted in ontology repository for future use in case of same matching

requests.

5.1.2 Ontology Matching as a Platform

Ontology matching as a platform focuses on the actual deployment and decoupling interface be-

tween the library of matching algorithms and the performance runtime. This interface is called

Matchable interface which provides the implementation of the Strategy pattern [81]. As illus-

trated in the class diagram 5.3, strategy context of matchable interface is a polymorphic instance

that is initialized by the implementation of the matching algorithm to be executed at runtime. At

design time, matching algorithm experts implement the Matchable interface by overriding match

methods. The matchable interface provides weak association relationship between the ontology

model and the matching algorithm implementation.

Source code in Fig 5.4 describes the implementation of a string based matching algorithm built

by using the Matchable interface. The overloaded method match is implemented by the matching

algorithm author. From the signature, arguments start and end are provided as iterator boundaries.

These boundaries play a significant role during the creation of a matching task; however, it is quite

clear from the code that the implementation details of partitioning by start and end are completely

hidden from the algorithm author.

CHAPTER 5. ONTOLOGY MATCHING AS A SERVICE AND A PLATFORM 67

MatchingLibraryX

<<interface>>
Matchable

+match(start,end,source,target,threshold):IntermediateBridgeOntology

+match(start,end,source,target,threshold):IntermediateBridgeOntology

threshold

MatchingAlgorithm1

+match(start,end,source,target,threshold):IntermediateBridgeOntology

threshold

MatchingAlgorithm2

+match(start,end,source,target,threshold):IntermediateBridgeOntology

threshold

MatchingAlgorithmN

+match(start,end,source,target):IntermediateBridgeOntology

threshold

<<interface>>
MatchingLibraryInterfaceA

+match(start,end,source,target):IntermediateBridgeOntology

ConcreteMatchingAlgorithmA

+match(start,end,source,target):IntermediateBridgeOntology

ConcreteMatchingAlgorithmB

MatchingLibraryY

+match():IntermediateBridgeOntology

-matchable:Matchable

Context

OntologyModel

«uses»
«uses»

«implements» «implements»

«implements»

«extends»

«implements» «implements»

Distributor

«association»

Figure 5.3: Matchable Interface and Matching Libraries

Signature arguments source and target provide reference to the candidate ontologies to be

matched by the implemented matching algorithm. These references are instances of ontology

model objects representing the individual candidate ontologies. Algorithm authors can implement

iterators and utilize accessor methods of the ontology model to retrieve ontology resources for

matching.

The threshold argument is overridden by the author to provide the break point where an entity

is considered either to be as a mapping or not. In this implementation where editdistance [90]

based matching is used, threshold has been considered an instance variable where a client of this

CHAPTER 5. ONTOLOGY MATCHING AS A SERVICE AND A PLATFORM 68

Figure 5.4: String Bridge Matching algorithm using Matchable Interface

CHAPTER 5. ONTOLOGY MATCHING AS A SERVICE AND A PLATFORM 69

algorithm can provide its own threshold value.

Return type of match method is an object of IntermediateBridgeOntology from ontology

model. IntermediateBridgeOntology is a collection object with mapping instances. Each mapping

instance is an abstraction of a source concept, target concept, matchable operation, and threshold.

Matching algorithm experts and authors can use provided templates for their own algorithm

implementation or can use matchable interface signatures for their custom implementations. From

the provided example in Fig 5.4, it is quite evident that even though this algorithm will execute

over a performance-based ontology matching runtime presented in earlier chapter with parallel

and distributed matching; however, the authors of the algorithms do not provide any parallelism

or performance-like implementation in their algorithm. The performance-based execution is com-

pletely hidden by a facade of Matchable interface, thus preserving the accuracy of the algorithm

with performance-gain at execution time.

5.2 Summary

In this chapter, we presented our non-monolithic resolution for ontology matching for sharing

matched results with clients and platform with semantic-web experts. Our approach provides

a RESTful matching service for heterogeneity resolution clients and a Matchable interface for

matching libraries to be plugged-in for execution and evaluation. With the parallel and distributed

matching ability of the runtime, service requests are executed and evaluated over parallel plat-

forms.

Chapter 6
Evaluations and Discussions

In this section, we describe a comprehensive experimentation performed on our proposed method-

ology. For the evaluation, we have used the datasets of real world ontologies by OAEI 2012 [91]

and 2013 [92]. Our methodology is implemented as a runtime to our ontology matching system

SPHeRe. This system is evaluated over Anatomy, Library, Large-scale Biomedical, and Small-

scale Conference Tracks of OAEI 2012 and 2013’s datasets. The candidate ontologies used in

these tracks are of various sizes, covering the different magnitudes of ontology matching prob-

lems. Candidate bottleneck areas of performance-based ontology matching are benchmarked in-

dividually in complement to the end-to-end performance measurement of SPHeRe’s runtime.

We have executed three different libraries of ontology matching algorithms (computational

complexity ≥ O(n2)) provided to us by different semantic web experts. Evaluation is performed

over two parallel platforms: (i) a single-node quad-core desktop PC, equipped with 3.4 GHz

Intel(R) Core i7(R) Hyper-Threaded (Intel(R) HT Technology) [93] CPU (2 threads/core) with

16 GB memory, Java 1.8 [94] and Windows 7 64 bit OS, and (ii) a public cloud Microsoft Azure

instance with two virtual machine (VM) configurations: (i) Standard A4 VM instances with 8

cores, 14 GB of memory, Java 1.8, and Windows 2012 R2 Guest OS running over an AMD

Opteron(TM) 2.1 GHz CPU and (ii) Standard A2 VM instance with 2 cores, 3.5 GB memory,

Java 1.8, and Windows 2012 R2 Guest OS running over an Intel(R) Xeon(R) 2.1 GHz CPU.

6.1 Load Time and Memory footprint evaluation

Ontology loading time is a candidate performance bottleneck that is resolved in presented method-

ology by subset generation, serialization and deserialization of candidate ontologies in parallel.

Furthermore, the algorithm-based ontology subset generation and eager matching space reduction,

70

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 71

minimizes the memory stress with a smaller memory footprint throughout the ontology matching

process. In this subsection, we compare SPHeRe’s ontology loading time and memory footprint

against two most widely used OWL frameworks Jena and OWL API. Whole NCI, whole FMA,

and small SNOMED CT are used as candidate ontologies for this evaluation. For precision, this

evaluation has been repeatedly executed for 100 iterations.

As mentioned in Section 4.4.2, SPHeRe has its own implementation of the ontology model,

built for performance, thread-safety and scalability. Parser and Deserializer objects of loading

and management component are equipped to parse OWL files and its serialized subsets to popu-

late the ontology model. Already available and most widely used Apache’s Java-based framework

for semantic web applications Jena is provided with an ontology parser. Development of Jena is

focused around its strongest component, i.e., Inference API. To facilitate Inference API, all other

components including the parser are built for inference support. Jena provides an object model

(OntModel); however, firstly, due to its parser’s memory hungry implementation, overflow in JVM

heap while working with larger scale ontologies occurs quite often. During our stress testing on

Jena’s parser by loading FMA with NCI ontology for matching, JVM heap crashes occurred even

after providing a 2GB of heap memory to the virtual machine. Secondly, Jena’s OntModel and

APIs are not thread-safe [95] resulting in consistency and throughput bottleneck issues for applica-

tions utilizing multithreaded execution models. Concurrency in this respect can lead to reduction

in performance instead. Thirdly, Jena is built with graph-based OntModel, resulting an overload

of not required information even for trivial operations like class retrieval. The cost of information

retrieval with respect to memory footprint and retrieval time in this regard is very high [96]. These

bottlenecks and implausible nature of Jena’s parser and OntModel makes it ill-equipped to inte-

grate with SPHeRe’s performance oriented parallel ontology matching techniques and provides a

valid justification to implement a generic yet precise ontology model with performance in mind.

Another available and most widely used framework for parsing OWL is OWL API [97], which

also provides an ontology model for information retrieval. Contrary to Jena, OWL API and its

ontology model has a lighter memory footprint, and cost of ontology loading and information

retrieval is far efficient. OWL API can be an excellent candidate; however, the ontology model

for OWL API is also not thread-safe [98], leading to the options of either building a thread-safe

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 72

Table 6.1: Completeness of Ontology Model
Ontology Name Type Actual No. of Concepts No. of Concepts Loaded

cmt Tool 36 36
iasted Web 140 140

conference Tool 57 57
edas Tool 104 104

confof Tool 38 38
sigkdd Web 49 49
ekaw Insider 74 74

Human Anatomy (2012-13) Anatomy 3,289 3,289
Human Anatomy (2013-14) Anatomy 3,304 3,304
Mouse Anatomy (2012-13) Anatomy 2,737 2,737
Mouse Anatomy (2012-13) Anatomy 2,744 2,744

TheSoz Library 8,376 8,376
STW Library 6,575 6,575

Whole FMA Biomedical 78,989 78,989
Whole NCI Biomedical 66,724 66,724

SNOMED-CT Small Seg. Biomedical 49,622 49,622
Whole FMA 5% Biomedical 3,696 3,696
Whole NCI 10% Biomedical 6,488 6,488
Whole FMA 13% Biomedical 10,157 10,157
SNOMED-CT 5% Biomedical 13,412 13,412

SNOMED-CT 40% Biomedical 122,464 122,464
SNOMED-CT 17% Biomedical 51,128 51,128

Whole NCI 36% Biomedical 23,958 23,958

ontology model with an associated parser for parallelism needs, this approach allows to have

more control over the model or updating OWL API and its ontology model for thread-safety. For

our current implementation, SPHeRe provides its own thread-safe ontology model (described in

Section 4.2.2) by using OWL API’s parsing components.

SPHeRe’s ontology model implementation has already been evaluated by experts for com-

pleteness. Table 6.1 provides details regarding its completeness over OAEI’s ontology dataset.

SPHeRe implements parallel loading for serialized subsets of the OWL files. Fig 6.1 describes

the loading time of serialized subsets of candidate ontologies in parallel. The longest time taken

is compared to the load time taken by Jena and OWL API, described in Fig 6.2. Loading time in

this evaluation is the total of time taken by a system to load ontology in the memory and retrieve

all of its classes. Performance of class retrieval time is directly related to the time consumed over

concept matching, providing a significant impact on overall system’s performance. Because of the

subsets and serialized nature of SPHeRe’s ontology cache, it achieves better performance with its

comparable systems. SPHeRe only parses the candidate ontologies for the first time. For every

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 73

Name
Hierarchy
Property
Label

tim
e

in
 s

ec
on

ds

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

SNOMED NCI FMA

Figure 6.1: Ontology Load time for Serialized Subsets

Jena
OWLAPI
SPHeRe

tim
e

in
 s

ec
on

ds

0

1

2

3

4

5

6

7

8

9

10

SNOMED NCI FMA

Figure 6.2: Ontology Load time comparison

following matching request, SPHeRe uses the cached candidate ontologies avoiding the re-parsing

of OWL files. Results from Fig 6.2 validates that loading from cached serialized subsets take less

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 74

Jena
OWLAPI
SPHeRe

si
ze

 in
 m

eg
ab

yt
es

0

100

200

300

400

500

600

700

800

SNOMED FMA NCI

Figure 6.3: Memory Footprint comparison

time to load ontologies and retrieve classes. This technique ensures that following requests for

matching of candidate ontologies will have better performance.

For memory footprint experiment on the same ontologies, results from SPHeRe, Jena, and

OWL API are described in Fig 6.3. Memory footprint has been calculated by measuring the

difference between the amounts of free memory available in the Java heap after the ontology load.

Java’s runtime library is used for this evaluation as described in [99], [100], and [101]. SPHeRe’s

cumulative memory footprint of all subsets is evaluated in contrast with memory footprint by Jena

and OWL API. With the removal of redundancy of information and classification of ontology into

subsets, SPHeRe produces up to 8 times smaller memory footprint than Jena and OWL API. This

evaluation also complements to our remarks regarding the lightweight nature of SPHeRe, giving

the system an edge over the existing systems to be a better option for ontology matching using

commodity hardware and commodity hardware based distributed systems like cloud platforms.

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 75

55

61

55
53

67

32

re
du
ct
io
n

0

10

20

30

40

50

60

70

AgrMaker GOMMA(bk) LogMap GOMMA(nobk) AROMA SPHeRe

Figure 6.4: Scalability comparison

6.2 Scalability evaluation

In this subsection, we evaluate SPHeRe’s scalability performance in contrast with existing scal-

able ontology matching systems from OAEI 2011.5 campaign. For measurement, as explained

in [29], SPHeRe was executed over virtual instances with one, two, and four cores; however, each

with lesser memory (4GB) in contrast with [29]. Fig 6.4 indicates the reduction rate achieved by

SPHeRe when executing over 4-core environment. Reduction value is computed by dividing the

execution time on four cores by execution time on one core. System with the best scalability will

score a value around 25%. SPHeRe outperforms other scalable systems by scoring 32%, which

is closest to the optimal value. SPHeRe outperforms the most scalable ontology matching system

GOMMA by 40%. For precision, this evaluation has been repeatedly executed for 20 iterations.

Size-based partitioning in data parallel distributor of SPHeRe is a major contributor in achiev-

ing better scalability. This partitioning technique ensures that every matcher thread gets equal

share of tasks by distribution. Distributor invokes matcher threads depending upon the runtime

availability of the computing cores and assigns an equal number of matching tasks with matching

algorithm instances among all the available matcher threads. Each matcher thread is responsible

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 76

NS (GOMMA)
String (SPHeRe)

CH (GOMMA)
Child (SPHeRe)

NP (GOMMA)
Label (SPHeRe)

tim
e

in
 s

ec
on

ds

0

100

200

300

400

500

cores
0 1 2 3 4 5 6 7 8 9

Figure 6.5: Performance comparison with GOMMA

for ensuring the execution of the matching algorithm on its own partition, preserving the overall

accuracy of the system.

6.3 Performance comparison with GOMMA

In this subsection, we evaluate SPHeRe’s performance against one of the most performance effi-

cient ontology matching system GOMMA. Fig 6.5 describes SPHeRe’s overall performance re-

sults in contrast with GOMMA’s as presented in [20]. GOMMA’s matching algorithms NameSyn-

onym (NS), Children (CH), and NamePath (NP) are compared with similar (in complexity) match-

ing algorithms of SPHeRe, i.e., StringBased algorithm that calculates similarity by measuring

edit distance [90] between concept names, ChildBased algorithm that calculates similarity by

comparing children of concepts, and a specialized LabelBased algorithms that calculates similar-

ity over tokenized and normalized labels of concepts. Algorithms of SPHeRe scaling from 1 up to

8 threads (= number of cores) outperform GOMMA by 4 times. For precision, this evaluation has

been repeatedly executed for 100 iterations.

SPHeRe is able to achieve this performance by creating subsets of ontologies and distributing

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 77

these subsets as matching tasks over available computing resources. This technique enables a

matcher thread to avoid loading information in the memory that is out of matcher’s scope by

loading only the information it requires. In complement, all the subsets of ontologies are serialized

and optimized to redundancy free ontology model by SPHeRe’s runtime, resulting in a far smaller

memory footprint and much faster information retrieval for matching. Unlike GOMMA, these

subsets are created depending upon the matcher algorithms and cached, avoiding the repartitioning

of ontology for the following matching requests, providing a much efficient solution.

