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(i) 

Abstract 

 

One of the important tasks in data mining applications is to find suitable classifier(s), 

for user’s classification problems, and designing the classifier accurately to meet their 

application’s requirements. The design of an accurate methodology for evaluating the 

performance of these algorithms and selecting the best one has recently gained an 

immense interest of the research community due to the rapid shift of data mining 

processes and the use of classification algorithms from academics to the real-world 

application domains. If these tasks are not carefully accomplished, the evaluation of 

algorithms performance and consequently the selection of a best classifier may result 

in invalid recommendations of a statistically incorrect classifier(s). Subsequently, 

incorrect decisions will be made by the applications, which are based on these 

recommended classifiers. In practical data mining application scenarios, this is a 

subjective decision making process that not only takes experts’ preferences and 

interests into account but also considers a number of other factors into account, such 

as data characteristic (e.g., meta-features), classifiers characteristics (e.g., 

performance metrics) and domain specific data mining processes and their associated 

domain constraints. For example, some domains require interpretable classification 

model, while other requires classifiers with reasonable training and/or testing time, 

or have the capacity to classify binary class problem or multi-class problem or have 

consistent performance results. These obligations make the processes of classifiers 

evaluation, selection, and design more challenging, especially in situations where the 

evaluation and selection are based on multiple characteristics of the classifier (i.e., 

performance metrics, called criteria), data characteristics (i.e., meta-features) and the 

associated constraints, all taken into account simultaneously. This thesis is focused 

on multi-criteria evaluation of classifiers, meta-learning based decision tree classifier 

selection and design of some accurate classifiers for real-world applications 

scenarios. The design of accurate rough-set and hybrid case-based reasoning (hybrid-

CBR) classifiers are discussed along with their associated issues, such as domain-
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specific data acquisition for real-world dataset and case-base creation, semantics-

preserving discretization and accurate and efficient case matching and retrieval 

functions for case-based reasoning. In case of classifiers performance evaluation, 

there is no universally acceptable classifier that outperforms all other classifiers on 

every kind of domain data, given a single evaluation criterion or multi-metrics 

evaluation criteria. Similarly, there is no universally acceptable guidelines or rules 

for the selection of suitable evaluation metric(s) to evaluate the classifiers. Other 

related issues regarding classifier evaluation include: the experts’ preferences (i.e., 

weights on the criteria) are normally defined using absolute values that lack the 

consistency check for insuring that the assigned weight are correct, global and local 

constraints of the domain and evaluation metrics which sometimes impose 

restrictions on the classifiers performance evaluation process and must need to be 

satisfied. Moreover, there is lack of a universally acceptable classifier evaluation 

strategy, which includes almost all the required multiple-criteria including 

consistency measure to insure the selection of optimum performance consistent 

classifier. Apart from the issues highlighted in state-of-the-art classifiers performance 

evaluation methods, the automatic classifiers selection using meta-learning also 

suffers from a number of challenging issues. These include: the extraction and 

selection of a suitable set of meta-characteristics of the data to best represent the 

intrinsic behaviors of the dataset from all aspects and thus help in automatic 

recommendation of best classifier and enabling multi-views multi-level meta-

learning and reasoning for accurately selecting classifiers based on data and 

classifiers characteristics. 

This thesis establishes the problem statement and proposes a number of theoretical 

and systematic empirical methods and meta-learning based methods to provide 

solutions to the problem of accurate classifier selection and the associated issues, 

mentioned above. Similarly, for the issues highlighted in real-world application 

scenarios, novel methods are proposed to improve performance of the traditional 

rough-set and case-based reasoning classifiers.  
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The problem of best classifier selection and design can be approached either using 

automatic evaluation, ranking and selection methods or using the expert’s heuristic 

knowledge about the domain problem and the candidate classifiers. Under the 

automatic classifier selection approach, two types of novel methodologies are 

proposed. In the first methodology, a unique accurate multi-criteria decision making 

(AMD) method is proposed that evaluates the classifiers performance on the basis of 

multiple performance metrics (constituting a composite criterion) satisfying the 

domain constraints and ranks the final score to select the top-ranked classifier as the 

best one. In this method, based on the motivation from experts’ consensus-based 

nominal group technique (NGT), an experts’ group-based decision making method is 

proposed that accurately selects suitable performance metrics satisfying the domain 

constraints. The experts’ preferences on the evaluation metrics are realized and 

quantified using the experts’ group decision making with relative consistent 

weighting scheme using analytical hierarchy process (AHP). For ranking 

performance of the classification algorithms, relative closeness values, with respect 

to the ideal classifier, are computed for all the classifiers using multi-criteria decision 

making Technique for Order Performance by Similarity to Ideal Solution (TOPSIS). 

Moreover, this thesis contributes in the selection of a significant performance 

consistent classifier by introducing an additional consistency measure in the 

evaluation criteria and using only statistically significant classifiers in the evaluation 

process. The statistical significance test is enhanced by encompassing a fitness 

evaluation function that excludes the algorithms that perform significantly poor on 

all the considered evaluation criteria. In the second methodology of classifier 

selection, a novel CBR-based meta-learning and reasoning (CBR-MLR) framework 

is proposed and implemented that utilizes data and classifiers meta-characteristics 

during multi-level multi-views case-based reasoning to accurately recommend best 

decision tree classifier for users’ applications in-hand. In this method, 29 meta-

characteristics are extracted from user data and 09 decision tree classifiers are 

empirically evaluated, using predictive accuracy and consistency, to design a Case-

Base. Accurate case retrieval functions are defined and the CBR output is refined 
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with classifiers conflict resolution approach that uses weight sum score and AMD 

methods. 

The heuristic-based evaluation and selection method is based on the experts’ 

knowledge about the candidate classifiers’ performance on a particular application. 

Under this approach, semantics-preserving accurate rough-set classifier, based on 

rough-set theory (RST), and precise hybrid-CBR classifiers, are proposed, designed 

and implemented in real-world application scenarios. In the design of these 

classifiers, standard data mining process flow is used with necessary modifications in 

order to fulfill the specific requirements of the domain applications. However, the 

methodologies are designed in generalized manner, without restricting to the specific 

domains for which they have been initially designed. For improving capability of the 

rough-set classifier, a new, semantics-preserving discretization scheme is introduced 

that keeps the data semantics intact after being transformed into decision rules. 

Similarly, the design of the standard CBR classifier is improved by efficiently 

integrating it with rule-based reasoning and defining accurate case similarity and 

retrieval function. 
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Chapter 1                  

Introduction 

 

1.1. Background 

In real-world domains, organizations try to build intelligent decision support systems 

and tools for automating their organizational processes and analyzing the available 

data for future predictions and strategic planning. For this purpose, the organizational 

experts and machine learning practitioners adopt the available decision making 

methods and algorithms and apply them for their problems in hand. These 

stakeholders pick the appropriate decision making method based on their heuristics 

knowledge about the domain problems and the available decision making methods. 

Once the algorithm is selected, the corresponding decision making model i.e., 

classification or recommendation model is built for real-world services generation in 

the form of intelligent decisions. Each domain application has its own constraints and 

requirements, such as some applications need higher accuracy while others need 

lower computational complexity and robustness. Similarly, some of the domains need 

to have the classification models with higher accuracy, lower computational and 

space complexity and consistent and comprehensible results. Other criteria that can 

be used for evaluating and selecting classification models include scalability, 

integration, stability, and interestingness [1]. This shows that the selection of 

classification algorithm for the decision making process of an application is a 

challenging task and need a number of aspects to be considered. This makes the 

process difficult for experts and machine learning practitioners to heuristically pick 

an algorithm. This requires a proper methodology to evaluate the classifier from the 

perspective of the domain constrains imposed by the application scenario and the 

strengths and weaknesses of the classifiers itself. Historically, this process of the 

evaluation of classifiers has been done by estimating predictive accuracy via cross-

validation tests and receiver operating curves (ROC) analysis. However, the features 
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greatly vary from domain to domain and has been shown that different evaluation 

methods are suitable for different domain problems. Furthermore, the evaluation of 

algorithms based on the combination of more than one suitable criteria results in good 

performance results [2, 3].   

As a result of involvement of more than one criteria, for the classifiers evaluation and 

selection, the task of algorithm selection can be modeled as a multiple criteria 

decision making (MCDM) problems. Different MCDM methods evaluate classifiers 

from different aspects and produce different rankings results [4]. The literature of 

classifiers evaluation and selection can be categorized into the following three types, 

keeping in view the involvement of the human experts (i.e., domain expert or machine 

learning expert or practitioner). Firstly, the expert uses his heuristic knowledge about 

the domain application and the available algorithms and pick the appropriate one. 

This approach is mainly applicable in real-world application scenarios, where the 

dataset need to be properly prepared and then used for model creation. Secondly, 

empirical performance evaluation approaches are used, which focus on the 

experimental results analysis of all the candidate algorithms and then applying some 

multi-criteria decision making method to rank the alternatives. This approach 

involves the selection of right evaluation criteria for comparing the results of these 

algorithms and then a proper methodology to rank them correctly. The third and the 

last way is to use automatic selection method using meta-learning approaches where 

meta-features of the dataset are exploited and accordingly an appropriate algorithm 

is recommend. However, this approach requires the creation of a machine learning 

model based on historical datasets which is a difficult task. In this method, to build 

an automatic classifier recommendation model, a training dataset is required whose 

features will come from the data meta-characteristics and the class labels from the 

empirical evaluation of the classifiers performances.  

In first part of this thesis, focus is on the automatic selection of classifiers for 

classification data problem, while in the second part, focus is on the heuristic-based 

selection of classifier and designing accurate classifier meeting the domain 
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application’s requirements. In the first part, a novel multi-criteria decision making 

(AMD) methodology is developed that consist of a set of intelligent methods for 

evaluating classifiers performances and ranking them to find the top-ranked classifier 

for learning the domain data in-hand. This helps the experts to easily pick the top 

classifier as the best one for their problems in hand and consequently design the 

corresponding classifier. Similarly, an automatic classifier selection framework, 

CBR-based meta-learning and reasoning (CBR-MLR), is proposed and implemented 

that utilizes the data and classifiers meta-characteristics to first build a classifier 

recommendation model and then automatically recommend the best classifier for a 

given new data problem (user’s dataset).  

In the second part, two classifiers are designed for real-world applications scenarios. 

The first classifier is designed using the rough-set classifier with enhancements in the 

data preparation and discretization steps for getting semantics-preserved accurate 

results. The second classifier is built for accurate and precise recommendation 

generation using hybrid case-based reasoning (hybrid-CBR) methodology. In the 

design of this classifier, first a training dataset (Case-Base) is prepared from the 

domain knowledge using the rule-based method and then the case retrieval step is 

enhanced with accurately defined similarity functions.  

1.2. Motivation 

The advancement of ubiquitous technologies and its adoption in real domain 

applications, such as trade and business, healthcare and bioinformatics, various 

industries, and education and research (shown in Figure 1.1) has greatly increased the 

availability of data.  The organizations in these domains are trying to analyze their 

data by building prediction models for knowing insights of the businesses operations 

and making long-term businesses strategies. This has gained the attention of 

researchers in the areas of machine learning and data mining to apply appropriate 

machine learning algorithms for generating real-world application services. 

However, a large number of classifiers are available and its number increasing day-

by-day. Each classifier has its own set of qualities that bring certain strengths and 



Chapter 1: Introduction 

(4) 

weaknesses, when they are applied in real domain applications for real services 

generation. Some of these qualities includes: correctness, robustness to  noise, 

scalability, computational complexities (training speed), responsiveness (prediction 

speed), model comprehensibility and interpretability, robustness to noise and 

redundant  features,  robustness  to  numeric  features, storage complexity, and others 

[5]. Moreover, various domains have their specific requirements in the form of 

domain constraints, such as in some domains accuracy is compromised over the 

computational complexity while in others computational complexity or storage 

complexity are compromised over the accuracy. The qualities of the classifiers need 

to be assessed prior to their application in the domain. This brings the attention of the 

machine learning experts into the well-known no-free lunch theorem [6], which states 

that no algorithm can perform well on all kinds of dataset and hence no algorithm is 

universally acceptable for all types of problems, given an evaluation criterion or 

multiple evaluation criteria.  

 

Figure 1.1. Motivation for classifier performance evaluation and selection of best classifier  
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All these restrictions and the complexities make it very hard for the machine learning 

experts, domain experts and end users to accurately pick suitable classifier from the 

large set of available classifiers and build accurate prediction, and classification 

model(s) for user’s problem in-hand. Besides overlooking specific qualities of the 

classifiers, domain data meta-characteristics, specific constraints and requirements, a 

common drawback in existing classifier selection methods is that they only consider 

predictive accuracy as the classification performance metric. However, it has been 

proved that it is insufficient in domains which suffer from the class imbalance 

problems. Therefore, an accurate methodology, which efficiently integrate different 

methods necessary for selection of best classifier is of interest. This will enormously 

reduce the time, effort and cost of the machine learning experts, practitioners and the 

business owners, and will results in accurate domain models developments for real-

world applications.  

In  addition  to  the  primary  motivation  presented  above,  this  thesis  provides some 

applications specific solutions, which can equally be applied  on  general  data  mining 

processes, such as generating an accurate dataset or training cases using domain 

knowledge, building semantics-preserving interpretable and incremental learning-

based classification models. 

1.3. Problem Statement 

Researchers have designed a variety of methods to select accurate classifier and build 

classification models for generating services in various real-world applications. The 

selection of best classifier is followed by the standard data mining process to first 

design the model and then develop it properly. These researchers have greatly 

contributed in research community, however some of the challenges still need to be 

overcome because they may vary from application to application and one learning 

algorithm to another learning algorithm. The key issues that occur in the selection 

and design of classification and recommendation model for real-world application 

scenarios include: evaluating classifiers heuristically based on multiple criteria and 

selecting the appropriate one, domain data acquisition from different sources, 
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representations of the instances and cases of the data in datasets or case-bases, and 

preserving semantics of the data during discretization of the continuous values, and 

ensuring efficient and accurate retrieval of cases from case-bases, during the case-

based reasoning process. However, the selection of classifier using the practitioners’ 

heuristic knowledge limits the evaluation process to a single quality or performance 

metric. This results in the selection of a sub-optimal performance classifier for 

decision making that may mislead the user in taking the recommended action. 

Similarly, a common limitation of the existing classifier evaluation methods is the 

use of only predictive accuracy as the classification performance metric, which has 

been proven insufficient in domains with class imbalance and many others problems. 

In case of classifiers performance evaluation, there is no universally acceptable 

classifier that outperforms all other classifiers on every kind of domain data, given a 

single evaluation criterion or multi-metrics evaluation criteria. Similarly, there is no 

universally acceptable guidelines or rules for the selection of suitable evaluation 

metric(s) to evaluate the classifiers. Other related issues regarding classifier 

evaluation include: the experts’ preferences (i.e., weights on the criteria) are normally 

defined using absolute values that lack the consistency check for insuring that the 

assigned weight are correct, global and local constraints of the domain and evaluation 

metrics which sometimes impose restrictions on the classifiers performance 

evaluation process and must need to be satisfied. Moreover, there is lack of a 

universally acceptable classifier evaluation strategy, which includes almost all the 

required multiple-criteria including consistency measure to insure the selection of 

optimum performance consistent classifier. Apart from the issues highlighted in state-

of-the-art classifiers performance evaluation methods, the automatic classifiers 

selection using meta-learning also suffers from a number of challenging issues. These 

include: the extraction and selection of a suitable set of meta-characteristics of the 

data to best represent the intrinsic behaviors of the dataset from all aspects and thus 

help in automatic recommendation of best classifier and enabling multi-views multi-

level meta-learning and reasoning for accurately selecting classifiers based on data 

and classifiers characteristics. 
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1.4. Proposed Concept 

The proposed research work, presented in this thesis, is structured into two parts, each 

of which has several chapters. In Part I, the focus is on the development of accurate 

methods for the selection of right classifier based on multi-criteria decision making 

and meta-learning. Accurate methodologies are proposed to empirically evaluate 

classification algorithms on the basis of multiple performance metrics satisfying 

user’s domain constraints and automatically select best classifiers based on the data 

and classifiers meta-characteristics using CBR-based approach. In the first solution, 

an accurate multi-criteria decision making (AMD) methodology is proposed, which 

integrates a series of novel methods for the selection of suitable performance metrics, 

relatively assigning consistent weights to each metric, satisfying the domain and 

experts’ constraints, ranking algorithms with respect to an ideal algorithm and 

selecting the top-ranked classifier. The detail of this method is described in Chapter 

4. In the second solution, a novel CBR-based meta-learning and reasoning (CBR-

MLR) framework is proposed and implemented that utilizes data and classifiers meta-

characteristics during multi-level multi-views case-based reasoning to accurately 

recommend best decision tree classifier for users’ applications in-hand. In this 

method, 29 meta-characteristics are extracted from user data and 09 decision tree 

classifiers are empirically evaluated, using predictive accuracy and consistency, to 

design a Case-Base. Accurate case retrieval functions are defined and the CBR output 

is refined with classifiers conflict resolution approach that uses weight sum score and 

AMD methods. This method is described in in detail in Chapter 5. 

In Part II, the thesis is focused on classification and recommendation tasks and the 

related issues which may appear in real-world application scenarios, such as: domain 

data acquisition for real-world datasets and cases preparation, semantics-enabled 

discretization, accurate case similarity functions definitions and accurate 

classification and recommendation models creation. In this part of the thesis, the 

expert’s heuristics based approach is applied for selection of classification and 

recommendation methods and building the associated models. Based on the heuristics 

selection, an accurate rough set-based classification model is proposed for a real-
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world application scenario of diabetes mellitus where the data is composed of patients 

encounters structured in clinical charts. The rough set classifier’s selection is made 

based on its capabilities of building a comprehensible and interpretable model and 

best learning the rough boundaries of different classes in the dataset tool [7, 8]. The 

discretization phase is enhanced by introducing a semantics-preserving discretization 

scheme that preserves the semantics in the transformed data, in the rules. The detail 

are in Chapter 6. Similarly, for another real-world wellness application scenario of 

physical activity recommendations, a hybrid case-based reasoning (hybrid-CBR) 

method is heuristically selected for generating accurate and precise wellness 

recommendations that closely match the users’ requirements. A hybrid-CBR 

recommendation model is proposed with an enhanced rule-based case preparation 

methodology along with accurately defined similarity functions. The advantage of 

the proposed hybrid-CBR model, in comparison to the state-of-the-art rule-based 

models, is that it generates relevant recommendations even if there is no exact match 

of the input test case. The detail are in Chapter 7. 

1.5. Contributions 

The goal defined for the thesis is accurate classifier selection for user’ learning 

problem and designing classifiers for accurate decision making in real-world 

application scenarios. To achieve this goal, the objectives set are: (1) evaluation of 

classifiers performances and selection for accurate classifier for users’ application in-

hand. The achievement of this objective is based on the correct and consistent choice 

and weighting of the classifiers performance evaluation metrics for defining a general 

purpose aggregate metric to rank the classifiers and select the one with highest rank 

(2) design of accurate rough-set and hybrid-CBR classifiers for real-world 

applications with semantics-preserving data discretization and accurate case retrieval 

similarity functions definition. 

The main challenges faced in successfully achieving the stated goal and the 

corresponding objectives includes: how to select suitable performance metrics for 

classifier evaluation (how much to select and how to aggregate) from the available 
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large set of metrics, how to quantify and estimate the user’s preferences on the 

selected performance criteria in relative and consistent manner as compared to 

absolute mechanism, how to satisfy the users’ local and global constraints, in the form 

of cost and benefit criteria, consistency performance measure and significance fitness 

evaluation function to lead into the selection of optimum performance consistent 

algorithm(s). Similarly, for automatic classifiers selection using meta-learning 

approach, the challenges faced are: how to extract data and classifiers meta-

characteristics, how to know the extracted features are enough for accurate 

recommendation of the classifiers and how to establish relationship among the data 

and classifiers characteristics. In the same way, how to prepare real-world application 

dataset and cases from data sources, how to discretize the domain data so that the 

semantics remains intact, and how to accurately define case retrieval functions. 

To resolve the highlighted challenges, this thesis presents the idea of empirical 

evaluation and ranking of classifiers using multi-criteria decision making, selection 

of right classifier using meta-learning and reasoning, and systematic analysis, design 

and enhancement of some of the standard data mining processes during the rough-set 

and hybrid-CBR classifiers design.  

The main contributions made through this thesis are described as follows. 

Accurate classifier selection using AMD methodology: According to the well-

known “no-free lunch theorem [6]”, no classifier can be found which best perform 

than all the others classifiers on every type of learning problem, based on certain 

given evaluation metric(s). Similarly, there are no generally accepted rules which 

specify the correct and suitable metric(s) and help in assigning consistent relative 

weight for prioritizing the individual metrics in the generalized aggregate evaluation 

criteria. There is also no method that help in specifying the specific domain 

context/constraints while evaluating the algorithms. In this thesis, an accurate multi-

criteria decision making (AMD) methodology is proposed, which integrates a series 

of novel methods for the selection of suitable performance metrics, relatively 

assigning consistent weights to each metric, satisfying the domain and experts’ 
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constraints and ranking algorithms with respect to an ideal algorithm. In this thesis, 

an extensive analysis of the most commonly used classifiers performance metrics is 

done and the suitability of each metric to a particular domain context is assessed. A 

classification model is built for describing these contexts and associating them to the 

domain constraints, which helps the expert in easily selecting the suitable metric. An 

experts’ group-based method is proposed to accurately selecting the suitable metrics 

from the metrics classification model. A General purpose aggregate metric, 

comprising the accuracy, time complexity (comprising both training and testing time) 

and consistency measures, is proposed and the algorithms’ performance are ranked 

with respect to ideal algorithm using the relative closeness concept of TOPSIS 

method. The AMD methodology is validated and extensively experimented on fifteen 

publically available classification datasets from UCI and OpenML repositories and 

thirty five freely available classification algorithms from the heterogeneous families 

of classifiers implemented in Weka tool. The empirical results and comparison with 

state-of-the-art methods have demonstrated that the proposed AMD method 

outperforms the existing methods. The AMD achieved an average Spearman’s rank 

correlation coefficient of ninety seven (Rs. 0.97) with respect to the ideal ranking of 

these algorithms. The detail are in Chapter 4. 

CBR-based meta-learning and reasoning (CBR-MLR) methodology: The key 

contributions made through this methodology are as follows. A flexible and 

incremental meta-learning and reasoning based framework is proposed which uses 

CBR-based methodology integrated with multi-criteria decision making, for classifier 

evaluation, and data characterization using multi-view meta-features extraction. 

Similarly, a new multi-metrics criteria is proposed for the evaluation of decision tree 

classifiers to select the best classifier as class label for the cases in training dataset 

(i.e., resolved cases in the proposed CBR methodology). Furthermore, classifiers are 

analyzed based on their predictive accuracy and standard deviation, called 

consistency to select the best classifier as class-label. The idea of multi-view learning 

is proposed to learn the data from multiple perspectives, with each perspective 

representing a set of similar meta-features that reflects one kind of behaviors of the 
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data. Each set of features is called a family that forms a view of dataset. Moreover, a 

multi-level multi-view meta-reasoning methodology is proposed with a flexible and 

incremental learning model integrating CBR with the classifiers conflict resolving 

(CCR) method to accurately recommend the most similar case as the suggested 

classifiers for a given new dataset. For the CBR retrieval phase, accurate similarity 

matching functions are defined, while for the CCR method, weighted sum score and 

AMD method (presented in Chapter 4) are proposed. This methodology is described 

in detail in chapter 5. 

Design of a semantics-preserving accurate rough set classifier: real-world 

application data,  exhibit the characteristic of variations or uncertainty and vagueness 

in their values [9]. The   majority of classification algorithms have not been initially 

designed for dealing such kind of vague and ambiguous values within a dataset. In 

literature, some techniques, especially fuzzy approaches are available can solve the 

issue [9, 10], however they depend on several factors. So, we proposed a rough set 

classification model that is originally based on the classical rough sets theory [11], 

which needs no other factors and parameters except the dataset in the form of an 

information system. The rough set classifier’s selection is made based on its 

capabilities of building a comprehensible and interpretable classification model and 

best approximation of the rough boundaries of different classes in the dataset. In the 

real-world diabetes scenario, the diabetes dataset (i.e., information system) is 

prepared from the semi-structured clinical notes using the subjective, objective, 

assessment, and plan (SOAP) protocol for the clinical notes data. Moreover, the 

discretization phase of the rough set classifier is replaced by a new semantics-

preserving discretization scheme that preserves semantics in the transformed data 

from continuous values to discrete values in the knowledge rules. The existing 

discretization methods used in literature distort the original clinical semantics of the 

data when they are transformed to their discrete form. For both, the information 

system preparation and discretization, online guideline-enabled rules-based 

reasoning methodology is used. The proposed rough set classification model is 

evaluated on the real-world diabetes scenario, which produces highly accurate and 
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semantics preserved results of 0.959% on a dataset of 391 records and eight attributes. 

The detail are in Chapter 6. 

Design of an accurate and precise hybrid-CBR classifier: There is no universally 

acceptable algorithm that can solve every type of domain problem, especially when 

there are a lot of variations in the values of the attributes, the number of instances in 

the dataset are minimum and the number of class are high or even one instance per 

class.  In such cases, the traditional classifiers cannot perform well and suffer from 

the problem of over-fitting. The traditional classifiers work on the principal of 

generalization rather than specialization and exact matching strategy are used when 

decisions are made. Therefore, in this thesis, an incremental learning approach is 

proposed and implemented in the form of a case-based reasoning classifier. In CBR 

methodology, the essential part is the creation of accurate train and test cases. So, an 

accurate rule-based case preparation methodology is proposed with and accurate 

similarity functions for case retrieval during the recommendation generation process. 

The proposed hybrid-CBR model is tested and evaluated in a real-world application 

scenario of physical activity recommendation that has shown significant performance 

results with respect to state-of-the-art methods. The hybrid-CBR model is also 

evaluated in a real-world application scenario of physical activity recommendations’ 

and compared with standard rule-based recommendation models. The evaluation 

results demonstrates that hybrid-CBR is significantly better that the state-of-the-art 

methods. The detail are in Chapter 7. 

1.6. Thesis Organization 

This dissertation is organized into six chapters as follows. 

Chapter 1: Introduction. Chapter 1 provides an overview of the research work in 

the area of data preparation for standard data mining process, selection of the 

appropriate classification and recommendation method/algorithm and creation of the 

corresponding model(s). The chapter describes the motivation behind the research 

thesis in the area of algorithm performance evaluation and classification and 

recommendation models selection and creation. Moreover, the research problem is 
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formulated, the overall concept of the proposed solution is highlighted and the 

contributions and uniqueness made are presented. 

Chapter 2: Related work. A background detail of the related work is provided in 

this chapter. The state-of-the-art research work in the area of rough set classification 

in diverse domain is presented along with their comparative analysis. Similarly, the 

chapter also summarizes the relevant literature in the area of hybrid case-based 

reasoning for health and wellness applications. Furthermore, the chapter is started 

with an extensive literature review of the relevant work in the area of empirical 

performance evaluation of classifiers based on multi-criteria analysis techniques. The 

meta-learning based literature is also summarized in this chapter. 

Chapter 3: Machine learning and classification: technical preliminaries. This 

chapter is focused on the preliminaries of machine learning techniques used for the 

classification problems. The classification task is discussed from the classifiers 

performance evaluation perspective. Multi-criteria decision making is highlighted, 

which assists in the process of evaluating and ranking classifiers with respect to ideal 

algorithms. Meta-learning and reasoning based terminologies are defined are 

described 

Chapter 4: Accurate empirical evaluation of classifiers. This chapter describes the 

proposed solution to the problem of selecting suitable classification algorithm from 

the set of available thirty five algorithms using multiple performance evaluation 

metrics. The proposed methodology, accurate multi-criteria decision making (AMD), 

is described from its initial step of goal setting to the final step of ranking and 

selection of best classifier. 

Chapter 5 CBR-based meta-learning and reasoning for accurate classifier 

selection. A flexible and incremental meta-learning and reasoning based framework 

is proposed which uses CBR-based methodology integrated with multi-criteria 

decision making, for classifier evaluation, and data characterization using multi-view 

meta-features extraction. Similarly, a new multi-metrics criteria is proposed for the 

evaluation of decision tree classifiers to select the best classifier as class label for the 
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cases in training dataset. Furthermore, classifiers are analyzed based on their 

predictive accuracy and standard deviation, called consistency to select the best 

classifier as class-label. The idea of multi-view learning is proposed to learn the data 

from multiple perspectives, with each perspective representing a set of similar meta-

features that reflects one kind of behaviors of the data. Each set of features is called 

a family that forms a view of dataset. Moreover, a multi-level multi-view meta-

reasoning methodology is proposed with a flexible and incremental learning model 

integrating CBR with the classifiers conflict resolving (CCR) method to accurately 

recommend the most similar case as the suggested classifiers for a given new dataset. 

For the CBR retrieval phase, accurate similarity matching functions are defined, 

while for the CCR method, weighted sum score and AMD method are proposed. 

Chapter 6 selection and design of semantics-preserving accurate rough set 

classifier. This chapter describes the proposed rough set classification methodology 

for generating semantically preserved accurate classification results. A rough set 

classification algorithm is presented and validated using a real-world application 

scenario from healthcare domain with diabetes dataset.  

Chapter 7: selection and design of an accurate hybrid case based reasoning 

classifier. This chapter describes the proposed hybrid case-based reasoning (CBR) 

methodology for generating accurate and precise recommendation decisions. The 

integration of a rule-based reasoning (RBR) methodology is presented with the case-

based reasoning approach to enable the process of accurate case preparation, at real-

rime, and suggestion of relevant recommendations. Guidelines-based rules creation 

process is highlighted in the real-world application scenario of physical activity 

recommendations and a case base of successful recommendations is prepared. 

Accurate similarity functions are defined for the correct retrieval of the relevant 

recommendation cases and providing as the final recommended decisions.  

Chapter 8: Conclusion and future work. This chapter concludes the work done 

with the possible future directions, intended to be taken care in future. 
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Chapter 2               

Related Work 

 

2.1. Overview 

In real-world domain applications, suitable classifiers selection, their design and the 

associated methodologies have been widely used since long. The key challenge a 

machine learning practitioner face during designing a machine learning system is 

which classifier to use for building the proposed model. Similarly, to design an 

accurate classifier using the recommended algorithms, further tasks are required, such 

as the preparation of correct datasets using standard data mining process, i.e., 

preprocessing, discretization, training dataset preparation for building classier and 

many others. To resolve these issues, comprehensive research have been taken and a 

large number of methods, techniques, frameworks and methodologies have been 

proposed in literature. This chapter first presents the relevant literature in the area of 

multi-criteria decision making for empirically evaluating the performance of 

classifiers and ranking them to select the top ranked algorithm. It also presents the 

related studies for suitable classifier selection using meta-learning approaches that 

consumes meta-characteristics of the data. Similarly, the chapter also presents the 

related work in the area of classifier design for real-world applications in medical and 

wellbeing area with specific focus on rough set classifiers and hybrid case-based 

reasoning classifier.  

The choice of algorithm for classifier design can be either done automatically using 

algorithms performance analysis and ranking or using meta-learning approach or 

heuristic selection by the machine learning practitioner. In this chapter, first the 

automatic classifier selection literature is evaluated that uses multi-criteria decision 

making methods and meta-learning approaches and then the experts’ heuristics based 

evaluation method are analyzed. The heuristic-based approach is studied in the real-



Chapter 2: Related Work 

(16) 

world application domains of prediction in diabetes mellitus and health and wellness 

applications of physical activities recommendations. The automatic and heuristics-

based classifier selection and design define the flow of this chapter. 

2.2. Automatic Classifier Selection 

Selection of a suitable classifier for a dataset or a user’s problem in hand is a complex 

task and depends on many characteristics of the domain problem. Similarly, the 

process requires performance analysis of the candidate classifiers/algorithms to know 

which algorithm is best performing for certain type of data. The subsequent sub-

sections summarize the related studies in the area of selection of best classifier based 

on multi-criteria decision making and meta-characteristics of the dataset in hand. 