6.4 Anatomy track

The anatomy track consists of mapping generation between the Adult Mouse Anatomy (2,744

concepts) [102] and part of NCI Thesaurus describing human anatomy (3,304 concepts). Beside

their larger size, these ontologies are carefully harmonized by OAEI experts such that a rather

high number of mappings can be found by trivial string matching techniques and a good share of

non-trivial mappings require complex analysis over ontology structures. To generate the bridge

ontology we have used the default matching library with String-based, Label-based, and Child-

based Structural matching algorithms.

We have executed SPHeRe for both multicore desktop and cloud scenario as a single-node

execution (illustrated in Fig 6.6). Matching requests are generated from the client; consequently,

adult mouse anatomy (OS) and human anatomy (OT) ontologies are loaded in parallel by file

IO and provided to multicore distributor component. With the knowledge of available comput-

ing resources and ontology subsets (Os, Ot) required by matching algorithms, distributor creates

8 independent matching jobs. Each job is allocated with a set of equal numbers of indepen-

dent matching tasks (AdultMouseAnatomyclasses×HumanAnatomyclasses
8). As String and Label-based

matching algorithms execute on the same subsets of the respective ontologies, distributor assigns

these two algorithms to every matching job. Subsequently, distributor allocates each matching job

to a single-core for matching. After completion of all jobs, an intermediate bridge ontology (Ob)

is created by aggregator. Thereafter, distributor loads the subsets of adult mouse anatomy and hu-

man anatomy required for Child-based structural matching algorithm through file IO and follows

the same procedure as before. After the completion of Child-based structural matching algorithm,

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 78

Client

Matcher Threads

File IO Multicore
Distributor

String Label Aggregator

String Label

String Label

String Label

String Label

String Label

Matcher
Threads

Child

Child

Child

Child

Child

Child

Multicore
Distributor

AggregatorString Label

String Label

Child

Child

Request/
Response

M.J Matching Job
Matching TaskM.T

Figure 6.6: Parallel flow for Anatomy track over single-node

aggregator accumulates its results with the intermediate bridge ontology (Ob) and generates the

formal mediation bridge ontology (OB). This bridge ontology is finally delivered to the client as

a response.

Results from both the scenarios (desktop and cloud) are illustrated in Fig 6.7. For the desktop

scenario, the matching request executes over quad-core desktop and results are described in Fig

6.7(a). The sequential process (illustrated in Fig 6.8) takes 7.5 seconds to complete the matching

request; however, with the use of our data parallelism enabled runtime over multiple cores, total

matching time starts improving as more cores are introduced. Our system completes the matching

process in less than 2 seconds over 4 cores (= 8 threads) with the performance speedup of 4 times.

Same matching request is executed for the second scenario over the Azure VM. The sequential

process over the VM takes 17.5 seconds to complete; however, SPHeRe completes the whole

matching process over 8 threads within 3.1 seconds with an impressive speedup of 5.5 times.

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 79

desktop performance
desktop speedup

cloud performance
cloud speedup

ex
ec

ut
io

n
tim

e
in

 s
ec

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

speedup

0

1

2

3

4

5

6

threads
0 1 2 3 4 5 6 7 8

desktop speedup
cloud speedup

precision
recall

F-Measure

sp
ee

du
p

0

1

2

3

4

5

6

accuracy m
easures

0.6

0.7

0.8

0.9

1.0

threads
0 1 2 4 6 8

(a) Performance-speedup

(b) Speedup-matching effectiveness

Figure 6.7: Results from Anatomy track

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 80

Client

Matcher
Loader
(Jena) String Label Child

Request/
Response

Figure 6.8: Sequential flow on a single-node

Overall performance of the matching process is slightly slower over the Azure VM due to the

virtualization layer (Hyper-V).

Accuracy preservation throughout the performance speedup is illustrated in Fig 6.7(b). As

stated earlier, for effectiveness-independent performance-gain the performance is extracted from

parallel threads over multiple cores, no changes in matching library have been made for perfor-

mance reasons. Consequently, the matching effectiveness (e.g., precision, recall, F-Measure) stays

the same throughout the performance speedup.

Same matching track was evaluated by [20] as a medium-scale problem by its intra-matcher

parallelization on a single node. Matchers are evaluated individually and possibly generate indi-

vidual alignments. These alignments are later to be aggregated for a comprehensive bridge ontol-

ogy. A performance speedup of 3.6-4.2 times (depending upon the matching algorithm) have been

achieved by intra-matcher of [20]. In our system, matchers execute as a combined matching pro-

cess; consequently, it efficiently generates a single comprehensive bridge ontology instead. Even

with an inferior hardware platform, our system slightly outperforms the performance speedup

of [20] on the desktop scenario, i.e., 4 times (vs. mean(3.6-4.2)) and largely outperforms it by

41% when executed in the cloud scenario, i.e., 5.5 times (vs. mean(3.6-4.2 times)).

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 81

6.5 Library track

The library track consists of mapping generation between the STW [103] and the TheSoz the-

saurus [104] ontologies. Both ontologies provide a vocabulary for economics with respect to

social science subjects. These ontologies are primarily used by libraries for indexation and re-

trieval. Although lightweight, these ontologies are large with STW containing 6,575 concepts and

TheSoz containing 8,376 concepts. To generate the bridge ontology we have utilized the same

matching library used earlier in anatomy track.

Similar to anatomy track, we have executed SPHeRe for both multicore desktop and cloud

scenario as a single-node execution. Results from these scenarios are illustrated in Fig 6.9. For

the single-node desktop scenario, the sequential process takes close to 47 seconds to complete the

matching request; however, SPHeRe completes the matching process around 11 seconds over 8

threads with an impressive performance speedup of 4.15 times. Same matching request is executed

for the second scenario over the single-node Azure VM. The sequential process over the VM takes

close to two minutes to complete; however, SPHeRe completes the whole matching process over 8

threads in 18 seconds with an impressive speedup of 6.38 times. Furthermore, similar to anatomy

tasks, the accuracy of the matching process stays preserved with the same effectiveness throughout

the performance speedup (illustrated in Fig 6.9(b)).

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 82

(a) Performance-speedup

(b) Speedup-matching effectiveness

desktop performance
desktop speedup

cloud performance
cloud speedup

ex
ec

ut
io

n
tim

e
in

 s
ec

0

25

50

75

100

125

speedup

0

1

2

3

4

5

6

7

threads
0 1 2 3 4 5 6 7 8

desktop speedup
cloud speedup

precision
recall

F-Measure

sp
ee

du
p

0

1

2

3

4

5

6

7

m
atching effectiveness

0.65

0.66

0.67

threads
0 1 2 3 4 5 6 7 8 9

Figure 6.9: Results from Library track

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 83

6.6 Large Biomedical Ontologies track

The large biomedical ontologies track consists upon finding mappings between FMA, SNOMED-

CT, and the NCI ontologies. These ontologies are semantically rich, substantially complex, and

significantly large containing thousands of concepts. For this track, we have used a matching

library with String-based, Annotation-based, and Child-based structural matching algorithms for

bridge ontology generation. This track consists upon 6 tasks that are described in following sub-

sections.

Client

Matcher Threads

File IO Multicore
Distributor

String Annotation Aggregator

String Annotation

String Annotation

String Annotation

String Annotation

String Annotation

Matcher
Threads

Child

Child

Child

Child

Child

Child

Multicore
Distributor

AggregatorString Annotation

String Annotation

Child

Child

Request/
Response

M.J Matching Job
Matching TaskM.T

Figure 6.10: Parallel flow for Large Biomedical Ontologies track over single-node

6.6.1 Task 1: FMA-NCI small fragments

This task consists upon matching relatively smaller fragments of FMA and NCI ontologies. The

FMA fragment consists upon 5% of the whole FMA ontology (3,696 concepts) while the NCI

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 84

fragment consists upon 10% of the whole NCI ontology (6,488 concepts).

We have executed SPHeRe for both multicore desktop and cloud scenario illustrated in Fig

6.10 as a single-node execution. Matching requests are generated from the client; consequently,

smaller fragments of FMA (OS) and NCI (OT) ontologies are loaded in parallel by file IO and pro-

vided to multicore distributor component. With the knowledge of available computing resources

and ontology subsets (Os, Ot) required by matching algorithms, distributor creates 8 independent

matching jobs. Each job is allocated with a set of equal numbers of independent matching tasks

(FMAclasses×NCIclasses
8). As String and Annotation-based matching algorithms execute on the

same subsets of the respective ontologies, distributor assigns these two algorithms to every match-

ing job. Subsequently, distributor allocates each matching job to a single-core for matching. After

completion of all jobs, an intermediate bridge ontology (Ob) is created by aggregator. Thereafter,

distributor loads the subsets of adult mouse anatomy and human anatomy required for Child-based

structural matching algorithm through file IO and follows the same procedure as before. After the

completion of Child-based structural matching algorithm, aggregator accumulates its results with

the intermediate bridge ontology (Ob) and generates the formal mediation bridge ontology (OB).

This bridge ontology is finally delivered to the client as a response.

Results for this track from both scenarios (desktop and cloud) are illustrated in Fig 6.11. For

the desktop scenario, the matching request executes over quad-core desktop. The sequential pro-

cess (similar to the illustration in Fig 6.8) takes 48 seconds to complete the matching request;

however, SPHeRe completes the matching process in slightly over 11 seconds over 4 cores (=

8 threads) with the performance speedup 4.2 times. Same matching request is executed for the

second scenario over the Azure VM. The sequential process over the VM takes 100 seconds to

complete; however, SPHeRe completes the whole matching process over 8 threads in slightly over

15 seconds with an impressive speedup of 6.5 times. Furthermore, similar to the previous tracks

the accuracy of the matching process stays preserved with the same effectiveness throughout the

performance speedup (illustrated in Fig 6.11(b)).

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 85

(a) Performance-speedup

(b) Speedup-matching effectiveness

desktop performance
desktop speedup

cloud performance
cloud speedup

ex
ec

ut
io

n
tim

e
in

 s
ec

0

25

50

75

100

speedup

0

1

2

3

4

5

6

7

threads
0 1 2 3 4 5 6 7 8

desktop speedup
cloud speedup

precision
recall

F-Measure

sp
ee

du
p

0

1

2

3

4

5

6

7

m
atching effectiveness0.8

0.9

threads
0 1 2 3 4 5 6 7 8 9

Figure 6.11: Results from Large Biomedical Ontologies track, task 1

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 86

Secondary Node 1 Matcher
Threads

Client

Primary Node

File IO

Matcher Threads

String Annotation

String AnnotationMulticore
Distributor Child

Child

Aggregator

Multicore
Distribution

Aggregator

Matcher Threads

String Annotation

String AnnotationMulti-node
Distributor

Matcher
Threads

Child

Child

Aggregator

Multicore
Distribution

Aggregator

Request /
Response

File IO

M.J Matching Job
Matching TaskM.T

M.R Matching Request

String Annotation

: :

1

2

8
Child
:

1

2

8

String Annotation

: : Child

:
1

2

8

1

2

8

Multicore
Distributor

Secondary Node 2 Matcher
Threads

Matcher Threads

String Annotation

String AnnotationMulticore
Distributor Child

Child

Aggregator

Multicore
Distribution

Aggregator

File IO

String Annotation

: : Child

:
1

2

8

1

2

8

Figure 6.12: Parallel flow for Large Biomedical Ontologies track over multi-node

6.6.2 Task 2: FMA-NCI whole Ontologies

This task consists upon matching the whole FMA and NCI ontologies. The FMA ontology consists

upon 78,989 concepts while the NCI ontology consists upon 66,724 concepts. Due to the very

large size of the ontologies, the matching process is scaled over a multi-node environment, i.e.,

3 desktops and Azure VMs with above-stated specification for the first and seconds scenarios

respectively.

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 87

As illustrated in Fig 6.12, primary node receives the matching request for candidate ontolo-

gies, whole FMA (OS) and NCI (OT) from the client. Candidate ontologies are loaded in par-

allel by file IO of the primary node which consequently invokes the multi-node distributor for

distributed matching. Socket table provides the multi-node distributor with socket objects for sec-

ondary nodes. With the knowledge of available computing resources (3 nodes, 1 primary and

2 secondary, each with 8 cores available) and ontology subsets (Os, Ot) required by matching

algorithms, multi-node distributor of primary node creates 3 independent matching requests of

equal size. First matching request is forwarded to the local multicore distributor where 8 inde-

pendent matching jobs with an equal number of independent matching tasks are created. Sub-

sequently, multi-node distributor sends control messages to other secondary nodes with their re-

spective matching requests. At receiving nodes, these matching requests are forwarded to their

local multicore distributor. Assigned with their respective matching requests, all 3 participating

nodes load serialized subsets of whole FMA and NCI required by matching algorithms from their

respective ontology repositories. From this point forward, every participating node executes inde-

pendently, similar to the execution of task 1 until an intermediate bridge ontology is generated by

every node (Ob0, Ob1, and Ob2). Aggregator of secondary nodes sends their respective intermedi-

ate ontologies to the primary node. These bridge ontologies are accumulated by aggregator at the

primary node and finally delivered to the client as the formal mediation bridge ontology (OB).

Results for this task from both scenarios (desktop and cloud) are illustrated in Fig 6.13. For the

multi-node desktop scenario, the sequential process takes around 7 hours to complete the matching

request; however, our system completes the matching process within half-an hour over 24 threads

with an impressive performance speedup of 14.75 times. Same matching request is executed for

the second scenario over the multi-node Azure VM. The sequential process over the VM takes

15.5 hours to complete; however, SPHeRe completes the whole matching process over 24 threads

in slightly over 40 minutes with an impressive speedup of 21.8 times. Furthermore, similar to task

1 the accuracy of the matching process stays preserved with the same effectiveness throughout the

performance speedup (illustrated in Fig 6.13(b)).

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 88

(a) Performance-speedup

(b) Speedup-matching effectiveness

desktop performance
desktop speedup

cloud performance
cloud speedup

ex
ec

ut
io

n
tim

e
in

 h
rs

0

2.5

5.0

7.5

10.0

12.5

15.0

speedup

0

5

10

15

20

25

threads
0 1 2 4 6 8 10 12 14 16 18 20 22 24

desktop speedup
cloud speedup

precision
recall

F-Measure

sp
ee

du
p

0

5

10

15

20 m
atching effectiveness

0.77

0.78

0.79

0.80

threads
0 1 2 4 6 8 10 12 14 16 18 20 22 24

Figure 6.13: Results from Large Biomedical Ontologies track, task 2

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 89

6.6.3 Task 3: FMA-SNOMED small fragments

This task consists upon matching relatively smaller fragments of FMA and SNOMED ontologies.

The FMA fragment consists upon 13% of the whole FMA ontology (10,157 concepts) while the

SNOMED fragment consists upon 5% of the whole NCI ontology (13,412 concepts).

Similar to task 1, we have executed SPHeRe in both multicore desktop and cloud scenario as

a single-node execution. Results from these scenarios are illustrated in Fig 6.14. For the single-

node desktop scenario, the sequential process takes around 8 minutes to complete the matching

request; however, SPHeRe completes the matching process in slightly over one and half minute

over 8 threads with an impressive performance speedup of 4.76 times. Same matching request

is executed for the second scenario over the single-node Azure VM. The sequential process over

the VM takes around 18 minutes to complete; however, SPHeRe completes the whole matching

process over 8 threads in slightly less than two and half minutes with an impressive speedup of 7.56

times. Furthermore, similar to previous tasks, the accuracy of the matching process stays preserved

with the same effectiveness throughout the performance speedup (illustrated in Fig 6.14(b)).

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 90

(a) Performance-speedup

(b) Speedup-matching effectiveness

desktop performance
desktop speedup

cloud performance
cloud speedup

ex
ec

ut
io

n
tim

e
in

 m
in

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

speedup

0

1

2

3

4

5

6

7

8

threads
0 1 2 3 4 5 6 7 8

desktop speedup
cloud speedup

precision
recall

F-Measure

sp
ee

du
p

0

1

2

3

4

5

6

7

8

accuracy m
easures

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

threads
0 1 2 3 4 5 6 7 8 9

Figure 6.14: Results from Large Biomedical Ontologies track, task 3

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 91

6.6.4 Task 4: FMA whole Ontology with SNOMED large fragment

This task consists upon matching the whole FMA ontology with a large fragment of SNOMED on-

tology. The FMA ontology consists upon 78,989 concepts while the SNOMED fragment consists

upon 40% of the SNOMED ontology (122,464 concepts).

Similar to task 2, we have executed our system in both multicore desktop and cloud scenario as

multi-node execution. Results from these scenarios are illustrated in Fig 6.15. For the multi-node

desktop scenario, the sequential process takes about 14 hours to complete the matching request;

however, our system completes the matching process in less than an hour over 24 threads with

an impressive performance speedup of 15.64 times. Same matching request is executed for the

second scenario over the multi-node Azure VM. The sequential process over the VM takes over

26 hours to complete; however, our system completes the whole matching process over 24 threads

in slightly over an hour with an impressive speedup of 21 times. Furthermore, similar to the

previous tasks, the accuracy of the matching process stays preserved with the same effectiveness

throughout the performance speedup (illustrated in Fig 6.15(b)).

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 92

(a) Performance-speedup

(b) Speedup-matching effectiveness

desktop performance
desktop speedup

cloud performance
cloud speedup

ex
ec

ut
io

n
tim

e
in

 h
rs

0

5

10

15

20

25

30

speedup

0

4

8

12

16

20

24

threads
0 1 2 4 6 8 10 12 14 16 18 20 22 24

desktop speedup
cloud speedup

precision
recall

F-Measure

sp
ee

du
p

0

4

8

12

16

20

24

m
atching effectiveness

0.1

0.2

0.3

0.4

0.5

0.6

0.7

threads
0 1 2 4 6 8 10 12 14 16 18 20 22 24

Figure 6.15: Results from Large Biomedical Ontologies track, task 4

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 93

6.6.5 Task 5: SNOMED-NCI small fragments

This task consists upon matching relatively smaller fragments of SNOMED and NCI ontologies.

The SNOMED fragment consists upon 17% of the SNOMED ontology (51,128 concepts), while

the NCI fragment consists upon 36% of the whole NCI ontology (23,958 concepts).

Similar to task 1 and 3, we have executed SPHeRe in both multicore desktop and cloud sce-

nario as a single-node execution. Results from these scenarios are illustrated in Fig 6.16. For the

single-node desktop scenario, the sequential process takes around an hour to complete the match-

ing request; however, SPHeRe completes the matching process in 11 minutes over 8 threads with

an impressive performance speedup of 5.31 times. Same matching request is executed for the sec-

ond scenario over the single-node Azure VM. The sequential process over the VM takes around

116 minutes to complete; however, SPHeRe completes the whole matching process over 8 threads

in 16 minutes with an impressive speedup of 7.25 times. Furthermore, similar to previous tasks,

the accuracy of the matching process stays preserved with the same effectiveness throughout the

performance speedup (illustrated in Fig 6.16(b)).

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 94

(a) Performance-speedup

(b) Speedup-matching effectiveness

desktop performance
desktop speedup

cloud performance
cloud speedup

ex
ec

ut
io

n
tim

e
in

 m
in

0

25

50

75

100

125

speedup

0

1

2

3

4

5

6

7

8

threads
0 1 2 3 4 5 6 7 8

desktop speedup
cloud speedup

precision
recall

F-Measure

sp
ee

du
p

0

1

2

3

4

5

6

7

8

m
atching effectiveness

0.5

0.6

0.7

0.8

0.9

1.0

threads
0 1 2 3 4 5 6 7 8 9

Figure 6.16: Results from Large Biomedical Ontologies track, task 5

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 95

6.6.6 Task 6: NCI whole Ontology with SNOMED large fragment

This task consists upon matching the whole NCI ontology with a large fragment of SNOMED

ontology. The NCI ontology consists upon 66,724 concepts while the SNOMED fragment consists

upon 40% of the SNOMED ontology (122,464 concepts).

Similar to task 2 and 4, we have executed SPHeRe in both multicore desktop and cloud sce-

nario as multi-node execution. Results from these scenarios are illustrated in Fig 6.17. For the

multi-node desktop scenario, the sequential process takes close to 8 hours to complete the match-

ing request; however, SPHeRe completes the matching process in half-an-hour over 24 threads

with an impressive performance speedup of 15.19 times. Same matching request is executed for

the second scenario over the multi-node Azure VM. The sequential process over the VM takes over

17 hours to complete; however, SPHeRe completes the whole matching process over 24 threads

in less than an hour with an impressive speedup of 22 times. Furthermore, similar to the previous

tasks, the accuracy of the matching process stays preserved with the same effectiveness throughout

the performance speedup (illustrated in 6.17(b)).

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 96

(a) Performance-speedup

(b) Speedup-matching effectiveness

desktop performance
desktop speedup

cloud performance
cloud speedup

ex
ec

ut
io

n
tim

e
in

 h
rs

0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

speedup

0

4

8

12

16

20

24

threads
0 1 2 4 6 8 10 12 14 16 18 20 22 24

desktop speedup
cloud speedup

precision
recall

F-Measure

sp
ee

du
p

0

4

8

12

16

20

24

m
atching effectiveness

0.5

0.6

0.7

0.8

0.9

threads
0 1 2 4 6 8 10 12 14 16 18 20 22 24

Figure 6.17: Results from Large Biomedical Ontologies track, task 6

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 97

6.7 Conference track

The conference track consists of mapping generation within a collection of ontologies describing

the domain of organizing conferences. From trivial string-based correspondence, bridging these

ontologies also require semantic-based matching. Therefore, to generate bridge ontology we have

used a matching library with String-based, Annotation-based, Child-based Structural matching,

and Synonym-based matching algorithm which utilizes a static dictionary file (illustrated in Fig

6.18). Due to the smaller size of these ontologies we have used the A2 (dual core) Azure VM for

evaluation. We have executed 12 different mapping tasks on cmt, conference, confOf, edas, ekaw,

iasted, and sigkdd ontologies. Results from these tasks are illustrated in following figures.

Client

Matcher Threads

File IO Multicore
Distribution String Annotation Aggregation

String Annotation

String Annotation

Matcher
Threads

Child

Child

Child

Child

Multicore
Distribution Aggregation

String Annotation

Request / Response

M.J Matching Job
Matching TaskM.T

Multicore
Distribution

Matcher Threads

Synonym

Synonym

Synonym

Synonym

Aggregation

Figure 6.18: Parallel flow for Conference track over dual core single-node Azure VM

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 98

precision
recall

F-Measure
time (ms)

ex
ec

ut
io

n
tim

e
in

 m
s

0

100

200

300

400

accuracy m
easures

0

0.25

0.50

0.75

1.00

Sequential SPHeRe

Figure 6.19: cmt-iasted

precision
recall

F-Measure
time (ms)

ex
ec

ut
io

n
tim

e
in

 m
s

0

100

200

300

400

accuracy m
easures

0

0.25

0.50

0.75

Sequential SPHeRe

Figure 6.20: conf-edas

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 99

precision
recall

F-Measure
time (ms)

ex
ec

ut
io

n
tim

e
in

 m
s

0

100

200

300

400

500

accuracy m
easures

0

0.25

0.50

0.75

Sequential SPHeRe

Figure 6.21: conference-iasted

precision
recall

F-Measure
time (ms)

ex
ec

ut
io

n
tim

e
in

 m
s

0

50

100

150

200

250

accuracy m
easures

0

0.25

0.50

0.75

1.00

Sequential SPHeRe

Figure 6.22: confOf-edas

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 100

precision
recall

F-Measure
time (ms)

ex
ec

ut
io

n
tim

e
in

 m
s

0

100

200

300

400

500

accuracy m
easures

0

0.25

0.50

0.75

1.00

Sequential SPHeRe

Figure 6.23: confOf-iasted

precision
recall

F-Measure
time (ms)

ex
ec

ut
io

n
tim

e
in

 m
s

0

50

100

150

200

250

300

350

accuracy m
easures

0

0.25

0.50

0.75

1.00

Sequential SPHeRe

Figure 6.24: confOf-sigkdd

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 101

precision
recall

F-Measure
time (ms)

ex
ec

ut
io

n
tim

e
in

 m
s

0

50

100

150

200

250 accuracy m
easures

0

0.25

0.50

0.75

1.00

Sequential SPHeRe

Figure 6.25: ekaw-sigkdd

precision
recall

F-Measure
time (ms)

ex
ec

ut
io

n
tim

e
in

 m
s

0

50

100

150

200

250 accuracy m
easures

0

0.25

0.50

0.75

1.00

Sequential SPHeRe

Figure 6.26: iasted-sigkdd

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 102

precision
recall

F-Measure
time (ms)

ex
ec

ut
io

n
tim

e
in

 m
s

0

50

100

150

200 accuracy m
easures

0

0.25

0.50

0.75

Sequential SPHeRe

Figure 6.27: edas-ekaw

precision
recall

F-Measure
time (ms)

ex
ec

ut
io

n
tim

e
in

 m
s

0

100

200

300

400 accuracy m
easures

0

0.25

0.50

0.75

1.00

Sequential SPHeRe

Figure 6.28: edas-iasted

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 103

precision
recall

F-Measure
time (ms)

ex
ec

ut
io

n
tim

e
in

 m
s

0

50

100

150

200

250

accuracy m
easures

0

0.25

0.50

0.75

1.00

Sequential SPHeRe

Figure 6.29: edas-sigkdd

precision
recall

F-Measure
time (ms)

ex
ec

ut
io

n
tim

e
in

 m
s

0

100

200

300

400

500

accuracy m
easures

0

0.25

0.50

0.75

1.00

Sequential SPHeRe

Figure 6.30: ekaw-iasted

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 104

Table 6.2: Evaluation Summary
Matching Domain Platform Speed Precision

Problem up

Small cmt-iasted Conference Single-node Cloud VM 1.22 0.57

conference-edas Single-node Cloud VM 1.25 0.81
conference-iasted Single-node Cloud VM 1.39 0.80
confof-edas Single-node Cloud VM 1.11 0.87
confof-iasted Single-node Cloud VM 1.38 0.82
confof-sigkdd Single-node Cloud VM 1.19 1.00
edas-sigkdd Single-node Cloud VM 1.28 0.92
ekaw-iasted Single-node Cloud VM 1.39 0.67
ekaw-sigkdd Single-node Cloud VM 1.23 0.79
iasted-sigkdd Single-node Cloud VM 1.33 0.87
edas-ekaw Single-node Cloud VM 1.11 0.79
edas-iasted Single-node Cloud VM 1.25 0.86

Medium human-mouse Anatomy Single-node Desktop 4.05 0.99

Single-node Cloud VM 5.56 0.99

STW-TheSoz Library Single-node Desktop 4.15 0.67
Single-node Cloud VM 6.38 0.67

FMAs-NCIs Biomedical Single-node Desktop 4.27 0.95

Single-node Cloud VM 6.53 0.95

Large FMAw-SNOMEDs Single-node Desktop 4.76 0.93
Single-node Cloud VM 7.56 0.93

NCIw-SNOMEDs Single-node Desktop 5.31 0.95
Single-node Cloud VM 7.25 0.95

Very FMAw-NCIw Multi-node Desktop 14.75 0.80
Large Multi-node Cloud VM 21.80 0.80

FMAw-SNOMEDl Multi-node Desktop 15.64 0.66
Multi-node Cloud VM 20.91 0.66

NCIw-SNOMEDl Multi-node Desktop 15.19 0.89
Multi-node Cloud VM 21.93 0.89

6.8 Evaluation Summary

In our evaluation, we have used the dataset of real-world ontologies provided by OAEI’s 2012 and

2013 campaign. The key strength of this dataset is its comprehensiveness that cannot be achieved

in datasets comprised of synthetic and custom-built ontologies. The results from the matching

problems of OAEI’s dataset are summarized in Table 6.2. These results provide evidence for four

major characteristics of presented methodology, described in the following subsections.

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 105

desktop
cloud (Azure VM)

av
er

ag
e

sp
ee

du
p

0

2

4

6

8

10

12

14

16

18

20

22

24

small (dual core) medium (8 cores) large (8 cores) very large (8 cores) very large (16 cores) very large (24 cores)

Figure 6.31: Results Summary

6.8.1 Independent of Ontology Domain

As stated in the related work chapter, some of the matching systems are built specific to ontology

domains, particularly systems for matching biomedical ontologies. However, longevity and appli-

cability of an ontology matching system increases with its support to a larger set of ontologies.

Therefore, a state-of-the-art ontology matching systems must be independent of ontology domain.

The candidate ontologies used in the matching problems evaluated of proposed methodology are of

diverse domains. No change has been inflicted in the structure of the candidate ontologies, yet pre-

sented implementation scores an impressive performance speedup on all the matching problems.

For example, problem of matching library ontologies and small FMA with small NCI ontologies

are from different domains of knowledge; furthermore, different matching libraries are used for

their mediation. However, due to the ontology subsets generated based on the type of matching

algorithms and independent nature of the matching tasks, both of the matching problems score

similar performance speedup on the same platform.

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 106

6.8.2 Performance-based Ontology Matching over various size of Matching Prob-

lems

As described in Table 6.2, we can classify the matching problems in four categories: (i) Small, con-

taining conference ontologies track; (ii) Medium, containing anatomy, library, and task 1 (FMA

with NCI small fragments) from large biomedical ontologies track; (iii) Large, containing task 3

(FMA-SNOMED small fragments) and 5 (SNOMED-NCI small fragments) from large biomedi-

cal ontologies track and (iv) Very large, containing task 2 (FMA-NCI whole ontologies), 4 (FMA

whole ontology with SNOMED large fragment), and 6 (NCI whole ontology with SNOMED

large fragment) from large biomedical track. The average speedup by a category is illustrated in

Fig 6.31. It is quite evident from the figure that presented methodology is more beneficial to the

ontology matching problems with a medium to large and very large sizes. Results for the small

category containing conference track are obtained from a dual core Azure VM. Although the se-

quential process does complete the matching process quite efficiently due to the small nature of

the matching problem, yet presented implementation was able to improve the performance by an

average speedup of 1.25 times (≈ 20% more efficient than sequential matching process).