2.2.1. Multi-criteria decision making for classifiers ranking and 

selection 

Machine learning algorithm selection is a real-world problem in various domains, 

such as data mining business, knowledge acquisition and reasoning, research and 

many others areas [12]. Large business firms and research institutions hire machine 

learning experts, such as practitioners, data analysts and knowledge engineers to 

analyze the business data for different types of strategic planning. Usually, experts 

choose appropriate machine learning algorithm(s) using their heuristic knowledge 

about the domain and the available classification algorithms [13]. The heuristics-

based algorithm(s) selection is a risky task and sometimes result in selection of a sub-

optimal performance algorithm(s). The reasons may include lack of the complete 

knowledge about the domain application, i.e., the datasets have different intrinsic 

characteristics, and the candidate classifiers have different capabilities and strengths. 

This process become more challenging when the selection of best classifier is based 

on multiple-criteria under strict conditions and constraints. According to the well-

known “no free lunch” theorem [6], no machine learning algorithm performs well on 

all kind of learning problems. However, it can be made possible to estimate the 

selection of a suitable machine learning algorithm for an application in hand [14]. 

This selection process of the classifiers is an application dependent task, because it 
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has been theoretically and empirically proved that no machine learning algorithm is 

universally superior on all datasets due to the different characteristics and features of 

the domain data [15].  

In real-world applications, the requirements assessment of the applications and 

deciding which specific qualities need to be evaluated has great importance. Clear 

application’s requirements easily clarify the ingredients of evaluation criteria and 

their individual contributions in the final decision making [3]. The evaluation 

methods for different domains are different due to different objectives of the domains. 

Some domains require single evaluation criteria, while others need multi-criteria 

evaluation. In classification problems, the most commonly used single criterion 

metric used for evaluations is the accuracy, which can be evaluated using the well-

known metrics, such as area under the ROC curve [16], success rate, average 

accuracy, and balanced accuracy. However, the evaluation only on the basis of 

accuracy may misleads the selection of optimum performance algorithm [2]. To select 

optimum performance algorithm, multiple evaluation criteria, such as average 

accuracy, execution time, training time, consistency and many others need to be used. 

The objective of multi-criteria evaluation is to balance the trade-off between these 

criteria rather than maximizing a single criterion [3]. The main issue in multi-criteria 

evaluation is the selection and prioritization of suitable criteria and excluding those 

which have conflicting behaviors. This is a subjective issue and requires the 

involvement of stockholders, such as domain experts and machine learning 

practitioners and users [2]. In the criteria weight assignment, experts’ preferences are 

quantified as weight scores and assigned to each metric of the evaluation criteria. The 

weights can be either assigned manually by experts or can be done using some semi-

automatic weighting method, such as analytical hierarchy process (AHP) [17].The 

manual weight assignment is a hard task, which has been realized by the simple and 

intuitive measure (SIM) [18]., measure-based evaluation (MBE) [19] and application-

oriented validation and evaluation (APPrOVE) [2] approaches. Statistical methods 

[20, 21] have also been used for the evaluation of machine learning algorithms from 

different. 
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Apart from the criteria selection and prioritization issues, the non-uniformity of 

dimensionality of data for the evaluation metrics is another challenging issue [22]. 

To overcome this issue, a number of normalization techniques [2, 23] have been 

proposed in literature in which the unit or scale of measurements are transformed to 

a common compatible format to be fairly used in the evaluation process [24]. 

In literature, a number of studies can be found that evaluates classifiers on the basis 

of single evaluation criterion, such as accuracy [25-30]. The evaluation of 

classification algorithms on the basis of multiple criteria, such as accuracy and time, 

in non-simultaneous way, is presented in [31-33] and on the basis of sensitivity, 

precision, F-score, and area under the curve (AUC) is presented in [34]. Ali and Smith 

[35] performed evaluation among 8 classifiers with 100 different classification 

problems using extended measures of average accuracy (true positive rate, true 

negative rate and percent accuracy) and time complexity (training time and testing 

time). Similarly, for various real-world applications, the performance evaluation of 

various classifiers have been done, for examples, handwritten recognition [36], color 

prediction of rice paddy plant leaf [37], prediction of diabetes mellitus [38, 39] The 

most commonly used criteria for algorithms evaluation are the adjusted ratio of ratio 

(ARR) [32] and performance of algorithm (PAlg) on dataset [40], which use accuracy 

and time. Reif et al., [41] used root mean squared error (RMSE) and Pearson product-

moment correlation coefficient (PMCC) [42] for the evaluation and recommendation 

of the best classification algorithm. The methods discussed in literature use absolute 

or partial relative weights to prioritize evaluation criteria. However, recently, the 

focus of researchers has shifted to relative criteria weighting, using multi-criteria. In 

medical knowledge acquisition, relative criteria weighting has been proposed [43] 

that uses AHP process [17]. They used average training time, accuracy and memory 

usage as the criteria. Five multi-criteria decision making methods, including TOPSIS 

[44], elimination et choix traduisant la realité III (ELECTRE III) [45], grey relational 

analysis, vlse kriterijumska optimizacija i kompromisno resenje (VIKOR), and 

preference ranking organization method for enrichment of evaluations II 

(PROMETHEE II) have been discussed in article [4].  
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2.2.2. Meta-learning and reasoning for classifier selection 

In the area of machine learning applications, users are usually inexperienced with the 

details of the plethora of available classification algorithms and thus do not recognize 

which algorithm is appropriate for their problem at hand. The reason is that if 

algorithm A outperforms algorithm B on a specific dataset D1 then B may outperform 

on other dataset, say D2, in which case A may fails. This gives us an idea that no 

single algorithm performs well on all types of datasets and thus validates the known 

theorem of “No Free Lunch” [46]. As the performance of a specific algorithm 

depends on the problem/dataset at hand, therefore an automatic recommendation 

system is needed to assist the users while picking an algorithm for learning the data. 

Automatic algorithms selection has been extensively studied since 1990s. At the start, 

cross-validation strategy was used but soon discouraged due to computational cost 

[26]. In parallel to cross-validation, some of the early work focused on meta-learning 

and empirical method to select appropriate learning algorithm [47]. Using meta-

learning approach, meta-features of the datasets are calculated and the performance 

of a variety of learning algorithms is measured on these datasets. After this, mapping 

between problem features and algorithm performance is learned for recommending 

appropriate algorithm [48]. Problem and algorithm characterization, using meta-

learning, and defining mapping function between problem features and algorithm 

performance is the most widely used approach to algorithm selection problem. 

Diverse machine learning approaches, such as C4.5 [49], rule-based classifier [35], 

linear regression [27] and k-NN [32] have been applied to learn the mapping function 

to select the algorithm. Some of the work, such as [50] has characterized complexities 

of the problems and performance of the algorithms and used for selecting appropriate 

algorithm. Recently, Q. Song et al. [40] has used a new dataset characterization 

method for computing datasets features and computed performance of seventeen 

classification algorithms over 84 UCI publically available datasets[51]. The have 

learned used k-NN to select the k nearest algorithms from the list of 17 algorithm and 

recommend to the user. 
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A large number of classifiers characteristics have been introduced in literatures to 

understand natures and intrinsic behaviors of the classification problems. These 

characteristics are categorized into a number of families, such as basic statistical 

characteristics, advanced statistical, information theoretic, complexity, landmarking 

and model-based [21] [40].  

A meta-learning approach is an alternative to the AMD methodology, where the 

characteristics of a large number of classification datasets are extracted and mapped 

against the best classifier (computed using AMD methodology) to create a training 

dataset for building an automatic classifiers selection model. 

The above mentioned methods map relationship between the problem characteristics 

and algorithms performance using single learner using single family of data 

characteristics and don’t take into consideration the multi-view multi-level learning 

and reasoning using CBR approach to recommend the best closet classifier if there is 

no exact matching classifier available for a given dataset. 

2.3. Heuristics-based classifier selection and design for real-

world applications 

In real-world application scenarios, where the candidate algorithms’ evaluation is 

really a hard problem due to the unavailability of suitable quantifiable criteria and 

one may not get an appropriate algorithm in an acceptable time, applying some 

arbitrary choices or educated guesses, then experts’ heuristic-based choices are the 

best options to use [52]. In this approach, the expert uses his knowledge about the 

domain and the candidate algorithms and picks suitable algorithm for designing an 

accurate classifier. A heuristic is a kind of algorithm that does not explores all the 

possible aspects of the candidate algorithms and the domain application requirements, 

but still tries to explore the most likely ones. The heuristic approach defiantly 

excludes the obviously bad algorithms from the competition. In this thesis, the 

heuristic approach is applied in the specialized domains of diabetes mellitus and 

wellness application. The subsequent sub-sections describe studies used in these area 
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for selecting suitable classifiers and the way they are designed to generate 

classification results. 

2.3.1. Rough Set Classifier Selection and Design for Real-world 

Application 

In medical diagnosis, it is quite difficult for physicians to take diagnosis decision by 

evaluating the current conditions of a patient without referring to the previous 

decisions with the similar symptoms. For the reason, a number of clinical decision 

support systems (CDSS) [53] [54] [55] [56] [57] have been developed that assist 

physicians [58] . Such systems have widely been applied for diagnosis, prediction, 

classification and risk forecasting of different diseases from EMR data. The area of 

risk forecasting of diabetes type-2 has been explored from EMR data with the use of 

machine learning techniques, such as Gaussian Naïve Bayes, Logistic Regression, K-

nearest neighbor, CART, Random Forests and SVM [53]. Ensemble of SVM and BP 

NN is used over Pima Indian publically available UCI dataset to predict presence of 

diabetes [54] with the improved predictive accuracy than the traditional single 

learning method. Stahl [55] has proposed a Linear and Bayesian Ensemble Modeling 

technique to predict glucose level in DM patient data. They have evaluated their 

model with 47 patients’ data and validated with 12 datasets. Similarly, a prototype 

diabetic decision support system, based on multi-layer perceptron neural network 

model has been developed [56] that predicts psychosocial well-being behavior, such 

as depression, anxiety, energy and positive well-being of patients. In this system, 

patient’s biological or biographical variables, such as age, gender, weight and fasting 

plasma glucose are used as input predictors. In literature [57], an architecture of multi-

stage DM prediction system, based on fuzzy logic, neural network and case based 

reasoning (CBR) is proposed that uses two stages for prediction. In the first stage, 

base classifiers are used, whose results are forwarded to the second level which uses 

a rule-based reasoner (RBR) for refinement of the results. Chen [58] have used fisher 

linear discriminate analysis (FLDA), support vector machine (SVM) and decision 

tree (DT) to predict type-2 diabetes based on several elements in blood and 

chemometrics of the diabetes patients. The elements considered in this research 
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includes: lithium, zinc, chromium, copper, iron, manganese, nickel and vanadium. 

Authors of this work constructed ensemble classifiers on the training set and selected 

the best one which is validated on independent test dataset. Likewise, prediction of 

T2DM, from the electronic health records (EHR) is done using ensemble of random 

forest and gradient boosting machine models [59]. In the same way, prediction of the 

onset of type-1 diabetes in juvenile subjects is examined using neural networks, 

decision trees and their ensembles [60]. In a recent research on prediction of T1DM 

and T2DM, boosting ensemble model is used that internally uses random committee 

classifier as the base classifier and enhance prediction accuracy to 81%[61]. 

Apart from the listed literature, rough sets theory (RST), a powerful mathematical 

tool [7, 8], has successfully been applied in medical diagnosis and prediction. For 

example, toxicity predictions [62], medical expert system rules creation [63], 

pneumonia patient’s death prediction [64], chest pain prediction [65] and a lot others 

[66] are treated using RST. For diabetes prediction, RST is applied over Pima Indian 

dataset [67] that has produced 75% accuracy [68]. Similarly, for investigating 

relationship between psychosocial variables in Kuwaiti diabetic children, RST builds 

classifier function that correctly classifies patients [69].  RS-based data analysis of 

the genetic data of children with T1DM is performed [70] for rules extraction and 

prediction of children with genetic susceptibility to T1DM. This system recommends 

pre-diabetes therapy to patient, if they are susceptible to type-1 diabetes.  A similar 

research for children  with T1DM, in Poland, can also be found in literature [71]. 

Apart from prediction of diabetes into its types whether using traditional machine 

learning methods or rough sets techniques, future risk prediction is an important 

research issue and treated with different approaches. For example, risk prediction of 

T2DM using multivariate regression model [72], prediction of T2DM in elderly 

Spanish population with high cardiovascular risk, using multivariate cox regression 

model [73]. Other risk prediction models for type-2 diabetes can be found in the 

systematic review article [74]. A multivariate logistic regression equation has been 

developed and validated with non-diabetic Egyptian subjects data that has sensitivity 

of 62%, specificity 96%, and positive predictive value of 63% [75].  
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2.3.2. Hybrid-CBR Classifier Selection and Design for Wellness 

Human experts are limited in number and expensive in terms of healthcare and 

wellness services provided. Healthcare decision support systems play effective roles 

in overcoming the shortage of human experts and improving quality of life with better 

services [76]. Decision support systems rely on automatic reasoning methodology for 

their decisions. Most of these systems are based on a single methodology for 

reasoning, such as CBR or RBR [77], among others. Nevertheless, a few use multiple 

reasoning approaches with a certain integration strategy. The integration of multiple 

reasoning methodologies in a single system has attracted increased attention in the 

research community due to the improved performance with respect to accuracy. The 

analogy of integration of reasoning methodologies is adopted from the decisions 

made by domain experts, who rely on multiple knowledge sources rather than a single 

source. Domain experts use information from general guidelines, clinical trials, and 

past successful cases to arrive at a final decision. In automatic reasoning systems, the 

concept of multimodal reasoning methodology evolved from the use of 

heterogeneous knowledge sources to generate the final decision [77]. The knowledge 

source, such as guidelines and past successful cases are modeled as knowledge rules 

and case bases that require RBR and CBR for their executions.  

The integration of reasoning approaches can follow any set of strategies, such as RBR 

followed by CBR, CBR followed by RBR and RBR and CBR in parallel [77, 78]. In 

the first strategy, RBR is used as the main methodology for making the decision. If 

RBR fails, CBR is used [79]. In the second strategy, CBR is used for the master 

reasoning process and RBR is used to refine the decision [80]. An example of this 

strategy is reasoning system for diabetes management [81]. The CBR refines the rules 

for the final outcome, specific to the patient’s requirements. In other combinations, 

CBR and RBR are used in parallel, where either both outcomes are simply displayed 

or the best one is displayed based on some criteria. An example of parallel integration 

is the WHAT system [82, 83], which is used for training beginning sports medicine 

students to design exercise regimens for patients with cardiac or pulmonary disorders. 

The regimens are produced by RBR and CBR in parallel and presented to the experts 
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for choosing the best one. Other methodologies exist that closely cooperate with each 

other for generating final decisions [84, 85]. Apart from RBR and CBR, filtration-

based approaches, such as content-based filtration [86] and collaborative filtration 

[87, 88] are also popular in the area of recommender systems for online shopping, 

product selection, and healthcare services. Preference-based recommender systems 

are used in e-applications such as e-commerce to offer alternative or cross-selling 

products to customers [89]. 

In the healthcare domain, hybrid reasoning approaches have been frequently used. In 

treatment planning for adolescent early intervention, hybrid CBR that uses RBR and 

fuzzy theory has been implemented [90]. For supporting physicians for the 

management of diabetes mellitus, integration of CBR, RBR and model-based 

reasoning (MBR) [91] and web-based CBR [92] has been proposed. For cancer 

decision support services, CBR has been integrated with RBR. The CBR part is used 

to adapt the production rules for decision making [85]. A recent research study [93] 

integrates rough set theory and correlation analysis in a hybrid model, called H2RM, 

that predicts the diabetes type and manages patient observations for future trend 

analyses. Other similar studies can be found that focus on heart disease [76] and 

oncology [77], among others. 

In the wellness domain, the knowledge acquisition and reasoning engine (KARE) 

[94] is used in activity awareness for human-engaged wellness applications 

(ATHENA) [95] to promote active lifestyles. KARE uses the hybrid reasoning 

methodology by integrating the Random Forest, Naïve Bayes, and IB1 approaches. 

KARE generates food, physical activity, and music therapy recommendations for 

ATHENA users. For the elderly, an intelligent personalized exercise 

recommendations system is proposed [96] that utilizes the user’s health status, goals 

and preference information. Similarly, a hybrid CBR/RBR approach has successfully 

been used for designing nutritional menus [97]. 
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All of these methodologies have the common basis of being used in an exclusive 

manner. They do not guarantee a minimization of the shortcomings of RBR and CBR, 

which are discussed as follows:  

 Conventional RBR systems lack the capability of specializing recommendations 

for individuals. In general, to deal with specific requirements of users and provide 

user-centric specialized recommendations, it is necessary to gradually increase 

the number of rules in the knowledge base. This approach not only results in 

knowledge base intractability problem, but also causes maintenance and 

combinatorial explosion issues [98].  

 Standard CBR systems provide solutions for new problems using a large and 

unbiased case base as implicit knowledge. However, the requirement of a large 

case base is a difficult task and associated with a number of other issues, such as 

physical storage, proper indexing and computational complexities [99]. The 

preparation of the query cases to feed the CBR cycle for generating physical 

activity recommendations is a challenging task. 

 There have been significant improvements in the integration of these 

methodologies in hybrid systems [100]; however, a number of challenging issues 

still need to be resolved for applying integration in the wellness domain.  

2.3.3. Trade-off criteria for evaluating heuristic approach for classifiers 

selection 

To evaluate whether the heuristic-based approach adopted for the evaluation of 

classifiers and other recommendation methods and algorithms is efficient or not, the 

following set of criteria can be used [101]. 

 Optimality: When several algorithms exist for a given problem, does the 

heuristic guarantee that the best algorithm will be found? Is it actually 

necessary to find the best solution? 

 Completeness: When several best algorithms exist for a given problem, can 

the heuristic find them all? Do we actually need all solutions? 
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 Accuracy and precision: Can the heuristic provide a confidence interval for 

the claimed algorithm? Is the error bar on the solution unreasonably large? 

 Execution time: Is this the best known heuristic for solving this type of 

problem? Some heuristics converge faster than others. Some heuristics are 

only marginally quicker than classic methods. 

By analyzing the evaluation criteria of the heuristic-based algorithms performance 

analysis, it tells that selecting the appropriate algorithm based on these criteria may 

not ensure the right algorithm. 

2.4. Summary  

This chapter has summarized state-of-the-art techniques, methodologies, approaches, 

frameworks, tools and models that are used for the selection and design of accurate 

classifiers for users’ applications in-hand. Firstly, the relevant literature on ranking 

of classifiers and selection of suitable one based on multiple performance criteria is 

presented. The algorithms’ empirical performance evaluation and analysis methods, 

techniques and methodologies are critically analyzed and compared. Secondly, the 

literature on meta-learning based classifier selection methods is evaluated and 

described. Lastly, relevant literature on the classifiers used in medical and wellness 

applications is analyzed and described in detail that finally lead to the heuristic-based 

selection and design of two rough set and CBR classifiers for diabetes predictions and 

physical activity recommendations.  

 

 



   

(27) 

Chapter 3  

Machine Learning and Classification: Technical 

Preliminaries 

 

3.1. Overview 

This chapter is about to describe the key concepts used in this thesis. The basic 

concepts of data mining, machine learning, classification, classifiers, performance 

evaluation, decision making, multi-criteria decision making and their techniques, 

meta-learning and reasoning are provided for easy understanding and grasping the 

idea presented in the subsequent chapters of this dissertation. 

3.2. Data mining  

The process of discovering interesting patterns and knowledge from large amounts of 

data is termed as data mining [102]. The sources for data can be databases, datasets 

in different formats (e.g., text file etc.), warehouses, Web, or streamed data. 

3.2.1. Technologies used in data mining 

Data mining is an interdisciplinary research area that uses many techniques from 

statistics, machine learning, pattern recognition, database and data warehouse 

systems, information retrieval, visualization, algorithms, high-performance 

computing, and many application domains [103].  

3.3. Machine learning 

Machine learning is one of the important areas of research in artificial intelligence 

that tries to make computer programs intelligent to automatically learn from large 

volume of historical data and recognize complex patterns for making intelligent 

decisions [104].  
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3.3.1. Supervised learning is the type of machine learning in which the learning 

process from the training data is supported by the labelled examples. It is a synonym 

for classification. 

3.3.2. Unsupervised learning is the learning process in which the input 

examples are not class labeled. It is a synonym for clustering. 

3.4. Classification 

The task of machine learning process that finds a classification model (or function) 

for distinguishing data classes of the categorical or nominal types. The model is 

created on the basis of analysis of the training examples in the training data, which is 

used to predict the class label of new examples with unknown labels [105]. 

3.4.1. Classification techniques 

3.4.1.1. Decision tree induction 

Decision trees is a family of classification algorithms, which build flowchart-like 

trees models from a labeled training dataset [106]. The internal nodes of the tree 

represent conditions of a rules and the leaf nodes represents decisions. The most 

commonly used techniques for selecting the attributes for the node of the tree are: 

Information Gain, Gini Index, Minimum Description Length (MDL), and 

Multivariate Splits used [106].. 

3.4.1.2. Bayes classification methods 

Bayesian classifiers are statistical learners, based on the well-known Bayes’ theorem, 

that learn prior probabilities and likelihoods from the training dataset to estimate the 

posterior probability and predict the class labels for unclassified test examples [103].. 

3.4.1.3. Rule-based classification 

Rule-based classifiers is the family of comprehensible and interpretable classifiers 

which learn training data using the sequential covering algorithm and the rules 

generated are represented in the form of IF-THEN rules [103]. 
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3.4.1.4. Meta-learning or classifiers ensemble methods 

Classifiers ensemble or meta-learning algorithms ensemble a series of k learned 

models, using some combination method with the aim of creating an improved 

composite classification model [107]. The individual model is termed as base 

classifiers. When a new unresolved case is given to the model for classification, the 

model collects decision from each base classifiers and combine them to a single 

unified decision. Some of the most popular methods are bagging, boosting, stacking, 

voting and random forests etc. 

3.4.1.5. Case-based reasoning for classification 

Case-based reasoning (CBR) classifiers use a set of resolved cases as the training 

dataset for solving new problems cases using the similarity measures approaches 

[108]. The similarity, among the new case and the resolved historical cases (called 

case base) is measured using Euclidean distance. When a new case is provided for 

classification, a case-based reasoner takes over the control and checks for identical 

cases, using the similarity function, in the case base. If exact match is found, the 

solution part of the matched case is provided as the classification or recommendation 

decision, otherwise the closest one to the input case is suggested as the class label. 

3.4.1.6. Rough sets classification 

Rough set theory is one of the most powerful tool used for classification to discover 

structural relationships within imprecise, vague, and noisy data that has rough classes 

boundaries [7]. Before applying the process of classification, it applies the 

discretization process to the continuous-valued attributes, because the theory works 

well on the discrete information. In real-world data, some of the classes cannot be 

differentiated based on the available attributes set. Rough sets theory is used to 

roughly estimate such classes by using the concepts of lower and upper 

approximation. The lower approximation consists of all those example of the training 

dataset which are certainly belonging to a particular class with no ambiguity [7]. 

Similarly, the upper approximation consists of all those instances that do not certainly 
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belonging to the class of upper approximation. Rough set theory approximates the 

classes that cannot be distinguish certainly based on the available condition attributes 

into rough sets. Form these approximated classes, decision rules are generated which 

are then used during the online classification process. 

3.4.2. Evaluation and selection of classifiers 

The situation, where more than one classifiers are available and we want to choose 

the “best” out of them, we need to perform classifiers evaluation process, which is 

referred as model selection or classification algorithm selection [103]. 

3.4.2.1. Metrics for evaluating classifier performance 

To evaluate performance of classifiers, a set of evaluation criteria are used that are 

referred as performance evaluation metrics. The most commonly used metric is the 

predictive accuracy, which can be measured using a specific formula that consumes 

the following set of atomic evaluation metrics. 

 True positives (TP): These refer to the positive instances correctly classified 

by a classifier. 

 True negatives (TN): These are the negative instances correctly classified 

by a classifier.  

 False positives (FP): These are the negative instances incorrectly classified 

by a classifier as positive 

 False negatives(FN): These are the positive instances misclassified by the 

classifier as negative  
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Table 3.1. Confusion matrix of the classifiers performance evaluation metrics 

  Predicted class 

Actual class 

 Yes No Total 

Yes TP FN P 

No FP TN N 

Total P’ N’ P+N 

In addition to the accuracy-based measures, classifiers can also be compared with 

respect to additional characteristics, such as speed, robustness, scalability, 

interpretability and space complexity etc. 

3.4.2.2. Cross-validation 

Cross-validation is a rotation estimation process in which a model built is validated 

for assessing how the results will be get generalized for an independent test dataset 

[103]. In k-fold cross-validation, the data are randomly partitioned into k mutually 

exclusive datasets called folds i.e., D1, D2,…,Dk, with approximately equal size. In 

first iteration i, dataset Di is reserved as test dataset, and the rest datasets, D2,…, Dk, 

are used as train datasets for the model creation. In the second iteration D1,D3,…,,Dk 

are used as train datasets and D2 as the test dataset. This process is repeated for each 

fold/dataset and finally the average is taken as the collective result of the model. 

3.5. Binary and multiclass classification 

Classification algorithms that have the capabilities of classifying data only in two 

classes are referred to as binary classifiers, while those that can classify data into 

multiple classes are multiclass classifiers [103]. Support vector machines is an 

example of binary classifier while J48 is an example of multi-classifier. 

3.6. Decision making process 

The study of identifying and selecting alternative solutions/algorithm(s) based on the 

actual performance results of the alternatives/algorithms and the preferences of the 
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decision maker(s) is called decision making for algorithm selection. The objective of 

decision making is choosing the best out of the available alternative algorithms which 

best fits the goals, objectives, desires, values, and so on of the domain experts [109].  

3.6.1. Multi-criteria decision making 

The decision making process made on the basis of multiple criteria to select the best 

option from the available multiple alternatives is referred as multi-criteria decision 

making. It is also termed as multi-attribute decision making. 

3.6.1.1. Analytic hierarchy process  

Analytic hierarchy process (AHP) [17] is a multi-criteria decision making approach 

used to convert subjective assessments of relative importance to a se t of overall 

scores or weights and evaluate the alternatives. The methodology of AHP process 

follows the procedure of pairwise comparisons.  

3.6.1.2. Technique for Order Preference by Similarity to Ideal Solution 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [110] is 

another multi-criteria decision making method that works on the idea of ranking 

alternatives based on the shortest distance from the ideal solution and farthest distance 

from the negative-ideal solution. The distance is computed using Euclidean distance.  

3.7. Meta-learning for algorithms selection 

“Meta learning is a subfield of machine learning where automatic learning algorithms 

are applied on meta-data about machine learning experiments”[111]. 

3.7.1. Meta-features of datasets and algorithms 

Meta-features of a dataset are the aggregate characteristics of that dataset, such as 

general, statistical, information-theoretic, complexity and landmarking that 

represents its global qualities. Similarly, characteristics of the learning algorithm, 

such as type of parameters, their settings, and various measures for evaluating 
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algorithms performance are all examples of algorithms’ meta-features or meta-

characteristics [111] 

3.7.2. Meta-learner for algorithms selection 

A learning algorithm that learns meta-features or meta-characteristics of a large 

number of datasets and relate them to the meta-characteristic(s) of a set of candidate 

algorithms, e.g., predictive accuracy etc., is termed as meta-learner or meta-classifier 

[112].   

3.7.3. Meta-reasoner for algorithms selection 

A algorithm or classifier that reasons over the already learned meta-characteristics 

for the meta-features of a given new learning problem (dataset) to predict the 

performance of the closest learning algorithms is called meta-reasoner. Hence, a 

meta-reasoner can correctly select the algorithm best suited for the new problem, if 

the induced relationship holds, i.e., the meta-learner has modeled the relationship well 

in advance [113, 114]. 

3.8. Summary 

This chapter has provided the basic concepts, terminologies, definitions, techniques, 

methodologies and tools, used in this thesis. Machine learning is described in terms 

of classification problem. The well-known families of classification algorithms are 

defined. The performance evaluation of classifiers is discussed and the associated 

multi-criteria decision making techniques, such as AHP and TOPSIS are defined. The 

concept of meta-learning, meta-characteristics and meta-reasoner are described 

which are used to select best classifiers for a new learning problems (dataset). 
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Chapter 4     

Multi-criteria Decision Making for Classifier Selection 

 

4.1. Overview 

Manual evaluation of machine learning algorithms and selection of a suitable 

classifier from the list of available candidate classifiers, is highly time consuming 

and challenging task. If the selection is not carefully and accurately done, the 

resulting classification model will not be able to produce the expected performance 

results. In this chapter, we present an accurate multi-criteria decision making 

methodology (AMD) which empirically evaluates and ranks classifiers’ and allow 

end users or experts to choose the top ranked classifier for their applications to 

learn and build classification models for them. Existing classifiers performance 

analysis and recommendation methodologies lack (a) appropriate method for 

suitable evaluation criteria selection, (b) relative consistent weighting mechanism, 

(c) fitness assessment of the classifiers’ performances, and (d) satisfaction of 

various constraints during the analysis process. To assist machine learning 

practitioners in the selection of suitable classifier(s), AMD methodology is 

proposed that presents an expert group-based criteria selection method, relative 

consistent weighting scheme, a new ranking method, called optimum performance 

ranking criteria, based on multiple evaluation metrics, statistical significance and 

fitness assessment functions, and implicit and explicit constraints satisfaction at the 

time of analysis. For ranking the classifiers performance, the proposed ranking 

method integrates Wgt.Avg.F-score, CPUTimeTesting, CPUTimeTraining, and 

Consistency measures using the technique for order performance by similarity to 

ideal solution (TOPSIS). The final relative closeness score produced by TOPSIS, 

is ranked and the practitioners select the best performance (top-ranked) classifier 

for their problems in-hand. Based on the extensive experiments performed on 15 

publically available UCI and OpenML datasets using 35 classification algorithms 

from heterogeneous families of classifiers, an average Spearman’s rank correlation 
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coefficient of 0.98 is observed. Similarly, the AMD method has showed improved 

performance of 0.98 average Spearman’s rank correlation coefficient as compared 

to 0.83 and 0.045 correlation coefficient of the state-of-the-art ranking methods, 

performance of algorithms (PAlg) and adjusted ratio of ratio (ARR). The 

evaluation, empirical analysis of results and comparison with state-of-the-art 

methods demonstrate the feasibility of AMD methodology, especially the selection 

and weighting of right evaluation criteria, accurate ranking and selection of 

optimum performance classifier(s) for the user’s application’s data in hand. AMD 

reduces expert’s time and efforts and improves system performance by designing 

suitable classifier recommended by AMD methodology. 

4.1.1. Key Contributions 

The key contributions made through the proposed multi-criteria decision making 

methodology (AMD), for the objective of best classifier selection, are summarized 

as follows. 

 A list of general guidelines are defined for performance evaluation of 

classifiers, based on extensive literature study of the classification algorithms. 

 We analyzed and categorized classification algorithms’ evaluation metrics and 

introduced the concept of classifiers quality meta-metrics (QMM) to construct 

QMM classification model, which is useful for non-experts of machine 

learning who need to make evaluation decision about classifiers selection. The 

QMM model further assists users in understanding physical meanings of the 

evaluation metrics. 

 Proposed an experts’ consensus-based group decision making method that 

assists experts to first select appropriate QMM and then select suitable 

evaluation criteria, satisfying interdependence and explicit global constraints, 

enforced by the objectives of the end user’s application. 

 An expert group-based relative criteria weighting technique is proposed, 

which can easily quantify and estimates experts’ relative preferences about 

each evaluation criterion. 
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 A new ranking criteria, called optimum performance ranking (OPR) is 

proposed, which ranks classifiers based on Wgt.Avg.F-Score, 

CPUTimeTraining, CPUTimeTesting and Consistency performance metrics, 

integrated using TOPSIS method. 

 Accurate statistical significance and fitness evaluation functions are defined, 

which inspect algorithms’ fitness, prior to their inclusion in the final list of 

candidate algorithms for ranking.  

Implicit and explicit constraints are defined at different levels of the evaluation 

process for accurate ranking of the classifiers. 