The medium category was evaluated on a quad-core Hyper-Threaded desktop and an Azure

VM with 8 cores. The average performance speedup is 4.1 and 5.9 on desktop and cloud respec-

tively. Comparing these results to the average speedup of medium-scale problem of [20], even

with an inferior hardware presented implementation outperforms the intra-matcher by 5% on the

desktop and 51% over cloud platform.

The large category was also evaluated on a quad-core Hyper-Threaded desktop and an Azure

VM with 8 cores. The average performance speedup is 5.0 and 7.4 on desktop and cloud respec-

tively. Comparing these results to the average speedup of the large-scale problem of [20] on a

single node, our implementation outperforms the intra-matcher by 5.2% on desktop and 55% over

the cloud platform.

For the very large category, average speedup has been calculated over single-node (8 cores),

and multi-node (16 and 24 cores). On a single-node the results are quite similar to single-node

large category, i.e., 4.97 and 7.02 times on desktop and cloud respectively. Presented implemen-

tation outperforms the intra-matcher of [20] by 4.6% on desktop and 47.78% over cloud platform.

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 107

In case of multi-node platform with dual nodes (8 cores each), our implementation completes the

matching process with an average speedup of 9.42 and 14.1 on desktop and cloud respectively.

Comparing these results with Intra&Inter multi-node matcher of [20] over 16 cores, our system

running over Azure VMs outperforms Intra&Inter matcher by 12.8%. Scaling the same matching

problem to 3 nodes (8 cores each), our implementation completes the matching process with an

average speedup of 15.16 times on a desktop and 21.51 times over cloud platform.

6.8.3 Effectiveness-independent Performance-gain

As described earlier, ontology matching systems developed over the years have taken performance

into consideration; however, it is tightly coupled with the effectiveness of their matching algo-

rithms. On the other hand, methodology proposed by our methodology extracts performance-gain

without inflicting any changes in the accuracy of the matching algorithm. From the results, it is

clear that the accuracy of the matched results remains preserved even when scaling up to multiple

cores for parallel matching. In all the performed evaluations, the effectiveness measures remain

constant even with substantial gain in performance.

6.8.4 Matching Library Interface

To implement effectiveness-independent performance-gain, distributor components of the imple-

mentation, decouples the matching library from the performance runtime with the help of a match-

ing library interface. This approach offers an additional benefit of plug-n-play matching algo-

rithms and libraries. In our evaluation, we have used three different ontology matching libraries

with different accuracy measures, provided to us by different semantic web experts. For anatomy

and library matching problem, same matching library of String, Label, and Child-based algorithms

is used. For large-biomedical tracks, a matching library with String, Annotation, and Child-based

algorithms is used. For conference matching problems, another library with four matching al-

gorithms, i.e., String, Annotation, Child, and Synonym-based matching algorithm is used. This

characteristic of our system provides an exclusive performance-based ontology matching runtime

that can host and execute matching algorithms and libraries, developed by semantic web experts

without worries of accuracy loss or platform-level maintenance.

Chapter 7
Conclusion and Future Directions

7.1 Conclusion

In this thesis, we presented our multi-dimensional performance-based ontology matching method-

ology over parallel platforms. Ontology matching is a widely used technique for heterogene-

ity resolution among information and knowledge-based systems; however, size, complexity, and

availability of these ontologies requires solutions that are built from a performance aspect. With

the availability of affordable parallelism-enabled multicore platforms like desktop and cloud, our

methodology exploits their performance benefits by data parallelism for ontology matching.

Presented methodology caters performance aspects of ontology matching with effectiveness-

independence from four dimensions, i.e., memory space, over-all execution time, performance-

based ontology matching runtime, and non-monolithic ontology matching resolution. For mem-

ory space, our methodology converts the candidate ontologies into smaller, simpler, and scalable

resource-based ontology subsets, based on the requirements of matching algorithms. This ap-

proach provides the resolution to the scalability challenge of ontology matching by providing

ontology subsets that are distribution friendly. Furthermore, due to the smaller size, independent

and scalable nature of these subsets, accessing ontology resources is significantly faster than load-

ing directly from the ontology files. We have recorded 8 times faster ontology resource loading

with 4 times smaller memory footprint working with ontology subsets instead of whole ontologies.

These subsets are also serialized and persisted by our system for reuse.

To further contribute in memory space reduction of the ontology matching process, our

methodology also aligns execution of matching algorithms such that the matching space of every

following algorithm execution gets minimized. This method speeds up the matching process by

only matching the unmatched ontology resources; consequently, avoiding the redundant matching

108

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS 109

operations.

For over-all execution time, presented methodology provides resolution by parallel and dis-

tributed ontology matching. For its implementation over the matching process, three-layer distri-

bution abstraction is defined by our methodology. This abstraction constitutes upon independent

matching requests generated for each participating node by multi-node distributor, and match-

ing jobs and matching tasks generated by multicore distributor for participating cores per node.

These abstractions are independent in nature and provide the foundation for data-parallel ontology

matching. This approach of distributing matching process from grainer level matching request

to finer level matching tasks provides the resolution to the resource utilization challenge of the

performance aspect of ontology matching. Consequently, over parallelism-enabled platforms we

have recorded a performance speedup of 4.1 to 7.5 times on single-node multicore platforms and

up to 21.5 times on multi-node platforms. Furthermore, distribution components provide the inter-

face to matching libraries and algorithms. Matching tasks are assigned with instances of matching

algorithms to be executed at the runtime with no change inflicted in the implementation of the

algorithm. This method decouples the performance aspects of ontology matching from accuracy,

providing an effectiveness-independent approach. We have recorded no change in the accuracy

measures while scaling up the matching process for parallel and distributed matching. Matched

results from matched tasks distributed over computing resources are aggregated to generate the

required mappings as mediation bridge ontology by post-matching stage.

Presented approaches are implemented as performance-based ontology matching runtime, de-

ployed and evaluated over parallel platforms like multicore desktops and multi-node cloud plat-

forms. This runtime is developed using the Java programming language and has been incor-

porated in our ontology matching system called SPHeRe as a core component. Presented run-

time utilizes the subset generation and matching space reduction approaches for efficient memory

space utilization, and parallel and distribution abstractions with explicit thread-level parallelism

for performance-gain during ontology matching process. Furthermore, this performance-based

runtime is extended with interfaces to service and platform level, and deployed over public cloud

platform (MS. Azure) for availability. At service level, it is presented as Ontology Matching as

a Service where heterogeneity resolution clients can submit their ontologies for bridge ontology

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS 110

generation. Runtime is also presented as Platform as a Service where semantic-web experts can

plug-in their matching libraries and algorithms for execution and evaluation. Due to the decou-

pled interface between performance components and matching library, semantic-web experts need

not to write any parallelism-based code within their matching algorithms, parallel and distributed

matching is automatically taken care by the distributor components of the ontology matching run-

time.

For benchmarking of the presented methodology, we have used OAEI’s real-world ontology

dataset. The evaluation tracks and their tasks provided by OAEI’s semantic web experts are

specifically designed to assess the state-of-the-art ontology matching systems. This dataset in-

cludes fourteen ontologies from diverse domains, different sizes and complexities. Evaluation on

such a diverse dataset of ontologies have validated the generic nature of our methodology, i.e.,

performance-based ontology matching process executes regardless of the type and scope of candi-

date ontologies. Furthermore, matching problems for evaluation are classified into different sizes,

varying from small to very-large scale ontologies. Although our approach provides a small per-

formance speedup (1.25 times) on smaller ontologies; however, it scores impressive performance-

gain where it matters the most, i.e., in solving medium to large-scale ontology matching problems.

For medium scale ontology matching problems, the average performance speedup is 4.1 and 5.9

times over single-node desktop and Microsoft Azure VM respectively. For large-scale ontology

matching problems, the average performance speed is 5.0 and 7.4 times over single-node desktop

and Azure VM respectively. For very-large scale ontology matching problems, the average per-

formance speedup is 15.16 and 21.51 times over multi-node desktop and Azure cloud platform.

7.2 Future Work

From the recorded results drawn by the presented methodology working with real-world ontolo-

gies, it is apparent that our approach offers a comprehensive resolution to the performance chal-

lenges of ontology matching problems. Moreover, our methodology is generic, effectiveness-

independent, and aligned with the use of new generation computing platforms. Due to the ex-

tensive use of ontologies, the size and complexity of ontology matching problems will increase.

From the results, it is evident that our methodology performs impressively well on medium to very-

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS 111

large scale ontology matching problems. Thus it has the required longevity for the future ontology

matching problems. We have on-going research in the area of performance-based ontology match-

ing, with the proposed methodology as a research outcome. Although our implementation scores

impressively during evaluation; however, there are few limitations of current approach, which will

be overcome, in future work. Apparently our implementation presumes the multi-node environ-

ment to be homogenous, which might not stay true in the longer run as heterogeneous computing

environments are becoming available with the excessive use of cloud computing. Furthermore,

relationship needs to be identified between the size of the matching problem and acquisition of

computing resources, such that optimal distribution slab can be identified automatically.

From the application and usability perspective of our methodology, it can greatly benefit

semantic-web experts, researchers, and dynamic systems, which rely on ontology matching to

provide heterogeneity resolution. Due to the computational complexity and increasing-size of

these ontologies, a client has to wait for in-time results. Presented methodology provides the

resolution to these clients by performing performance-based ontology matching in parallel over

affordable platforms for fast results. This approach is built to scale from multicore desktops PCs

to ubiquitous and affordable distributed multi-node platforms like clouds for better performance.

Furthermore, semantic-web experts who are focused on building matching algorithms can inte-

grate their encapsulated algorithms and benefit from the parallel execution without writing any

parallelism code with-in to complement. Above of all, due to the effectiveness-independent ap-

proach of our methodology, these experts do not have to worry about any accuracy loss with

performance speedup.

Bibliography

[1] A. Doan, A. Halevy, and Z. Ives, Principles of Data Integration, 1st ed. Morgan Kaufmann

Publishers Inc., Jul. 2012. [Online]. Available: http://dl.acm.org/citation.cfm?id=2401764

[2] F. Hakimpour and A. Geppert, “Resolving semantic heterogeneity in schema integration.”

in FOIS, 2001, pp. 297–308. [Online]. Available: http://dblp.uni-trier.de/db/conf/fois/

fois2001.html#HakimpourG01

[3] Microsoft, “Microsoft BizTalk Server,” http://www.microsoft.com/biztalk/en/us/default.

aspx, 2012.

[4] ——, “Applying Microsoft Patterns to Solve EAI Problems,” http://msdn.microsoft.com/

en-us/library/ee265635(v=bts.10).aspx, 2004.

[5] Z. Dilong, “Analysis of XML and COIN as Solutions for Data Heterogeneity in Insurance

System Integration,” Master’s thesis, Sloan School of Managment, Massachusetts Institute

of Technology (MIT), Cambridge, MA, 2001.

[6] J. Gracia and E. Mena, “Semantic heterogeneity issues on the web.” IEEE Internet

Computing, vol. 16, no. 5, pp. 60–67, 2012. [Online]. Available: http://dblp.uni-trier.de/

db/journals/internet/internet16.html#GraciaM12

[7] J. Euzenat and P. Shvaiko, Ontology Matching, 2nd ed. Berlin: Springer, 2013.

[8] A. K. M. A. S. L. Wajahat Ali Khan, Muhammad Bilal Amin and E. S. Kim, “Object ori-

ented and ontology alignment patterns based expressive mediation bridge ontology (mbo).”

Journal of Information Science, pp. 1–22, 2014.

112

http://dl.acm.org/citation.cfm?id=2401764
http://dblp.uni-trier.de/db/conf/fois/fois2001.html#HakimpourG01
http://dblp.uni-trier.de/db/conf/fois/fois2001.html#HakimpourG01
http://www.microsoft.com/biztalk/en/us/default.aspx
http://www.microsoft.com/biztalk/en/us/default.aspx
http://msdn.microsoft.com/en-us/library/ee265635(v=bts.10).aspx
http://msdn.microsoft.com/en-us/library/ee265635(v=bts.10).aspx
http://dblp.uni-trier.de/db/journals/internet/internet16.html#GraciaM12
http://dblp.uni-trier.de/db/journals/internet/internet16.html#GraciaM12

BIBLIOGRAPHY 113

[9] D. Isern, S. David, and A. Moreno, “Ontology-driven execution of clinical guidelines.”

Computer Methods and Programs in Biomedicine, vol. 107, no. 2, pp. 122–139, 2012.

[Online]. Available: http://dblp.uni-trier.de/db/journals/cmpb/cmpb107.html#IsernSM12

[10] J. Cimino and X. Zhu, “The practical impact of ontologies on biomedical informatics,”

IMIA Yearbook of Medical Informatics, vol. 1, no. 1, pp. 124–135, 2006. [Online].

Available: /brokenurl#http://publication.wilsonwong.me/load.php?id=233282059

[11] P. D. Potter, H. Cools, K. Depraetere, G. Mels, P. Debevere, J. D. Roo,

C. Huszka, D. Colaert, E. Mannens, and R. V. de Walle, “Semantic patient

information aggregation and medicinal decision support.” Computer Methods and

Programs in Biomedicine, vol. 108, no. 2, pp. 724–735, 2012. [Online]. Available:

http://dblp.uni-trier.de/db/journals/cmpb/cmpb108.html#PotterCDMDRHCMW12

[12] “Gene ontology consortium: The gene ontology (GO) database and informatics resource,”

Nucleic Acids Research, vol. 32, no. Database-Issue, pp. 258–261, 2004. [Online].

Available: http://dx.doi.org/10.1093/nar/gkh036

[13] J. Golbeck, G. Fragoso, F. Hartel, J. Hendler, J. Oberthaler, and B. Parsia, “The national

cancer institute’s thesaurus and ontology,” Journal of web semantics, vol. 1, no. 1, pp. 75–

80, 2003.

[14] C. Rosse and J. L. V. M. Jr., “A reference ontology for biomedical informatics: the

foundational model of anatomy.” Journal of Biomedical Informatics, vol. 36, no. 6,

pp. 478–500, 2003. [Online]. Available: http://dblp.uni-trier.de/db/journals/jbi/jbi36.html#

RosseM03

[15] S. Schulz, R. Cornet, and K. A. Spackman, “Consolidating snomed ct’s ontological

commitment.” Applied Ontology, vol. 6, no. 1, pp. 1–11, 2011. [Online]. Available:

http://dblp.uni-trier.de/db/journals/ao/ao6.html#SchulzCS11

[16] B. Smith, M. Ashburner, C. Rosse, J. Bard, W. Bug, W. Ceusters, L. Goldberg, K. Eilbeck,

A. Ireland, and C. Mungall, “The obo foundry: coordinated evolution of ontologies to

http://dblp.uni-trier.de/db/journals/cmpb/cmpb107.html#IsernSM12
/brokenurl# http://publication.wilsonwong.me/load.php?id=233282059
http://dblp.uni-trier.de/db/journals/cmpb/cmpb108.html#PotterCDMDRHCMW12
http://dx.doi.org/10.1093/nar/gkh036
http://dblp.uni-trier.de/db/journals/jbi/jbi36.html#RosseM03
http://dblp.uni-trier.de/db/journals/jbi/jbi36.html#RosseM03
http://dblp.uni-trier.de/db/journals/ao/ao6.html#SchulzCS11

BIBLIOGRAPHY 114

support biomedical data integration,” Nature biotechnology, vol. 25, no. 11, pp. 1251–1255,

2007.

[17] P. L. Whetzel, N. F. Noy, N. H. Shah, P. R. Alexander, C. Nyulas, T. Tudorache, and M. A.

Musen, “Bioportal: enhanced functionality via new web services from the national center

for biomedical ontology to access and use ontologies in software applications,” Nucleic

acids research, vol. 39, no. suppl 2, pp. W541–W545, 2011.

[18] A. Algergawy, R. Nayak, N. Siegmund, V. Kppen, and G. Saake, “Combining schema and

level-based matching for web service discovery.” in ICWE, ser. Lecture Notes in Computer

Science, B. Benatallah, F. Casati, G. Kappel, and G. Rossi, Eds., vol. 6189. Springer,

2010, pp. 114–128. [Online]. Available: http://dblp.uni-trier.de/db/conf/icwe/icwe2010.

html#AlgergawyNSKS10

[19] D. Fensel, H. Lausen, A. Polleres, J. D. Bruijn, M. Stollberg, D. Roman, and J. Domingue,

Eds., Enabling Semantic Web Services: The Web Service Modeling Ontology. Heidelberg:

Springer-Verlag, 2006.

[20] A. Gross, M. Hartung, T. Kirsten, and E. Rahm, “On matching large life science

ontologies in parallel.” in DILS, ser. Lecture Notes in Computer Science, P. Lambrix

and G. J. L. Kemp, Eds., vol. 6254. Springer, 2010, pp. 35–49. [Online]. Available:

http://dblp.uni-trier.de/db/conf/dils/dils2010.html#GrossHKR10

[21] P. Shvaiko and J. Euzenat, “Ontology matching: State of the art and future challenges.”

IEEE Trans. Knowl. Data Eng., vol. 25, no. 1, pp. 158–176, 2013. [Online]. Available:

http://dblp.uni-trier.de/db/journals/tkde/tkde25.html#ShvaikoE13

[22] T. J. LeBlanc and S. A. Friedberg, “Hpc: A model of structure and change in distributed

systems.” IEEE Trans. Computers, vol. 34, no. 12, pp. 1114–1129, 1985. [Online].

Available: http://dblp.uni-trier.de/db/journals/tc/tc34.html#LeBlancF85

[23] S. Han and H. G. Choi, “Investigation of the parallel efficiency of a pc cluster for the

simulation of a cfd problem,” Personal Ubiquitous Comput., vol. 18, no. 6, pp. 1303–1314,

Aug. 2014. [Online]. Available: http://dx.doi.org/10.1007/s00779-013-0733-4

http://dblp.uni-trier.de/db/conf/icwe/icwe2010.html#AlgergawyNSKS10
http://dblp.uni-trier.de/db/conf/icwe/icwe2010.html#AlgergawyNSKS10
http://dblp.uni-trier.de/db/conf/dils/dils2010.html#GrossHKR10
http://dblp.uni-trier.de/db/journals/tkde/tkde25.html#ShvaikoE13
http://dblp.uni-trier.de/db/journals/tc/tc34.html#LeBlancF85
http://dx.doi.org/10.1007/s00779-013-0733-4

BIBLIOGRAPHY 115

[24] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud

computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010. [Online]. Available:

http://doi.acm.org/10.1145/1721654.1721672

[25] M. Amin, A. Shafi, S. Hussain, W. Khan, and S. Lee, “High performance java sockets (hpjs)

for scientific health clouds,” in e-Health Networking, Applications and Services (Health-

com), 2012 IEEE 14th International Conference on, oct. 2012, pp. 477 –480.

[26] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and

emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility.”

Future Generation Comp. Syst., vol. 25, no. 6, pp. 599–616, 2009. [Online]. Available:

http://dblp.uni-trier.de/db/journals/fgcs/fgcs25.html#BuyyaYVBB09

[27] T. Hayamizu, M. Mangan, J. Corradi, J. Kadin, and M. Ringwald, “The adult mouse

anatomical dictionary: a tool for annotating and integrating data,” Genome Biology, vol. 6,

pp. 1–8, 2005. [Online]. Available: http://dx.doi.org/10.1186/gb-2005-6-3-r29

[28] G. Stoilos, G. Stamou, and S. Kollias, “A string metric for ontology alignment,”

in Proceedings of the 4th international conference on The Semantic Web, ser.

ISWC’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 624–637. [Online]. Available:

http://dx.doi.org/10.1007/11574620 45

[29] E. J. Ruiz, B. C. Grau, and I. Horrocks, “Evaluating Ontology Matching Systems

on Large, Multilingual and Real-world Test Cases,” http://www.cs.ox.ac.uk/isg/projects/

SEALS/oaei/, 2012.

[30] M. B. Amin, R. Batool, W. A. Khan, S. Lee, and E.-N. Huh, “Sphere,” The

Journal of Supercomputing, vol. 68, no. 1, pp. 274–301, 2014. [Online]. Available:

http://dx.doi.org/10.1007/s11227-013-1037-1

[31] W. Hu, “Falcon-AO,” http://ws.nju.edu.cn/falcon-ao/, 2010.

[32] H. Seddiqui and M. Aono, “An efficient and scalable algorithm for segmented

alignment of ontologies of arbitrary size,” Web Semantics: Science, Services

http://doi.acm.org/10.1145/1721654.1721672
http://dblp.uni-trier.de/db/journals/fgcs/fgcs25.html#BuyyaYVBB09
http://dx.doi.org/10.1186/gb-2005-6-3-r29
http://dx.doi.org/10.1007/11574620_45
http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/
http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/
http://dx.doi.org/10.1007/s11227-013-1037-1
http://ws.nju.edu.cn/falcon-ao/

BIBLIOGRAPHY 116

and Agents on the World Wide Web, vol. 7, no. 4, 2009. [Online]. Available:

http://www.websemanticsjournal.org/index.php/ps/article/view/272

[33] E. Jimnez-Ruiz and B. C. Grau, “Logmap: Logic-based and scalable ontology matching.”

vol. 7031, pp. 273–288, 2011. [Online]. Available: http://dblp.uni-trier.de/db/conf/

semweb/iswc2011-1.html#Jimenez-RuizG11

[34] J. David, F. Guillet, and H. Briand, “Matching directories and owl ontologies with aroma,”

in Proceedings of the 15th ACM international conference on Information and knowledge

management, ser. CIKM ’06. New York, NY, USA: ACM, 2006, pp. 830–831. [Online].

Available: http://doi.acm.org/10.1145/1183614.1183752

[35] I. F. Cruz, F. P. Antonelli, and C. Stroe, “Agreementmaker: Efficient matching for large

real-world schemas and ontologies.” PVLDB, vol. 2, no. 2, pp. 1586–1589, 2009. [Online].

Available: http://dblp.uni-trier.de/db/journals/pvldb/pvldb2.html#CruzAS09

[36] M. B. Amin, W. A. Khan, S. Lee, and B. H. Kang, “Performance-based

ontology matching,” Applied Intelligence, pp. 1–30, 2015. [Online]. Available:

http://dx.doi.org/10.1007/s10489-015-0648-z

[37] A. C. G. G. E. D. V. A. Tenschert, M. Assel and I. Celino, “Parallelization and distribution

techniques for ontology matching in urban computing environments,” 2009.

[38] D. Andrade, B. B. Fraguela, J. C. Brodman, and D. A. Padua, “Task-parallel versus

data-parallel library-based programming in multicore systems.” in PDP, D. E. Baz,

F. Spies, and T. Gross, Eds. IEEE Computer Society, 2009, pp. 101–110. [Online].

Available: http://dblp.uni-trier.de/db/conf/pdp/pdp2009.html#AndradeFBP09

[39] W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, and E. Y. Chang, “Parallel spectral clustering

in distributed systems.” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 3,

pp. 568–586, 2011. [Online]. Available: http://dblp.uni-trier.de/db/journals/pami/pami33.

html#ChenSBLC11

http://www.websemanticsjournal.org/index.php/ps/article/view/272
http://dblp.uni-trier.de/db/conf/semweb/iswc2011-1.html#Jimenez-RuizG11
http://dblp.uni-trier.de/db/conf/semweb/iswc2011-1.html#Jimenez-RuizG11
http://doi.acm.org/10.1145/1183614.1183752
http://dblp.uni-trier.de/db/journals/pvldb/pvldb2.html#CruzAS09
http://dx.doi.org/10.1007/s10489-015-0648-z
http://dblp.uni-trier.de/db/conf/pdp/pdp2009.html#AndradeFBP09
http://dblp.uni-trier.de/db/journals/pami/pami33.html#ChenSBLC11
http://dblp.uni-trier.de/db/journals/pami/pami33.html#ChenSBLC11

BIBLIOGRAPHY 117

[40] I. D. Zone, “Choose the Right Threading Model (Task-Parallel

or Data-Parallel Threading),” https://software.intel.com/en-us/articles/

choose-the-right-threading-model-task-parallel-or-data-parallel-threading, 2011.

[41] “Apache Hadoop,” https://hadoop.apache.org.

[42] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,”

Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008. [Online]. Available:

http://doi.acm.org/10.1145/1327452.1327492

[43] “HDFS Architecture Guide,” http://hadoop.apache.org/docs/hdfs/current/hdfs design.html.

[44] T. Kirsten, A. Gross, M. Hartung, and E. Rahm, “Gomma: a component-based infrastruc-

ture for managing and analyzing life science ontologies and their evolution,” J. Biomedical

Semantics, vol. 2, p. 6, 2011.

[45] ——, “Gomma: a component-based infrastructure for managing and analyzing life science

ontologies and their evolution,” Journal of Biomedical Semantics, vol. 2, no. 1, 2011.

[Online]. Available: http://dx.doi.org/10.1186/2041-1480-2-6

[46] Y. R. Jean-Mary, E. P. Shironoshita, and M. R. Kabuka, “Ontology Matching with Semantic

Verification,” Web Semantics, vol. 7, no. 3, pp. 235–251, September 2009.

[47] W. Hu and Y. Qu, “Falcon-AO: a practical ontology matching system,” Web Semantics,

vol. 6, no. 3, pp. 237–239, 2008. [Online]. Available: http://portal.acm.org/citation.cfm?

id=1412999&jmp=cit&coll=&dl=GUIDE

[48] W. Hu, Y. Qu, and G. Cheng, “Matching large ontologies: A divide-and-conquer

approach.” Data Knowl. Eng., vol. 67, no. 1, pp. 140–160, 2008. [Online]. Available:

http://dblp.uni-trier.de/db/journals/dke/dke67.html#HuQC08

[49] M. S. Hanif and M. Aono, “An efficient and scalable algorithm for segmented alignment

of ontologies of arbitrary size.” J. Web Sem., vol. 7, no. 4, pp. 344–356, 2009. [Online].

Available: http://dblp.uni-trier.de/db/journals/ws/ws7.html#HanifA09

https://software.intel.com/en-us/articles/choose-the-right-threading-model-task-parallel-or-data-parallel-threading
https://software.intel.com/en-us/articles/choose-the-right-threading-model-task-parallel-or-data-parallel-threading
https://hadoop.apache.org
http://doi.acm.org/10.1145/1327452.1327492
http://hadoop.apache.org/docs/hdfs/current/hdfs_design.html
http://dx.doi.org/10.1186/2041-1480-2-6
http://portal.acm.org/citation.cfm?id=1412999&jmp=cit&coll=&dl=GUIDE
http://portal.acm.org/citation.cfm?id=1412999&jmp=cit&coll=&dl=GUIDE
http://dblp.uni-trier.de/db/journals/dke/dke67.html#HuQC08
http://dblp.uni-trier.de/db/journals/ws/ws7.html#HanifA09

BIBLIOGRAPHY 118

[50] S. Garruzzo and D. Rosaci, “Agent clustering based on semantic negotiation.” TAAS,

vol. 3, no. 2, 2008. [Online]. Available: http://dblp.uni-trier.de/db/journals/taas/taas3.html#

GarruzzoR08

[51] P. D. Meo, G. Quattrone, D. Rosaci, and D. Ursino, “Bilateral semantic negotiation: a

decentralised approach to ontology enrichment in open multi-agent systems.” IJDMMM,

vol. 4, no. 1, pp. 1–38, 2012. [Online]. Available: http://dblp.uni-trier.de/db/journals/

ijdmmm/ijdmmm4.html#MeoQRU12

[52] S. Garruzzo and D. Rosaci, “Information agents that learn to understand each other via

semantic negotiation.” in DAIS, ser. Lecture Notes in Computer Science, F. Eliassen

and A. Montresor, Eds., vol. 4025. Springer, 2006, pp. 99–112. [Online]. Available:

http://dblp.uni-trier.de/db/conf/dais/dais2006.html#GarruzzoR06

[53] ——, “Information agents that learn to understand each other via semantic negotiation.”

in DAIS, ser. Lecture Notes in Computer Science, F. Eliassen and A. Montresor, Eds., vol.

4025. Springer, 2006, pp. 99–112. [Online]. Available: http://dblp.uni-trier.de/db/conf/

dais/dais2006.html#GarruzzoR06

[54] “JADE TUTORIAL, JADE PROGRAMMING FOR BEGINNERS Gio-

vanni Caire (TILAB, formerly CSELT),” http://www.cs.uu.nl/docs/vakken/map/

JADEProgramming-Tutorial-for-beginners.pdf.

[55] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds., Advances in

knowledge discovery and data mining. Menlo Park, CA, USA: American Association

for Artificial Intelligence, 1996.

[56] W. J. Frawley, G. Piatetsky-shapiro, and C. J. Matheus, “Knowledge discovery in databases:

an overview,” 1992.

[57] T. Kirsten, L. Kolb, M. Hartung, A. Gross, H. Kpcke, and E. Rahm, “Data partitioning for

parallel entity matching,” CoRR, vol. abs/1006.5309, 2010, informal publication. [Online].