4.2. Algorithm selection: multi-metric decision making process 

Each machine learning algorithm performs differently on different datasets because 

of different features of the data. The evaluation of these algorithms on the basis of 

single criterion sometimes misleads the decision of selecting best algorithm from 

a list of available candidate algorithms. For example, consider the following 

scenario with four classification algorithms: multinomial logistic regression, 

decision table/naive Bayes hybrid classifier (DTNB), functional trees (FT) and J48 

which are tested on anneal dataset [115] using 10x10-fold cross validation and 

evaluated using the criteria, Wgt.Avg.F-score, CPUTimeTesting, 

CPUTimeTraining and average consistency, as shown in Figure 4.1. 

 

Figure 4.1. Evaluation of algorithms on the basis of multiple evaluation criteria 
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Figure 4.1(a) shows that FT algorithm performs well, measured in terms of 

weighted average f-score (0.992%) and is the winner amongst all algorithms. 

However, it performs poor from the CPUTimeTesting perspective (0.083 second). 

Similar interpretations can be made for CPUTimeTraining and the Consistency 

criteria. This analysis shows that no algorithm can be declared for all criteria. 

From the empirical evidence, predictive accuracy is one of the traditional 

evaluation metric, estimated using cross-validation [116] that focuses on 

maximizing the accuracy, but ignores other criteria, such as comprehensibility, 

interestingness [117] and complexity. The formal measurement of 

comprehensibility and interestingness may not be possible like accuracy, but it 

more relevant than accuracy when the objective is discovering accurate knowledge 

[2] in medical domain for  recommendation generation services. Similarly, time 

and space complexities are also the key criteria for evaluating algorithms and 

selecting the right algorithm for an application in hand. In situation, where the 

datasets are either large or the storage space or computational power is limited 

[118], the time and space complexities criteria need to be used for evaluation of the 

algorithms. Thus, in order to select appropriate classifiers or algorithms for such 

applications we must need to evaluate algorithms performance in terms of space 

and time complexities. 

In light of the results shown in Figure 4.1 and the empirical evidences from the 

literature, the well-known no-free-lunch theorems [6] is confirmed.  Hence, we 

conclude the discussion that no classification algorithms is superior on all problems 

and is therefore no single evaluation criterion is always superior for their 

evaluation. If one algorithm outperforms others on one criterion, it may 

underperforms on other criteria. As a consequence, the algorithm selection problem 

is a multiple criteria decision making problem which requires an accurate 

methodology to evaluate them properly. The rest of the study is focused to find a 

solution to this problem. 

4.3. Methodology – multicriteria evaluation of classifiers 
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In this section, first we define a set of general guidelines and then describe the 

methodology for evaluating classification algorithms on the basis of multiple 

evaluation criteria. 

4.3.1. Guidelines for algorithms evaluation 

For selecting suitable algorithm(s), a sequence of essential tasks need to be 

performed. To efficiently perform these tasks, a set of guidelines are presented as 

follows. 

1 Define an unambiguous goal for which the algorithm(s) need to be selected 

2 Analyze and specify goal as either single-objective or multi-objectives and 

specify the corresponding quality meta-metrics (QMM) 

a. Categorize objective(s) as cost and benefit criteria 

b. Define essential constraints on the objective(s), reflecting goal’s 

constraints 

3 Analyze the specified objective(s) and constraints against existing criteria 

a. If existing criteria work, then go to step 4.   

b. If existing criteria do not fit well, then go to step 5. 

4 Evaluate the algorithms performances using the available criterion under 

the constraints, defined in step 2(b), and rank them for the best selection 

5 Define a generic multi-metrics evaluation criteria using the following steps 

a. Analyze QMM for conflict among evaluation criteria 

(interdependence/fuzziness) 

b. Select suitable QMM, defining the objectives. 

c. Select suitable evaluation metrics for the selected QMM 

(objectives) 

d. Prioritize the selected evaluation metrics 

e. Rank algorithms based on the aggregate value of the weighted 

metrics 

f. Repeat step 5, if any of the constraints, defined in step 2(b), is not 

satisfied 
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In the above guidelines, steps 1-4 are straightforward and can be easily followed. 

However step 5 is more challenging and needs technical contributions to 

accomplish the task of selecting suitable algorithm in the basis of multiple criteria. 

Generally, the outlined guidelines are generic, where only the domain specific 

parameters, such as the goal, objectives, evaluation criteria, and weights for each 

criterion need to be strictly followed while building a system. These guidelines are 

mainly focused on two essential aspects of the algorithms evaluation and 

recommendations systems. These aspects include (a) how to integrate multiple 

evaluation criteria and (b) what criteria should be integrated. To answer the first 

question, we designed and proposed a list of guidelines that were partially 

presented by [3] and [2]. Similarly, to extend answer of the first question and find 

solution to the second question, we have provided detail description in the next 

section.  

4.3.2. Multi-metric decision making for algorithm selection 

The proposed accurate multi-metric decision making methodology (AMD) consists 

of the following steps: goal and objectives definition, criteria selection and 

weighting, measuring algorithm performance, ranking algorithms, and ordering 

and application as shown in Figure 4.2. 

Abstractly, the working methodology of AMD is described below. 

 Goal and objective definition: describes the final goal, its corresponding 

objectives and the associated constraints to achieve the goal. For example, 

the selection of optimum performance classification algorithm for multi-

class problems. In this statement, goal G is the “selection of optimum 

performance classification algorithm” and the global constraint C is 

“multi-class problems”. The corresponding objectives against this goal 

can be, e.g., (o1) accuracy, (o2) computational complexity, and (o3) 

consistency. 
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Figure 4.2. AMD methodology for classifiers performance evaluation 

 Criteria selection and weighting: contains a set of methods to first select 

quality metrics for the objectives, then select suitable metric for each of 

the quality and finally assign consistent weight to each metric. 

 Measuring performance: includes the tasks of generating performance 

results for the selected criteria using the candidate algorithms (considered 

in the study) on the datasets (one at a time) and performing significance 

and fitness tests. The purpose of this step is to generate significant matrix 

of the algorithms performance results for the selected evaluation criteria. 

 Ranking algorithms: is used to rank the list of candidate algorithms by 

utilizing their performance results and the criteria weights.  

 Ordering and application: consists of the trivial functions, such as 

sorting the ranked algorithms and selecting the top-k for the user’s 

application in hand. 

 Constraints: represent restrictions, i.e., for which family/families of 

problems the methodology should be activated (single class/multi-class), 
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how experts’ preferences should be quantified (explicit criteria weights), 

introduction of special criteria as constraint i.e., consistency, which is 

measured in terms of standard deviation. 

The proposed AMD methodology is algorithmically represented in algorithm 

1.  

Algorithm 1. Selection of optimum performance algorithm on the basis of multi-metric evaluation. 

Begin 

inputs:  𝐝 – dataset 

    𝐀 = {a1, a2, … , an} // list of n algorithms 

output:   𝐑 = top-k algorithms; where, R ⊆ A 

Let QMM = Classifiers quality meta-metrics; // See section 4.3.2.1. 

1 [Define Goal] 

      𝐆 = {o1, o2, … , on}; // where, n is the number of objectives, See section 4.3.2. 

2 [Select Suitable Quality Meta-metrics] 

      �̅� = selectSuitQuality(𝐐𝐌𝐌, 𝐆); // See section 4.3.2.1 

3 [Select Suitable Evaluation Metrics] 

      �̿� =  selectSuitEvalMetrics(�̅�, 𝐆); //where, Q̿ ⊆ Q̅. See section 4.3.2.2. 

4 [Estimate Relative Weight of the Evaluation Metrics] 

      𝐖 = estimateRelativeWeights(�̿�); //where, W is weight vector. See section 4.3.2.3. 

5 [Generate Performance Results of the Algorithms] 

𝐟𝐨𝐫𝐞𝐚𝐜𝐡 algorithm 𝐚 in 𝐀 perform 10x10-fold CV in Weka to produce an n*m 

performance matrix P for the evaluation metrics Q̿. See section 4.3.2.4. 

      𝐞𝐧𝐝 𝐟𝐨𝐫 

6 [Perform Statistical Significance Test] 

      �̅� = performStatSigTest(𝐏); //where, P̅ is significance labelled matrix. See section  

      4.3.2.5. 

7 [Perform Algorithm Fitness Test] 

      𝐒 = Perform Algorithm Fitness Test ; See section 4.3.2.6, equation 8 

8 [Compute Relative Closeness (RC) to Ideal Algorithm] 

      𝐑𝐂 = rankAlgorithms(𝐒, 𝐖); See section 4.3.2.7. 

9 [Rank the Algorithms] 

      𝐑𝐚𝐧𝐤𝐞𝐝𝐋𝐢𝐬𝐭 = RANK. AVG(𝐑𝐂𝟏, 𝐑𝐂𝟏: 𝐑𝐂𝒏, 1); 

10 [Select Top-K Algorithms] 

      𝐑 = selectTopK (RankedList, k); 

11 apply 𝐑 to learn 𝐝 

End 

In algorithm 1, each step of the methodology is explicitly described in separate 

section except steps 9-11. In step 9, average ranking of the relative closeness scores 

RC of the algorithms are generated using the Microsoft Excel 2010 [119] built-in 

function RANK. AVG() with its generic form RANK.AVG(number, ref, [order]). In 
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step 10, the selectTopK() function is used to select top-k ranked algorithms while 

in step 11, the users build his/her model using the selected algorithms and deploy 

in their applications. 

4.3.2.1. Selecting Suitable Quality Meta-metrics 

To select an optimal performance algorithm, a machine learning (ML) user/expert 

must be aware of the physical meaning of the evaluation metrics. For understanding 

physical meaning of the evaluation metrics, we propose the idea to first abstract the 

evaluation metrics in the form of classifiers quality meta-metrics and then let the 

users know to select quality metrics compliant to their goal and objectives. This 

will help the users in identification of appropriate metrics and figuring out the 

conflicting (fuzzy) metrics, for example comprehensibility against correctness 

(accuracy) [120] and complexity [121]. The conflicting criteria are interdependent 

among each other and need special treatment during evaluation. The independent 

(crisp) criteria are simple to evaluate and result in unbiased decisions. 

a. Classifiers quality meta-metrics classification model 

Classifiers can be evaluated using a number of commonly used evaluation criteria, 

such as RMSE, predictive accuracy and ROC curves [16]. A general problem with 

users and domain experts is that they do not know physical meaning of the 

evaluation metrics. This creates difficulty for them to select suitable metric(s) for 

their evaluation. To resolve this problem, we define physical meaning of the 

classifiers evaluation metrics in terms of quality meta-metrics (QMM). We defined 

eight families of QMM for those evaluation metrics which are implemented in 

Weka library [122]. These include: responsiveness or computational efficiency, 

separability or coherency, robustness or sensitivity, consistency, correctness, 

complexity or simplicity, reliability and comprehensibility or interestingness or 

interpretability. The definitions of these qualities along with their evidences are 

given below. 

 Correctness. It can be either measured directly from the correct cases or 

indirectly from the number of errors made. We categorize it into two sub-
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groups of accuracy (‘+’cor) and accuracy (‘-’cor). This family contains 

metrics for binary class problems, multi-class problems and balanced and 

imbalanced data problems. 

 Complexity. It can be measured either in terms of time spent in building 

the model, i.e., computational complexity (ccom) or the memory space 

consumed to complete the process of building and accommodating the 

model, i.e., memory/space complexity (scom).  

 Responsiveness. It measures the computational efficiency of a classifier in 

terms of testing or execution time. We abbreviated it as res that stands for 

responsiveness of the model. 

 Consistency. Consistency of a classifier, with respect to an evaluation 

metric, can be measured in terms of its standard deviation. If the classifier 

maintain a certain level of performance for a subsets of the main dataset 

then it will be consistent otherwise inconsistent one. For example, standard 

deviation of the accuracy measure of a classifier over the 10-fold of a test 

dataset measures its consistency in terms of predictive accuracy [2]. We 

abbreviated it as con in this study. 

 Comprehensibility, interestingness and interpretability. It is combination 

of related subjective metrics that describes the nature of classifiers from 

the user’s understanding and interpretation perspective. It measures the 

user oriented aspects, such as how well the classifier’s output and the 

process of decision making be understood [2]. These metrics are favored 

in the knowledge acquisition scenario where understandability matters 

[120]. Comprehensibility may also results in model complexity. A 

complex model is intuitively more difficult to understand and interpret as 

compared to a simple model [121]. Similarly, for a recommender system, 

the interpretability criterion has great importance, where user needs to 

understand and verify the results of a trained model. This quality metric is 

abbreviated as com. 

 Reliability. This family of metrics measures how much the user can trust 

on the quality of correctness of the performance results of a classifier. It 
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can be measured using error metrics, which are based on the probabilistic 

understanding of the errors that measures the deviation from the true 

probability, such as mean absolute error, mean squared error, LogLoss 

(cross-entropy), etc.[123]. Similarly, information-theoretic metrics, also 

estimate the reliability aspects of classifiers [124]. We abbreviated it as rel 

and categorized into distance or error measure (erel) and information-

theoretic measure (irel). 

 Robustness. It is a subjective measure used in diverse situations, such as 

ability of the classifier to make correct predictions on noisy dataset or a 

dataset with missing values [125] or have high sensitivity or true positive 

rate [3]. Sophisticated AUC measures have been reported recently for 

improving the quality of robustness of classifiers [126]. We abbreviated it 

as rob in our study. 

 Separability and coherency. In the context of binary classification 

problems, area under the receiver operating curve (AUC) is closely related 

to the concept of separability [123]. AUC can best distinguish the positive 

and negatives classes of a dataset. We abbreviate it as sep in our study. 

A partly similar concept of classifiers qualities can be found from [127] and [3] 

with limited scope and number of qualities defined. We have proposed and defined 

a classification model for these qualities, as shown in Figure 4.3. 
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Figure 4.3. Classification model of the classifiers quality meta-metrics 

While selecting qualities form the QMM classification model, to evaluate 

classifiers, intensive care should be taken to select only those qualities which 

satisfy the properties of  legibility (containing sufficiently small number of 

criteria), operational, exhaustiveness (containing all points of view), monotonicity 

and non-redundancy (each criterion should be counted only once). These properties 

were initially defined in article [128]. A mathematical representation of the 

proposed QMM is shown in equation 1. 

QMM = {cor, complex, res, con, com, rel, rob, sep} (1) 

Based on QMM classification model, the list of Weka classifiers’ evaluation 

metrics are categorized, as shown in Table 4.1.  

  

Classifiers 
Quality Meta-

Metrics 
(QMM) 

Correctness (cor)

Accuracy (+cor)
Examples: percent correct, 
precision, recall, F measure etc.

Accuracy (-cor) - error 
metrics

Examples: percent incorrect, 
FPR, FP, TN etc.

Complexity 
(complex)

Computational (ccom)
Examples: Elapsed Time 
training, User CPU Time training 
etc.

Memory/Space (scom)
Examples: Num Rules, Tree 
Size, Num Leaves etc.

Responsiveness 
(res)

Examples: Elapsed time testing,  UserCPU time testing

Consistency (con) Examples: Standard deviation

Comprehensibility 
(com)

Examples: Measures Interestingness  and Interpretability, e.g., 
Num. Rules, Tree Size etc.

Reliability (rel)

Information-Theoritic
(irel)

Examples: Entropy, entropy gain 
etc.

Distance or Error 
Measure (erel)

Examples: MAR, RMSE 
etc.

Robustness (rob) Examples: Measure sensitivity in terms of True positive rate

Separability (sep)
Examples: Graphical measures that best visualize the 
results in binary classification, e.g., ROC, AUC etc.
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Table 4.1. Categorization of classifiers evaluation metrics based on quality meta-metrics 

Id Evaluation Metric QMM 
Sub-

QMM 
Id Metric QMM 

Sub-

QMM 

1 Number_correct cor +cor 27 Elapsed_Time_training complex ccom 

2 Percent_correct cor +cor 28 UserCPU_Time_training complex ccom 

3 Kappa_statistic cor +cor 29 measureNumRules complex, 

com 

scom 

4 True_positive_rate cor +cor 30 measurePercentAttsUsedByDT complex, 

com 

scom 

5 Num_true_positives cor +cor 31 measureTreeSize complex, 

com 

scom 

6 False_negative_rate cor +cor 32 measureNumLeaves complex, 

com 

scom 

7 Num_false_negatives cor +cor 33 measureNumPredictionLeaves complex, 

com 

scom 

8 IR_precision cor +cor 34 measureNodesExpanded complex, 

com 

scom 

9 IR_recall cor +cor 35 Elapsed_Time_testing res ures 

10 F_measure cor +cor 36 UserCPU_Time_testing res sres 

11 Weighted_avg_true_positi

ve_rate 

cor +cor 37 SF_prior_entropy rel irel 

12 Weighted_avg_false_negat

ive_rate 

cor +cor 38 SF_scheme_entropy rel irel 

13 Weighted_avg_IR_precisi

on 

cor +cor 39 SF_entropy_gain rel irel 

14 Weighted_avg_IR_recall cor +cor 40 SF_mean_prior_entropy rel irel 

15 Weighted_avg_F_measure cor +cor 41 SF_mean_scheme_entropy rel irel 

16 Number_incorrect cor -cor 42 SF_mean_entropy_gain rel irel 

17 Number_unclassified cor -cor 43 KB_information rel irel 

18 Percent_incorrect cor -cor 44 KB_mean_information rel irel 

19 Percent_unclassified cor -cor 45 KB_relative_information rel irel 

20 False_positive_rate cor -cor 46 Mean_absolute_error rel erel 

21 Num_false_positives cor -cor 47 Root_mean_squared_error rel erel 

22 True_negative_rate cor -cor 48 Relative_absolute_error rel erel 

23 Num_true_negatives cor -cor 49 Root_relative_squared_error rel erel 

24 Weighted_avg_false_positi

ve_rate 

cor -cor 50 Area_under_ROC sep, cor -' 

25 Weighted_avg_true_negati

ve_rate 

cor -cor 51 Weighted_avg_area_under_RO

C 

sep, cor -' 

26 True_positive_rate cor, 

rob 

+cor    --  --  -- 

b. Selecting suitable quality meta-metrics 

In this section, we proposed a formal expert group-based quality meta-metrics 

selection method, where a group of experts participate in a closed discussion and 

rate the quality metrics. We are motivated to the experts’ group-based decision 

making method due to the effectiveness of nominal group technique (NGT) [129] 
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that quantifies the experts’ preferences in the form of quantitative score. The 

proposed experts’ group-based QMM selection process is represented in procedure 

1. 

Procedure 1. selectSuitQuality 

Begin 

inputs: 𝐐𝐌𝐌 – classifiers quality meta-metrics  

   G – goal 

output: 𝐐′′ – highly rated/ranked quality meta-metrics 

1 [Select key qualities by each expert] 

      𝐐 =  extractSalientQMM(𝐐𝐌𝐌, 𝐆); //where, Q ⊆ QMM 

2 [Vote each quality by each expert] 

      𝐐′ = preliminaryVoteAggQuality(𝐐′); //where, Q′is the initial list of selected QMM 

a. If 𝐐′ contains Consistent qualities, then 

i. 𝐐′′ = selectTopKQMM(𝐐′, 𝐤); // where, k represents the number of 

qualities experts are interested in 

ii. 𝐠𝐨𝐭𝐨 setp 3; 

b. Else 

i. repeat step 2; 

3 𝐫𝐞𝐭𝐮𝐫𝐧 𝐐′′; 

End 

In procedure 1, step 1, experts’ panel uses extractSalientQMM() to extract those 

quality metrics from QMM classification model, which are essential for the 

evaluation of classifiers under the defined goal G. The salient qualities are collected 

by the head expert and presented for discussion, if needed, otherwise, 

preliminaryVoteAggQuality() is used (step 2,) to vote salient qualities by each 

expert. For voting salient qualities, rating or ranking methods can be used. The 

output of this function is to select top-k qualities, if they are consistent. A quality 

is said to be consistent if all the experts have uniformly rated/ranked it. For 

example, if ¾ of the experts rate correctness as rank 1 and only one expert rates it 

negatively, then it may be due to the inconsistent rating by the experts. In this case, 

re-voting is done and the process is continued till consensus are made. The final 

output of procedure 1 is the list of most desirable qualities for the defined goal. 
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4.3.2.2. Selecting suitable evaluation-metrics 

Once suitable qualities, Q̅, are selected, the next step is to select  suitable evaluation 

metrics. However, in case of classification algorithms, for each Q̅, a large number 

of metrics are available (a few are shown in Table 4.1). 

The selection of suitable metrics (i.e., metrics to integrate) depends on the scope of 

the classifiers under analysis, which is defined in terms of the number of families 

of classifiers taken under consideration. A few of the commonly used families of 

classifiers, i.e., probabilistic family, lazy learners’ family, function family, rule 

family, decision tree family and meta-learners family, are implemented in Weka 

[122], which are focused in this study. Apart from the scope of the classifiers, the 

domain/application requirements also influence the selection of suitable metrics. 

To resolve the metrics selection problem, we adopt the idea of experts group-based 

decision making, motivated by the NGT [129]. The methodology used is 

algorithmically represented in procedure 2.  

Procedure 2. selectSuitEvalMetrics 

Begin 

inputs: �̅� –highly rated/ranked quality meta-metrics 

   𝐆 – goal 

output: 𝐒𝐌′′ –highly rated/ranked evaluation metrics 

Let 𝐬𝐩𝐞𝐜𝐀𝐥𝐠𝐄𝐯𝐥𝐌𝐞𝐭𝐫𝐢𝐜𝐬 = Specification of evaluation metrics. See Table 4.1. 

1 [Select salient evaluation metrics (SM) from each quality metric] 

      𝐒𝐌 =  extractSalientMetrics(�̅�, 𝐆, 𝐬𝐩𝐞𝐜𝐀𝐥𝐠𝐄𝐯𝐥𝐌𝐞𝐭𝐫𝐢𝐜𝐬);  

2 [Vote each evaluation metric by each expert] 

      𝐒𝐌′ = preliminaryVoteAggMetrics(); //where, SM′ is initial list of selected metrics 

a. If 𝐒𝐌′ contains Independent metrics, then 

i. 𝐒𝐌′′ = selectTopKSuitMetrics(𝐒𝐌′, 𝐤); //where, SM′′ ⊂ SM′ and k  

is the number of metrics  

ii. 𝐠𝐨𝐭𝐨 setp 3; 

b. Else 

i. 𝐫𝐞𝐩𝐞𝐚𝐭 step 2;  

3 𝐫𝐞𝐭𝐮𝐫𝐧 𝐒𝐌′′; 

End 

In procedure 2, step 1, experts’ panel uses extractSalientMetrics() to extracts 

those quality metrics from Q̅, which qualify the goal G. The salient evaluation 
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metrics from each quality are extracted by utilizing specAlgEvlMetrics (see Table 

4.1). This process is completed in step 2 by using preliminaryVoteAggMetrics(). 

For voting the same method as described in previous section is used. The output of 

this function is to select top-k metrics, if they are crisp/independent. An evaluation 

metric is said to be independent if it is not duplicate with other metrics. For 

example, percent accuracy and percent incorrect/errors are interdependent 

evaluation metrics and both should not be included in the evaluation metrics. The 

final output of this procedure is the list of selected suitable evaluation metrics SM′′, 

which are the main ingredients of the generic multi-metric criteria Our focus is to 

select metrics that have the following features: (a) easily computable, (b) perform 

best on all types of datasets, (c) coherent with the final decision, (d) non-

conflicting/independent of each other, (e) same representation with same scale, (f) 

quantifiable/measurable and (g) related with the algorithms evaluation. While 

selecting metrics, preference should be given to those metrics that qualify 

maximum of these qualities [130]. 

4.3.2.3. Consistent relative criteria weighting 

The selected evaluation metrics are the final ingredients of the evaluation criteria 

that play their corresponding roles in achieving the final goal. The roles define the 

preference or priority or weight of the metrics, which should be first estimated and 

then used during evaluation. State-of-the-art algorithm evaluation and 

recommendation studies, discussed in literature, follow absolute or partial relative 

weighting techniques that support limited number of criteria. The weights are 

assigned by experts, utilizing their own knowledge of the domain. In order to 

resolve shortcomings of the existing work, we proposed the idea of group decision 

making for consistent relative weights of the criteria. For this task, we are 

motivated by the AHP weighting method [131], which has the ability to quantify 

experts’ preferences in the form of weight scores, using the pairwise-wise 

comparisons procedure utilizing Saaty’s preference scale (SPS) [132], shown in 

Table 4.2. 
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Table 4.2. Saaty’s preference scale for pair-wise comparison of evaluation criteria 

Definition 
Intensity of 

importance 
Definition 

Intensity of 

importance 

Equally important 1 Equally important 1/1 

Equally or slightly 

more important 

2 Equally or slightly less 

important 

1/2 

Slightly more important 3 Slightly less important 1/3 

Slightly to much more 

important 

4 Slightly to way less 

important 

1/4 

Much more important 5 Way less important 1/5 

Much to far more 

important 

6 Way to far less 

important 

1/6 

Far more important 7 Far less important 1/7 

Far more important to 

extremely more 

important 

8 Far less important to 

extremely less 

important 

1/8 

Extremely more important 9 Extremely less important 1/9 

According to the interpretation of this scale, if an evaluation metric 𝑒1 is extremely 

more important than evaluation metric 𝑒2, it is rated as 9 and then 𝑒2 must be 

extremely less important than 𝑒1, which is rated as 1/9. Table 4.2 has all the 

possible values of importance of evaluation criteria and its inverse along with their 

interpretations.  

For weighting the evaluation criteria, the AHP expert group-based prioritization 

mechanism is followed in the sequence: prioritizing experts, creating a pairwise 

comparison matrix of the selected metrics (Q̿), assigning experts’ relative priority 

weights, evaluating consistency of the individual weights and aggregating 

individual’s weights into group weights. The process is described in procedure 3. 

In step 1 of the procedure 3, an n*n comparison matrix (DMM) is designed to 

estimate the decision power of each decision maker. These weights are assigned 

using function estimateDMWgt() (step 2). The weights are estimated using the 

AHP pairwise comparison procedure. Each entry dmij of the matrix DMM is 

entered by the head expert, on the basis of his/her understanding about the expertise 

of other experts (DM). Each of these values represents the superiority of ith DM 

relative to the jth DM. If dmij > 1, then the ith DM is more influential in decision 

making than the jth DM, but if dmij < 1, then the ith DM is less influential than 
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the jthDM. However, if dmij = 1 both ith and jth DM have the same level of 

importance in the decision. 

Procedure 3. estimatRelativeWeight 

Begin 

inputs: �̿� = {e1, e2, … , em}; //  selected evaluation metrics 

output: 𝐖 – weights vector Let 𝐃𝐌 = {dm1, dm2, … , dmn}; // Group of experts  

  𝐒𝐏𝐒 = Saaty’s preference scale (see Table 4.2) 

GDMM = m*n ‘group decision making matrix’, where m represents metrics and n 

represents  

decision makers 

1 [Design comparison matrix for decision makers] 

      𝐃𝐌𝐌 = dmij; //where, DMM is n*n comparison matrix of decision makers with  

      dmij is the decision weight of the ithdecision maker relative to the jthdecision maker  

2 [Estimate decision makers decisions weight]  

a. 𝐃𝐌𝐖𝐞𝐢𝐠𝐡𝐭 = estimateDMWgt(𝐒𝐏𝐒, 𝐃𝐌𝐌); //where, DMWeight is a single 

column weights vector containing preferences of decision makers. // See 

equations 2 and 3 

b. Check consistency of 𝐃𝐌𝐖𝐞𝐢𝐠𝐡𝐭; // See equations 4-7 

3 [Estimate metrics weights]  

      𝐟𝐨𝐫  𝐝𝐦 = 1 to 𝐧 do 

a. [Design comparison matrix for evaluation metrics] 

𝐄𝐌 = eij; //where, EM is m*m comparison matrix of the evaluation metrics with 𝑒ij 

is the preference of ith metric  against the jth metric  

b. 𝐄𝐌𝐖𝐞𝐢𝐠𝐡𝐭𝐝𝐦 = estimateEvalMetricsWgt(𝐒𝐏𝐒, 𝐄𝐌); //where, EMWeight is 

single column weights vector for metrics Q̿. // See equations 2 and 3 

c. Check consistency of 𝐄𝐌𝐖𝐞𝐢𝐠𝐡𝐭𝐝𝐦; // See equations 4-7 

d. Insert < 𝐄𝐌𝐖𝐞𝐢𝐠𝐡𝐭𝐝𝐦 > into GDMM;  

      End for 

4 [Aggregate weights of all  decision makers using group decision making]  

foreach e ∈ GDMM 

𝐖 = ∑(∏ (𝐃𝐌𝐖𝐞𝐢𝐠𝐡𝐭𝐓, 𝐄𝐌𝐖𝐞𝐢𝐠𝐡𝐭)n
dm=1 );//W is aggregate weights vector  

      End for 

5 𝐫𝐞𝐭𝐮𝐫𝐧 𝐖; 

End 

For estimating the DM decision weights, DMM = dmij is first transformed to the 

normalized matrix, DMM̅̅ ̅̅ ̅̅ ̅ = dm̅̅ ̅̅
ij, where each entry dm̅̅ ̅̅

ij is computed using 

equation 2 and then a column weight vector W = wj is produced using equation 3, 

dm̅̅ ̅̅
ij = dmij ∑ dmij

n

i=1

⁄  (2) 
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wj = ∑ dm̅̅ ̅̅
ij

n
j=1 n⁄ = (

w1

w2

⋮
wn

), where i & j =1, 2, …, n. (3) 

 

To verify correctness of the experts’ judgment and preferences about the relative 

weights assigned to each DM, consistency is checked using the eigenvector method 

[17], which computes consistency ratio (CR) using equation 4-7, 

CR = CI RI⁄ , (4) 

where, RI is the random consistency index value from the random consistency table 

[132], shown in Table 4.3. Similarly, the value of CI measures the deviation which 

is computed using equation 5, 

Table 4.3. Random consistency indices (RI) for different number of evaluation criteria 

(n). 
Number of 

evaluation 

criteria (n) 

1 2 3 4 5 6 7 8 9 10 11 

Random 

consistency index 

(RI) 

0.00 0.00 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 

 

CI = (λmax − n) (n − 1)⁄ , (5) 

where, λmax is the principal eigenvalue, such as λmax ∈  > n. The eigenvalue is 

computed by averaging values of the consistency vector Cv, as shown in equation 

6, 

λmax = (∑ Cvij
n
i=1 ) n⁄ , (6) 

where, each value Cvij of the consistency vector, is computed by taking product of 

the pairwise comparison matrix DMM with the weight vector W. This relationship 

is shown in equation 7, 
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Cvij = E ∗ W. (7) 

In step 3 (a), m comparison matrices (i.e., EM) are created, one for each decision 

maker to relatively weight all the evaluation metrics Q̿. In step 3 (b), each decision 

maker (dm) uses the function estimateEvalMetricsWgt() to assign and estimate 

the weight for each evaluation metric. In step 3 (c) the consistency of metrics 

weights are checked using equations 4-7. In step 3 (d), the weight vector 

EMWeight is added to the group decision making matrix, GDMM. In step 4, the 

weights estimated for the evaluation metrics Q̿ by the n decision makers, DM, are 

aggregated using the group decision making process, which are return to the main 

algorithm 1 using step 5. 

4.3.2.4. Measuring algorithms performance 

In this phase, first the candidate list of algorithms are selected from the pool of 

freely available classification algorithms. We selected 35 multiclass classification 

algorithms, from six heterogeneous families of the classifiers, implemented in 

Weka [122]. The list of these algorithms is shown in Table 4.4.  