Available: http://dblp.uni-trier.de/db/journals/corr/corr1006.html#abs-1006-5309

http://dblp.uni-trier.de/db/journals/taas/taas3.html#GarruzzoR08
http://dblp.uni-trier.de/db/journals/taas/taas3.html#GarruzzoR08
http://dblp.uni-trier.de/db/journals/ijdmmm/ijdmmm4.html#MeoQRU12
http://dblp.uni-trier.de/db/journals/ijdmmm/ijdmmm4.html#MeoQRU12
http://dblp.uni-trier.de/db/conf/dais/dais2006.html#GarruzzoR06
http://dblp.uni-trier.de/db/conf/dais/dais2006.html#GarruzzoR06
http://dblp.uni-trier.de/db/conf/dais/dais2006.html#GarruzzoR06
http://www.cs.uu.nl/docs/vakken/map/JADEProgramming-Tutorial-for-beginners.pdf
http://www.cs.uu.nl/docs/vakken/map/JADEProgramming-Tutorial-for-beginners.pdf
http://dblp.uni-trier.de/db/journals/corr/corr1006.html#abs-1006-5309

BIBLIOGRAPHY 119

[58] E. Jimnez-Ruiz, C. Meilicke, B. C. Grau, and I. Horrocks, “Evaluating mapping repair

systems with large biomedical ontologies.” vol. 1014, pp. 246–257, 2013. [Online].

Available: http://dblp.uni-trier.de/db/conf/dlog/dlog2013.html#Jimenez-RuizMGH13

[59] P. Lambrix and H. Tan, “Sambo - a system for aligning and merging biomedical

ontologies.” J. Web Sem., vol. 4, no. 3, pp. 196–206, 2006. [Online]. Available:

http://dblp.uni-trier.de/db/journals/ws/ws4.html#LambrixT06

[60] “What is WordNet?, Princeton University 2013,” https://wordnet.princeton.edu.

[61] “National Center for Biotechnology Information, U.S. National Library of Medicine,

PubMed, 2013,” http://www.ncbi.nlm.nih.gov/pubmed.

[62] T. Takai-Igarashi and T. Takagi, “Signal-ontology: Ontology for cell signaling,” vol. 11,

2000.

[63] “U.S. National Library of Medicine, National Institute of Health, Medical Subject Head-

ings, 2013.” http://www.nlm.nih.gov/mesh/MBrowser.html.

[64] P. Lambrix, H. Tan, and Q. L. 0002, “Sambo and sambodtf results for the

ontology alignment evaluation initiative 2008.” vol. 431, 2008. [Online]. Available:

http://dblp.uni-trier.de/db/conf/semweb/om2008.html#LambrixTL08

[65] S. Zhang and O. Bodenreider, “Hybrid alignment strategy for anatomical ontologies:

Results of the 2007 ontology alignment contest.” vol. 304, 2007. [Online]. Available:

http://dblp.uni-trier.de/db/conf/semweb/om2007.html#ZhangB07

[66] M. Ba and G. Diallo, “Large-scale biomedical ontology matching with ServOMap,” IRBM,

vol. 34, no. 1, pp. 56–59, 2013.

[67] “HDFS Architecture Guide,” http://hadoop.apache.org/docs/r1.2.1/hdfs design.html.

[68] “To Hadoop or Not to Hadoop?, Anand Krishnaswamy, 2013,” http://www.thoughtworks.

com/insights/blog/hadoop-or-not-hadoop.

http://dblp.uni-trier.de/db/conf/dlog/dlog2013.html#Jimenez-RuizMGH13
http://dblp.uni-trier.de/db/journals/ws/ws4.html#LambrixT06
https://wordnet.princeton.edu
http://www.ncbi.nlm.nih.gov/pubmed
http://www.nlm.nih.gov/mesh/MBrowser.html
http://dblp.uni-trier.de/db/conf/semweb/om2008.html#LambrixTL08
http://dblp.uni-trier.de/db/conf/semweb/om2007.html#ZhangB07
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://www.thoughtworks.com/insights/blog/hadoop-or-not-hadoop
http://www.thoughtworks.com/insights/blog/hadoop-or-not-hadoop

BIBLIOGRAPHY 120

[69] A. Matsunaga, M. Tsugawa, and J. Fortes, “Cloudblast: Combining mapreduce and vir-

tualization on distributed resources for bioinformatics applications,” in eScience, 2008.

eScience ’08. IEEE Fourth International Conference on, Dec 2008, pp. 222–229.

[70] “Reasoning-Hadoop,” http://www.jacopourbani.it/reasoning-hadoop.html.

[71] “Heart Project,” http://rdf-proj.blogspot.kr/.

[72] “Hadoop Distributed RDF Store,” https://code.google.com/p/hdrs/.

[73] “Flynnś Taxonomy.” http://en.wikipedia.org/wiki/Flynn\unhbox\voidb@x\bgroup\

let\unhbox\voidb@x\setbox\@tempboxa\hbox{s\global\mathchardef\accent@

spacefactor\spacefactor}\accent19s\egroup\spacefactor\accent@spacefactor taxonomy.

[74] M.-J. Park, J. Lee, C.-H. Lee, J. Lin, O. Serres, and C.-W. Chung, “An

efficient and scalable management of ontology.” in DASFAA, ser. Lecture Notes

in Computer Science, K. Ramamohanarao, P. R. Krishna, M. K. Mohania, and

E. Nantajeewarawat, Eds., vol. 4443. Springer, 2007, pp. 975–980. [Online]. Available:

http://dblp.uni-trier.de/db/conf/dasfaa/dasfaa2007.html#ParkLLLSC07

[75] J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, and Y. Pan, “Minerva: A scalable owl ontology

storage and inference system,” in ASWC, 2006, pp. 429–443.

[76] G. Zhao and R. Meersman, “Architecting ontology for scalability and versatility,” in OTM

Conferences (2), ser. Lecture Notes in Computer Science, R. Meersman, Z. Tari, M.-S.

Hacid, J. Mylopoulos, B. Pernici, Ö. Babaoglu, H.-A. Jacobsen, J. P. Loyall, M. Kifer, and

S. Spaccapietra, Eds., vol. 3761. Springer, 2005, pp. 1605–1614.

[77] J. Bloch, Effective Java (2nd Edition). Addison-Wesley, 2008.

[78] R. Rivest, “The MD5 Message-Digest Algorithm,” Internet Requests for Comment,

RFC Editor, Fremont, CA, USA, Tech. Rep. 1321, Apr. 1992. [Online]. Available:

http://www.rfc-editor.org/rfc/rfc1321.txt

http://www.jacopourbani.it/reasoning-hadoop.html
http://rdf-proj.blogspot.kr/
https://code.google.com/p/hdrs/
http://en.wikipedia.org/wiki/Flynn\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {s\global \mathchardef \accent@spacefactor \spacefactor }\accent 19 s\egroup \spacefactor \accent@spacefactor _taxonomy
http://en.wikipedia.org/wiki/Flynn\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {s\global \mathchardef \accent@spacefactor \spacefactor }\accent 19 s\egroup \spacefactor \accent@spacefactor _taxonomy
http://en.wikipedia.org/wiki/Flynn\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {s\global \mathchardef \accent@spacefactor \spacefactor }\accent 19 s\egroup \spacefactor \accent@spacefactor _taxonomy
http://dblp.uni-trier.de/db/conf/dasfaa/dasfaa2007.html#ParkLLLSC07
http://www.rfc-editor.org/rfc/rfc1321.txt

BIBLIOGRAPHY 121

[79] A. M. Khattak, K. Latif, and S. Lee, “Change management in evolving web ontologies,”

Knowledge-Based Systems, vol. 37, no. 0, pp. 1 – 18, 2013. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0950705112001323

[80] A. M. Khattak, Z. Pervez, K. Latif, and S. Lee, “Time efficient reconciliation of mappings

in dynamic web ontologies.” Knowl.-Based Syst., vol. 35, pp. 369–374, 2012. [Online].

Available: http://dblp.uni-trier.de/db/journals/kbs/kbs35.html#KhattakPLL12

[81] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of reusable

object-oriented software. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,

Inc., 1995.

[82] H. Lpez-Fernndez, M. Reboiro-Jato, D. Glez-Pea, F. Aparicio, D. Gachet, M. Buenaga,

and F. Fdez-Riverola, “Bioannote: A software platform for annotating biomedical

documents with application in medical learning environments.” Computer Methods and

Programs in Biomedicine, vol. 111, no. 1, pp. 139–147, 2013. [Online]. Available:

http://dblp.uni-trier.de/db/journals/cmpb/cmpb111.html#Lopez-FernandezRGAGBF13

[83] X. Sun and J. Li, “pairheatmap: Comparing expression profiles of gene groups in

heatmaps.” Computer Methods and Programs in Biomedicine, vol. 112, no. 3, pp.

599–606, 2013. [Online]. Available: http://dblp.uni-trier.de/db/journals/cmpb/cmpb112.

html#SunL13

[84] J. H. Gennari and A. Silberfein, “Leveraging an alignment between two large ontologies:

Fma and go,” 2004.

[85] M. A. M. B. A. M. A. S. Wajahat Ali Khan, Maqbool Hussain and S. Lee,

“Personalized-detailed clinical model for data interoperability among clinical standards,”

Telemedicine and e-Health, vol. 19, no. 3, pp. 632–642, 2013. [Online]. Available:

http://dblp.uni-trier.de/db/journals/cmpb/cmpb112.html#SunL13

[86] L. Magee, “Somet: Shared ontology matching environment.” in Ontology Matching, ser.

CEUR Workshop Proceedings, P. Shvaiko, J. Euzenat, N. F. Noy, H. Stuckenschmidt, V. R.

http://www.sciencedirect.com/science/article/pii/S0950705112001323
http://dblp.uni-trier.de/db/journals/kbs/kbs35.html#KhattakPLL12
http://dblp.uni-trier.de/db/journals/cmpb/cmpb111.html#Lopez-FernandezRGAGBF13
http://dblp.uni-trier.de/db/journals/cmpb/cmpb112.html#SunL13
http://dblp.uni-trier.de/db/journals/cmpb/cmpb112.html#SunL13
http://dblp.uni-trier.de/db/journals/cmpb/cmpb112.html#SunL13

BIBLIOGRAPHY 122

Benjamins, and M. Uschold, Eds., vol. 225. CEUR-WS.org, 2006. [Online]. Available:

http://dblp.uni-trier.de/db/conf/semweb/om2006.html#Magee06

[87] G. Correndo and H. Alani, “Collaborative ontology mapping and data sharing,” 2008.

[88] “RESTful Web services: The basics,” http://www.ibm.com/developerworks/library/

ws-restful//.

[89] M. S. T. P L Schuyler, W T Hole and D. D. Sherertz, “The umls metathesaurus: representing

different views of biomedical concepts,” Bull Med Libr Assoc, vol. 81, no. 3, pp. 217–222,

1993.

[90] G. Navarro, “A guided tour to approximate string matching,” ACM Comput. Surv., vol. 33,

no. 1, pp. 31–88, Mar. 2001. [Online]. Available: http://doi.acm.org/10.1145/375360.

375365

[91] K. E. J. . E. A. F. R. G. V. I. E. J. .-R. A. O. K. P. L. A. N. H. P. D. R. F. . S. P. S.

C. . T. Bernardo Cuenca Grau, Zlatan Dragisic and O. Zamazal, “Results of the ontology

alignment evaluation initiative 2013.” ser. CEUR Workshop Proceedings. CEUR-WS.org.

[92] Z. Dragisic, K. Eckert, J. Euzenat, D. Faria, A. Ferrara, R. Granada, V. Ivanova,

E. Jiménez-Ruiz, A. O. Kempf, P. Lambrix, S. Montanelli, H. Paulheim, D. Ritze,

P. Shvaiko, A. Solimando, C. T. dos Santos, O. Zamazal, and B. C. Grau, “Results of

the ontology alignment evaluation initiative 2014,” in Proceedings of the 9th International

Workshop on Ontology Matching collocated with the 13th International Semantic Web

Conference (ISWC 2014), Riva del Garda, Trentino, Italy, October 20, 2014., 2014, pp.

61–104. [Online]. Available: http://ceur-ws.org/Vol-1317/oaei14 paper0.pdf

[93] “Intel Hyper-Threading Technology, Intel Corporation 2013,” http://www.

intel.com/content/www/us/en/architecture-and-technology/hyper-threading/

hyper-threading-technology.html.

[94] “Oracle - Java 8,” http://www.oracle.com/technetwork/java/javase/overview/

java8-2100321.html.

http://dblp.uni-trier.de/db/conf/semweb/om2006.html#Magee06
http://www.ibm.com/developerworks/library/ws-restful//
http://www.ibm.com/developerworks/library/ws-restful//
http://doi.acm.org/10.1145/375360.375365
http://doi.acm.org/10.1145/375360.375365
http://ceur-ws.org/Vol-1317/oaei14_paper0.pdf
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html
http://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html

BIBLIOGRAPHY 123

[95] “Concurrent access to Models,” http://jena.apache.org/documentation/notes/

concurrency-howto.html.

[96] “Jena, a Framework for developing Semantic Web Applications,” http://semanticwebbuzz.

blogspot.kr/2009/10/jena-framework-for-developing-semantic.html.

[97] M. Horridge and S. Bechhofer, “The owl api: A java api for owl ontologies,”

Semant. web, vol. 2, no. 1, pp. 11–21, Jan. 2011. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=2019470.2019471

[98] The owl api - a java api for working with owl 2 ontologies. [On-

line]. Available: http://ontolog.cim3.net/file/work/OWL2/OWL-2 Tools-n-Applications/

owl-api-presentation--MatthewHorridge 20100805.pdf

[99] “Do you know your data size?, Vladimir Roubtsov, JavaWorld,” http://www.javaworld.com/

javatips/jw-javatip130.html.

[100] “How to get max memory, free memory and total memory in Java, Javin Paul, Javarevis-

ited,” http://javarevisited.blogspot.kr/2012/01/find-max-free-total-memory-in-java.html.

[101] “Java Performance - Memory and Runtime Analysis - Tutorial, Lars Vogel, vogella.com,”

http://www.vogella.com/articles/JavaPerformance/article.html.

[102] “Adult Mouse Anatomy,” http://www.informatics.jax.org/searches/AMA form.shtml.

[103] “STW Thesaurus of Economics Ontology,” http://zbw.eu/stw/versions/8.10/descriptor/

29234-2/about.en.html.

[104] “Thesaurus for the Social Sciences,” http://www.gesis.org/en/services/research/

thesauri-und-klassifikationen/social-science-thesaurus/.

http://jena.apache.org/documentation/notes/concurrency-howto.html
http://jena.apache.org/documentation/notes/concurrency-howto.html
http://semanticwebbuzz.blogspot.kr/2009/10/jena-framework-for-developing-semantic.html
http://semanticwebbuzz.blogspot.kr/2009/10/jena-framework-for-developing-semantic.html
http://dl.acm.org/citation.cfm?id=2019470.2019471
http://dl.acm.org/citation.cfm?id=2019470.2019471
http://ontolog.cim3.net/file/work/OWL2/OWL-2_Tools-n-Applications/owl-api-presentation--MatthewHorridge_20100805.pdf
http://ontolog.cim3.net/file/work/OWL2/OWL-2_Tools-n-Applications/owl-api-presentation--MatthewHorridge_20100805.pdf
http://www.javaworld.com/javatips/jw-javatip130.html
http://www.javaworld.com/javatips/jw-javatip130.html
http://javarevisited.blogspot.kr/2012/01/find-max-free-total-memory-in-java.html
http://www.vogella.com/articles/JavaPerformance/article.html
http://www.informatics.jax.org/searches/AMA_form.shtml
http://zbw.eu/stw/versions/8.10/descriptor/29234-2/about.en.html
http://zbw.eu/stw/versions/8.10/descriptor/29234-2/about.en.html
http://www.gesis.org/en/services/research/thesauri-und-klassifikationen/social-science-thesaurus/
http://www.gesis.org/en/services/research/thesauri-und-klassifikationen/social-science-thesaurus/

Appendix A
List of Publications

International Journal Papers:

[1] Muhammad Bilal Amin, Wajahat Ali Khan, Byeong Ho Kang, and Sungyoung Lee,

“Performance-based Ontology Matching, A Data-parallel approach for an Effectiveness-

independent Performance-gain in Ontology Matching”, Applied Intelligence (SCI, IF:1.83),

2015 : 1-30

[2] Muhammad Bilal Amin, Rabia Batool, Wajahat Ali Khan, Sungyoung Lee, and Eui-Nam

Huh, “SPHeRe:A Performance Initiative towards Ontology Matching by implementing Par-

allelism over Cloud Platform.” The Journal of Supercomputing (SCI, IF:0.917), 68, no. 1

(2014): 274-301.

[3] Dinh-Mao Bui, Huu-Quoc Nguyen, YongIk Yoon, SungIk Jun, Muhammad Bilal Amin,

and Sungyoung Lee, “Gaussian process for predicting CPU utilization and its application to

Energy Efficiency.” Applied Intelligence (SCI, IF:1.83), 2015

[4] Shujaat Hussain, Jae Hun Bang, Manhyung Han, Muhammad Idris Ahmed, Muhammad

Bilal Amin, Chris Nugent, Sally McClean, Bryan Scotney, Gerard Parr and Sungyoung Lee.

“Behavior Life Style analysis for mobile sensory data in cloud computing through MapRe-

duce.” Sensors (SCIE, IF:2.04), (2014): 14(11), 22001-22020.

[5] Wajahat Ali Khan, Muhammad Bilal Amin, Asad Masood Khattak, Maqbool Hussain,

Muhammad Afzal, Sungyoung Lee and Eun Soo Kim,“Object Oriented and Ontology Align-

ment Patterns based Expressive Mediation Bridge Ontology (MBO)”, Journal of Information

Science, (SCIE, IF:1.08), 2014.

124

LIST OF PUBLICATIONS 125

[6] Wajahat Ali Khan, Asad Masood Khattak, Maqbool Hussain, Muhammad Bilal Amin,

Muhammad Afzal, Christopher Nugent and Sungyoung Lee, “An Adaptive Semantic based

Mediation System for Data Interoperability among Health Information Systems”, Journal of

Medical Systems (SCIE, IF 1.372), 38(8):28, 2014.

[7] Wajahat Ali Khan, Maqbool Hussain, Muhammad Afzal, Muhammad Bilal Amin, Muham-

mad Aamir Saleem and Sungyoung Lee, ”Personalized-Detailed Clinical Model for Data

Interoperability among Clinical Standards”, Telemedicine and EHealth (SCI, IF:1.544), Vol.

19 Issue 8, pp.632-642, 2013.

[8] Maqbool Hussain, Asad Masood Khattak, Wajahat Ali Khan, Iram Fatima, Muhammad

Bilal Amin, Zeeshan Pervez, Rabia Batool, Muhammad Amir Saleem, Muhammad Afzal,

Muhammad Fahim, Muhammad Hameed Saddiqi, Sungyoung Lee, and Khalid Latif, “Cloud-

based Smart CDSS for Chronic Diseases”, In Journal of Health and Technology - 3, no. 2

(2013): 153-175.

LIST OF PUBLICATIONS 126

International Conference Papers:

[9] Muhammad Bilal Amin, Shujaat Hussain, Manhyung Han, Byeong Ho Kang, Yoon Yong

Ik, SungIk Jun, Sungyoung Lee, “Profiling-Based Energy-Aware Recommendation System

for Cloud Platforms”, Computer Science and its Applications Lecture Notes in Electrical

Engineering Volume 330, 2015, pp 851-859.

[10] Muhammad Bilal Amin, Mahmood Ahmad, Wajahat Ali Khan, and Sungyoung Lee,

“Biomedical Ontology Matching as a Service”, Smart Homes and Health Telematics Lec-

ture Notes in Computer Science 2015, pp 195-203.

[11] Muhammad Bilal Amin, Aamir Shafi, Shujaat Hussain, Wajahat Ali Khan, and Sungyoung

Lee. “High performance Java sockets (HPJS) for scientific health clouds.” In e-Health Net-

working, Applications and Services (Healthcom), 2012 IEEE 14th International Conference

on, pp. 477-480. IEEE, 2012.

[12] Muhammad Bilal Amin, Wajahat Ali Khan, Ammar Ahmad Awan, and Sungyoung Lee.

“Intercloud message exchange middleware.” In Proceedings of the 6th International Confer-

ence on Ubiquitous Information Management and Communication, p. 79. ACM, 2012.

[13] Banos, O., Muhammad Bilal Amin, Ali Khan, W., Afzal, M., Ali, T., Kang, B. H., Lee, S.

The Mining Minds Platform: a Novel Person-Centered Digital Health and Wellness Frame-

work. Proceedings of the 9th International Conference on Pervasive Computing Technologies

for Healthcare (PervasiveHealth 2015), Istanbul, Turkey, May 20-23, (2015)

[14] Oresti Banos, Muhammad Bilal Amin, Wajahat Ali Khan, Muhammad Afzal, Mahmood

Ahmad, Maqbool Ali, Taqdir Ali, Rahman Ali, Muhammad Bilal, Manhyung Han, Jamil

Hussain, Maqbool Hussain, Shujaat Hussain, Tae Ho Hur, Jae Hun Bang, Thien Huynh-

The, Muhammad Idris, Dong Wook Kang, Sang Beom Park, Hameed Siddiqui, Le-Va Vui,

Muhammad Fahim, Asad Masood Khattak, Byeong Ho Kang and Sungyoung Lee. “The

Mining Minds Platform: a Novel Person-Centered Digital Health and Wellness Framework.”

IWBBIO 2015 (3rd International Work-Conference on Bioinformatics and Biomedical Engi-

neering).

LIST OF PUBLICATIONS 127

[15] Wajahat Ali Khan, Maqbool Hussain, Muhammad Bilal Amin, Asad Masood Khattak,

Muhammad Afzal, and Sungyoung Lee. “AdapteR Interoperability ENgine (ARIEN): An

approach of Interoperable CDSS for Ubiquitous Healthcare.” In Ubiquitous Computing and

Ambient Intelligence. Context-Awareness and Context-Driven Interaction, pp. 247-253.

Springer International Publishing, 2013.

[16] Wajahat Ali Khan, Muhammad Bilal Amin, Asad Masood Khattak, Maqbool Hussain, and

Sungyoung Lee. “System for Parallel Heterogeneity Resolution (SPHeRe) results for OAEI

2013.” In OM, pp. 184-189. 2013.

[17] Shujaat Hussain, Muhammad Bilal Amin, Jae Hun Bang, Manhyung Han, Sungyoung Lee,

Chris Nugent, Sally McClean, Brian Scotney, Gerald Parr, “Activity recognition and resource

optimization in mobile cloud through MapReduce 2013 IEEE 15th International Confer-

ence on e-Health Networking, Applications and Services (Healthcom 2013) (pp. 471475).

doi:10.1109/HealthCom.2013.6720722

[18] Ammar Ahmad Awan, Muhammad Bilal Amin, Shujaat Hussain, Aamir Shafi and Sungy-

oung Lee, “An MPI-IO Compliant Java based Parallel I/O Library.” 13th IEEE/ACM Interna-

tional Symposium on Cluster, Cloud and Grid Computing (CCGrid2013), Delft, Netherlands,

May 13-16, 2013.

[19] Wajahat Ali Khan, Maqbool Hussain, Muhammad Afzal, Muhammad Bilal Amin, and

Sungyoung Lee, “Healthcare standards based sensory data exchange for Home Healthcare

Monitoring System.” In Engineering in Medicine and Biology Society (EMBC), 2012 An-

nual International Conference of the IEEE, pp. 1274-1277. IEEE, 2012.

[20] Wajahat Ali Khan, Maqbool Hussain, Asad Masood Khattak, Muhammad Afzal, Muham-

mad Bilal Amin, and Sungyoung Lee, “Integration of HL7 Compliant Smart Home Health-

care System and HMIS”, 10th International Conference On Smart Homes and Health Telem-

atics (ICOST 2012), Artimino, Italy, June 15-18, 2012

[21] Shujaat Hussain, Muhammad Bilal Amin, Zeeshan Pervez, Ammar Ahmad Awan, and

Sungyoung Lee, “A Hybrid Cloud Based Smart Home, Ambient Assisted Living 2012 (AAL)

LIST OF PUBLICATIONS 128

27 - 29th June 2012, Euskalduna Conference Center, Bilbao

[22] Wajahat Ali Khan, Asad Masood Khattak, Sungyoung Lee, Maqbool Hussain, Muhammad

Bilal Amin, and Khalid Latif, “Achieving interoperability among healthcare standards: build-

ing semantic mappings at models level.” In Proceedings of the 6th International Conference

on Ubiquitous Information Management and Communication, p. 101. ACM, 2012.

[23] Wajahat Ali Khan, Maqbool Hussain, Asad Masood Khattak, Muhammad Bilal Amin, and

Sungyoung Lee, “SaaS based interoperability service for semantic mappings among health-

care standards.” In 8th International Conference on Innovations in Information Technology.

2012.

LIST OF PUBLICATIONS 129

Domestic Conference Papers:

[24] Muhammad Bilal Amin, Shujaat Hussain, Manhyung Han, Sungyoung Lee, and Yong Ik

Yoon, Prediction, Provisioning, Elastic (PPE) Energy-aware recommendations model for

Cloud Platforms, 2013 Korea Information Science 40th Annual General Meeting , 2013.11,

72-74

[25] Muhammad Bilal Amin, Sungyoung Lee, and Young-Koo Lee ” cMac : A Context-aware

Mobile Apps-on-a-Cloud Architecture”, Korea Information Processing Society 2011 Spring

Conference of the 35th / 2011 Apr. 30 , 2011, pp.40-42

[26] Muhammad Bilal Amin, Wajahat Ali Khan, Sungyoung Lee, Young-Koo Lee ” Cloud

Computing for Healthcare IT Infrastructure- Utilization models for Hybrid and Community

Clouds” Korea Information Science 2011 Korea Society of Computer General Conference

Article 38 No. 1 (A) 2011.6, 112-115

Appendix B
MSRA 2013, Accepted Proposal

Title: Semantic Heterogeneity Resolution by Implementing Parallelism over Multi-

core cloud platform

Funded by: Microsoft Research Asia, Beijing, China (MSRA. 2013)

Duration: June 2013 - June 2014

B.1 Abstract

The abundance of semantically related information over the web has resulted in semantic het-

erogeneity. For resolution, ontology matching tools and techniques are utilized by semantic web

systems. However, effective ontology matching is computationally intensive i.e., a time consum-

ing process. Medium to large-scale ontologies take from hours up to days of computation time,

depending upon the provided computational resources and the complexity of the utilized match-

ing algorithms. This delay in producing required results makes ontology matching unsuitable

for semantic web-based interactive and semi-real time systems. So far the evolution in ontology

matching from the perspective of performance is either by improvement of ontology matching

algorithms or by partitioning of ontologies for matching algorithms. However, none of the tech-

niques and tools implemented takes the explicit benefit of better computational resources available

today as commodity hardware. Commodity desktop, laptops, and even smartphones are equipped

with hardware to perform parallel tasks. Multicore nature of todays microprocessor is equipped to

handle multiple requests over multiple processing cores, treating each core as a virtual micropro-

cessor. Instead of confining to a desktop, a laptop, or a smartphone, a huge resource of multicore

processors is available in the form of todays cloud platform. With clouds reliability, cost, and ubiq-

uity in focus, a technique needs to be developed that can implement ontology matching over mul-

130

MSRA 2013 B.2. PROBLEM STATMENT 131

ticore cloud platform. This proposal presents one such technique that implements data-parallelism

over multicore cloud platform, by exploiting the individual cores for the benefit of ontology match-

ing. Consequently, a system of parallel ontology matching will be developed. This system will

be deployed over Microsofts Azure platform and will utilize dot nets parallel programming and

concurrency libraries for multicore exploitation, resulting in high performance ontology matching

solution. Technique described in this proposal bridges the gap between semantic heterogeneity

resolution and cloud computing.

B.2 Problem Statment

Effective ontology matching is a computationally intensive operation, requiring ontologys

resource-based matching algorithms like Name-based, Hierarchy-based, Annotation-based, and

Property-based matchers to be executed over candidate ontologies. The process of ontology

matching between two ontologies is a Cartesian product of all the concepts and their relation-

ships leading to quadratic complexity with respect to ontology size. Several ontology-matching

systems have emerged over the years; however, the techniques for achieving better performance

during ontology matching are either focus on the optimization of matching algorithms or the frag-

mentation of ontologies. The performance improvement based on exploitation of newer hardware

has largely been missing. Among these technologies, is the exploitation of parallelism enabled

multicore processors, largely available over distributed cloud platform as commodity hardware.

A performance driven initiative is required that avails the opportunity of affordable commodity

infrastructure in the form of cloud, to be utilized for parallel ontology matching and execution;

consequently, providing improved performance.

B.3 Technical Importance

In the era of automation, integration of information has become a key tool for providing knowledge

driven services. With the excess of information over the web, problems regarding information

heterogeneity have emerged. Data heterogeneity has solutions based on data definitions, types,

formats, and precision. Semantic heterogeneity; however, involves data’s intend, making it a

MSRA 2013 B.4. OBJECTIVES 132

challenging opportunity for integration. The volume of data makes manual annotation of concepts

unrealistic; consequently, software agents use automated solutions based on ontologies. The most

prominent solution for semantic heterogeneity resolution is ontology matching, which determines

conformity among semantically related ontologies. Mappings drawn from ontology matching

can be further utilized in information systems and database integration, e-commerce systems,

semantic web services, and social networks. Ontology matching being a computationally intensive

problem requires performance efficient resolution, so that it can be suitable for interactive and

semi-real-time systems. A possible solution to improve performance during ontology matching is

the exploitation of parallelism enabled multicore hardware, readily available over cloud platform.

This proposal presents one such solution.

B.4 Objectives

• Improve over all ontology matching performance without trading off accuracy by imple-

menting parallelism over multicore cloud platform;

• Lower memory strains by having smaller memory footprint of ontologies utilized during

matching in parallel;

• Thread-safe object model (ontology model) to enable parallelism;

• Improved scalability by utilizing available computation resources (cores) to their fullest.

B.5 Methodology

In order to improve ontology matchings performance we are proposing an end-to-end parallel

system that exploits multicore hardware for its benefit from ontology loading till result delivery.

Figure above illustrates our proposed system. Following are the details of components from the

figure and their inter-component communication.

MSRA 2013 B.5. METHODOLOGY 133

!
Figure B.1: Architecture

Init daemon

Pre-condition: Our parallel ontology matching system is deployed as instances on all the cloud

nodes, participating in ontology matching process.