Table 4.4. List of Weka well-known multi-class classifiers  

SNo Abbreviation Classifier SNo Abbreviation Classifier 

1 A1 bayes.BayesNet 19 A19 trees.J48 

2 A2 bayes.NaiveBayes 20 A20 trees.J48graft 

3 A3 bayes.NaiveBayesUpdateable 21 A21 trees.LADTree 

4 A4 functions.Logistic 22 A22 trees.RandomForest 

5 A5 functions.RBFNetwork 23 A23 trees.RandomTree 

6 A6 functions.SMO 24 A24 trees.REPTree 

7 A7 misc.HyperPipes 25 A25 trees.SimpleCart 

8 A8 misc.VFI 26 A26 meta.AdaBoostM1 

9 A9 rules.ConjunctiveRule 27 A27 meta.Bagging 

10 A10 rules.DecisionTable 28 A28 meta.Dagging 

11 A11 rules.DTNB 29 A29 meta.END 

12 A12 rules.JRip 30 A30 meta.FilteredClassifier 

13 A13 rules.OneR 31 A31 meta.LogitBoost 

14 A24 rules.PART 32 A32 meta.RacedIncrementalLogitBoost 

15 A15 rules.Ridor 33 A33 meta.RandomSubSpace 

16 A26 rules.ZeroR 34 A34 meta.Stacking 

17 A17 trees.BFTree 35 A35 meta.Vote 

18 A18 trees.FT --- -- --- 

To rank these algorithms, A, on a classification dataset, d, using the performance 

results of evaluation metrics Q̿, all the algorithms (A) are executed sequentially on 
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dataset d in Weka environment and the results are stored into the performance 

matrix P for later use. 

4.3.2.5. Testing significance of performance results 

Unlike the traditional ranking methods that directly select top-rank algorithm 

(without considering significance tests of the results) for learning models, we 

propose the idea of checking the performance results for statistical significance. 

According to this idea, the performance results of the candidates algorithms A are 

first tested for statistical significance and then the for the significance fitness. The 

objective of significance test is to identify which algorithms perform significantly 

better, which perform significantly poor and which perform similar with respect to 

a reference algorithm. For this purpose, we adopted corrected paired t-test with 

significance of 0.05 [102] implemented in Weka [122], which checks the 

significance of the algorithms results and labels them either ‘v’ (for better 

performance), or ‘*’ (for worst performance) or ‘’ for equal significance 

performance with respect to a baseline algorithm. In our case, the definition of the 

reference algorithm a ∈ A is the algorithm which performances best as compared 

to all the algorithms. The selection of the reference for each metric e ∈ Q̿ is done 

within its local scope rather than the global scope of all metrics Q̿.  

For a performance matrix P = pij, with pij as the performance value of ithalgorithm 

on the jthevaluation metric, the process of corrected paired t-test and the production 

of final labelled performance matrix P̅ = p̅ij is described in procedure 5.  

In procedure 5, the criteria for selecting reference algorithm is the maximum value 

for a benefit metric and minimum value for a cost metric, respectively. Benefit 

metric are those whose higher values are preferred, e.g., accuracy, while cost 

metrics are those whose lower value is preferred, e.g., training time. For labeling 

the algorithms as either significant, or poor or equal in performance, step 1(c) is 

used. For this purpose, Weka corrected paired t-test is used, which takes reference 

algorithm (referenceAlg), single evaluation metric (e) and the performance matrix 
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(P) together as inputs and returns a labelled matrix (p̅ = p̅ij) as output.  Each value 

p̅ij of the labelled matrix is either labelled as (v) or, (*) or (‘’).  

Procedure 5. performStatSigTest 

Begin 

inputs: 𝐏 – performance matrix 

output: �̅� – n*m performance matrix, where n is the number of algorithms and m is the number of 

evaluation metrics; 

Let 𝐝 – given dataset 

𝐀 = {a1, a2, . . , an} – set of classification algorithms 

�̿� = {e1, e2, . . , em} – set of evaluation metrics 

1 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 𝐞 ∈ �̿� in performance matrix 𝐏   

a. 𝐢𝐟 𝐞 ∈ benefit metric 

i. 𝐫𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞𝐀𝐥𝐠 = selectReferenceAlg(maxPerformValue(𝐞)); 

b. 𝐞𝐥𝐬𝐞 

i. 𝐫𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞𝐀𝐥𝐠 = selectReferenceAlg(minPerformValue(𝐞)); 

c. �̅� = performCorrectedPairedtTest(𝐫𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞𝐀𝐥𝐠, 𝐏, 𝐞); 

2 𝐞𝐧𝐝 𝐟𝐨𝐫 

3 return �̅� 

End 

4.3.2.6. Algorithmic fitness evaluation 

In this step, the algorithms’ fitness levels are evaluated for consideration in the next 

step of evaluation. The motivation for including the fitness evaluation as an 

additional step is to reduce the algorithm space by filtering out the algorithms that 

poorly perform on all evaluation metrics on a single dataset. This is reasonable and 

makes sense that not to allow poor performance algorithms to the next stage of 

evaluation. Furthermore, it reduces the chance of selection of bad algorithm.  

To implement this idea, we proposed a fitness function that evaluates labels in the 

labeled performance matrix P̅ = p̅ij. This function can be defined as follows. Let 

Q̿ = {e1, e2, . . , em} be the set of m evaluation metrics for evaluating performance 

of an algorithm a ∈ A on a classification dataset d and P̅ = p̅ij be the labeled 

performance matrix, obtained after significance test. The target significant matrix 

S, containing the list of significantly fit algorithms, can be generated using the 

fitness function, 
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S = {∀a∈A: a ∈ P̅|∀e: e ∈ Q̿. ~nonSignificant(e)}, (8) 

where, nonSignificant(e) is the function that determines the significance level of 

each a ∈ A for each evaluation metric e ∈ Q̿ and returns true if it either performs 

significantly better or equal and add to the significant matrix S. The process is 

repeated for all algorithms A against all metrics Q̿ and the final results are 

accumulated in S, which is the reduced version of the original labelled matrix P̅, in 

terms of number of candidate algorithms i.e., SizeOf(S) < SizeOf(P̅). Internally, 

the function nonSignificant(e) processes the labels, i.e., ‘v’, ‘*’ and ‘’, of the 

values of each metric e ∈ Q̿, assigned by the corrected paired t-test of the procedure 

4. In the significant matrix S, each value is represented by sij, where i represents 

the algorithm and j represents the evaluation metric. 

4.3.2.7. Ranking algorithms 

State-of-the-art methods for ranking algorithms are based on the aggregate score 

of multiple evaluation metrics Q̿, combined together in different ways, consuming 

absolute weights, which are assigned by domain experts and lake appropriate 

normalization mechanism for the values of the criteria. These methods have 

minimal support for extension in terms of number of metrics to be added and lack 

support for implicit and explicit constraints satisfaction. Our idea is to evaluate the 

candidate algorithms and rank them according to their relative closeness score to 

the ideal algorithm with the consumption of relative consistent weights and 

different constraints. To achieve these objectives, we are motivated by the 

flexibility and ranking power of the TOPSIS multi-criteria decision making method 

[44, 133]. The TOPSIS steps used during algorithms ranking are shown in 

procedure 6.  
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Procedure 6. rankAlgorithms 

Begin 

inputs: 𝐒 – n*m matrix containing performance results of significant algorithms 

   W – 1*m (single row) weight vector 

output: 𝐑𝐂 – n*1 (single column) matrix of the relative closeness score 

Let  𝐝 –dataset 

𝐀 = {a1, a2, . . , an} – set of classification algorithms 

�̿� = {e1, e2, . . , em} – set of evaluation metrics 

1 [create  performance evaluation matrix from S] 

      𝐒 = (sij)n∗m
; //where, sij represents value of algorithm i for evaluation metric j 

2 Define local/implicit constraints on �̿�; 

3 [normalize performance evaluation matrix S] 

      �̅� = 𝐫𝐢𝐣 = sij √∑ sij
2n

i=1⁄ ; //where, i =1, 2, ..., n and j = 1, 2, ..., m  

4 [compute weighted normalized decision matrix V] 

      𝐕 = (𝐯𝐢𝐣)n∗m
=  𝐫𝐢𝐣 ∗  𝐖𝐣; //where, Wj is the weight vector  

5 [compute positive ideal solution (PIS) and negative ideal (NIS) solution]  

a. 𝐏𝐈𝐒 = {(max
i

(vij)| j ϵ Cb) , (min
i

(vij)| j ϵ Cc)} = {vj
∗ | j = 1,2, … , m} 

b. 𝐍𝐈𝐒 = {(min
i

(vij)| j ϵ Cb) , (max
i

(vij)| j ϵ Cc)} = {vj
− | j = 1,2, … , m}    

6 [compute separation measures using m-dimensional Euclidean distance] 

a. 𝐏𝐈𝐒𝐢
∗ = √∑ (vij − vj

∗)
2

, j = 1,2, … , mm
j=1  

b. 𝐍𝐈𝐒𝐢
− = √∑ (vij − vj

−)
2

, j = 1,2, … , mm
j=1  

7 [compute relative closeness (RC) of algorithms with respect to ideal algorithm] 

𝐑𝐂 =
𝐍𝐈𝐒𝐢

−

𝐏𝐈𝐒𝐢
∗+𝐍𝐈𝐒𝐢

−  , i = 1,2, … , n; where, RC is a n*1 matrix          

8 return 𝐑𝐂; 

End 

The value RC lies between 0 and 1, i.e., 0 ≤ RC ≤ 1. If RC=1, the TOPSIS has the 

best condition of the top-k algorithms selection; and if RC=0, the TOPSIS has the 

worst condition of algorithm selection. Any other value in-between these two 

values measures the appropriateness level of that algorithm. 

4.3.2.8. Constraints satisfaction 

The constraints used in our study can be categorized into individual level, limited 

to a single metric of the evaluation criteria, and global level, applicable to all the 

metrics in the evaluation criteria. Individual level constraints are satisfied in the 

pre-ranking and ranking steps of evaluation process. These are further categorized 

into explicit and implicit constrains. The explicit constraints are defined by the 
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users or experts, such as users’ relative preferences on the metrics. An example can 

be, “the accuracy metric should be favored 10-times as compared to training time”. 

The implicit constraints are the inherit characteristics of individual metrics, such 

as the value of cost criteria which should be as minimum as possible and the values 

of benefit criteria should be as higher as possible. Contrary to the local constraints, 

global constraints are the explicit constraints that are based on the local constraints 

and applicable to the overall criteria in the pre-ranking evaluation process.  

Examples of the global constraints are the consistency of estimated weights of the 

criteria, significance of the performance results of the algorithms and consistency 

in the performance results of the algorithms. Figure 4.4 shows different types of 

constraints with their examples that are applied at different levels of the algorithms 

evaluation and ranking process. 

 

Figure 4.4. Categorization of constraints defined over evaluation criteria 

In this study, for satisfaction of the local constraints, we proposed the idea of 

relative weighting using AHP process, and the idea of cost and benefits analysis of 

the metrics using the TOPSIS method. Similarly, for the satisfaction of global 

constraints, we adopted the AHP weights consistency check methods using 

eigenvector computation, and proposed the idea of paired t-test embedded in the 

algorithmic fitness evaluation function for checking the significance of the 

algorithms performance results. The local constraints can be satisfied through the 

configuration of AHP and TOPSIS methods, but the global constraints’ satisfaction 
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need more advanced level user-defined functions. We measure the consistency of 

algorithms in terms of standard deviation of their results. The algorithm that has 

lowest standard deviation value is the consistent algorithm and vice versa. 

4.4. Validation of the AMD methodology - a scenario 

In order to evaluate the effectiveness of AMD methodology, verify its potential use 

in real-world scenarios and allow other researchers to confirm our results, we 

perform step-by-step process in this section with the necessary experiments. First 

consider a scenario in which a user is interested in learning his dataset with a 

classification algorithm, which he does not really know. The key problem he faces 

is the selection of an optimum performance classification algorithm that fits well 

into his requirements and expectations, expressed in terms of goal and associated 

objectives. In this scenario, the user is given a choice to select the best algorithm 

from a list of most commonly used 35 multi-class classification algorithms, shown 

in Table 4.4 for the 15 classification datasets1, shown in Table 4.5. Due to the space 

issue, the AMD steps are described only for one dataset.  

Table 4.5. General characteristics of UCI/OpenML repositories datasets 

Datasets 

Characteristics of Datasets 

Attributes 
Nominal 

Attributes 

Numeric 

Attributes 

Binary 

Attributes 
Classes 

Instance 

Count 
Missing 

abalone-3class 9 1 7 0 3 4177 0 

rabe-148 9 1 7 0 3 4177 0 

acute-

inflammations-

nephr 

6 0 5 0 2 66 0 

ADA_Agnostic 7 5 1 5 2 120 0 

ADA_Prior 49 0 48 0 2 4562 0 

adult-4000 15 8 6 1 2 4562 88 

adult-8000 15 8 6 1 2 3983 0 

aileron 15 8 6 1 2 8000 0 

analcatdata-AIDS 41 0 40 0 2 5795 0 

analcatdata-

apnea2 
5 2 2 0 2 50 0 

analcatdata-

apnea2 
4 2 1 0 2 475 0 

analcatdata-

asbestos 
4 2 1 0 2 475 0 

                                                           
1 Some of the datasets are used with minor modifications by changing the type of the class label to 

nominal etc. 
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Datasets 

Characteristics of Datasets 

Attributes 
Nominal 

Attributes 

Numeric 

Attributes 

Binary 

Attributes 
Classes 

Instance 

Count 
Missing 

analcatdata-

authorship 
4 2 1 1 2 83 0 

analcatdata-

bankruptcy 
71 0 70 0 4 841 0 

analcatdata-

birthday 
7 1 5 0 2 50 0 

A machine learning practitioner can use the proposed AMD methodology as follows. 

Step 1: Goal and objectives definition 

The goal of the study is to select an optimum performance multiclass classification 

algorithm from the heterogeneous families of algorithms (see Table 4.4) for binary 

and multiclass problems (see Table 4.5) that has optimum performance. 

Step 2: Selecting suitable quality meta-metrics 

For the goal in step 1, procedure 1 is used to select the suitable quality metrics. 

Four machine learning experts, i.e., machine learning and data mining expert 

(DM#1), a data and knowledge engineering expert (DM#2), a scientist, researcher 

and developer (DM#3) and an expert user of the classification algorithms in diverse 

application area (DM#4) were chosen to select the qualities. Using procedure 1, the 

experts selected correctness (accuracy), responsiveness, computational complexity 

and consistency (as shown in Table 4.6) as the relevant qualities that are compliant 

to the goal and satisfy the heterogeneity constraint of the classifiers. 

Table 4.6. Experts’ group-based rating of quality metrics for heterogeneous classifiers 

Quality Metrics DM#1 DM#2 DM#3 DM#4 Total 

Correctness (cor) 60 50 55 70 235 

Computational Complexity 

(ccom) 
5 20 15 - 40 

Responsiveness (res) 15 - 20 20 55 

Consistency (con) 10 15 - - 25 

Comprehensibility (com) - 15 - 7 23 

Reliability (rel) 5 - - - 5 

Robustness (rob) - - 10 3 13 

Separability (sep) 5 - - - 5 

Total 100 100 100 100 400 

*[Each expert distributes 100 points across the qualities metrics] 
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Table 4.6 shows the importance score of each quality metrics. The top 4 qualities 

are non-conflicting and reflect the general characteristics of all the classifiers, 

therefore they are selected. These qualities are represented in equation 9, 

Q̅ = {cor, ccom, res, con}. (9) 

The physical meaning of equation 2, is that the optimum performance algorithm is 

the one that has high level of correctness in its results, low computational 

complexity, quick response time to users’ requests, and high consistency in its 

results for a test dataset.  

Step 3: Selecting suitable evaluation metrics 

Procedure 2 is used to assist expert in the selection of suitable evaluation metrics, 

shown by equation 10 and Table 4.7, respectively, 

Q̿ = {Wgt. Avg. F −

score, CPUTimeTraining , CPUTimeTesting , Consistency}. 
(10) 

Table 4.7. Evaluation metrics for performance analysis of heterogeneous multi-class 

classifiers 

Evaluation Metrics (DM#1 - DM#5) Decision maker 

Correctness (cor) Wgt. Avg. F-score 

Computational Complexity (ccom) 
CPUTimeTraining 

Responsiveness (res) CPUTimeTesting 

Consistency (con) Consistency (Stdev.) 

In Table 4.7, the consistency metric cannot be directly measured by any of the 

metric shown in Table 1. It is defined by the experts in their discussion of voting 

for metrics selection. It is a global explicit constraint that helps in selecting an 

algorithm that has consistent results. 

Step 4: Weighting Metrics 

The estimation of evaluation metrics is done using procedure 3 and the results are 

shown in Table 4.8 and Figure 4.5. Weights of the decision power of each decision 
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maker is shown in Table 4.8(a). The relative weights, for each metric, estimated by 

each decision maker, are shown in Table 4.8(b-e). The final, experts’ group-based 

weights are shown in Table 4.8(f). 

Table 4.8. Analytical hierarchy process (AHP) based relative criteria weighting 

(a). Experts’ (decision makers’) decisions’ prioritization  

DM/DM  DM#1 DM#2 DM#3 DM#4 
DM Decision 

Weights 

DM#1 1 3 2 5 0.49 

DM#2 0.33 1 1 3 0.21 

DM#3 0.50 1.00 1 3 0.23 

DM#4 0.20 0.33 0.33 1 0.08 

    CI: 0.009 1.00 

  (b) DM#1 relative weighting   

Criteria F-score* TestTime* TrainTime* Consistency Weights 

F-score 1 8 9 7 0.70 

TestTime 0.13 1 3 1/2 0.09 

TrainTime 0.11 0.33 1 1/5 0.04 

Consistency 0.14 2.00 5 1 0.16 

    CI:0.050 1.00 

  (c) DM#2 relative weighting   

Criteria F-score TestTime TrainTime Consistency Weights 

F-score 1 7 9 5 0.68 

TestTime 0.14 1 2 1 0.12 

TrainTime 0.11 0.50 1 1/3 0.06 

Consistency 0.2 1.00 3 1 0.14 

    CI:0.012 1.00 

 (d) DM#3 relative weighting   

Criteria F-score TestTime TrainTime Consistency Weights 

F-score 1 7 8 6 0.68 

TestTime 0.14 1 2 1/2 0.10 

TrainTime 0.13 0.50 1 1/3 0.06 

Consistency 0.17 2.00 3.00 1 0.16 

    CI:0.021 1.00 

  (e) DM#4 relative weighting   

Criteria F-score TestTime TrainTime Consistency Weights 

F-score 1 8 9 8 0.71 

TestTime 0.13 1 4 1 0.12 

TrainTime 0.11 0.25 1 1/6 0.04 

Consistency 0.13 1.00 6 1 0.13 

    CI:0.073 1.00 
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 (f) Criteria weights based on group decision making  

DM Decision 

Weights 
0.49 0.21 0.23 0.08  

Criteria\DM DM#1 DM#2 DM#3 DM#4 Weight 

F-score 0.70 0.68 0.68 0.71 0.70 

TestTime 0.09 0.12 0.10 0.12 0.10 

TrainTime 0.04 0.06 0.06 0.04 0.05 

Consistency 0.16 0.14 0.16 0.13 0.15 

     1.00 

*F-score: WgtAvgF-score 

*TestTime: CPUTimeTesting 

*TrainTime: CPUTimeTraining 

According to the weight scores of these metrics, Wgt. Avg. F-score is the most 

preferable, followed by consistency, followed by CPUTimeTesting followed by 

CPUTimeTraining. 

 

Figure 4.5. Criteria relative weights, estimated using analytic hierarchy process 
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Step 5: Measuring algorithms performance 

For generating real performance results of the 35 classification algorithms, Weka 

environment is used. Table 4.10, column 2-5, shows the results for ADA_Agnostic 

dataset [134]. The consistency column 5 of Table 4.10 is not directly measurable 

using the existing evaluation metrics, therefore we compute it by averaging 

standard deviations of the first three evaluation metrics, using equation 11, 

Consistencya∈A =
∑ Stdevi

m
i=1

m
 

(11) 

where, a represents an algorithm belonging to the algorithm space A and m 

represents the number of measurable metrics (3 in this case). For simplicity 

purpose, in this chapter, we use the concept consistency instead of the average 

consistency. The consistency scores for a partial list of the algorithms are shown in 

Table 4.9 (last column).  

Table 4.9. Partial list of average standard deviation (average consistency) of the classifiers 

Algorithms 
F-score* 

(Stdev) 
TestTime* (Stdev) 

TrainTime* 

(Stdev) 

Average 

(Stdev) - 

Consistency 

bayes.BayesNet 0.018 0.015 0.005 0.013 

bayes.NaiveBayes 0.017 0.006 0.008 0.010 

bayes.NaiveBayesUpdateable 0.017 0.007 0.008 0.011 

functions.Logistic 0.015 0.019 0.002 0.012 

… … … … … 

meta.Vote 0.017 0.010 0.000 0.009 

*F-score: WgtAvgF-score 

*TestTime: CPUTimeTesting 

*TrainTime: CPUTimeTraining 

Step 6: Testing significance of performance results 

For checking the statistical significance of the algorithms performance results, 

procedure 4 is used, whose results are shown in Table 4.10, column 2-4. In this 

table, the reference classifiers are marked by bold faced keyword “ref” and the 

statistically poor results are marked with symbol “*”. The results, in these three 
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columns, with no symbol mentioned, are either same in performance or cannot be 

decided surely. 

Step 7: Algorithmic fitness evaluation 

The fitness function is performed on the labelled significant matrix of the 

algorithms results, which are marked as significant, non-significant and equally 

significant. In our proposed fitness evaluation function, described by equation 8, 

the non-significant algorithms are identified and are either filter out and dropped 

from the next step of evaluation or leaved as they are but not considered, when 

final selection is made from the ranked list of algorithms. Applying the fitness 

function, the algorithms bayes.NaiveBayes, bayes.NaiveBayesUpdateable, and 

meta.Dagging are identified as significantly poor on ADA_Agnostic dataset (see 

Table 4.10). The results of equation 8, for all the datasets, are summarized in Table 

4.14. 

Step 8: Ranking algorithms 

To generate recommended ranking, procedure 5 is applied on the performance 

matrix, Table 4.10, columns 2-5) with the specification of local constraints (i.e., 

Max and Min) and global constraints (i.e., consistency). 

Table 4.10. Classifiers performance and ranking based on relative distance from ideal 

algorithm 

A
lg

o
ri

th
m

s*
 Constraints    

R
a

n
k

in
g
 

Max Min Min Min    

F-score TestTime TrainTime Consistency PIS= NIS- RC 

A1 0.78* 0.027* 0.002 0.013 0.00906 0.03830 0.80874 26 

A2 0.825* 0.013* 0.008* 0.010 0.00264 0.04180 0.94068 19 

A3 0.825* 0.011* 0.01* 0.011 0.00272 0.04171 0.93882 20 

A4 0.836 0.229* 0.000 0.012 0.00088 0.04317 0.97995 4 

A5 0.733* 0.232* 0.004 0.043 0.01593 0.03492 0.68672 29 

A6 0.830 1.99* (ref) 0.000 0.041 0.00181 0.04239 0.95905 12 

A7 0.66* (ref) 0.001 0.000 0.005 0.02658 0.03309 0.55457 32 

A8 0.716* 0.008* 0.004 0.012 0.01841 0.03433 0.65097 31 

A9 0.645* 0.043* 0.000 0.006 0.02877 0.03301 0.53432 35 

A10 0.829 1.086* 0.000 0.043 0.00195 0.04231 0.95597 14 
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A
lg

o
ri

th
m

s*
 Constraints    

R
a

n
k

in
g
 

Max Min Min Min    

F-score TestTime TrainTime Consistency PIS= NIS- RC 

A11 0.832 88.16* 0.004 2.611 0.02792 0.03234 0.53668 33 

A12 0.825* 0.648* 0.000 0.067 0.00257 0.04180 0.94203 18 

A13 0.739* 0.014* 0.000 0.007 0.01504 0.03574 0.70380 28 

A14 0.819* 1.161* 0.001 0.057 0.00341 0.04126 0.92367 23 

A15 0.795* 0.453* 0.000 0.034 0.00687 0.03942 0.85156 24 

A16 0.645* 0.000 0.000 0.001 0.02877 0.03305 0.53463 34 

A17 0.838 0.79* 0.000 0.024 0.00063 0.04328 0.98557 2 

A18 0.827 1.38* 0.161* 0.044 0.01790 0.03819 0.68088 30 

A19 0.828 0.221* 0.000 0.014 0.00205 0.04241 0.95392 15 

A20 0.829 0.29* 0.000 0.014 0.00190 0.04251 0.95715 13 

A21 0.833 1.676* 0.000 0.020 0.00134 0.04281 0.96967 10 

A22 0.837 2.304* 0.022* 0.022 0.00255 0.04223 0.94299 17 

A23 0.791* 0.028* 0.001 0.009 0.00745 0.03923 0.84041 25 

A24 0.835 0.084* 0.000 0.012 0.00103 0.04308 0.97669 7 

A25 0.836 0.713* 0.000 0.021 0.00090 0.04311 0.97950 5 

A26 0.822* 1.074* 0.001 0.021 0.00293 0.04176 0.93440 21 

A27 (ref) 0.842 0.753* 0.000 0.013 0.00014 0.04373 0.99681 1 

A28 0.824* 0.013* 0.107* 0.010 0.01209 0.03861 0.76154 27 

A29 0.828 0.215* 0.003 0.013 0.00207 0.04228 0.95323 16 

A30 0.832 0.065* 0.000 0.009 0.00146 0.04282 0.96697 11 

A31 0.835 1.948* 0.002 0.058 0.00121 0.04267 0.97245 9 

A32 0.82* 0.062* 0.001 0.012 0.00322 0.04166 0.92833 22 

A33 0.837 0.412* 0.001 0.012 0.00075 0.04322 0.98299 3 

A34 0.834 0.724* 0.001 0.014 0.00118 0.04292 0.97318 8 

A35 0.835 0.076* 0.000 0.009 0.00103 0.04310 0.97676 6 

RW 0.69520 0.05067 0.10097 0.15315     

PIS 0.12296 0.00874 0.01776 0.02647     

NIS 0.09419 0.00000 0.00000 0.00000     

*F-score: WgtAvgF-score  *RW: relative weights 

*TestTime: CPUTimeTesting  *PIS: Positive Ideal Solution 

*TrainTime: CPUTimeTraining  *NIS: Negative Ideal Solution 

*Algorithms: See Table 4.4 

The relative closeness score (RC) (8th column) is produced for which the 

corresponding ranking is generated in the 9th column. This column is the 

recommended ranking for the algorithms. According to this ranking, 

meta.Dagging, trees.BFTree and meta.RandomSubSpace are ranked first, second, 

and third, respectively, on the ADA_Agnostic dataset. For evaluation of these 
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results, an evaluation criteria and methodology is used, which is described in the 

next section. 

4.5. Experiments and evaluation 

4.5.1. Classifiers and datasets 

We performed the experiments on 35 most commonly used multi-class 

classification algorithms, shown in Table 4.4, which are implemented in Weka 

machine learning library [122]. These algorithms belong to six heterogeneous 

families’ of classifiers including: probabilistic learners, functions-based learners, 

decision trees learners, rules-based learners, meta-learners, and miscellaneous 

learners. The meta-classifiers, i.e., Adaboost M1, Randomspace, and Voting are 

used with REPTree as the base classifier. Similarly, Dagging and Stacking are used 

with Naïve Bayes as the base classifier. The rest of algorithms are used with Weka 

default parameters. Similarly, 15 classification datasets2, shown in Table 4.5, from 

UCI machine learning repository [115] and OpenML repositories [134] are used. 

4.5.2. Evaluation methodology and criteria 

To empirically evaluate the recommended ranking, the follows three steps 

methodology [32] is used, which is pictorially depicted in Figure 4.6. 

i. build a recommended ranking for a dataset d using the proposed AMD 

method  

ii. build an ideal ranking for dataset d, and  

iii. measure the agreement score between the two rankings  

                                                           
2 Some of the datasets are used with minor modifications by changing the type of the class 

label to nominal etc. 
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Figure 4.6. Evaluation methodology of recommended ranking against ideal ranking 

In step (i), the recommended ranking is obtained from the relative closeness score, 

which is computed using the proposed AMD method. In step (ii), the ideal ranking 

(IR) are constructed by applying ranking operation to the average score of 

algorithms performances, obtained by taking average of the weighted sum of 

normalized performance results of all the algorithms, 𝐴, on dataset 𝑑. We proposed 

the weighted sum average multi-criteria ideal ranking method (WAMR), described 

in equation 12 and 13, where the steps performed follow the sequence: (a) 

performance results for each metric are estimated (i,e., sij is produced) using 

10x10-fold CV, (b) normalized performance (i.e., 𝑁Sij) is estimated using equation 

13, (c) weighted performance, i.e., Wj ∗ 𝑁Sij is computed, (d) weighted sum, i.e., 
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∑ (Wj ∗ 𝑁Sij)
m
j=1 , results are generated for all the metrics, (e) average of the 

weighted sum score is taken, and finally (f) ranks are generated. This process is 

described as follow, 

IR = rank (
∑ (Wj ∗ 𝑁Sij)

m
j=1

m
), 

(12) 

where, Wj is weight vector of evaluation metrics, 𝐸, 𝑚 is the number of evaluation 

metrics and 𝑁Sij is the normalized performance value of the 𝑖𝑡ℎalgorithm for 

𝑗𝑡ℎevaluation metric, computed using equation 13,   

𝑁Sij =
sij

√∑ sij
2𝑛

i=1

 , (13) 

where, i =1, 2, ..., 𝑛 and j = 1, 2, ..., 𝑚.  

The rank operation of equation 12 is described in algorithm 1. Similarly, in 

equation 13, the value sij is the performance of 𝑖𝑡ℎalgorithm for 𝑗𝑡ℎ evaluation 

metric, obtained using 10x10-fold cross-validation strategy (CV). Moreover the 

variables 𝑛 and 𝑚 represents number of algorithms and number of evaluation 

metrics, respectively. 

In literature, different methods are used to compute ideal ranking, such as N-

orderings, average correlation (AC) and average weighted correlation (AWC) [135, 

136]. In N orderings method [32], first 10-fold CV results are generated for all the 

algorithms on a single dataset and a pair-wise comparison using statistical 

significance tests is performed. The algorithms are ordered based on their 

significance results score. In the average correlation method, ranks are computed 

for each fold of the 10-fold CV results which are then averaged to get the ideal 

rank. All the algorithms are arranged based on their average correlation score. 

Similarly, in the AWC method, weights are assigned to the ranks of individual folds 

and are then averaged together for get the final ranks.  
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The motivation for proposing the new ideal ranking generation method, so called 

WAMR, is that it is designed for multiple-criteria rather than single criterion, where 

the following essential steps take place prior to ideal ranks generation, such as 

normalizations of the criteria values, weighting the normalized value for uniformity 

with the AMD method, aggregating the weighted performance of all the criteria 

and taking average to get global performance results. 

In step (iii), the agreement score, which is the mean agreement between the 

recommended ranking and the ideal ranking, is measured using the Spearman’s 

ranked correlation coefficient [137, 138]. The final value of the agreement is a 

measure of the quality of the recommended ranking and proves the level of 

correctness of the proposed AMD method. The formula for Spearman’s rank 

correlation coefficient is shown in equation 14. 

R𝑠 = 1 − 
6 ∗ ∑ (IRi − RRi)

2n
i=1

n3 − n   
, 

(14) 

where, IRi and RRi are the ideal and recommended ranking of algorithm i, 

respectively, and n is the number of algorithms to compare. If the value of R𝑠 =1, 

it represents a perfect agreement and if R𝑠= −1, it represents a perfect disagreement. 

If R𝑠= 0, then both the ranks are not related. Significance of Spearman rank 

correlation can be determined by looking in the table of critical values for R𝑠 with 

different levels of significance, i.e., α value [139]. Similarly, the overall result for 

all the datasets is evaluated using the average Spearman rank correlation coefficient 

(AvgR𝑠). This is shown by equation 15, 

AvgR𝑠 =  
∑ Rs(di)

d
i=1

d
, 

(15) 

where, Rs(di) is the Spearman’s rank correlation coefficient for dataset di and d is 

the total number of datasets. 
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4.5.3. Experiments and analysis of the results 

In this section we perform a set of experiments and analyze the results from diverse 

perspective to validate the proposed AMD methodology. The set of experiments 

includes: (a) correctness check using average Spearman’s correlation coefficient, 

(b) generalization power check using sensitivity and consistency, and (c) 

significance fitness evaluation. 

4.5.3.1. Correctness: average Spearman’s rank correlation coefficient 

To estimate correctness level of the proposed AMD, average Spearman’s rank 

correlation coefficient is computed for all the datasets, using the proposed AMD 

methodology. The average of recommended rankings for all the datasets is shown 

in Table 4.11. The weights used for generating the recommended ranking are: 

Wgt.Avg.F-score (0.69520), CPUTimeTraining (0.05067), CPUTimeTesting 

(0.10097), and Consistency (0.15315). In the second step, ideal rankings for all the 

datasets are generated by taking average of the weighted sum of the normalized 

values of these evaluation metrics. Finally, the R𝑠 is computed using equation 14 

and the AvgR𝑠 is calculated using equation 15.  

Table 4.11. Average Spearman’s rank correlation coefficient for 15 classification datasets 

Dataset ID Dataset Name 𝐑𝒔 

1 abalone-3class 0.988 

2 rabe-148 0.985 

3 acute-inflammations-nephr 0.994 

4 ADA_Agnostic 0.990 

5 ADA_Prior 0.991 

6 adult-4000 0.983 

7 adult-8000 0.975 

8 aileron 0.979 

9 analcatdata-AIDS 0.983 

10 analcatdata-apnea2 0.932 

11 analcatdata-apnea2 0.963 

12 analcatdata-asbestos 0.973 

13 analcatdata-authorship 0.999 

14 analcatdata-bankruptcy 0.983 

15 analcatdata-birthday 0.969 

𝐀𝐯𝐠𝐑𝒔 0.979 

The AvgR𝑠 value is very close to 1, which demonstrates correctness of the proposed 

AMD methodology. It accurately ranks the algorithms and thus assists experts in 
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the selection of accurate algorithms under the specified criteria. The statistical 

significance test of Spearman’s rank correlation coefficient shows that the value 

0.979 is statistically significant at the level of 0.001, with (35-2=33) degree of 

freedom (df), because the average correlation value 0.979 is far greater than the 

critical value of the correlation, i.e., 0.554. To show the process of calculating R𝑠, 

results for the abalone-3class dataset are shown in Table 4.12. 

Table 4.12. Computation of Spearman’s rank correlation coefficient 

Algorithms RR IR (IR-RR) (IR-RR)2 

bayes.BayesNet 16 17 1 1 

bayes.NaiveBayes 19 20 1 1 

bayes.NaiveBayesUpdateable 20 21 1 1 

functions.Logistic 1 1 0 0 

functions.RBFNetwork 25 24 -1 1 

functions.SMO 13 13 0 0 

misc.HyperPipes 34 34 0 0 

misc.VFI 31 28 -3 9 

rules.ConjunctiveRule 33 31 -2 4 

rules.DecisionTable 11 11 0 0 

rules.DTNB 32 33 1 1 

rules.JRip 26 26 0 0 

rules.OneR 9 8 -1 1 

rules.PART 30 30 0 0 

rules.Ridor 29 29 0 0 

rules.ZeroR 35 35 0 0 

trees.BFTree 24 22 -2 4 

trees.FT 27 32 5 25 

trees.J48 8 7 -1 1 

trees.J48graft 12 12 0 0 

trees.LADTree 15 15 0 0 

trees.RandomForest 23 27 4 16 

trees.RandomTree 18 16 -2 4 

trees.REPTree 5 5 0 0 

trees.SimpleCart 21 19 -2 4 

meta.AdaBoostM1 17 18 1 1 

meta.Bagging 4 4 0 0 

meta.Dagging 22 23 1 1 

meta.END 14 14 0 0 

meta.FilteredClassifier 3 3 0 0 

meta.LogitBoost 28 25 -3 9 

meta.RacedIncrementalLogitBoost 10 10 0 0 

meta.RandomSubSpace 6 6 0 0 

meta.Stacking 7 9 2 4 

meta.Vote 2 2 0 0 

 
∑ (IRi − RRi)

2
n

i=1
 88 

 𝐑𝒔 = 1 − 
6 ∗ ∑ (IRi − RRi)

2n
i=1

n3 − n   
 0.988 
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The interpretation of R𝑠 result is the same as we did for the AvgR𝑠. A pictorial view 

of the results of recommended and ideal ranking for the abalone-3class dataset is 

shown in Figure 4.7. 

 

Figure 4.7. Comparison of recommended ranking (RR) and ideal ranking (IR). 

This figure shows that the recommended ranking of AMD is closed to the ideal 

ranking.  

4.5.3.2. Generalization of AMD: sensitivity and consistency analysis 

In multi-criteria decision making, the choice and number or weights of the criteria 

affect the final recommended ranking [22, 140-142]. It has been demonstrated that 

the choice of criteria or the change in weights transforms the final recommended 

ranking [22, 140]. In majority of the algorithms ranking cases, it is hard for the 

decision makers to agree on the final ranks generated by a ranking method and is 

therefore required to perform sensitivity analysis [143, 144]. The significant results 

of the ranking method under varying parameters demonstrates generalization 

power of a ranking method. In our case, the scope of sensitivity analysis is limited 
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to the change in relative weights of criteria. We change the weight of each criterion, 

i.e., Wgt.Avg.F-score, CPUTimeTesting, CPUTimeTraining and Consistency, one 

at a time, and compute the Spearman’s rank correlation coefficient value to see 

how the proposed AMD behaves with the changed weights. For the criteria 

Wgt.Avg.F-score, CPUTimeTesting, CPUTimeTraining and Consistency, the R𝑠 

results generated by the proposed AMD methodology using weights 

(0.70,0.05,0.10,0.15), (0.05,0.70,0.10,0.15), (0.05,0.10,0.70, 0.15) and 

(0.05,0.10,0.15,0.70) are shown in Table 4.13.  

Table 4.13. Sensitivity analysis of classifiers with varying criteria weights 

  Sensitivity Analysis 

ID Dataset Name 

𝐑𝒔 - F-score 

(0.70,0.05,0.1

0,0.15) 

𝐑𝒔 - TestTime 

(0.05,0.70,0.10,0.15) 

𝐑𝒔- TrainTime 

(0.05,0.10,0.70, 

0.15) 

𝐑𝒔- 

Consistency 

(0.05,0.10,0.15,

0.70) 

1 abalone-3class 0.454 0.913 0.523 0.999 

2 rabe-148 0.904 0.758 0.500 0.992 

3 
acute-

inflammations-nephr 
0.858 0.798 0.501 0.979 

4 ADA_Agnostic 0.880 0.368 0.819 0.433 

5 ADA_Prior 0.295 0.943 0.565 0.985 

6 adult-4000 0.276 0.890 0.599 0.979 

7 adult-8000 0.488 0.792 0.670 0.943 

8 aileron 0.946 0.223 0.806 0.563 

9 analcatdata-AIDS 0.654 0.766 0.500 0.995 

10 analcatdata-apnea2 0.107 0.844 0.652 0.986 

11 analcatdata-apnea2 0.158 0.936 0.618 0.972 

12 analcatdata-asbestos 0.508 0.838 0.500 0.999 

13 
analcatdata-

authorship 
0.880 -0.265 0.738 -0.074 

14 
analcatdata-

bankruptcy 
0.945 0.863 0.543 0.998 

15 analcatdata-birthday -0.506 0.777 0.618 0.990 

𝐀𝐯𝐠𝐑𝒔 0.523 0.696 0.610 0.849 

*F-score: WgtAvgF-score 

*TestTime: CPUTimeTesting 

*TrainTime: CPUTimeTraining 

In Table 4.13, the R𝑠 value for each set of the weights of the evaluation criteria is 

computed (using equation 14) and evaluated in the same way as in previous section. 

However, in this case, the ideal ranking is computed for the individual criteria and 

compared with the recommended ranking. In each set of the weights, more 

preference, i.e., weight 0.70, is given to only one criterion and thus algorithms are 
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preferred with respect to that criterion, which is natural. In Table 4.14, the R𝑠 

values shown in bold demonstrate negative/weak correlation with respect to the 

ideal ranking. The AvgR𝑠 (for all datasets, computed using equation 15) in all the 

cases are positively correlated to ideal ranking, which demonstrate that the AMD 

is a generalized and consistent methodology that performs well in varying 

conditions. The statistical significance test of Spearman’s rank correlation 

coefficient for the Wgt.Avg.F-score shows that the correlation value 0.523 is 

statistically significant at the level of 0.005-0.002, with (35-2=33) degree of 

freedom (df), because it is greater than the critical value 0.482 for R𝑠. Similar 

interpretations can be made for the rest of criteria. 

4.5.3.3. Significance fitness evaluation 

The results of equation 8, which identifies significantly poor algorithms for the 

datasets are shown in Table 4.14. 

Table 4.14. Analysis of significantly poor algorithms using significant fitness function 

Algorithm 
ADA_Agnostic 

(rank) 

ADA_Prior 

(rank) 

adult-

4000 

(rank) 

adult-

8000 

(rank) 

aileron 

(rank) 

analcatdata-

authorship 

(rank) 

bayes.BayesNet* 26 4 2 7 27 4 

bayes.NaiveBayes* 19 11 12 21 30 7 

bayes.NaiveBayesUpdateable* 20 10 15 20 31 8 

trees.FT* 30 32 32 32 25 2 

trees.RandomForest* 17 25 23 24 17 6 

meta.Dagging* 27 18 21 26 32 30 

These results show that the classification algorithms bayes.BayesNet and 

bayes.NaiveBayes get higher ranks (4 and 7) on the analcatdata-authorship, 

however their performance on this dataset does not remain significant for all the 

criteria. Hence, prior applying the ranking process, the significance fitness function 

is required to execute to filter out insignificant algorithms from the competition. 

The values presented in bold represent the rank of algorithms on the dataset shown 

in the columns.  

4.5.4. Comparison with existing methods 
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In this section, we compare the results of AMD methodology with two well-known 

methods: adjusted ratio of ratios (ARR) [32] and automatic recommendation of 

classification algorithms based on data set characteristics, abbreviated as PAlg 

[40]. These methods evaluate and rank classification algorithms on the basis of 

accuracy and time.  

The equation of ARR ranking methodology [32] is shown in equation 16,  

ARR =

SRap
di

SRaq
di

1+∝ ∗ log (
Tap

di

Taq
di)

. 
(16) 

The accuracy is represented as the ratio of success rates of algorithm ap to 

algorithm aq on a dataset d as the numerator of the ARR. The time, which is the 

total of training and execution times, which is represented as a ratio of times is used 

as the denominator. To enforce preferences on the criteria, parameter ∝ is 

introduced with its value ∝ = 0.1, 1, and 10 to specify 10% preference of the 

accuracy on time, equal preferences of both the accuracy and time and 10% 

preference of time over the accuracy, respectively. 

In the algorithm selection article [40], the performances of algorithms are evaluated 

using equation 17, where accuracy and total time are directly used instead of their 

ratios. The setting for ∝ is the same as that of the ARR method. 

PAlg =
AccuracyAlg,D

1+∝ ∗ log(RTimeAlg,D)
  

(17) 

As these two methods are only based on accuracy and execution and training time 

(T/RTime), therefore to create a fair comparison, we formulate our proposed 

criteria accordingly. We picked Wgt.Avg.F-score, CPUTimeTraining and 

CPUTimeTesting and omitted the Consistency criterion. The values of 

CPUTimeTraining and CPUTimeTesting are averaged to get the uniform value for 

T/RTime, used in equation 16 and 17, respectively. For simplicity, we performed 
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experiments only for ∝ = 0.1 with three different sittings, such as ranking for all 

35 algorithms (k=35), ranking for only top 5 algorithms (k=5) and ranking for top 

3 algorithms (k=3). The weight for accuracy (Wgt.Avg.F-score) and T/RTime, in 

our proposed AMD method, were taken as 0.55 and 0.45, which are compliant to 

∝ = 0.1. 

We performed comparison experiments on the same 15 datasets and the results 

generated are shown in Table 4.15 and Figure 4.8(a-c). 

Table 4.15. Comparison of AMD method with state-of-the-art methods 

Id Dataset 

AMD PAlg ARR 

𝐑𝒔 with α=0.1 (Wgt.F-

Score=0.55, 

Rtime=0.45) 

𝐑𝒔 with α=0.1 (Wgt.F-

Score=0.55, 

Rtime=0.45) 

𝐑𝒔with α=0.1 (Wgt.F-

Score=0.55, Rtime=0.45) 

k=35 k=5 k=3 k=35 k=5 k=3 k=35 k=5 k=3 

1 
abalone-

3class 
0.9720 0.9978 1.0000 0.8473 0.9926 0.9944 0.6012 0.9769 0.9842 

2 rabe-148 1.0000 1.0000 1.0000 0.9900 1.0000 1.0000 0.5200 0.9450 0.9520 

3 

acute-

inflammation

s-nephr 

1.0000 1.0000 1.0000 0.9641 1.0000 1.0000 0.5199 0.9940 0.9908 

4 
ADA_Agnost

ic 
0.9852 0.9974 0.9989 0.3187* 0.9171 0.9521 0.2696* 0.8752 0.8865 

5 ADA_Prior 0.9899 0.9992 0.9993 0.8081 0.9699 0.9863 0.4966 0.8975 0.9515 

6 adult-4000 0.9922 1.0000 1.0000 0.8314 0.9715 0.9851 0.3482* 0.8641 0.9342 

7 adult-8000 0.9824 0.9997 1.0000 0.7028 0.9556 0.9697 0.2529* 0.8871 0.9158 

8 aileron 0.9882 0.9986 0.9997 0.7541 0.9724 0.9869 0.5646 0.9956 0.9987 

9 
analcatdata-

AIDS 
0.9801 0.9985 0.9987 0.9908 1.0000 1.0000 0.5039 0.8929 0.9399 

10 
analcatdata-

apnea2 
0.9916 1.0000 1.0000 0.9748 0.9987 1.0000 0.5162 0.9799 0.9910 

11 
analcatdata-

apnea2 
0.9955 1.0000 1.0000 0.9501 1.0000 1.0000 0.5292 0.9636 0.9854 

12 
analcatdata-

asbestos 
0.9711 1.0000 1.0000 0.9706 1.0000 1.0000 0.4764 0.9359 0.9410 

13 
analcatdata-

authorship 
0.9980 0.9992 0.9993 0.5070 0.9164 0.9637 0.2524* 0.7271 0.7921 

14 
analcatdata-

bankruptcy 
0.9975 1.0000 1.0000 0.9756 0.9997 1.0000 0.4574 0.8694 0.9185 

15 
analcatdata-

birthday 
0.9854 1.0000 1.0000 0.9728 0.9977 1.0000 0.5298 0.9107 0.9567 

𝐀𝐯𝐠𝐑𝒔 0.9886 0.9993 0.9997 0.8372 0.9794 0.9892 0.4559 0.9143 0.9426 
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The performance results of the proposed AMD method are significantly better than 

the results of the PAlg and ARR under the three different setup: all (k=35) 

algorithms, top k=5 algorithms and top k=3 algorithms. For the proposed method, 

the statistical significance test of Spearman’s rank correlation coefficient shows 

that the correlation values, R𝑠 = 0.9886, R𝑠 = 0.9993, and R𝑠 = 0.9997, 

for k=35, k=5 and k=3, respectively, are statistically significant at the level of 

0.001, with (35-2=33) degree of freedom (df). Similar interpretation can be made 

for PAlg method. However, this method produces ranks for the algorithms (with 

k=35) on the ADA_Agnostic dataset, which is statistically insignificant with 

respect to the ideal ranking. Similarly, the results of ARR method are significantly 

poor as compared to the proposed methods under all the conditions of k=35, k=5 

and k=3. Under the setting, k=35, the ARR results are significant with respect to 

the critical value of R𝑠 at the level of 0.01-0.005 with 33 degree of freedom. Using 

this method, four datasets, represented with ‘*’ has the ranks which are 

significantly poor and not correlated to the ideal ranking. 
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Figure 4.8. Comparison of the AMD method with state-of-the art methods 

Figure 4.8 shows that AMD performs significantly better as compared to the state-

of-the art methods under all the settings of top k=35, top k=5 and top k=3 

algorithms. 
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4.5.4.1. Statistical significance test for comparison of ranking methods 

To test whether the results produced by AMD methodology are statistically 

significant or not as compared to the comparing methods, we performed 

Friedman’s test [145]. First we set the following hypotheses: 

 H0: There is no difference in the mean average correlation coefficients, 

AvgR𝑠, for the three ranking methods (AMD, ARR and PAlg with all the 

datasets). 

 H1: There are some differences in the mean average correlation 

coefficients, AvgR𝑠, for the three ranking methods. 

For illustrating Friedman’s test process and the corresponding results, we compare 

the three ranking methods (i.e., j = 1, 2, 3) on the 15 datasets. All the steps are 

shown in Table 4.16(a-c). The steps are performed as follows: (a) rank the 

correlation coefficients for each dataset, i.e., RR, (b) calculate the mean rank for 

each method, i.e., RRj = ∑ RRjj n⁄ , where n is the number of datasets (15 in this 

case), (c) calculate the overall mean rank (mR) across all the methods, i.e., mR =

(𝑚 + 1) 2⁄ = 2, where m is the number of methods to compare (m=3 in this case), 

(d) calculate sum of the squared differences of mean rank for each method and the 

overall mean rank, i.e., S = ∑ (RRj − mR)
2

j , and (e) calculate Friedman’s statistic, 

M = (12nS) (k(k + 1))⁄ .  

The calculation of these steps is shown in Table 4.16(a-c), for all the fifteen 

datasets, and the results are summarized in Table 4.17. In the example of Table 

4.16, where n = 15 and m = 3, the critical value C is 10.99 for a confidence level 

of 95%. The Friedman’s test values (M) for k=35, k=5 and k=3 > C(10.99) is true, 

therefore the null hypothesis is rejected, which means 0.083 second that the average 

performance of the three methods is not similar and hence AMD is significantly 

better than state-of-the-art methods in comparison. 
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4.6. Limitations of AMD method for Classifier Selection 

The proposed AMD method performs well as compared to the existing state-of-

the-art methods, described in comparison section, however it comes with the 

following shortcomings that need proper research in future to overcome. 

1. As described earlier, for ranking classifiers, correct criteria, based on 

suitable metrics is required. In the proposed AMD methodology, the 

criteria selection is depended on end user’s goal, user level and system 

level constraints and specially the experts’ knowledge about the domain 

and the available candidate algorithms. If the information are not available 

the proposed methodology will not be well-exploited for suitable classifier 

selection.  

2. The proposed method has provided minimum support for the automatic 

criteria selection. A partially automatic solution, in the form of classifiers 

quality meta-metric classification model, is provided, however it is not 

enough to reduce the experts’ efforts and time. To resolve this issue an 

advanced method is required to minimize the experts’ time and efforts by 

introducing a semi-automatic analysis method for analyzing the classifiers 

performance metrics against the goal and constraints defined by the end 

user for his/her application. 

3. The AMD methodology uses relative criteria weighting mechanism which 

is a semi-automatic way requiring experts’ preferences for quantifying 

their opinion in the form of weights. However, experts’ availability is not 

always be guaranteed, therefore some other mechanism need to be 

designed to estimate criteria weight. 

4. The proposed method is based on exhaustive search mechanism to rank 

algorithms and finally select a single one for the application in hand. A 

hierarchical searching mechanism is required to filter-out the most unfit 

algorithms from the competition and reduce the search scope for 

recommending suitable algorithm. 
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Table 4.16. Friedman’s test steps to compare ranking methods for statistical significance 
(a) Friedman’s test steps for comparing ranking methods with k=35                     

Dataset d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15   

Method\Rs Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR RRj (RRj-mR)2 

AMD 0.9720 1.0 1.0000 1.0 1.0000 1.0 0.9852 1.0 0.9899 1.0 0.9922 1.0 0.9824 1.0 0.9882 1.0 0.9801 2.0 0.9916 1.0 0.9955 1.0 0.9711 1.0 0.9980 1.0 0.9975 1.0 0.9854 1.0 1.1 0.871111111 

PAlg 0.8473 2.0 0.9900 2.0 0.9641 2.0 0.3187 2.0 0.8081 2.0 0.8314 2.0 0.7028 2.0 0.7541 2.0 0.9908 1.0 0.9748 2.0 0.9501 2.0 0.9706 2.0 0.5070 2.0 0.9756 2.0 0.9728 2.0 1.9 0.004444444 

ARR 0.6012 3.0 0.5200 3.0 0.5199 3.0 0.2696 3.0 0.4966 3.0 0.3482 3.0 0.2529 3.0 0.5646 3.0 0.5039 3.0 0.5162 3.0 0.5292 3.0 0.4764 3.0 0.2524 3.0 0.4574 3.0 0.5298 3.0 3.0 1 

                               S 1.875555556 

(b) Friedman’s test for comparing ranking methods with k=5                      

Dataset d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15   

Method\Rs Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR RRj (RRj-mR)2 

AMD 0.9978 1.0 1.0000 1.5 1.0000 1.5 0.9974 1.0 0.9992 1.0 1.0000 1.0 0.9997 1.0 0.9986 1.0 0.9985 2.0 1.0000 1.0 1.0000 1.5 1.0000 1.5 0.9992 1.0 1.0000 1.0 1.0000 1.0 1.2 0.64 

PAlg 0.9926 2.0 1.0000 1.5 1.0000 1.5 0.9171 2.0 0.9699 2.0 0.9715 2.0 0.9556 2.0 0.9724 3.0 1.0000 1.0 0.9987 2.0 1.0000 1.5 1.0000 1.5 0.9164 2.0 0.9997 2.0 0.9977 2.0 1.9 0.017777778 

ARR 0.9769 3.0 0.9450 3.0 0.9940 3.0 0.8752 3.0 0.8975 3.0 0.8641 3.0 0.8871 3.0 0.9956 2.0 0.8929 3.0 0.9799 3.0 0.9636 3.0 0.9359 3.0 0.7271 3.0 0.8694 3.0 0.9107 3.0 2.9 0.871111111 

                               S 1.528888889 

(c) Friedman’s test for comparing ranking methods with k=3                      

Dataset d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15   

Method\Rs Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR RRj (RRj-mR)2 

AMD 1.0000 1.0 1.0000 1.5 1.0000 1.5 0.9989 1.0 0.9993 1.0 1.0000 1.0 1.0000 1.0 0.9997 1.0 0.9987 2.0 1.0000 1.5 1.0000 1.5 1.0000 1.5 0.9993 1.0 1.0000 1.5 1.0000 1.5 1.3 0.49 

PAlg 0.9944 2.0 1.0000 1.5 1.0000 1.5 0.9521 2.0 0.9863 2.0 0.9851 2.0 0.9697 2.0 0.9869 3.0 1.0000 1.0 1.0000 1.5 1.0000 1.5 1.0000 1.5 0.9637 2.0 1.0000 1.5 1.0000 1.5 1.8 0.054444444 

ARR 0.9842 3.0 0.9520 3.0 0.9908 3.0 0.8865 3.0 0.9515 3.0 0.9342 3.0 0.9158 3.0 0.9987 2.0 0.9399 3.0 0.9910 3.0 0.9854 3.0 0.9410 3.0 0.7921 3.0 0.9185 3.0 0.9567 3.0 2.9 0.871111111 

                               S 1.415555556 

Table 4.17. Summary of Friedman’s test results for comparing ranking methods 

Friedman’s Test S M C M vs. C Interpretation 

Top-K=35 1.876 28.133 10.99 M > C M(28.13) > C(10.99)  null hypothesis is rejected at the confidence level α = 0.001 

Top-K=5 1.529 22.933 10.99 M > C M(22.93) > C(10.99)  null hypothesis is rejected at the confidence level α = 0.001 

Top-K=3 1.416 21.233 10.99 M > C M(21.23) > C(10.99)  null hypothesis is rejected at the confidence level α = 0.001 
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4.7. Summary 

In this chapter, firstly, we introduced the concepts of algorithms’ quality meta-metrics 

(QMM), describing physical meaning of the evaluation criteria, and developed a 

classification model with the help of extensive literature study to assist experts in the 

selection of suitable evaluation criteria for comparison of the classifiers. Motivated 

from the experts’ consensus-based nominal grouped technique, we proposed an 

experts group-based method for the selection of suitable evaluation metrics from a 

large set of evaluation metrics and satisfying the constraints defined by the 

users/experts at the goal and objectives definition time.  

Secondly, we estimated consistent relative weights for the evaluation metrics using 

the expert group-based decision making using the analytical hierarchy process. The 

experts’ preferences on the criteria are quantified effectively and the weights are 

checked for consistency. We have analyzed performance of classification algorithm 

using statistical significance test and our proposed fitness function to filter out 

algorithms, which are statistically insignificant on all the evaluation criteria. For 

ranking the algorithms, we computed the relative closeness value of all the algorithms 

with respect to the ideal ranking, using the AHP-based estimated weights and local 

and global constraints on the evaluation criteria. The local constraints on criteria are 

used to encourage and discourage some of the criteria based on the categorization as 

cost and benefit criteria. The global constraints are imposed in the form of consistency 

measure that takes the standard deviation of all the criteria and consider an aggregate 

value to evaluate the quality of the selected/recommended algorithm. 

Finally, we evaluated the AMD methodology by conducting a series of experiments 

on 15 different classification datasets using 35 classification algorithms. We 

compared the results of AMD with two stat-of-the-art methods. Results shows that 

the proposed AMD methodology performing significantly better than state-of-the-art 

methods and produce good results.
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Chapter 5     

CBR-based Meta-learning and Reasoning for Accurate 

Classifier Selection  

 

5.1. Overview 

In machine learning area, a large number of classification algorithms are available 

that can be used for solving the problems of prediction and classification in different 

domains. These classifiers perform differently on different learning problems. For 

example, if one algorithm perform better on one dataset, the same algorithm may 

perform badly on different dataset. The reason is that each dataset has different nature 

in terms of its local and global characteristics. Similarly, the number of candidate 

algorithms are also large in number and it is very hard, even for a machine learning 

practitioner or expert, to know the intrinsic behaviors of different algorithms on 

different datasets and are therefore unable to select a right algorithm for his problem 

in-hand. One way of determining the behavior of each algorithm on different datasets 

is to perform algorithms performance analysis on the results generated using cross-

validation strategy. Once the results are generated, ranking is performed on the final 

score and the top ranker is selected is the applicable algorithm. In Chapter 4, AMD 

methodology is proposed that performs the same task, however this proposed idea is 

complex due to the exhaustive search and analysis process of the results. To support 

the AMD methodology with some automatic search mechanism, an automatic 

classifier selection methodology is required. This automatic selection of suitable 

classifier, for building a data mining application for a user’s problem in-hand, is one 

of the most important tasks in machine learning applications development since the 

applied algorithm (classifier) has great impact on the overall performances of the 

resulting classifier. However, this automatic selection of classifier is a challenging 

task in computer science, because the algorithms exploit the structure of the input 

data problem under consideration. This makes the problem of algorithm selection as 
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a domain and application dependent task that requires knowing the characteristics of 

data and the objective of the user. Thus the automatic algorithm selection task is 

basically a three-fold process model, as described below. 

(i) Definition of the application specific goal and objectives by the user of 

the algorithm for his learning problem 

(ii) Determining a representative suitable set of characteristics of the 

available data in the form of aggregated global features, also termed as 

meta-features 

(iii) Designing an efficient and accurate integration method to correctly map 

the user goal and characteristics of data and hence recommend right 

algorithm for the given data 

The goal is the meta-characteristic(s) of the classifiers in which the user is interested, 

e.g., the selected algorithm should be accurate and consistent as compared to the 

candidate list of algorithms. Chapter 5 has discussed this issue of determining the 

goal and analyzing the algorithms performances based on that goal using multi-

criteria decision. The characteristics are meta-features of the dataset that represents 

different behaviors of the data. Each dataset can be viewed as multi-dimensional 

based on type of characteristic they own. The integration of these meta-features or 

characteristic of the data with the goal of the user can be represented by building a 

meta-learning model. The rest of the chapter describes the whole process of analyzing 

the classifier performance based on the user’s goal, extracting suitable set of meta-

features, building a Case-Base for case-based reasoning (CBR) methodology and 

recommending classifier for a new dataset. 

In this chapter, we are presenting the idea of automatic classifier selection using CBR-

based meta-learning methodology that automatically selects a right decision tree 

classifier from a set of nine candidate classifiers implemented in Weka library. 

5.1.1. Key Contributions 
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As discussed in Chapter 3, a large number of methods, models, frameworks and 

methodologies have been proposed for automatic algorithms selections, however they 

have their limitations that have been analyzed in Chapter 3. The key contributions 

made through the proposed CBR-based meta-learning approach are enlisted below. 

(i) Proposed a flexible and incremental meta-learning and reasoning based 

framework using CBR-based methodology integrated with multi-

criteria decision making, for classifier evaluation, and data 

characterization using multi-view meta-features extraction.  

(ii) A new multi-metrics criteria is proposed for the evaluation of decision 

tree classifiers to select the best classifier as class label for the cases in 

training dataset (i.e., resolved cases in the proposed CBR methodology). 

Classifiers are analyzed based on their predictive accuracy and standard 

deviation, called consistency to select the best classifier as class-label. 

(iii) The idea of multi-view learning is proposed to learn the data from 

multiple perspectives, with each perspective representing a set of similar 

meta-features that reflects one kind of behaviors of the data. Each set of 

features is called a family that forms a view of dataset.  

(iv) Proposed a multi-level multi-view meta-reasoning methodology with a 

flexible and incremental learning model integrating CBR with the 

classifiers conflict resolving (CCR) method to accurately recommend 

the most similar case as the suggested classifiers for a given new dataset. 

For the CBR retrieval phase, accurate similarity matching functions are 

defined, while for the CCR method, weighted sum score and AMD 

method (presented in Chapter 4) are proposed.  

5.2. CBR-based Meta-learning and Reasoning (CBR-MLR) 

Framework 

In this section, the architectural view of the proposed framework, shown in Figure 

5.1, is focused and each module is described with the rationales behind its use in the 

framework. This framework is motivated from the Rice framework [146] initially 
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designed for the algorithm selection problem based on the data and algorithm 

characterization.  

5.2.1. Definition of Algorithm Selection Problem 

Based on the Rice model [146], given a problem p as input, a set of candidate decision 

tree classifiers A that can learn the same p with different performance Y, find and 

select a decision tree classifier a ϵ A that can learn p with best possible performance. 

Now, we formally define the algorithm selection problem and introduce notation that 

we will use throughout this paper. Let P denotes a set of historical problems (i.e., 

classification datasets; in this case) with F as the features vector for representing the 

meta-features of each problem p ϵ P and A is a set of classification algorithms that 

can solve P with some performance Y. 

5.2.2. Architecture of CBR-MLR Framework 

An abstract architecture of the proposed CBR- MLR framework is shown in Figure 

5.1. As outlined in the overview, the problem of algorithm selection is a decision 

making problem with three main processes, the corresponding framework also 

consists of three modules. These includes: 

(i) Dataset and classifiers characterization (DCC) 

(ii) Algorithms selection model creation 

(iii) Multi-level Multi-view Meta-reasoning (MlvMr) 
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Figure 5.1. CBR-based meta-learning and reasoning framwork for classifier selection 

 

In the high level abstracted view (Figure 5.1), the proposed framework for the 

automatic classifier selection based on multi-view meta-learning consists of two main 

phases, offline phase and online phase, as described below. 

5.2.2.1. Offline Phase: Creation of Classifier Selection Model 

This is the offline phase of the process of automatic classifier selection, where a 

model is developed that works as a knowledge model for real-world recommendation 

of a suitable classifier for a given new learning problem. It further consists of datasets 

and classifiers characterization and model creation processes, as described below.  

 Datasets and Classifiers Characterization (DCC): is the process of 

characterizing historical data problems 𝑃 and classifiers 𝐴 and mapping them 

against each other in way that the best classifier 𝑎 is assigned the feature 

vector 𝐹. This produces resolved cases/instances for training purpose that are 

used in later step of model creation. This component is responsible for 
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extraction of meta-features 𝐹 for each dataset 𝑑 and relating/aligning the 

feature vector against the best classifier 𝑎 ∈ 𝐴. The best classifier 𝑎 in this 

case is computed using the multi-criteria decision making methodology (see 

Chapter 4), utilizing predictive accuracy and consistency measures from the 

classifiers performance space 𝑌. In the data characterization process, 

different meta-features, belonging to different families, such as simple 

statistical, advanced statistical and information theoretic, are extracted to 

enable multi-view learning for best classifier selection from multiple 

perspectives. 