Process: Init. Daemon executes first to make system aware of over all computational resources

(local and remote) contributing. For remote, all Init. Daemons from their respective instances

MSRA 2013 B.5. METHODOLOGY 134

share their socket objects with others; consequently, a socket table of contributing nodes is created

at every system instance.

Post-condition: Overall knowledge of available computational resources.

Collaborator: (1.) Networking libraries from .NET Framework 4.5, used for socket communica-

tion (6.) Socket table containing socket objects of participating nodes.

System interaction

Pre-condition: Our parallel ontology matching system is deployed and overall knowledge of avail-

able computational resources is known to all instances.

Process: System Interaction component provides a User Interface for clients to interact by pro-

viding the candidate ontologies to be matched. Matched results are returned to the client as bridge

ontology. For third-party systems, a web-service is also available for interaction. Participating

node that invokes matching request is treated as primary node. Furthermore, this node is respon-

sible for ontology partitioning and matching task assignment in parallel environment.

Post-condition: Candidate ontologies are fed to the system for matching.

Collaborator: (2.) Parallel ontology loader is fed with candidate ontologies to be serialized.

Parallel ontology loader

Pre-condition: Candidate ontologies for matching are known to the system.

Process: Candidate ontologies are parsed in parallel. Parsed ontology resources are populated in

multiple thread safe ontology model objects. Each object encapsulates the information required

by a single matching algorithm during runtime. Furthermore, redundancy like URI based names

of concepts etc., is removed during this process. This keeps system to load un-necessary and

redundant information in main memory during execution, preventing memory strains at runtime.

Ontology model objects are persisted as serialized objects in Ontology Repository for future re-

quests. If request for same ontologies is submitted in future, Candidate ontology loader skips the

parsing process and loads the required serialized objects from ontology repository.

Post-condition: Candidate ontologies are persisted as serialized objects in ontology repository and

loaded as ontology model for Task Distributor.

MSRA 2013 B.5. METHODOLOGY 135

Collaborator: (3.) Ontology repository to persist serialized ontology objects. (4.) Matcher library

for assignment of matcher algorithms to be executed over ontology objects. (5.) Task distributor

component to implement partitioning scheme on ontology objects for parallel matching.

Ontology process

Process: Persists the serialized objects of object models for candidate ontologies. Ontology repos-

itory is synchronized over system instances by cloud data synchronization service.

Matching library

Pre-condition: Candidate ontologies are available as serialized objects in ontology repository.

Process: Matcher component provides a library of ontology matching algorithm. These algorithms

are classified into primary, secondary, and complementary type. Primary algorithms execute for

every matching request, secondary algorithms execute for higher accuracy, and complimentary

algorithms execute with respect of ontology scope.

Post-condition: Instance of matching algorithms to be executed over candidate ontologies is as-

signed.

Task distributor

Pre-condition: Candidate ontologies are loaded for matchers.

Process: Task distributor partitions the candidate ontologies as subsets and assign over to the com-

puting cores available. Several partitioning schemes including size-based and complexity-based

partitioning can be used. For local resources, threads are assigned to perform parallel matching in-

voking available cores. For remote resources, control message is generated for participating nodes

regarding their chunk of partition to work and matching algorithm to execute. Each node after

receiving the control message loads its own partition of candidate ontology from its local ontology

repository for parallel matching over available computing cores.

Post-condition: All parallel matchers complete their assigned matching task over their partition of

candidate ontologies.

Collaborator: (7.1) Networking libraries from .NET Framework 4.5, used for sending control

MSRA 2013 B.6. SOCIAL IMPACT 136

message and receive computed results. (7.2) Concurrency libraries from .NET Framework 4.5,

used for invoking multicore platform via threads. (8.) Bridge ontology aggregator for results

accumulation.

Bridge Ontology Aggregator

Pre-condition: All parallel matchers have completed their assigned matching tasks and transmit-

ted their results to the primary node.

Process: Every participating node generates their respective matched results. Bridge ontology

aggregator, accumulates these results and generate a bridge ontology file. Bridge ontology ag-

gregator on primary node has the extra responsibility of aggregating the local and remote bridge

ontology files to compile as one. URI to this aggregated bridge ontology is generated and provided

back to the client. This ontology, if required, can also be persisted in ontology repository for future

use.

Post-condition: Aggregated bridge ontology is created, persisted in ontology repository and deliv-

ered to the client.

Collaborator: (9.) Delivery of aggregated bridge ontology file to the client via system interaction

component.

B.6 Social Impact

• Efficient access of medical records at the point of care;

• Reduced medication errors, and unnecessary medical procedures;

• Improved patient care coordination among health-care professionalsThread-safe object

model (ontology model) to enable parallelism;

• Ubiquitous availability of information through services for communication between health-

care systems;

• No technological infrastructure burden on organization as cloud based services is provided.

MSRA 2013 B.7. ADOPTION OF TECHNOLOGIES 137

Benefit to Talent and Research tool

A prototype implementation for a candidate standard with public release as open-source tool for

other researchers in the field of health-care standardization to benefit.

B.7 Adoption of Technologies

• Our Solution will be built using Microsoft Technologies and Eclipse for required Java based

Components;

• Platform : Microsoft.NET 4.0 and JDK 1.5;

• Language: C# and Java;

• IDE : Visual Studio 2010, Eclipse for Java EE;

• Deployment Environment: Microsoft Azure Platform;

• Application Server: Windows Azure and Tomcat;

• Database Server: SQL Azure;

• Database Server for Development and in-house Testing: SQL Server 2008 R2;

• Supporting Technologies : Windows 7 x64 Ultimate for Development, Microsoft Office

2010 Professional, Microsoft Visio, Microsoft Azure SDK, WindowsAzure4j;

• Research Technologies Tools and Languages: Protege 4.1, Falcon, Agreement Maker, Mi-

crosoft Biztalk 2010, OWL.

Appendix C
Azure4Research 2014, Accepted Proposal

Title: Enabling Data Parallelism for large-scale Biomedical Ontology Matching over

Multicore Cloud Instances

Funded by: Microsoft Research, Redmond, USA. (Azure4Research Award. 2014)

Duration: January 2014 - January 2015

C.1 Abstract

Ontology matching is among the core techniques used for integration and interoperability resolu-

tion between biomedical systems. However, due to the ever-evolving nature of biomedical data,

ontologies are becoming large-scale and complex; consequently, leading to performance bottle-

necks during matching. In this proposal, we present a parallel ontology matching system for

large-scale biomedical ontologies that implements data parallelism over multicore cloud platform

for performance benefits. Our system decomposes these complex ontologies into smaller and sim-

pler subsets depending on the needs of matching algorithms. Matching process over these subsets

is divided from granular to finer-level abstraction of independent matching requests, matching

jobs, and matching tasks, running in parallel by thread-level parallelism over multicore cloud

instance. Matched results from these abstractions are aggregated to generate mediation bridge

ontology. We evaluate our system by integrating it with the interoperability engine of a clinical

decision support system (CDSS), which generates mapping requests for large-scale NCI, FMA,

and SNOMED-CT biomedical ontologies.

138

Azure4Research 2014 C.2. PROBLEM STATMENT 139

C.2 Problem Statment

Large-scale biomedical ontologies are complex in nature, leading to performance hindrance dur-

ing their usage among biomedical systems. Ontology matching systems developed over the years

have taken large-scale biomedical ontologies into consideration and have implemented possible

resolutions. However, These resolutions are more focused on optimization of the matching algo-

rithms and partitioning of larger ontologies into smaller chunks for performance benefits. Nev-

ertheless, ontology matching being a quadratic complexity problem can go to a certain extent in

gaining performance by optimizing only the algorithms. Furthermore, the performance improve-

ment based-on exploitation of parallel and distributed techniques has largely been missed. Among

these technologies are parallel multicore cloud instances, which can be exploited by thread-level

parallelism over virtual cores for large-scale biomedical ontology matching in parallel.

C.3 Importance

Large-scale biomedical ontologies contain overlapping information, utilization of which is neces-

sary for the integration, aggregation, and interoperability; for example, the plethora of web-based

medical information resources provide related information over the Internet. If these resources are

annotated by ontologies, software agents can automatically aggregate information for biomedical

researchers and other biomedical querying systems. For example, NCI ontology defines the con-

cept of Myocardium related to the concept Cardiac Muscle Tissue, which describes the muscles

surrounding human heart. Concept Cardiac Muscle Tissue is defined in FMA ontology; there-

fore, a biomedical system integrating knowledge regarding human heart requires correspondence

between candidate ontologies FMA and NCI. Likewise, GO is a highly organized structure of

medical knowledge facilitating medical genetics. It is widely used by biomedical researchers in

numerous genetics research fields including gene group-based analysis for discovering the hid-

den links overlooked by the single-gene analysis. Finding matching between GO ontology and

FMA ontology can be utilized by molecular biologist in understanding the outcome of proteomics

and genomics in a large-scale anatomic view. Moreover, correspondence between ontologies has

also been used for heterogeneity resolution among various health standards; however, ontology

Azure4Research 2014 C.4. IMPLEMENTATION OVERVIEW 140

matching over large-scale biomedical ontologies is a computationally intensive task with compu-

tational complexityO(n2). Ontology matching is a Cartesian product of two candidate ontologies,

which requires Resource-based matching algorithms (Name-based, Hierarchy-based, Annotation-

based, and Property-based) to be executed over candidate ontologies for the generation of required

mappings. In our experiments, executing these matching algorithms over large-scale biomedical

ontologies, whole FMA with whole NCI has taken 3 days to produce desirable results. This delay

in mapping results makes ontology matching of large-scale biomedical ontologies ineffective for

biomedical systems with in-time processing demands. Our proposed system will provide resolu-

tion to large-scale biomedical ontology matching performance bottleneck by providing a parallel

matching implementation over parallelism-enable platform i.e., usage of multicore cloud instances

that are affordable and ubiquitous.

C.4 Implementation Overview

Figure C.1: Proposed Methodology

As illustrated in Fig. C.1, our proposed system has a three-stage execution flow for parallel

ontology matching.

Requests for matching large-scale biomedical ontologies can be generated from several

sources including, biomedical professionals and researchers, biomedical and bioinformatics sys-

Azure4Research 2014 C.4. IMPLEMENTATION OVERVIEW 141

tems, and even third-party healthcare information services running over cloud platforms. Ontology

matching request is submitted to our system by either providing the actual candidate ontologies

Osource and Otarget or their Uniform Resource Identifier (URI).

Preprocessing

Decomposition of the complex large-scale biomedical ontologies into smaller and simpler (re-

duced computational complexity) Resource-based ontology subsets depending upon the needs of

matching algorithms. This mechanism contributes to our systems performance by only loading the

ontology Resources required by matching algorithms, executing in parallel by matching threads.

These subsets are also preserved in ontology repository by serialization to reduce the matching

effort for future matching requests of same ontologies.

Parallel Matching

To enable data parallelism, distribution of matching process over ontology subsets from prepro-

cessing stage into finer levels of abstractions (independent Matching Jobs and Matching Tasks)

depending upon the available cores. Matching Requests are assigned to every cloud node, match-

ing jobs are the division of one matching request over available computing cores, and each core is

assigned by thread-level parallelism with a set of equal number of matching tasks to complete the

whole matching process. This mechanism contributes to our systems performance by distributing

matching tasks over participating computing cores and executing them in parallel at finer level

with optimal computing resource utilization.

MatchingRequest←
cores∑
i=1

MatchingJobi (C.1)

MatchingJobi ←

{
MatchableConcepts⋃

i=1

MatchingTaski

}
(C.2)

Azure4Research 2014 C.5. CONTRIBUTIONS 142

Aggregation

After parallel matching, matched results are aggregated from all matching threads as mediation

bridge ontology Obridge. This mechanism contributes in standardized delivery of mappings as

matched results by our system to biomedical clients.

Ojob
b ←

MatchingTasks⋃
i=1

(m× n 6= ∅)i (C.3)

Ob ←
MatchingJobs∑

i=1

Oi
b (C.4)

C.5 Contributions

• Improved overall performance of ontology matching over large-scale biomedical ontologies

by implementation data parallelism;

• No performance-accuracy tradeoff, as exploitation of performance from cores instead of

matching algorithms;

• Reduced memory strain while execution, as subsets of ontologies with required information

are loaded only.

C.6 Utilization of Microsoft Azure Platform

We will be utilizing Microsoft Azures multicore cloud instance for our systems implementation.

We require a Large (A3) Compute Instance with 4 Virtual Cores and 7 Gb RAM with 500Gb

of space for applications, large-scale biomedical ontologies with multiple versions, and ontol-

ogy repository. Evaluating the performance speedup from 1 to 4 cores for parallel matching will

benchmark our system.

	Abstract
	Acknowledgment
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Thesis Organization

	Related Work
	Generic Ontology Matching Systems, Tools, and Techniques
	Falcon-AO
	Agreement Maker
	LogMap
	AROMA
	GOMMA

	Biomedical Ontology Matching
	SAMBO
	ASMOV
	ServOMap

	Candidate platforms for Parallel Ontology Matching
	Big Data for Ontology Matching
	Flynn's Taxonomy and Ontology Matching

	Effectiveness-independent Performance-gain in Ontology Matching
	Memory Footprint Reduction
	Matching Algorithm-based Ontology Subset Generation
	Eager Matching Space Reduction

	Parallel and Distributed Ontology Matching
	Matching Task
	Matching Process Abstractions

	Summary

	Performance-based Ontology Matching Runtime
	SPHeRe: System for Parallel Heterogeneity Resolution
	Execution Phases
	Phase-I: Pre-Matching
	Phase-II: Parallel Matching
	Phase-III: Post-Matching

	Stack Design
	Core Component Details
	Init Daemon
	Ontology Model
	File IO
	Distributor
	Aggregator

	Summary

	Ontology Matching as a Service and a Platform
	Ontology Matching over Cloud Platforms
	Ontology Matching as a Service
	Ontology Matching as a Platform

	Summary

	Evaluations and Discussions
	Load Time and Memory footprint evaluation
	Scalability evaluation
	Performance comparison with GOMMA
	Anatomy track
	Library track
	Large Biomedical Ontologies track
	Task 1: FMA-NCI small fragments
	Task 2: FMA-NCI whole Ontologies
	Task 3: FMA-SNOMED small fragments
	Task 4: FMA whole Ontology with SNOMED large fragment
	Task 5: SNOMED-NCI small fragments
	Task 6: NCI whole Ontology with SNOMED large fragment

	Conference track
	Evaluation Summary
	Independent of Ontology Domain
	Performance-based Ontology Matching over various size of Matching Problems
	Effectiveness-independent Performance-gain
	Matching Library Interface

	Conclusion and Future Directions
	Conclusion
	Future Work

	Bibliography
	List of Publications
	MSRA 2013, Accepted Proposal
	Abstract
	Problem Statment
	Technical Importance
	Objectives
	Methodology
	Social Impact
	Adoption of Technologies

	Azure4Research 2014, Accepted Proposal
	Abstract
	Problem Statment
	Importance
	Implementation Overview
	Contributions
	Utilization of Microsoft Azure Platform