 Model Creation: is the process of building classifiers selection model from 

the training instances produced by the DCC as output. Each training instance 

is a resolved case with meta-features as the problem description part and the 

best applicable classifier as the solution part or class label. This model can 

be created using different machine learning algorithms, however it is very 

hard to build such model using traditional learning methods due to the small 

number of training instances. To overcome this issue, we adopt the traditional 

CBR model with some enhancements in the case base creation and retrieval 

phases. In the proposed framework, output of the model creation is a case 

base of resolved cases that will be used in the online phase for real-world 

recommendation of right classifier for a given new dataset. 

5.2.2.2. Online Phase: CBR-based Multi-level Multi-view Meta-Reasoning 
(CBR-MlvMr) 

This is the online phase of the process of automatic classifier selection, where a 

suitable classifier is recommended to the end user for his given new dataset. It further 

consists of meta-features extraction of the new dataset, application of the standard 

CBR methodology for selecting top-k similar cases from the case base (created 

model: case base) and resolving the conflict, if more than 1 similar classifiers are 

recommended by the CBR methodology. The detail are described as follows.  

 New Case Preparation (Multi-view Meta-features Extraction): To 

recommend a classifier for a new dataset, first an un-resolved case, consisting 
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only feature vector, is prepared. For this purpose the same dataset 

characterization mechanism is used as described in the offline phase. 

Multiple families of meta-features, such as simple statistical, advanced 

statistical and information theoretic features are extracted in which each 

group represents a different view of the dataset. This makes the process of 

algorithm selection as a multi-view learning process. 

 CBR-based Multi-views Meta-reasoning: to recommend most suitable top-

k classifiers for a new learning problem, represented as a multi-view meta-

features case, a customized-CBR methodology with the retrieve, reuse and 

retain steps is used. Accurate local and global similarity functions are defined 

that search the algorithm selection model (i.e., the case base of the resolved 

case) and returns top-k (with k=3) similar classifiers. If no classifier is the 

winner among k=3, then the classifiers conflict resolver step is activated prior 

to retain step to enable multi-level meta-reasoning. 

 Multi-level Meta-reasoning (Classifiers Conflict Resolver): is enabled 

when the first level, CBR, reasoning recommends classifiers with similar 

performance score. At this second level of meta-reasoning, the classifiers 

meta-characteristics are used rather than the data characteristics to break the 

tie with a best decision. A weighted sum aggregate score computation criteria 

is proposed that consumes the classifiers characteristics, such as decision tree 

length, number of rules, depth etc., as input and returns an aggregate score to 

rank the tie classifier. The classifier with highest rank is selected and 

suggested to the end user for building his/her data mining application. 

 Retain New Case (Incremental/Evolutionary Learning): is used to add the 

meta-features vector along with the recommended classifier as a new 

resolved case to the case base to improve quality of the system for future 

recommendations. One of the rationales behind the use of CBR-based 

methodology for classifier selection is the ability of CBR system to 

incrementally learn the domain and improve quality of the model with 

passage of time. 
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5.2.3. Methods of CBR-MLR Based Classifier Selection 

This section describes the methods used in each step or module of the proposed CBR-

MLR framework. 

5.2.3.1. Multi-view Data Characterization - Meta-Features Extraction 

To design an accurate classifier, the selection of a best classifier is required. As 

described earlier, the selection of a best classifier is a multi-factors problem, where 

multiple parameters need to be considered.  For example, how the classifier produce 

results, measured using various performance evaluation metrics? How the 

performance is affected by the nature of the data, which can be described in terms of 

data characteristics. The performance of classifiers varies from data to data. If the 

characteristics of data are accurately mapped against the performance of classifiers, 

it will help in understanding the relations of data to classifiers and ultimately will 

assist in the selection of a best classifier for a problem in hand. These characteristics 

of the data are termed as meta-features and the resulting model is called meta-learning 

model. Each dataset can be represented as a set of meta-features, grouped into various 

families, representing a different view of the dataset. A multi-view analysis of the 

dataset during classifier selection process enables the resulting model to best map the 

data, using all its characteristics, against the best classifier. The general concept of 

multi-view data characterization for classifier selection is shown in Figure 5.2. 

 

Figure 5.2. Multi-view representation of classification dataset based on meta-characteristics 
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In state-of-the-art meta-learning methods for algorithm selection, the analysis or 

automatic algorithm selection model creation is based on various single view meta-

features, which then recommends algorithms by considering only those specific 

features of the model for each given new dataset.  A few examples of such views are 

statistical, information theoretic, complexity, landmarking and model-based [21] 

[40], that have been analyzed in Chapter 3. In this study, we propose a new multi-

view meta-features based classifier selection model utilizing twenty nine 

characteristics from the general, basic statistical, advanced statistical and information 

theoretic views of the different available views of characteristics, as shown in Tables 

5.1-5.4.   

Table 5.1. General view (meta-characteristics) of classification dataset 

Meta-Feature ID Description  

General 1 InstanceCount 

General 2 NumAttributes 

General 3 ClassCount 

General 4 NumBinaryAtts 

General 5 NumNominalAtts 

General 6 NumNumericAtts 

General 7 NumMissingValues 

Basic view consists of simple measurements or general data characteristics of the 

dataset and are computed for the whole dataset, representing a global view using the 

aggregated values.  

Table 5.2. Basic statistical view (meta-characteristics) of classification dataset 

Meta-Feature ID Description  

Basic. Statistic 1 PercentageOfBinaryAtts 

Basic. Statistic 2 PercentageOfNominalAtts 

Basic. Statistic 3 PercentageOfNumericAtts 

Basic. Statistic 4 MeanSkewnessOfNumericAtts 

Basic. Statistic 5 MeanKurtosisOfNumericAtts 

Basic. Statistic 6 Dimensionality 

The basic statistical view consists of measurements representing the statistics 

regarding the dimensionality and ratios of different kinds of attributes in the dataset. 
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Table 5.3. Advanced statistical view (meta-characteristics) of classification dataset 

Meta-Feature ID Description 

Advanced Statistic 1 MeanStdDevOfNumericAtts 

Advanced Statistic 2 MeanMeansOfNumericAtts 

Advanced Statistic 3 NegativePercentage 

Advanced Statistic 4 PositivePercentage 

Advanced Statistic 5 DefaultAccuracy 

Advanced Statistic 6 IncompleteInstanceCount 

Advanced Statistic 7 PercentageOfMissingValues 

Advanced Statistic 8 MinNominalAttDistinctValues 

Advanced Statistic 9 MaxNominalAttDistinctValues 

Advanced Statistic 10 StdvNominalAttDistinctValues 

Advanced Statistic 11 MeanNominalAttDistinctValues 

Table 5.4. Information theoritics view (meta-characteristics) of classification dataset 

Meta-Feature ID Description 

InfTheory 1 ClassEntropy 

InfTheory 2 MeanAttributeEntropy 

InfTheory 3 MeanMutualInformation 

InfTheory 4 EquivalentNumberOfAtts 

InfTheory 5 NoiseToSignalRatio 

Every dataset is a combination of continuous and symbolic data features, therefore to 

best analyze the data for algorithm selection, the set of symbolic meta-features are 

also extracted, which are collectively termed as information-theoretic features. These 

features are based on the entropy that measures the purity level of the data with 

respect to the class label. 

The rationales behind the selection of only these three views of meta-features are: (i) 

they are the global features representing every kind of classification data and (ii) can 

easily be computed on the fly to support building real-world application development 

for data mining application. These meta-features are computed using OpenML [134] 

data characteristics (DC) open source library, available on GitHub [147]. 
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5.2.3.2. Multi-view Classifiers Characterization – Multi-criteria Performance 
Analysis 

In the proposed study, the classifiers performance analysis process is designed to 

determine best performance classifier amongst the candidate classifiers and make it 

class label of the resolved case, in the case base/training dataset. The AMD 

methodology, described in Chapter 4, is used to perform this analysis. The 

performance results, for each dataset (p), are generated using the candidate set of 

classifiers (A) with a standard setting of 10x10-fold cross validation in Weka 

experimenter environment [122]. In this study, we used nine decision tree classifiers, 

implemented in Weka library, with their default parameters. Table 5.5 shows the list 

of these classifiers. 

Table 5.5. List of Decision Tree classifiers from Weka library 

Decision Tree Classifier ID Name of Decision Tree Classifier 

DT1 trees.BFTree 

DT2 trees.FT 

DT3 trees.J48 

DT4 trees.J48graft 

DT5 trees.LADTree 

DT6 trees.RandomForest 

DT7 trees.RandomTree 

DT8 trees.REPTree 

DT9 trees.SimpleCart 

In each experiment, on each dataset (p), results are generated by all the classifiers (A) 

mentioned in Table 5.5. The results are stored into Performance Matrix. To 

determine, the applicable (best) classifier for the dataset (p) under consideration, we 

use performance metrics, predictive accuracy, measured in terms of Wgt.Avg.F-score 

and standard deviation (Stdev) in a sequential manner. Prior to this analysis, we use 

statistical significance test with significance level 0.05 to filter out those classifiers 

which are statically insignificant with 0.05 level of significance. The algorithm 

procedure used for this process is pictorially shown in Figure 5.3. 

.   
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Figure 5.3. Multi-criteria based classifiers perfromance evaluation method 

 

In figure 5.3, the processes of applicable classifier(s) identification is sequentially 

shown following the steps as described below.   
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(i) Performance matrix is computed using 10x10-fold cross validation 

(ii) Statistical significance test is performed to filter out insignificant classifiers 

and reduce the algorithms space from A to A’ 

(iii) Applicable classifier is determined form the list A’ using the maximum 

Wgt.Avg.F-score sorting function. If   more than one classifiers have same  

Wgt.Avg.F-score, step (iv) is used 

(iv) Applicable classifier is determined using the minimum Stdev function. If   

more than one classifiers have same  Stdev values, step (v) is used 

(v) Multiple applicable classifiers (A’’) are available from the same dataset, 

based on the considered performance metrics Wgt.Avg.F-score and Stdev 

only.  

For further conflict resolution amongst these classifiers, other criteria can be used. 

However, in this study, we build the case-base only on these two metrics and use 

additional conflict resolution criteria at the later stage of online recommendation of 

best classifier for a given new dataset. For this purpose, i.e., conflict resolution 

amongst similar classifiers, the characterization of classifier is done from another 

view as well, where the characteristics of classifiers comprehensibility and 

interpretability are exploited (See reasoning section). 

5.2.3.3. Model Creation – Feature-vector (Propositional) Representation 

Once the dataset and classifiers are characterized, as described in previous sections, 

they are aligned with each other, i.e., applicable classifier(s) are assigned to the set of 

meta-features (e.g., 𝐹 → 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑠) using a simple alignment 

function to produce one single instance of training dataset. The mapping of features 

versus classifiers forms resolved cases for a CBR classifier. We adapt, propositional 

case representation schemes [148], where a case is represented as a proposition 

containing key-value pair format. In our proposed algorithm selection scenario, a case 

contains data characteristic (i.e., extracted meta-features) as problem description and 

applicable algorithm name as solution description. A generic structure of our 

proposed case-base, using feature-vector representation, is shown in Figure 5.6. 
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Table 5.6. Case-base structure and feature-vector representation of resolved cases  

Problem or Dataset Description/Characterization 
Classifier 

Characterization 

Case-

ID 

Meta-

Feature 1 

Meta-

Feature 2 
 … 

Meta-

Feature 29 

Applicable-

Classifier 

1 MFv1 MFv1  … MFv29 Classifier1  

2 MFv1 MFv1  … MFv29 Classifier1  

… … …  … … … 

100 MFv1 MFv1  … MFv29 Classifier3  

*MFvi: represents meta-feature value for the ith meta-feature in the Case-Base  

The meta-features 1-29, shown in Table 5.6, are the multiple views of data 

characteristics given in Tables 5.1-5.4. Similarly, the Applicable-classifier (last 

column) is the label of one or more, best decision tree classifier(s), from Table 5.5, 

determined using the methodology described in Figure 5.3. The size of the case-base 

is 100 resolved cases , authored from 100 freely available classification datasets from 

UCI [115] and OpenML [134] machine learning repositories. The descriptions of 

these datasets is given in Table 5.7. 

Table 5.7. Datasets used in Case-Base creation with their breif descriptions  

ID Dataset Name 

General Characteristics 
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1 abalone.arff 9 1 7 0 3 0 4177 0 

2 abe_148.arff 6 0 5 0 2 0 66 0 

3 acute-inflammations.arff 7 5 1 5 2 0 120 0 

4 ada_agnostic.arff 49 0 48 0 2 0 4562 0 

5 ada_prior.arff 15 8 6 1 2 88 4562 88 

6 adult- 4000.arff 15 8 6 1 2 0 3983 0 

7 adult- 80000.arff 15 8 6 1 2 0 8000 0 

8 ailerons - 5840.arff 41 0 40 0 2 0 5795 0 

9 analcatdata_aids.arff 5 2 2 0 2 0 50 0 

10 analcatdata_apnea1.arff 4 2 1 0 2 0 475 0 

11 analcatdata_apnea2.arff 4 2 1 0 2 0 475 0 
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ID Dataset Name 

General Characteristics 
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12 analcatdata_asbestos_ciupdated 4 2 1 1 2 0 83 0 

13 analcatdata_authorship.arff 71 0 70 0 4 0 841 0 

14 analcatdata_bankruptcy.arff 7 1 5 0 2 0 50 0 

15 analcatdata_birthday.arff 4 2 1 0 2 30 365 30 

16 analcatdata_bondrate.arff 12 7 4 1 5 1 57 1 

17 analcatdata_boxing1.arff 4 3 0 1 2 0 120 0 

18 analcatdata_boxing2.arff 4 3 0 1 2 0 132 0 

19 analcatdata_braziltourism.arff 9 4 4 1 7 49 412 96 

20 analcatdata_broadway.arff 10 6 3 1 5 6 95 9 

21 analcatdata_broadwaymult.arff 8 4 3 1 7 18 285 27 

22 analcatdata_chall101.arff 3 1 1 0 2 0 138 0 

23 analcatdata_challenger.arff 6 4 1 0 2 0 23 0 

24 analcatdata_chlamydia.arff 4 3 0 1 2 0 100 0 

25 analcatdata_creditscore.arff 7 3 3 2 2 0 100 0 

26 analcatdata_currency.arff 4 2 1 0 7 0 31 0 

27 analcatdata_cyyoung8092.arff 11 3 7 2 2 0 97 0 

28 analcatdata_cyyoung9302.arff 11 4 6 2 2 0 92 0 

29 analcatdata_dmft.arff 5 4 0 1 6 0 797 0 

30 analcatdata_donner.arff 4 3 0 1 2 0 28 0 

31 analcatdata_draft.arff 6 2 3 0 2 1 366 1 

32 analcatdata_election2000.arff 16 1 14 0 2 0 67 0 

33 analcatdata_esr.arff 3 0 2 0 2 0 32 0 

34 analcatdata_famufsu.arff 4 2 1 0 2 0 14 0 

35 analcatdata_fraud.arff 12 11 0 10 2 0 42 0 

36 analcatdata_germangss.arff 6 4 1 2 4 0 400 0 

37 analcatdata_gsssexsurvey.arff 10 5 4 5 5 6 159 6 

38 analcatdata_gviolence.arff 10 1 8 0 2 0 74 0 

39 analcatdata_halloffame.arff 18 2 15 0 3 20 1340 20 

40 analcatdata_happiness.arff 4 2 1 0 3 0 60 0 

41 analcatdata_homerun.arff 28 14 13 7 2 1 163 9 

42 analcatdata_impeach.arff 11 8 2 4 2 0 100 0 

43 analcatdata_japansolvent.arff 10 1 8 0 2 0 52 0 

44 analcatdata_lawsuit.arff 5 1 3 1 2 0 264 0 

45 analcatdata_marketing.arff 33 32 0 0 5 35 347 79 

46 analcatdata_michiganacc.arff 5 2 2 0 2 0 108 0 

47 analcatdata_ncaa.arff 20 15 4 1 2 0 120 0 

48 analcatdata_neavote.arff 4 2 1 0 2 0 100 0 

49 analcatdata_negotiation.arff 6 1 4 1 2 17 92 26 

50 analcatdata_olympic2000.arff 13 1 11 0 2 0 66 0 
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ID Dataset Name 

General Characteristics 
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51 analcatdata_reviewer.arff 9 8 0 0 2 367 379 1368 

52 analcatdata_runshoes.arff 11 6 4 5 2 14 60 14 

53 analcatdata_supreme.arff 8 0 7 0 2 0 4052 0 

54 analcatdata_uktrainacc.arff 17 0 16 0 2 25 31 150 

55 analcatdata_votesurvey.arff 5 1 3 1 4 0 48 0 

56 analcatdata_whale.arff 8 1 6 1 2 5 228 15 

57 analcatdata_wildcat.arff 6 2 3 2 2 0 163 0 

58 anneal.arff 39 32 6 14 6 0 898 0 

59 anneal.ORIG.arff 39 32 6 7 6 898 898 22175 

60 appendicitis.arff 8 0 7 0 2 0 106 0 

61 ar1.arff 30 0 29 0 2 0 121 0 

62 ar3.arff 30 0 29 0 2 0 63 0 

63 ar4.arff 30 0 29 0 2 0 107 0 

64 ar5.arff 30 0 29 0 2 0 36 0 

65 arsenic-female-bladder.arff 5 1 3 0 2 0 559 0 

66 arsenic-female-lung.arff 5 1 3 0 2 0 559 0 

67 arsenic-male-bladder.arff 5 1 3 0 2 0 559 0 

68 arsenic-male-lung.arff 5 1 3 0 2 0 559 0 

69 
audiology (binary version of 

audiology).arff 
70 69 0 61 2 222 226 317 

70 australian.arff.arff 15 0 14 0 2 0 690 0 

71 automobile.arff 26 10 15 3 6 0 159 0 

72 autoMpg.arff 8 3 4 0 2 6 398 6 

73 autos.arff 26 10 15 4 7 46 205 59 

74 autoUniv-au6-1000.arff 41 3 37 2 8 0 1000 0 

75 autoUniv-au7-1100.arff 13 4 8 2 5 0 1100 0 

76 autoUniv-au7-700.arff 13 4 8 2 3 0 700 0 

77 backache.arff 33 26 6 22 2 0 180 0 

78 badges2.arff 12 3 8 3 2 0 294 0 

79 balance-scale.arff 5 0 4 0 3 0 625 0 

80 balloon.arff 3 0 2 0 2 0 2001 0 

81 banana.arff 3 0 2 0 2 0 5300 0 

82 bands.arff 20 0 19 0 2 0 365 0 

83 bank32nh - 1956.arff 33 0 32 0 2 0 1918 0 

84 bank8FM.arff 9 0 8 0 2 0 8192 0 

85 banknote-authentication.arff 5 0 4 0 2 0 1372 0 

86 baskball.arff 5 0 4 0 2 0 96 0 

87 BC-breast-cancer-data.arff 10 9 0 3 2 9 286 9 

88 biomed.arff 9 1 7 0 2 15 209 15 
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ID Dataset Name 

General Characteristics 
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89 blogger.arff 6 5 0 2 2 0 100 0 

90 
blood-transfusion-service-

center.arff.arff 
5 0 4 0 2 0 748 0 

91 bodyfat.arff 15 0 14 0 2 0 252 0 

92 bolts.arff 8 0 7 0 2 0 40 0 

93 boston.arff 14 2 11 1 2 0 506 0 

94 boston_corrected.arff 21 3 17 1 2 0 506 0 

95 breast-cancer.arff 10 9 0 3 2 9 286 9 

96 breastTumor.arff 10 8 1 4 2 9 286 9 

97 bridges_version1.arff 13 9 3 2 6 37 107 73 

98 bridges_version2.arff 13 12 0 2 6 37 107 73 

99 bupa.arff 7 0 6 0 2 0 345 0 

100 car.arff 7 6 0 0 4 0 1728 0 

In the proposed Case-Base, all the features are real numbers, therefore their data types 

are set to numeric.  

5.2.3.4. CBR-based Multi-level Multi-views Meta-reasoning (CBR-MlvMr) 

The final output of the model creation is a labelled dataset, called Case-Base (in this 

scenario), that contains meta-characteristic of the datasets and classifiers. This Case-

Base can equally likely be learned using any supervised machine learning algorithm 

to produce the corresponding meta-learning based classifier selection model. 

However, the problem of classifier selection is an estimation problem, where the 

algorithms performances, over datasets, are estimated rather than providing a cutting-

edge solution, as looked in state-of-the-art methods for algorithms selection. This 

problem can be viewed as a multi-dimensional analysis of the data and classifiers 

characteristics and the estimation of a similar solution can best predict a suitable 

classifier for a given new learning problem. Keeping in view all these aspects, we 

adopt standard CBR as our meta-learner and reasoner and enhance its classical 

methodological steps by introducing accurate similarity functions along with its 

multi-level integration with a new reasoner to improve its final output and 

recommend a right classifier. Furthermore, the incremental learning capability of the 
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CBR methodology is exploited to improve the algorithms selection model (Case-Base 

in this case). The CBR-MlvMr methodology works as follows. 

New Case Preparation: A Query Case (𝑄) is prepared from a given new dataset using 

the meta-feature extractor. 

CBR-based Multi-views Meta-reasoning (CBR-MvMr): The CBR methodological 

steps including retrieve, reuse and retain are used in sequential order if the finally 

resolved case is unique, otherwise the retain step is preceded by CCR method.  

 In the retrieve step, similarity functions are defined for matching the meta-

features of query case against the resolved cases 𝑅 in Case-Base and retrieving 

top-k cases as the suggested solutions. For individual meta-features similarity 

matching, the local similarity function, shown in equation 1, is defined, while for 

matching the whole new case with the existing resolved case 𝑅 in Case-Base, a 

global function, shown in equation 2, is defined. 

Siml(nCmfi
,  eCmfi

) = idealSimmfi
−

dl(nCmfi
,  eCmfi

)

dg(Maxmfi
,  Minmfi

)
 (1) 

where, 𝐢𝐝𝐞𝐚𝐥𝐒𝐢𝐦mf𝐢
=1 & 𝐝𝐠(𝐌𝐚𝐱mf𝐢

,  𝐌𝐢𝐧mf𝐢
) is the global interval or range of the 

values of each continuous value meta-feature. Similarly, 𝐧𝐂mf𝐢
 represents meta-

feature of new case and  𝐞𝐂mf𝐢
 represents meta-feature of existing case. 

Simg(nC,  eC)

=
∝1∗  Siml(nCmfi

,  eCmfi
) + ⋯ +∝n∗  Siml(nCmfn

,  eCmfn
)

∝1+∝2+ ⋯ +∝n
 

(2) 

where, ∝𝒊 is the weight value of each 𝐦𝐟𝐢 in the Case-Base and we assigned equal 

weight value to each meta-features, based on the assumption made that all the 

29 meta-features are equally important for selecting a right classifier. 
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 In the reuse step, the solution part, i.e., the label of applicable classifier, of the 

top-k similar cases are assigned to the problem description part of the new case 

as a suggested solution (recommended classifier in this case). 

This process of retrieve and reuse are described in Algorithm 1. 

Algorithm 1. CBR-based multi-views meta-reasoning (CBR-MvMr) process for generating top-

k cases 

Begin 

inputs:  𝐐 – //the queryCase, built from extracted meta features 

𝐑 − {r1, r2, … , rn}; // case base e.g. all previously resolved cases 

𝐊 − // int, number of CBR cases to return 

output:  𝐂 − {c1, c2, … , ck}; // Collection of  top-k most similar CBR Cases 

1 I = 𝐜𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞𝐒𝐢𝐦𝐢𝐥𝐚𝐫𝐢𝐭𝐲𝐈𝐧𝐭𝐞𝐫𝐯𝐚𝐥𝐬 () // Calculates similarity interval, weight  for 

each feature 

2 S = 𝐛𝐮𝐢𝐥𝐝𝐍𝐍𝐂𝐨𝐧𝐟𝐢𝐠(𝐈) //. procedure : builds and returns NN similarity config 

3 𝐑𝐑 =  𝐞𝐯𝐚𝐥𝐮𝐚𝐭𝐞𝐒𝐢𝐦𝐢𝐥𝐚𝐫𝐢𝐭𝐲(𝐑, 𝐐, 𝐒) // procedure defined below 

4 C = 𝐬𝐞𝐥𝐞𝐜𝐭𝐓𝐨𝐩𝐊(𝐑𝐑, 𝐊) //Select top K CBR cases from RR 

 

End 

PROCEDURE: 𝐛𝐮𝐢𝐥𝐝𝐍𝐍𝐂𝐨𝐧𝐟𝐢𝐠(𝐈)  

Begin 

inputs:   I−{i1, i2, … , in};  //Similarity Intervals, i denotes an interval for specific 

feature, where i ∈ I 

output:  𝐬𝐢𝐦𝐢𝐥𝐚𝐫𝐢𝐭𝐲𝐂𝐨𝐧𝐟𝐢𝐠 // returns NN similarity configuration, 

1. simConfig = new NNConfig(); // initialize similarity configuration 

2. simConfig.setDescriptionSimFunction(global.average) //Global similarity function, 

see eq. 2 

3. 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 SimilarityInterval 𝐢 in 𝐈  

4.         simConfig.addMapping(i.getFeature, interval(i.getInterval))//interval local  

similarity function, see eq. 1 

5.         simConfig.setWeight(i.getFeature, i.getWeight)  

6. return simConfig 

 

  End 

PROCEDURE:  𝐞𝐯𝐚𝐥𝐮𝐚𝐭𝐞𝐒𝐢𝐦𝐢𝐥𝐚𝐫𝐢𝐭𝐲(𝐑, 𝐐, 𝐒)  

Begin 
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inputs:  𝐐 – //the queryCase, built from extracted meta features 

𝐑 − {r1, r2, … , rn}; // case base e.g. all previously resolved cases 

𝐒 − // NN similarity configuration 

output: 𝐑𝐞𝐭𝐫𝐢𝐞𝐯𝐚𝐥𝐑𝐞𝐬𝐮𝐥𝐭𝐬 ∶ 𝐑𝐑 

Description: evaluates similarity of each ci where ci ∈ C against this queryCase Q 

using similarity function mapped in NN similarityConfig S, and returns a collection of 

retrievalResults RR 

return RR 

  End 

 

DESCRIPTIONS OF THE PROCEDURES 

i. CalculateSimilarityIntervals: This procedure loops through all meta-

features, calculates interval value and defines weight for each of feature. The 

interval value is computed using 𝐝𝐠(𝐌𝐚𝐱mf𝐢
,  𝐌𝐢𝐧mf𝐢

), while the weight 

assigned to each meta-feature is same, i.e., 1. 

ii. BuildNNConfig(I): This procedure performs the main task of finding nearest 

neighbor computation. The set of tasks performed using this procedure are: 

a. Initialize NNConfig 

b. set global similarity function, see eq. 2 

c. Map a local similarity function with each feature, see eq. 1 

d. Set weight for each feature, i.e., assign 1 to each feature in this case 

e. Return NNConfig 

iii. evaluateSimilarity(𝑹, 𝑸, 𝑺): evaluates similarity of each 𝑐𝑖 where 𝑐𝑖 ∈ C 

against the queryCase Q using similarity function mapped in NN 

similarityConfig S, and returns a collection of retrievalResults RR (most 

similar cases) 

iv. selectTopK(RR, K): this procedure Selects top K most similar CBR cases 

from the collection of retrievalResult RR 

 In the retain step, the recommended solution is added to the Case-Base. The Case-

Base grows in size and improves quality of the algorithm recommendation model. 
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Classifiers Conflict Resolver:  is enabled when the first level, CBR, reasoning 

recommends classifiers with similar performance score. At this second level of meta-

reasoning, the classifiers meta-characteristics are used rather than the data 

characteristics to break the tie with a best decision. One of the criteria to select best 

of the best accurate and consistent classifiers (suggested by CBR-MvMr), is to use 

comprehensibility criteria. However, comprehensibility is a debatable concept and 

there is no universally acceptable criteria to quantify it, due to its nature of 

subjectivity and domain specificity. In the proposed study, we characterize the 

classifiers using the characteristics shown in Table 5.8, which can be used to measure 

comprehensibility of the decision tree (DT) classifiers. 

Table 5.8. Decision Tree classifiers characterization  

ID 
DT Classifier Comprehensibility 
Characteristics 

1 measureNumRules 

2 measurePercentAttsUsedByDT 

3 measureTreeSize 

4 measureNumLeaves 

5 measureNumPredictionLeaves 

The comprehensibility indirectly describes interpretability and understandability of 

the decision trees model, which are self–explanatory, by  non-experts to grasp the 

knowledge represented in the model [149]. In state-of-the-art methods, the 

comprehensibility is evaluated using the size characteristic of the model, i.e., decision 

tree size [150], however it has a number of issues as described in [151]. In some of 

the domain applications, e.g., bioinformatics a larger tree size is favored by 

physicians rather than smaller size as in business application, etc. Similarly, there is 

always accuracy-comprehensibility-complexity trade-off, which means if one is 

increased the other is decreased. To overcome this issue, a multi-objective criteria 

need to be defined, to provide an optimum solution for the final comprehensible 

classifier selection. In this thesis, the following solutions are recommended.  

(i) Define an aggregate weighted sum criteria 
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(ii) Use multi-criteria decision making methodology, AMD (presented in 

Chapter 4) 

As this conflict resolution is application dependent, therefore a semi-automatic 

expert-oriented criteria setting is required to add the required characteristics of the 

classifiers to form the criteria and their corresponding weight to compute the final 

preference score for each conflicting classifier. The aggregate scores are ranked for 

the conflicting classifiers and the one with top-rank is finally recommended to the 

end user for building his application. 

5.2.4. Implementation, experiments and evaluation 

5.2.4.1. Implementation 

The proposed meta-learning and reasoning methodology for accurate classifier 

selection is implemented in Java environment as an Open source application. The key 

components of the methodology are the extraction of meta-features from the dataset 

and performing meta-reasoning by exploiting a Case-Base. These meta-features are 

computed using OpenML [134] data characteristics (DC) open source library, freely 

available on GitHub [147]. For the CBR-based reasoning process, jCollibri 2.0, a 

case-based reasoning framework [152],  is used where we implemented our own case 

similarity functions for accurate matching of the existing cases. The resulting CBR-

based meta-learning and reasoning system is released as an Open Source application 

on GitHub with an extensible and adoptable implementation strategy to enable end  

[153] users to use it for selecting a suitable decision tree classifier for their 

applications data. The interface of CBR-MLR application for meta-features 

extraction is shown in Figure 5.4. 
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Figure 5.4. Meta-features extraction got new case creation  

 

The process of meta-learning based multi-view reasoning using CBR is shown in 

Figure 5.5. 

 

Figure 5.5. CBR-based reasoning for best classifier selection  

5.2.4.2. Experimental Setup 

a. Classifiers used 
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We performed the experiments on 09 most commonly used multi-class classification 

algorithms, shown in Table 5.5, which are implemented in Weka machine learning 

library [122]. These algorithms belong to the decision tree family of classifiers and 

we have used them with their default parameters.  

b. Training and testing datasets 

For training and testing the proposed methodology, two disjoint set of datasets are 

used. For training, the CBR model, i.e., Case-Base, is built using 100 multi-class 

classification datasets3, shown in Table 5.7, taken from UCI machine learning 

repository [115] and OpenML repositories [134], are used. Similarity, a 52 datasets 

disjoint set is used for testing the methodology. All the classifier of Table 5.5 are 

evaluated for each of the test dataset, using the method described in Figure 5.3, and 

the actual best classifiers are determined later on to see the performance of our 

proposed methodology.  

5.2.4.3. Evaluation methodology and criteria 

To evaluate the accuracy of the proposed method, the follows steps are used. 

i. For each given dataset (test datasets in this case), meta-features are extracted 

using the developed meta-feature extractor to prepare a Query Case (Q). 

ii. CBR-MvMr methodology is used to recommend top-k (k=3) best classifiers 

for each Q. 

iii. Measure the similarity of the recommended top-k (k=3) classifiers to the 

actual classifiers of those datasets. If the recommended classifier for a given 

dataset belongs to any of the top-k (k=3) classifiers, the recommendation is 

declared as correct, otherwise incorrect. 

                                                           
3 Some of the datasets are used with minor modifications by changing the type of the class 

label to nominal etc. 
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5.2.4.4. Experiments and analysis of the results 

When experiments on the test Case-Base of 52 datasets are performed and the results 

were evaluated, 48 out of 52 datasets were recommended with accurate classifiers. 

Hence, the overall accuracy of the proposed methodology was found as 

48*100/52=94% for the correct classifiers recommendations in top k=3 actual 

classifiers. 

Table 5.9. Results of meta-learning based method for decision tree classifier selection 

Dataset ID Dataset Name 

Position of Recommended 

Classifier in Top-3 Actual 

Classifiers 

d1 cardiotocographt-10clas 1 

d2 cars 1 

d3 cars_with_names 2 

d4 CastMetal1 1 

d5 chess-small 1 

d6 cholesterol 1 

d7 chscase-adopt 3 

d8 chscase-census2 3 

d9 chscase-census3 2 

d10 chscase-census5 1 

d11 chscase-census6 2 

d12 chscase-funds 1 

d13 chscase-geyser1 1 

d14 hscase-health 1 

d15 chscase-vine1 1 

d16 chscase-vine2 3 

d17 chscase-whale 1 

d18 cjs 1 

d19 cleveland 1 

d20 climate-simulation-crac 3 

d21 cloud 3 

d22 cm1_req 1 

d23 cmc 1 

d24 horse-colic 1 

d25 horse-colic.ORIG 2 
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Dataset ID Dataset Name 

Position of Recommended 

Classifier in Top-3 Actual 

Classifiers 

d26 colleges-aaup 1 

d27 colleges-usnews 2 

d28 collins 1 

d29 onfidence 2 

d30 ontact-lenses 9 

d31 contraceptive 3 

d32 costamadre1 1 

d33 cps_85_wages 3 

d34 cpu 3 

d35 cpu_act 1 

d36 cpu_small 1 

d37 credit-rating 3 

d38 crx 4 

d39 DATATRIEVE 1 

d40 dbworld-subjects-stemme 1 

d41 dbworld-subjects 1 

d42 delta_ailerons 1 

d43 dermatology 1 

d44 desharnais.csv-weka.fil 2 

d45 pima_diabetes 1 

d46 diggle-Table_A1_Luteniz 2 

d47 disclosure-X_BIAS 1 

d48 disclosure-X_NOISE 4 

d49 disclosure-X_TAMPERED 3 

d50 disclosure-Z 3 

d51 dresses-sales 1 

d52 eastWest 1 

The results of Table 5.9 shows that only 3/52 classifiers, i.e., d30, d38 and d48 were 

not recommended with correct classifiers. Similarly, for top k=1, the proposed 

methodology correctly recommended accurate classifiers for 30 datasets and hence 

the accuracy obtained is 30*100/52=57.6%. To analyze the results in top k=2, the 

methodology correctly recommended classifiers for 38 dataset and achieved accuracy 

of 30*100/52=73%. 
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5.3. Limitations of CBR-MLR for classifiers selection 

The results show that the proposed framework performs well for accurate classifier 

selection using automatic recommendation method rather than using the exhaustive 

search mechanism and ranking classifiers performances to pick the best one. 

However, the methods used to implement the framework and generate accurate 

results, have a number of limitations that need proper handling and resolution. A few 

of these major limitations are mentioned here. 

 Finding an optimum and suitable set of meta-features: the process of 

finding right classifier for a dataset using a machine learning model that is 

based only on the datasets global features is not enough and may lead to a 

wrong decision. The reason is that the proposed 29 features for the selection 

of classifier does not represents the whole meta-feature space of the datasets 

and thus cannot be declared as the final optimum list of features. 

 Classifiers performance analysis for selection of best classifier to find 

solution part of a resolved case: while creating the successful cases, the 

proposed method analyses the performance results of the candidates 

classifiers using predictive accuracy and standard deviation, however this 

evaluation is application dependent. The users may interested in other 

characteristics of the classifiers to be selected. In that case, the proposed 

Case-Base may not work well for them and need to be updated according to 

their application requirements, which is an exhaustive experimental work. 

This is a difficult task and requires an efficient method to automatically or 

semi-automatically perform this analysis and produce the class label of the 

resolved cases. 

 Ranking classifiers with similar performance results (tie cases): while 

analyzing the performance results of the classifiers for finding the best 

classifiers to make them class-labels, we perform the process of ranking the 

classifier. However, in case of small datasets most of the classifier perform 

with equal performance and are thus ranked same. This makes the process 
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more complex because each dataset has the list of almost all the candidates’ 

classifiers as the class labels, which makes the problem of classifier selection 

as a multi-label learning problem. However, the correct solution has no such 

strategy to properly address this situations. We simply create multiple cases 

with the same problem description part (i.e., meta-features list) and different 

class labels, each for a classier with same rank. This needs a more 

sophisticated multilevel analysis of the classifiers by exploiting other 

characteristics to break the tie situation and also need consideration of 

multilevel learning. 

5.4. Summary 

The proposed study has presented a CBR-based meta-learning and reasoning 

framework for accurate classifier selection using data characteristics, called meta-

features, and classifiers characteristics, called performance metrics.  The relationship 

of data and classifiers characteristics is represented as cases to form a training dataset, 

called Case-Base, for a CBR classifiers. The recommendations of an accurate 

classifier for a new case or test dataset is performed using the CBR multi-view, multi-

level reasoning methods, developed as part of the proposed framework. In the study, 

a set of four view of data characteristics are introduced and represented. These are: 

general characteristics, basic statistical, advanced statistical and information-

theoretic families. These families represents the datasets from multiple aspects and 

are thus a good representative set of characteristics for building a model. The 

candidate nine decision tree classifiers, considered for this study, are taken from 

Weka environment with their default settings. In the online recommendation part, the 

CBR standard methodology is enhanced with accurate similarity functions and a post 

processing classifier conflict resolution methods to recommend the most appropriate 

classifier for a given new dataset or learning problem. The methodology is tested on 

52 test datasets, taken from UCI/OpenML repositories, which has produced overall 

accuracy of 94%. 
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Chapter 6     

Selection and Design of Rough Set Classifier 

 

6.1. Overview 

In real-world application scenarios, the nature of data varies from domain to domain 

and application to application. Usually, the datasets exhibit uncertainty and vagueness 

in its values, which may result in low performance when some models are built over 

it. The majority of classification algorithms have not been initially designed for 

dealing such type of vague and ambiguous data within datasets. In literature, some 

techniques, especially fuzzy approaches are available that can solve this issue [9, 10], 

however they depend on several factors. To overcome these issues, this chapter 

presents the idea of expert’s heuristics-based rough set classifier selection among the 

other available candidate models and designing the classifier to accurately learn a 

real-world domain problem and provide predication results in a healthcare application 

of diabetes mellitus.  The idea of rough set classifier is based on the well-known rough 

set theory (RST), initially proposed by Pawlak [7]. The proposed classifier follows 

the general data mining steps and attempts to enhance certain preprocessing and 

discretization problems, which are the most common problems in realistic application 

scenarios. A certain levels of generalization is applied to the methodology of rough 

set classification model in a way that they are not restricted to the exact problem 

constraints of the use-case application for which it is proposed. The model is applied 

in a realistic healthcare scenario with enhancements of guideline-enabled dataset 

preparation and semantics-enabled discretization to add more into the semantics-

preserved accuracy of the model. For verification of the proposed rough set classifier, 

diabetes scenario with fifty patients’ data is used. First, the data is transformed into 

structured format and then rules are mined using the rough set method for prediction 

of the diabetes types. Additionally, the chapter also describes application specific 

task, i.e., risk predictions for a diabetic person, in terms of diabetic symptoms. This 
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risk prediction is implemented using the correlation-based trend analysis techniques 

that consumes application specific guidelines as knowledge sources. A series of 

experiments are performed which prove the higher classification accuracy of the 

proposed rough set classifier as compared to the state-of-the-art classifiers.  

6.1.1. Key Contributions  

To our knowledge, the classifiers proposed in literature for healthcare prediction and 

classification services, as described in Chapter 3, have a number of limitations, which 

include: (1) neither of the classifier present classification task for both type-1 diabetes 

mellitus (T1DM) and type-1 diabetes mellitus (T2DM), but restricted either to one or 

the other type; (2) the developed classifiers lack the feature of comprehensibility and 

understandability in the form of the rules acquired from the data; (3) classifiers are 

restricted either to prediction tasks or future trend analysis over the structured 

contents; (4) they lack the competence for handling dimensionality, inconsistencies 

and vagueness issues of clinical data and providing a semantic-preserved data 

transformation and discretization mechanism. To overcome these limitations, in this 

chapter, a rough set classifier is designed and implemented that uses experiential and 

domain knowledge to accurately classify diabetes types. The experiential knowledge 

is obtained from patients’ clinical charts using experts’ rigorous inspection method, 

while domain knowledge is translated from online diabetes guidelines with the help 

of domain experts who use their expertise during the guidelines translation process. 

The experiential knowledge is first mined for prediction rules, using rough set’ LEM2 

algorithm to build a rough set classifier. These rules forms the classifier and used for 

classification services. Domain knowledge is used to assist physicians in predicting 

future trend of risky observations and enabling them for prognosis services. The key 

contributions made through the design of rough set classifier are summarized as 

follows. 

 Extraction of experiential knowledge, from semi-structured clinical charts 

format using SOAP (Subjective, Objective, Assessment and Plan)-based data 

representation protocol and experts’ rigorous inspection method. 
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 Unstructured guidelines translation using experts’ rigorous inspection 

method to produce knowledge rules for assisting experts in future trend 

analysis and prediction of potential risky behaviors that result in accurate 

decisions. 

 Presenting a new semantics-preserved guideline-enabled discretization 

scheme to transform continuous values of the data features into discrete 

format in a way the accuracy is kept preserved. 

 Mining understandable and self-explanatory prediction rules from high 

dimensional, inconsistent, and vague clinical data by using a number of novel 

methods for missing values completion, guideline-enabled discretization and 

LEM2 algorithm-based features selection and rules extraction. 

 Generating services for predicting types of diabetes (i.e., T1DM, T2DM) 

integrated with future trend analysis of risky observations or behaviors that 

support experts in prognosis services. 

The rest of the chapter is structured as follows: Section 6.2 describes the rationales 

behind the selection of the rough set classifier, Section 6.3 describes how rough set 

classifier is designed and Section 6.4 describes the design and development 

methodology for the accurate rough set classifier that has other modules integrated 

together, collectively termed as H2RM model. Section 6.5 describes experiments and 

evaluation of the proposed model. Section 6.6 and Section 6.7 enlists limitations of 

the proposed idea and concludes the work done, respectively. 

6.2. Heuristics-based selection of the rough sets classifier 

The domains where semantics, interpretability and accuracy of the final decisions and 

the model itself are required, comprehensible and accurate classifiers are favored over 

the non-comprehensible classifiers. Similarly, healthcare and medical 

applications/datasets are high dimension [154] and usually contain incomplete values 

[155], which domain experts either consider default values or less essential to be 

recorded. This makes the data inconsistent and vague in nature. Rough sets theory 

(RST) [7] has powerful nature of analyzing and handling vague and uncertain 
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information in efficient problems [156]. The uncertainty issue of data is resolved by 

the lower and upper approximations methods of the RST which better estimate the 

vague boundaries of rough sets data [157]. Unlike the traditional classifiers, rough set 

classifier does not require additional factors and parameter while building the 

classification model. Rough set classifier is one of those classifiers which can best 

handle such situations, hence it is the most favored choice of the domain experts in 

their applications. Based on the above key characteristics of the rough set classifier, 

it is selected for building a classification and prediction model for the application use-

case, considered in this study, i.e., diabetes mellitus prediction and classification.  

In the rest of the chapter, an accurate semantics-preserved rough set classifier is 

designed with enhancements in some of the steps of the classical rough set classifier. 

A general design of the rough set classifier is shown in Figure 6.1 that can be 

customized for specific application scenario, based on the requirements of the 

application in-hand. 

 

Figure 6.1. Rough set classification and prediction 

In general, rough set classification process is similar to other data mining processes, 

therefore the major steps the design of this classifier remains the same. These design 
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steps include: dataset preparation, preprocessing, mining or discovering knowledge 

rules (i.e., model creation) and classifying new test instances. Rough set classifier 

uses rough set theory (RST) [11], which uses a formalism for representing and 

analyzing data in a specific structured format called information system. The methods 

used at some steps of the rough set classifier design are different from those of the 

traditional classifiers generation. The consequent sections describe each step of the 

rough set classifier design with the help of diabetes scenario and the proposed 

enhancements are highlighted. 

6.3. Design of rough sets classifier 

This chapter presents the rough sets classification model applied to the diabetes use 

case. A hybrid rough set reasoning model (H2RM) that works as a rough set classifier 

is designed, implemented and tested for predicting type-1 diabetes mellitus (T1DM) 

and type-2 diabetes mellitus (T2DM). In H2RM, a set of RS prediction rules are 

mined from 50 diabetes patients’ data (collected during 2008-2011) acquired from a 

local hospital that records patient’s encounters in clinical charts following SOAP-

based protocol. For management, including finding abnormalities identification and 

predicting future trend, online diabetes guidelines are translated to simple reference 

range rules which assist physicians in their decisions and prognosis. To support these 

functionalities, the rough set classifier is designed using the following components: 

patients’ charts & online guidelines (PCG) as knowledge sources, charts and 

guidelines translation (CGT), rough set-based knowledge acquisition (RKA), 

knowledge bases (KBs), hybrid rule-based reasoning (HRBR) and correlation-based 

trend analysis (CTA), as shown in Figure 6.2.  
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Figure 6.2. Hybrid rough set classification model (H2RM) for prediction 

The order followed by the proposed model is: PCG + CGT + RKA + KBs + HRBR 

+ CTA. Abstractly, this model can be represented as a 6-tuple: <PCG, CGT, RKA, 

KBs, HRBR, CTA>, where: 

 PCG (patients’ charts and online guidelines): set of patients’ clinical charts, 

which are recorded by physicians during the patients’ visits to hospital, and online 

diabetes guidelines for managing patients’ abnormalities in observations and 

trend analysis. These constitutes knowledge sources for the diabetes prediction 

and management. 

 CGT (charts and guidelines translation): set of methods and procedures used to 

translate clinical charts and online guidelines to structured data format and 

reference range rules, respectively. For charts, SOAP-based protocol is used to 

transform data into structured dataset, while for guidelines translation expert 

knowledge is used. 

 RKA (rough set-based knowledge acquisition): integrates a set of artificial 

intelligence and mathematical techniques, comprising discretization of 
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continuous values attributes to discrete values, reducts generation (RG) for 

selecting essential attributes and LEM2 algorithm for rules mining. 

 KBs (knowledge bases): repositories of rough set rules to predict T1DM and 

T2DM and guideline rules to identify abnormal observations and predict future 

trends. The rules are represented as production rules. 

 HRBR (hybrid rule-based reasoning): rule-based reasoning methodology that 

implements rough set rules for prediction of T1DM and T2DMand guidelines 

rules for future prediction. 

 CTA (correlation-based trend analysis): a set of statistical methods, such as 

regression analysis and trend analysis to identify abnormal observations and 

predict future trends for prognosis service to help physicians in assistance. 

The proposed model works in two phases, offline phase and online phase. The offline 

phase is focused on data preparation (structuring) from external knowledge sources 

that are presented in unstructured clinical charts and online diabetes guidelines (i.e., 

PCG) and acquiring knowledge from these sources. The knowledge acquisition 

composed of manual and automatic procedures. In manual process, first, patients’ 

clinical charts are transformed to structured form called diabetes mellitus information 

system (DMIS4) and guidelines to abnormalities and trend analysis rules (ATAR). In 

automatic acquisition, a set of rough set-based knowledge acquisition techniques are 

used to mine DM prediction rules (DMPR) from the DMIS. The rules are stored in 

knowledge bases that are used in the online process. The online phase is the live or 

execution phase of the model that delivers prediction and management services to 

physicians for supporting them in decision making. This phase is activated by the 

arrival of a patient either a new for diagnosis or the registered one for follow-up. In 

case, the patient gets registered for the first time, HRBR methodology is triggered. In 

HRBR, rough set reasoning (RSR) diagnoses and predicts type of diabetics and the 

reference range reasoning (3R) reasons for abnormalities in observations. In the case 

patient is registered, the only part of online phase to activate is CTA. At this point, 

                                                           
4 RST uses a formalism that represents and analyses data in its specific format that is described in a structured form 

called information system, therefore we named our dataset as DMIS. 
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physician is assisted to look into the previous history of the patient encounters in a 

consolidated way and see abnormal patterns along with observations trends in future. 

The physician is in position to see the future and take preventive measures. 

6.4. Methodology of Rough Set Classifier Design and 

Development 

The complete design methodology of the proposed rough set classifier, integrated 

with the correlation-based prediction module of the so called H2RM model, is 

described in the rest of the chapter. 

6.4.1. Patient Charts and Online Guidelines 

Data of 50 diabetes patients, 20 with type-1 and 30 with type-2 is acquired from a 

local hospital that records patients observations in clinical charts, following SOAP 

(Subjective, Objective, Assessment and Plan)-based data representation protocol 

[158]. In hospital, data is collected over the period of four years from 2008 to 2011 

with average eight encounters for each patient. The minimum number of encounters 

recorded for a patient are two and maximum are eighteen. In the charts, patients’ 

information containing physiological data, clinical laboratory tests findings, 

diagnosis information and recommendations are recorded in Subjectivity, 

Objectivity, Assessment, and Planning sections. In all the charts, Subjectivity and 

Objectivity sections are merged in one section headed with S&O. The Assessment 

section is put at the top of each encounter and sometime before the Planning section. 

Different encounters of same patients are recorded in same chart so that to maintain 

their history in one document. An example of encounter of a T2DM patient’s chart is 

shown in Figure 6.3. 
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Figure 6.3. Clinical encounter of patient in SOAP protocol format. 

A number of inconsistencies were there in the charts, such as naming variations, 

incomplete values, and miss-placement of observations etc., in chart of the patient. 

Similarly, to assist physician in automatic abnormalities identification in observations 

and predicting future trends, online diabetes guidelines are identified for rules 

creation. The most important predictors in diabetes prediction are BMI, blood 

pressure, fasting blood glucose, HbA1c, lipids, and liver function tests (LFT), 

therefore online guidelines associated with these predictors are searched with experts 

support and listed in Table 6.1.  

Table 6.1. List of guidelines used for managing diabetes mellitus 

S.No Predictor Guidelines References 

1 BMI WHO: BMI classification WHO [36] 

2 BP: SBP, DBP JNC 7 report, AHA JNC [37–39] 

3 FBS 
American Diabetes 

Association. Diabetes Care 
ADA [40,41] 

4 HBA1c 
American Diabetes 

Association, NICE 
ADA [40], NICE [42,43] 
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5 
Lipids: TC, TG, HDL, 

LDL 
NCEP, ADA NCEP [44], ADA [45] 

6 LFT: ALT, AST 
Liver disease (LD),  

Mayo Clinic 
LD [46], Mayo Clinic [47] 

6.4.2. Charts and Guidelines Translation 

We have carefully analyzed unstructured charts and manually parsed all the 

observations to transform into structured format. The list of observations, extracted 

from charts is shown in right-hand side of Figure 6.4. As we have restricted this 

research only to prediction and management of diabetes in terms of abnormalities 

identifications and trend analysis, therefore the plan part of chart is not considered.  

 

Figure 6.4. Distribution of patient’s observations in clinical chart. 

A structured schema is created for observations of the patient recorded in the clinical 

charts. The schema records the following observations: PID, encounter ID, height, 

weight, waist, BMI, FHx (family history), SHx (social history), Gender, Age, TDM 

(type of diabetes mellitus), Complication, Pain, BP (blood pressure), Symptoms, 

pp2h (two-hour postprandial glucose), FBS (fasting blood glucose), Hba1c 

(glycosylated hemoglobin), diabetes history, hypoglycemia, Lipids, BUN/Cr (blood 

urea nitrogen/creatinine), AST/ALT, Urea Nitrogen, Creatinine, Sodium, Potassium, 
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LDH (lactate dehydrogenase), Alb/Cr (Albumin/Creatinine), and c-peptides for each 

patient. Each encounter is translated to a record in the schema (i.e., DMIS). For each 

patient, all encounters are parsed and added into the dataset. The total number of 

encounters recorded are 391 with distribution of 113 for T1DM and 278 for T2DM.  

As a number of attributes have incomplete values, therefore they are dropped from 

DMIS. The criterion used is that the attributes with missing values ≥ 20% are most 

likely produce miss-leading results, therefore they are filtered out. Similarly, we have 

split BP attribute to SBP (systolic blood pressure) and DBP (diastolic blood pressure) 

and lipids to its four constituents TC (Total cholesterol), TG (Triglycerides), HDL 

(High-density lipoprotein), and LDL (Low-density lipoprotein). Liver function tests, 

AST/ALT are split into AST and ALT. the final output of SOAP-based charts 

translation is a computer processable dataset, i.e, DMIS. 

Similarly, the guidelines listed in Table 6.1 are translated to simple reference rules 

that defines normal and abnormal reference ranges of values of BMI, blood pressure, 

glucose, glycosylated hemoglobin, lipids, AST, and ALT attributes. These are shown 

in Table 6.2a-k. 

Table 6.2. Set of reference range rules. 

(a) BMI (b) TC 

Interval 

(Condition) 

Interpretation 

(Decision) 

Interval 

(Condition) 

Interpretation 

(Decision) 

(−∞, 18.5) underweight (−∞, 200) desirable 

[18.5, 24.9] normal [200, 239] borderline high 

[25, 30) overweight [240, ∞) high 

[30, ∞) obese   

(c) SBP (d) TG 

Interval 

(Condition) 

Interpretation 

(Decision) 

Interval 

(Condition) 

Interpretation 

(Decision) 

(−∞, 120) normal (−∞, 150) normal 

[120, 139] prehypertension [150, 199] borderline-high 

[140, 159] hypertension stage 1 [200, 499] high 

[160, 180] hypertension stage 2 [500, ∞) very high 

[181, ∞) hypertensive crisis   

(e) DBP (f) LDL 
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Interval 

(Condition) 

Interpretation 

(Decision) 

Interval 

(Condition) 

Interpretation 

(Decision) 

(−∞, 80) normal (−∞, 100) optimal 

[80, 89] prehypertension [100, 129] near or above optimal 

[90, 99] hypertension stage 1 (129, 159] borderline high 

[100, 110] hypertension stage 2 (159, 189] high 

(110, ∞) hypertensive crisis (189, ∞) very high 

(g) FBS (h) HDL 

Interval 

(Condition) 

Interpretation 

(Decision) 

Interval 

(Condition) 

Interpretation 

(Decision) 

(−∞, 70) hypoglycemia (−∞, 40) low 

[70, 99] normal [40, 60) normal 

(99, 126] pre-diabetic [60, ∞) high 

(126, ∞) diabetic   

(i) HbA1c (j) AST (SGOT) 

Interval 

(Condition) 

Interpretation 

(Decision) 

Interval 

(Condition) 

Interpretation 

(Decision) 

[4, 5.9] hypoglycemia (−∞, 5) low 

(5.9, 6.4] prediabetes [5, 40] normal 

(6.4, 7.4] diabetes (40, ∞) high 

(7.4, ∞) 
diabetes with Higher 

risk 
  

(k) ALT (SGPT)   

Interval 

(Condition) 

Interpretation 

(Decision) 
  

(−∞, 7) low   

[7, 56] normal   

[57, ∞) high   

Legend: “[”or “]” means inclusive, “(” or “)” means exclusive, “∞” means ± infinity. 

After creation of these rules, they are stored in knowledge base under the abnormal 

and trend analysis rules repository, ATAR, to be used in later live execution process. 

In these tables, column # 2 shows code of the intervals in discrete format that are used 

for discretization process, Section 6.4.3.2. 

6.4.3. Rough Set-based Knowledge Acquisition 
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The translated diabetes dataset, DMIS, contains 391 instances for T1DM and T2DM 

as the training data for mining prediction rules to predict diabetes for new patient. 

Generally, clinical datasets are high dimensional [154] and usually contains 

incomplete values [155] which physicians either consider default values or less 

essential to be recorded. This makes the data inconsistent and vague in nature. To 

cope with these situations, we adopt well-known RST, initially proposed by Pawlak 

[7, 8]. We mine prediction rules from the diabetes data using techniques supported 

by RST. Our choice of RST is due to its powerful nature of analyzing and handling 

vague and uncertain information in classification problems[156]. RST uses a 

formalism that represents and analyses data in its specific format that is described in 

a structured form called information system, therefore we named our dataset as 

DMIS. The lower and upper approximations concepts of RST help to solve the 

problems of vagueness, uncertainty, and incompleteness data [157]. During this 

process, the training instances are partitioned into equivalence classes [159], upper 

approximation and lower approximation. The proposed RKA model includes the 

following phases, such as preprocessing, data reduction and rules creation. These 

phases work in a sequential flow, as shown in Figure 6.2. 

6.4.3.1. Preprocessing Phase 

In dataset, sometimes attributes contain redundant information which need to filter 

out using expert knowledge to get the list of essential attributes. In our case, we first 

use expert knowledge to pre-select attributes essential for rough set information 

system. For example, the calculated attribute BMI is selected and its ingredients, 

height and weight, are dropped to avoid duplications. Similarly, the attributes ‘past 

history’ and pain are dropped because their values are mostly same throughout the 

dataset. FHx and SHx are filtered based on their proportion of missing values (>50%) 

to the available. The list of essential attributes obtained after applying experts’ 

knowledge includes: Gender, Age, BMI, SBP, DBP, FBS, Hba1c, TC, TG, HDL, 

LDL, AST, ALT, as condition attributes and TDM as class attribute. 
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The filtered dataset with essential attributes still contains incomplete values for 

attributes SBP, DBP, FBS, Hba1c, TC, TG, HDL, LDL, AST, and ALT with 6%, 6%, 

4%, 1%, 9%, 9%, 9%, 15%, 19% and 19%, respectively. In these cases, the patient 

level criteria become valid and their corresponding strategies are applied. The 

description of these criteria and the associated strategies are described in Table 6.3. 

The average and frequent values strategies are the most frequently used techniques 

that are applied to numeric and nominal value attributes [160]. The experiments for 

this strategy are performed within Rapid Miner [161]. Similarly, if only two values 

are missing in an attribute of the encounters of a patient then immediate previous/next 

value strategy is used. In this case, either En−1 or En+1 encounter value is used, 

depending on the position of missing value that either appears in consecutive or non-

consecutive encounters. If values are missing in two consecutive encounters, one is 

filled with En−1 and the other with En+1. The rational of this strategy is that physicians 

usually do not record values if they see no change in the observation of a patient. 

Therefore, either preceding or proceeding value can be the best candidate for the 

missing value. 

Table 6.3. Missing value treatment, criteria and strategies, applied to the diabetes mellitus 

dataset. 

Scope Criteria Strategy 

Dataset level  

(whole 

population) 

If any attribute of 

the dataset has 

missing values in 

20% or more than 

20% records of the 

whole dataset 

Drop the attributes from the dataset, this may leads to 

incorrect results 

Patient level  

(whole 

encounters of 

one patient) 

If any attribute has 

missing values in 2 

or less than  

2 encounters of a 

patient 

Use immediate previous/next encounter’s values of the 

same patient 

 Immediate previous/next encounter value, if missing 

values  

are non-consecutive 

 Immediate previous encounter value for the first 

missing value and immediate next value for the second 

missing value, if missing values  

are consecutive 
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Scope Criteria Strategy 

If any attribute has 

missing values in 

less than 20% of the 

encounters of a 

patient 

Use average/frequent value strategy within encounters of 

the same patient 

 Compute average of all the values of that attribute for 

the same patient,  

if attribute is numeric 

 Compute frequent value within all the encounters of the 

same patient, if the attribute is nominal 

If any attribute has 

missing values in 

more than 20% of 

the encounters of a 

patient 

Use average/frequent value strategy within patients of the 

same class 

 Compute average of all the values of all the patients in 

the same class,  

if attribute is numeric 

 Compute frequent value within all the patients of the 

same class, if the attribute is nominal 

The final preprocessed dataset, with filtered attributes and filled missing values, has 

the following clinical characteristics, summarized in Table 6.4. 

Table 6.4. Clinical characteristics of the diabetes patients. 

Characteristic Average Min. Value Max. Value Std. Deviation 

BMI 23.0 16.2 32.0 3.2 

Gender M (256), F (135) 

Age 48.8 20.0 85.0 15.4 

SBP 120.8 89.0 190.0 14.9 

DBP 74.5 45.0 115.0 10.2 

FBS 137.6 49.0 394.0 43.9 

Hba1c 8.0 4.2 14.6 2.0 

TC 169.5 0.0 371.0 37.7 

TG 101.0 18.0 634.0 80.9 

HDL 64.5 31.0 196.0 23.7 

LDL 82.2 15.0 180.0 29.4 

AST (SGOT) 22.0 11.0 65.0 7.8 

ALT (SGPT) 26.6 8.0 120.0 18.0 

TDM T2DM (278), T1DM (113) 

6.4.3.2. Data Reduction Phase 

Clinical data have continuous values that randomly vary. If these values are used in 

its original form for mining rules then rough set will extract huge number of rules 
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which are intractable [162]. Therefore, all continuous values attributes (e.g., except 

gender and TDM) are first need to abstract to finite number of intervals [163] and 

then apply rules mining process. Traditional rough set theory uses different types of 

discretization methods [163], which define discrete intervals without taking domain 

knowledge into account. These methods use statistical, entropy, genetic algorithms, 

fuzzy set theory and Boolean reasoning approaches to split continuous values into 

discrete intervals [163]. However, none of these methods use semantics of the values 

of attributes. In the healthcare domain and service generation, semantics of medical 

data values have significant importance. For example, in the case of our diabetes 

dataset, continuous values of the SBP attribute (measured in mm Hg) give 

information that the patient is either in normal (<120), prehypertension (120–139), 

hypertension stage 1 (140–159), hypertension stage 2 (160–180), or hypertensive 

crisis (≥181) status. Here, it is very important to discretize the continuous values of 

SBP in a way to retain their semantic categories in the discretized range/interval. If 

not, then the rules mined, based on these discretized values, will not reflect the correct 

range or interval of the value. The exiting discretization approaches do not care about 

such semantics. For example, if we use the well-known Boolean reasoning approach 

[57], it gives only three intervals for the same SBP attribute in our dataset. These are, 

(SBP < 110), (SBP 110–116), (SBP ≥ 117), which do not reflect the real semantic 

categories of SBP. To overcome this problem, we propose a semantic interval-based 

discretization scheme that consumes domain knowledge for discretizing continuous 

values. In the scheme, we first define cut points for discretization using standard 

reference ranges for each attribute, as shown in Table 6.2. This knowledge makes the 

intervals and cut-points more meaningful from clinical perspective and results in 

meaningful rules. The set of cut-points, their corresponding intervals, and the discrete 

value for each attribute are shown in Table 6.5. 
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Table 6.7. Set of cut-points and corresponding intervals for discretization 

 Attributes 

# Cut-Points:  

Cut-Points 

Description 

# Intervals: Interval Description 

Discrete 

Value for 

Interval 

Guidelines 

BMI 3: 18.5; 25; 30 
4: (−∞, 18.5), [18.5, 24.9], [25, 30), [30, 

∞) 
0, 1, 2, 3 WHO [164] 

Gender NA NA NA - 

Age 2: 30; 50 3: (−∞, 30), [30, 50], (50, ∞) 0, 1, 2 - 

SBP 
4: 120; 140; 160; 

181 

5: (−∞, 120), [120, 139], [140, 159], 

[160, 180], [181, ∞) 
0, 1, 2, 3, 4 

JNC 7 report, 

AHA [165-

167] 

DBP 4: 80; 90; 100; 110 
5: (−∞, 80), [80, 89], [90, 99], [100, 

110], (110, ∞) 
0, 1, 2, 3, 4 

JNC 7 report, 

AHA [165-

167] 

FBS 3: 70; 99; 126 4: (−∞, 70), [70, 99], (99, 126], (126, ∞) 0, 1, 2, 3 
ADA [168, 

169] 

Hba1c 3: 5.9; 6.4; 7.4 4: [4, 5.9], (5.9, 6.4], (6.4, 7.4], (7.4, ∞) 0, 1, 2, 3 

ADA [168], 

NICE [170, 

171] 

TC 2: 200; 240 3: (−∞, 200), [200, 239], [240, ∞) 0, 1, 2 
NCPE [172], 

ADA [173] 

TG 3: 150; 200; 500 
4: (−∞, 150), [150, 199], [200, 499], 

[500, ∞) 
0, 1, 2, 3 

NCEP [172], 

ADA [173] 

HDL 2: 40; 60 3: (−∞, 40), [40, 60), [60, ∞) 0, 1, 2 
NCEP [44], 

ADA [45] 

LDL 
4: 100; 129; 159; 

189 

5: (−∞, 100), [100, 129], (129, 159], 

(159, 189], (189, ∞) 
0, 1, 2, 3, 4 

NCEP [44], 

ADA [45] 

AST(SGOT) 2: 5; 40 3: (−∞, 5), [5, 40], (40, ∞) 0, 1, 2 

LD[46], 

Mayo Clinic 

[47] 

ALT(SGPT) 2: 7; 57 3: (−∞, 7), [7, 56], [57, ∞) 0, 1, 2 

LD[46], 

Mayo Clinic 

[47] 

Legend: “[”or “]” means inclusive, “(”or “)” means exclusive, “∞” means ± infinity. 

After applying discretization process based on the cut-points, we obtained discretized 

information system (DIS). A partial view of the discretized DIS is presented in Table 

6.6. 
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Table 8.6. Partial Information System (training dataset) in interval format after discretization. 

DBMI 

Gend
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T 

DAL
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[18.5,24.9
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[−∞, 

80) 
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200) 
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[−∞, 
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[−∞, 

100) 
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56] 
T2DM 

[25, 30) M [30, 50] 
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F 
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Legend: “[”or “]” means inclusive, “(” or “)” means exclusive, “∞” means ± infinity. 

 After attributes values reduction using discretization, the next step is to create 

reducts, which are feature subsets of attributes of the original information system (i.e., 

DMIS) that facilitate in the process of rule mining and classifying same dataset with 

same accuracy [7, 8, 174]. We adopted Lattice Reduct Search method, implemented 

in Rough Set Data Explorer (ROSE2) system [175, 176] with the default 

configuration for finding all possible reducts. The set of all possible reducts obtained, 

are shown in Table 6.7. 

Table 6.9. List of all possible Reducts after applying reduct operation 

Reduct # # Attributes Reduct (Attributes) 

1 10 {BMI, Gender, Age, SBP, DBP, FBS, Hba1c, HDL, LDL, PT} 

2 10 {BMI, Age, SBP, DBP, FBS, Hba1c, TG, HDL, LDL, PT} 

3 10 {BMI, Gender, Age, SBP, FBS, Hba1c, HDL, LDL, OT, PT} 

4 10 {BMI, Age, SBP, FBS, Hba1c, TG, HDL, LDL, OT, PT} 

In all the reducts, total number of participating attributes are 12 and only one 

attributes TC is not considered in either of the reduct. The frequency of attributes 

Gender, DBP, TG and OT in all the reducts is 50% while the rest of attributes have 
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100% participation; which means that they are appearing in all the reducts and 

therefore very essential.  

Like reduct, core is another important concept of RST which comprises only the most 

relevant attributes in the original information system. If any of the attribute is 

removed from the core, the accuracy of classification rules built will drastically 

dropdown, therefore we apply the core generation operation in ROSE2 to get the final 

key attributes. It is obtained using intersection operation over all the reducts. In our 

case, the core consists of the features shown in equation 1 

Core(DIS)=Intersection (RED(DIS))={BMI, Age, SBP, FBS, Hba1c, HDL, LDL, PT} (1)  

Prediction accuracy of the original set of attributes and the core attributes was 

measured. The objective of measuring accuracy is to show effectiveness of the 

reduced attributes and overall attributes in the original dataset. When measured, core 

attributes produced 0.9744% accuracy, while the all 13 attributes of the original 

information system produced 0.9872% accuracy. The total reduction in accuracy is 

only 0.0138%, which is almost negligible. However, the reduct and core operations 

of RST reduced the number of attributes by more than one third, which reduce the 

complexity of building the prediction model. 

6.4.3.3. Rules Mining and Validation Phase  

Once the core attributes are selected, the next step is to mine decision rules from the 

discretized information system for the core attributes using LEM2 algorithm [177]. 

We have used the basic minimal covering criteria of LEM2 algorithm implemented 

in ROSE 2 system[176]. The DIS contains 391 instances that are used to mining rules 

to predict diabetes types. Total 23 rules are mined, out of which one rule is 

approximate with inconsistent prediction for the same condition attributes. Extracted 

partial rule set is shown in Table 6.8. 
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Table 6.10. A Partial rules list extracted from discretized information system using LEM2 

algorithm 

Rule # 
Prediction for 

TDM 
Prediction Rule Significance 

1 (T1DM) 

(BMI = [18.5, 24.9]) and (Age = (50, ∞)) and (SBP = 

[120,139]) and (Hba1c = (7.4, ∞)) and (TC = (−∞, 200)) and 

(SGPT = [7, 56]) 

20 (17.70%) 

2 (T2DM) 
( Gender = M) and (SBP = (−∞, 120)) and (Hba1c = (6.4, 

7.4]) and (LDL = [100, 129]) 
17 (6.12%) 

3 (T2DM) 
(BMI = [18.5, 24.9]) and (Age = [30, 50]) and (SBP = (−∞, 

120)) and (TG = (−∞, 150)) and (HDL = [40, 60)) 
23 (8.27%) 

4 (T1DM) 
(SBP = [120, 139]) and (DBP = [80, 89]) and (Hba1c = 

(5.9, 6.4]) and (HDL = [40, 60)) and (SGPT = [7, 56]) 
7 (6.19%) 

5 

(approx. 

rule) 

(T1DM) OR 

(T2DM) 

(BMI = [18.5, 24.9]) and (Age = (50, ∞)) and (FBS = 3) and 

(Hba1c = (126, ∞)) and (TG = (−∞, 150)) and (LDL = (−∞, 

100)) and (SGPT = [7, 56]) 

[5, 5] [2, 3] 

Legend: “[”or “]” means inclusive, “(” or “)” means exclusive, “∞” means ± infinity. 

Table 6.8 shows decision attribute of the rule, ingredients of the rules (i.e., condition 

attributes with values) and significance value that describes its coverage within its 

own class. For example, rule 1 has 17.7% significance value in its class T1DM that 

supports 20 instances of the training information system. After creation of the rules, 

the whole prediction model is stored in knowledge base within DM prediction rules 

repository, DMPR, to be used in the live execution process. 

Validation of the prediction model (rules extracted using rough set LEM2 method) is 

performed using 10-foldcross validation approach over the whole diabetes dataset. 

The details are given in Section 6.5 for evaluating the rules using prediction accuracy. 

6.4.4. Hybrid Rule-based Reasoning 

Online phase of the proposed H2RM is based on RBR methodology, which internally 

uses two levels of reasoning in sequential way. In the first level, rough set-based 

reasoning (RSR) methodology is activated for those patients who are not registered 
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before. In this process, the RSR engine loads rules from the DMPR repository and 

executes them on the current observations of the patient. Diabetes type is predicted 

from the patient’s observations and withheld till the second level of reasoning process 

is not completed. In the second level, reference range-based reasoning (3R) is 

performed over BMI, SBP, DBP, FBS, Hba1c, TC, TG, HDL, LDL, AST (SGOT), 

and ALT (SGPT) using reference range rules defined in Table 6.2 to categorize the 

observations as either normal, borderline, abnormal, risky, etc. This automatic 

categorization of the observations further assist physician in easy understanding and 

quick decision-making. The final results of HRBR are provided to physicians to assist 

them in diagnosis and analysis of the patient’s current observations. This process is 

shown in detail in Algorithm 1. 

Algorithm 1 Hybrid Rule-based Reasoning (HRBR) 

Begin 

          Input: KB: Knowledge Base, E: Encounter 

          Output: TDM, INTERPRETATION 

𝐀𝐩𝐩𝐥𝐲𝐇𝐑𝐁𝐑 (𝐄), where {E|E is EncounterOfNonRegisterdUser, E: = {Pid, OBS}}, OBS: =
{BMI, SBP, DBP, FBS, Hba1c, TC, TG, HDL, LDL, AST(SGOT), ALT(SGPT)}  

𝐀. 𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐑𝐒𝐑(𝐄) // Rough Set Reasoning 

[Load Prediction Rules From Knowledge Base] 
1. DMPR: =  LoadRulesFromKB(RULES that contain TDM as CONC); where CONC: =

{ T1DM, T2DM}  

2. [Execute Rules For Predicting Types of Diabetes] 𝐅𝐨𝐫𝐞𝐚𝐜𝐡 RULE in DMPR 

a. 𝐅𝐨𝐫𝐞𝐚𝐜𝐡 CA in RULE //CA: = {BMI, Age, SBP, FBS, Hba1c, HDL, LDL, PT} 

b. 𝐈𝐟 CA. values ≠  E. OBS. value  
THEN Try next RULE 

𝐄𝐧𝐝𝐈𝐟 

c. TDM ≔ CONC of the RULE; 
d. 𝐆𝐨𝐭𝐨 Step 𝐁 
e. 𝐄𝐧𝐝𝐅𝐨𝐫 
𝐄𝐧𝐝𝐅𝐨𝐫  

3. TDM = Message("UNDEFINED") 
𝐁. 𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝟑𝐑 (𝐄) // Reference Range-based Reasoning 

[Load Reference Range Rules From Knowledge Base] 
4. ATAR: =

 LoadRulesFromKB(RULES that contain INTERPRETATION as CONC); where CONC: =
{ Table 6.2. INTERPRETATION. Value} 
[Execute Rules For Finding Current Status of Each Observation] 

5. 𝐅𝐨𝐫𝐞𝐚𝐜𝐡 RULE in ATAR 

a. 𝐅𝐨𝐫𝐞𝐚𝐜𝐡 CA in RULE //CA ≔
{BMI, SBP, DBP, FBS, Hba1c, TC, TG, HDL, LDL, AST(SGOT), ALT(SGPT)} 

b. 𝐈𝐟 CA. values ≠  E. OBS. value 
THEN Try next RULE 

𝐄𝐧𝐝𝐈𝐟 

c. INTERPRETATION [] ≔ CONC of the RULE; 
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Algorithm 1 Hybrid Rule-based Reasoning (HRBR) 

𝐄𝐧𝐝𝐅𝐨𝐫  
𝐄𝐧𝐝𝐅𝐨𝐫  

𝐂. 𝐏𝐇𝐘𝐒𝐈𝐂𝐈𝐀𝐍 ∶= 𝐏𝐫𝐨𝐯𝐢𝐝𝐞𝐑𝐞𝐬𝐮𝐥𝐭𝐬 (𝐏𝐢𝐝, 𝐓𝐃𝐌, 𝐈𝐍𝐓𝐄𝐑𝐏𝐑𝐄𝐓𝐀𝐓𝐈𝐎𝐍) 

End 

Algorithm 1 has four main functions. These are defined for activation of HRBR, 

rough set-based reasoning, reference range-based reasoning and final results 

propagation. When a new patient arrives in the hospital and his observations are 

recorded, the main function of HRBR, ApplyHRBR (), is activated. This function, 

called the rough set-based reasoning function, PerformRSR(), for predicting diabetes 

type. The process of rough set reasoning starts with loading rules from knowledge 

base using the function, LoadRulesFromKB(). Once rules are loaded, execution of 

rules starts and final decision is obtained either as T1DM, T2DM or UNDEFINED. 

After diabetes prediction, physicians are usually interested in knowing the exact 

status of the observations of the patient. For this purpose, reference range-based 

reasoning is activated using the function, Perform3R (). Like rough set reasoning, 

first, rules are loaded from knowledge base, and then they are executed one-by-one 

to find out whether the current value for that observation is  

normal, borderline, risky, etc. Finally, the function ProvideResult() propagates the 

results of rough set reasoner and reference range reasoned, in integrated from, to 

physician for further assessment and final decision.  

6.4.5. Correlation-based trend analysis 

In the online phase of H2RM, when a registered patient visits hospital for follow-up 

and new observations are recorded then physician usually desires to review past 

history of all encounters of the patient. This is an essential step for them to further 

analyze the patient’s conditions and prescribe medications or provide general 

wellbeing recommendations or consult patient regarding the next follow-up, etc. 

Moreover, they are also interested in seeing future trends of the patient’s 

observations, based on the current and past observations, in order to predict future 

and take preventive measures. However, they are unable to get all these benefits in 
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the current scheme of clinical charts, where the observations are inconsistent and 

placed randomly with different naming convention, etc. in excel sheets. The literature 

listed in this thesis lack the capability of transforming these clinical charts to 

structured data format and building management and trend analysis services for 

physician to support them in decision-making. To overcome these shortcomings, and 

support physicians with comprehensive insights of the past observations of patients, 

we propose a correlation-based trend analysis technique. 

 

 

Figure 6.5. Correlation-based trend analysis for prognosis 

Correlation analysis is one of the important future trends prediction technique applied 

to numeric data [178], therefore we adopt it in our research for analyzing abnormal 

trends in patients observations. In the knowledge execution flow of the proposed 

H2RM, when a registered patient visits hospital for follow-up, his observations are 

recorded and scattered line graphs is drawn for the current and past observations, as 

shown in Figure 6.5(a-k) by the bold-face blue line. After the scattered graph, a 
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correlation-based polynomial trend line, order 3, is added to the graph to predict trend 

in near future. We also compute residue R2 value to the trendline to show accuracy 

of future prediction for new encounters. The selection of polynomial trendline for 

future prediction is due to the fact that clinical values fluctuate gradually rather than 

abruptly. Polynomial trendlines with order 3 have two peaks or bottom values in the 

regression equation. In Figure 6.5(a-k), the dotted black line shows trend line with 

the regression equation and R2 values.  In the same figure, normal ranges of the 

observations are reflected with light orange strap that internally uses rules (Table 6.2) 

extracted from guidelines (Table 6.1).  

The proposed CTA provides two insights to physicians from the patient data in the 

form of abnormalities identifications and future trends that assist them to see all the 

relevant information in a consolidated form. Figure 6.5 shows detail of all the 18 

encounters of a single patient with T2DM. 

6.5. Experiments and Results 

6.5.1. Evaluation Criteria 

To evaluate the proposed hybrid RS reasoning model, a number of evaluation criteria 

can be used, such as prediction accuracy, precision, recall, F-measure, balanced 

accuracy and end user (physician in our case) satisfaction, etc. [179]. These criteria 

can be grouped into system-centric (focus on system accuracy, precision, recall, etc.) 

and user-centric (focus on user satisfaction, etc.). A good evaluation criterion can be 

the one taking both system centric and user centric parameters into account. However, 

in our evaluation, we stick to only the system centric approach due to the prototype 

implementation of H2RM. We use average accuracy and balanced accuracy 

evaluation metrics to evaluate the performance of our proposed model. The prediction 

rules derived by the rough set knowledge acquisition component are used to test data 

in the diabetes dataset and assess the performance. 
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6.5.2. Experimental Setup 

H2RM consists of two main modules: offline knowledge acquisition and online 

knowledge execution. Therefore, we setup two sets of experiments. The first set is to 

mine prediction rules from the diabetes dataset and the second one is to provide real 

time services on top of these rules for new patient/encounter. For both sets, we used 

ROSE2 software [176] in Windows environment in a PC with specification of Intel 

Pentium Dual-CoreTM (2.5 GHz) and RAM 4GB. For the first set of experiments, 

setup and detailed description is given in Section 6.4.3.3. The second set of 

experiments further consists of validation of mined rules and trend analysis of past 

and current encounters of a patient. Setup for the latter experiment is explained in 

Section 6.4.5, while for validation of mined rules, we use basic minimal covering 

technique of the RST with default parameters setting in ROSE 2 system. The default 

parameter settings are shown in Table 6.9. 

Table 6.11. Experimental setup for validation of prediction rules in ROSE 2 system. 

S.No Parameters Values 

1 Test k-fold cross validation 

2 Number of passes 10 

3 Majority threshold 21% 

4 Minimum similarity 50% 

5 Partially matched rules All 

6 Rule support strength × similarity 

6.5.3. Results 

The results of first set of experiments are described in Section 6.4.3.3. In total, 23 

rules are extracted from 391 instances of the dataset. Table 6.8 shows a partial list of 

the rules along with their significance values. Results of the validation experiment 

are shown in Table 6.10. 

Table 6.12. Confusion matrix describing overall output of the validation process. 

Type of DM T1DM T2DM None 

T1DM 106 (TP) 7 (FN) 0 

T2DM 9 (FP) 269 (TN) 0 
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Table 6.10 shows that 7/113 cases of T1DM are incorrectly predicted as T2DM and 

9 T2DM cases are incorrectly predicted as T1DM. There is no such example, either 

of T1DM or T2DM, in which neither T1DM nor T2DM is predicted. Therefore, the 

“None” column is zero for both class. Average accuracy (%) of the prediction model 

and individual accuracies of each class (T1DM, T2DM) are shown in Table 6.11. The 

average predictive accuracy of the model is 95.91% with 4.09% incorrect predictions. 

Standard deviation of the percent incorrect predictions, for all the 10-folds of the 

model is 2.61, while for the individual classes are 6.16 and 4.11, respectively. The 

individual class level accuracy for class T1DM is 94.59% and for class T2DM is 

96.85%. 

Table 6.13. Average accuracy (%) of the model for individual class and overall model. 

Type of DM Correct Incorrect None 

T1DM 94.59 ± 6.16 5.41 ± 6.16 0.00 ± 0.00 

T2DM 96.85 ± 4.11 3.15 ± 4.11 0.00 ± 0.00 

Total 95.91 ± 2.61 4.09 ± 2.61 0.00 ± 0.00 

The results show that the predication accuracy for class T2DM is higher than the 

prediction accuracy of class T1DM. The reason for incorrect prediction of T1DM 

cases as T2DM and vice versa is due to the approximate rule (rule #23) of the 

prediction model. 

To know results in terms of percent accuracy and percent error for each fold, 

we generate fold-wise test results. Figure 6.6 show the test results for each fold 

of the 10-fold cross validation process. 



Chapter 6: Selection and Design of Rough Set Classifier 

(138) 

 

Figure 6.6. Test results of each pass of the 10-folds cross validation process. 

In Figure 6.6, plus sign (+) shows correct prediction, while negative sign (−) shows 

incorrect prediction. The first pass/fold contains 40 examples/instances while the rest 

include 39 instances each. Table 6.12a shows the percent accuracy and percent error 

of each pass of the 10-fold-testing process. 

In Table 6.12b, we calculate average accuracy from the percent accuracy of each fold, 

which is 95.9%. In the same way, standard deviation is calculated from the percent error 

of each fold-test. Its value is 2.61. 

The dataset we used for prediction and classification of diabetes as type-1 or type-2 

has class distribution of 113:278. This shows that the ratio is greater than 1:2 for type-

1 to type-2. Hence, type-2 is dominant over type-1. Therefore, to verify that our 

predictive model has produced unbiased results, measured as overall accuracy, we 

use the measure of balance accuracy, which is defined as arithmetic mean of 

sensitivity and specificity [180, 181]. For computing balanced accuracy, we extract 

True Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN) 

evaluation measures from Table 6.10 and use Equation (2). Values of these measures 

are shown in Table 6.13. 

Balanced accuracy =
0.5 × TP

TP + FN
+

0.5 × TN

TN + FP
= 0.9522 (2) 

Table 6.14. Percent accuracy and percent error for each test of the 10-fold 

(a) Percent Accuracy and Percent Error for Each Pass 
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Pass 

Number 

Fold 

Size 

Incorrect 

Examples 

Correct 

Examples 

Percent 

Accuracy 

Percent 

Error 

Pass 1 40 1 39 97.5 2.5 

Pass 2 39 3 36 92.30769231 7.6923077 

Pass 3 39 2 37 94.87179487 5.1282051 

Pass 4 39 3 36 92.30769231 7.6923077 

Pass 5 39 2 37 94.87179487 5.1282051 

Pass 6 39 0 39 100 0 

Pass 7 39 1 38 97.43589744 2.5641026 

Pass 8 39 2 37 94.87179487 5.1282051 

Pass 9 39 1 38 97.43589744 2.5641026 

Pass 10 39 1 38 97.43589744 2.5641026 

(b) Average Accuracy and Standard Error for 10-Folds 

No. Instances 391 

Total Number of Incorrect Examples 16 

Total Number of Correct Examples 375 

Average Accuracy 95.90384615 

Average Error 4.096153846 

Standard Error based on Percent Error of each Fold 2.61660764 

Average Accuracy ± Standard Errors 95.9 ± 2.6 

 

Table 6.15. Evaluation parameters for computing balanced accuracy. 

True Positive (TP) False Positive (FP) True Negative (TN) False Negative (FN) 

106 9 269 7 

The results of balanced accuracy (Equation (2)) and conventional average accuracy  

(Tables 6.11 and 6.12) are the same, which shows that our predictive model performs 

equally well on either class (T1DM and T2DM). 

The results of the final correlation-based future trend analysis experiment are shown 

in Figure 6.5. These results assist physicians in assessing patient observations from 

three perspectives: pattern of past and current observations (blue line graph), 
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deviation of the observations from normal ranges (light orange strap), and prediction 

of future trend (dotted black line). A correlation equation of order 3, along with R2, 

show accuracy of future trend prediction for that observation. 

6.5.4. Comparison 

To compare results of the proposed rough set classifier with state-of-the-art rule-

based classifiers, an experiment is performed in Weka Experimenter environment 

with the default parameters of 10x10 fold-cross validation. Six state-of-the-art 

classification algorithms, shown in Table 6.14, are selected to generate classification 

models for each classifier using the same dataset, shown in table 6.14. 

Table 6.16. Comparision of the rough set classifier with state-of-teh-art-classifiers 

Classifier rules.DTNB rules.JRip rules.NNge rules.PART rules.Ridor rules.DecisionTable Rough.Set.LEM2 

Average 

Accuracy 
91.31(2.74) 95.13(2.73) 94.16(3.72) 96.16(2.18) 94.88(2.79) 89.52(3.69) 95.9(2.6) 

The results shows that rough set classifier performs better than five of the state-of-

the-art algorithms even though it was selected based on the experts’ heuristics 

knowledge. The only algorithm that performs better than the proposed model is the 

rules.PART classifier which has an average accuracy of 96.16%. The increase in 

accuracy is only 0.16%, which is not significant over the proposed model. For the 

significance, corrected-paired t-test is applied with a significance level of 0.05, and 

the results of the test shows that there is no significant change in the results of these 

two classifiers. This proves that the proposed rough set classification model is the 

accurate classifier and correct choice of the experts for the considered application.  

6.6. Limitations of the proposed rough set classifier 

As the results show, the proposed rough set classifier enables the generation of 

semantics-preserved accurate predictions on real-world applications data, however it 

has a number of limitations as well. These limitations are enlisted as follows.   
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1. The proposed rough set classifier is used in the diabetes domain utilizing data 

from the patients’ clinical charts. Though, SOAP-based protocol provides a 

semi-structured format for structuring data, however it requires experts’ 

involvement and rigorous inspection method to transform data into structured 

format. There is no support of an automatic data extraction from the patient’s 

charts, which is one of the limitations of this study. 

2. In this study, a semantics-preserved guideline-enabled discretization method 

is proposed to discretize continuous data in a way the semantics remains 

intact. However, the proposed discretization scheme can be easily used in 

situations where the number of intervals of the continuous values of the 

attributes are explicitly known in advance and are limited in number as well. 

If either the intervals are not known in advance, from the domain knowledge, 

or the number of intervals itself is huge then the proposed scheme will not be 

efficient with respect to time taken for the transformation of data to discrete 

format. 

3. Approximate rules generated by the rough set classifier needs further 

processing using domain knowledge to reach accurate and more correct 

decision without any ambiguity. However, the proposed methodology lacks 

methodology for handling such rules. 

6.7. Summary 

In this chapter, a rough set classifier designed and presented. The selection of the 

rough set classifier is done based on the experts’ heuristics knowledge about the real 

world application scenario of the diabetes mellitus. Its selection is done based on its 

high interpretability and understandability qualities of the rules in the model and their 

accuracy on inconsistent and vague data. First, a standard guideline-enabled rule-

based approach is used to prepare the dataset (information system) from the set of 

semi-structured clinical notes using the SOAP-based protocol. Guidelines are 

translated using experts’ rigorous inspection method into simple rules that are used 

during the preprocessing stage of the training dataset and in the application specific 
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services generation. The default rough set discretization scheme lacks the capability 

to transforming data correctly into the discrete form, therefore the chapter discussed 

a semantics-enabled discretization scheme that utilized the guideline knowledge for 

deciding the correct cut-points and the associated intervals, which are used during the 

discretization process. Comprehensible rules, represented in if-then form, are mined, 

i.e., rough set classification model is built using the classical rough set theory. The 

semantics-enabled discretization scheme has empowered the classifier to keep the 

semantics preserved in the rules during the induction phase.  The proposed model is 

evaluated and compared with state-of-the-art methods on the diabetes dataset and the 

results are generated. The results shows that the rough set model outperforms the 

compared methods and produces average and balanced accuracy of 0.95% on a test 

dataset of 391 records of type-1 and type-2 diabetes.
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Chapter 7     

Selection and Design of Hybrid-CBR Classifier  

 

7.1. Overview 

In real-world applications, where more precise and accurate classification results are 

required over small set of data instances with a large number of classes, the traditional 

classifiers cannot be easily used to model the problem and build an accurate classifier 

for it. In such situations, instance learning methods can perform well if they are 

designed properly. The reason is that in rule-based classification, as discussed in last 

chapter, the classifiers are built based on the concept of generalization rather than 

specialization, where generalized heuristics rules are extracted from the dataset. 

These classifiers represent similar sets of instances of the dataset in general rules and 

ignore specificity of the data.  The rules have minimum support to generate 

classification decisions closer to the users’ specific requirements. The classification 

mechanism of the rule-based classifiers and the associated systems are based on the 

principal of exact pattern matching. If all the patterns of a new test case are exactly 

matched against any of the existing rules in the classification model, the 

corresponding class label is predicted as the decision, otherwise the input case is 

declared as unclassified even if it is too close to any of the existing rule in the model.  

In real-world application domains, it is very essential requirement to predict the closet 

solution for the new case, even if the exact match is not found. This feature of the 

applications increases the acceptability of such systems in real-world domains. To 

address the same issues, this chapter presents the idea of a hybrid case-based 

reasoning (hybrid-CBR) classifier and tests its methodology in a real setup of a 

wellness application scenario where physical activity recommendations are supposed 

to generate as close as to the specific requirements of an individual. The proposed 

hybrid-CBR classifier is first designed and then implemented and evaluated in a real-

world project Mining Minds (MM) platform for health and wellness services. State-
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of-the-art recommendation models in this domain are based on the rule-based 

classifiers and results they generate are highly generalized, based on the general 

guideline rules from wellness domain. In the proposed hybrid-CBR classifier, 

guidelines-enabled rule-based methodology is used to create the resolved cases for 

the CBR model and also for the real new input case preparation during the 

classification and recommendation generation phase. So, this chapter first describes 

the knowledge acquisition process from the guidelines for the case-base creation and 

for the rule-based classification and recommendation systems to be compared with 

the proposed hybrid-CBR model. Then the design and implementation methodology 

of the proposed hybrid-CBR classifier is presented, where accurate similarity 

functions (local and global) are defined for accurately matching new input case 

against the existing resolved cases. At the end, the proposed methodology is tested 

against a newly created test case base and the results are compared with two rule-

based classifiers called baseline rule-based reasoning (baseline-RBR) classifier and 

modified rule-based reasoning (modified-RBR) classifier. Similarly, the newly 

designed similarity functions for accurate case retrieval are compared with the 

existing jCOLLIBRI5 system’s similarity functions and the results are generated, 

which show that the proposed hybrid-CBR classifier performs significantly better 

than the state-of-the-art methods.  

As the hybrid-CBR model integrates two reasoning methodologies (rule-based 

reasoning and case-based reasoning) in addition to a third preference-based reasoning 

(optional and application specific in this case), therefore in this chapter the 

methodology is generally referred as multimodal hybrid reasoning (HRM). These 

terminologies will be carried out throughout this chapter. 

7.1.1. Key Contributions of Hybrid-CBR Classifier 

In Chapter 3, a summary of hybrid classifiers, used in wellness applications, is 

presented and the shortcoming are highlighted. To overcome those limitations, the 

                                                           

5 http://gaia.fdi.ucm.es/research/colibri/jcolibri 
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proposed HRM, especially the hybrid-CBR classifier, is accurately designed and 

implemented. The key contributions made through the design of hybrid-CBR are 

summarized as follows.  

(i) Design of a flexible multimodal hybrid reasoning framework to support 

implementation of accurate classifiers for generating precise 

classification with the focus on specialization rather than generalization.  

(ii) Acquisition and translation of implicit and explicit knowledge, using 

experts’ rigorous inspection and guidelines-enabled rule-based method. 

(iii) Efficient exploitation of the acquired knowledge for personalized 

decision making using the integration of multiple reasoning 

methodologies, such as RBR, CBR and preference-based reasoning 

(PBR), deployed in a linear combination.  

(iv) Design and creation of a case-base of successful physical activity 

recommendation cases using an accurate guideline-enabled rule-based 

case preparation methodology. This process requires experts’ rigorous 

inspection of the prepared cases and the knowledge required for the 

creation of the cases. 

(v) Definition of new accurate local and global similarity functions for the 

proposed hybrid-CBR classifier to enhance performance of the retrieval 

phase of the traditional CBR classifier. 

(vi) Reducing the bottlenecks of traditional single reasoning methodologies, 

which exploit only single knowledge sources for generating a single 

service at a time. 

7.2. Selection and Design of Hybrid-CBR Classifier 

Chapter 3 has provided a detailed critical analysis of state-of-the-art reasoning and 

recommendation methods, used for different applications in healthcare and wellness 

domains, which use a variety of design strategies for the integration and building a 

classifier. Based on the surveyed literature, this chapter presents a unique 

methodology of case-based reasoning (CBR) classifier design and implementation 
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along with its integration with a guidelines-enabled rule-based reasoning approach to 

achieve the objective of accurate and precise recommendation decisions.  

7.2.1. Rationales behind the selection of hybrid-CBR  

In applications scenarios, where precise classification decisions are required over 

small set of data instances, i.e., small datasets, that have large number of classes, then 

traditional classifiers cannot perform well because they cannot generalize the small 

number of instances in the form of a model. Similarly, if the exact match is not 

available for the new cases in the already built model, then the result will be 

unsuccessful for traditional classifiers. Moreover, with passage of time, the number 

of new cases increases and the model needs to be updated to improve the 

performance, however it cannot be done easily. In similar situations, instance-based 

learning methods, such as CBR and k-NN, etc., perform well, therefore the CBR 

classifier is heuristically selected in this study for generating accurate classification 

results of physical activity recommendations to individuals, specific to their 

requirements. The classical CBR classifier is integrated with RBR methodology with 

a certain level of generalization to produce a generalized hybrid-CBR classifier for 

generating accurate decisions in other domains as well. The rationales behind the 

selection of hybrid-CBR are summarized as follows. 

(i) Supports accurate and precise classification results in case of small 

datasets and datasets with high dimensionality of classes. 

(ii) Works on the basis of similarity score rather than exact matching, 

therefor always returns relevant decisions (i.e., resolved cases) that can 

equally likely be applicable to the new query case. 

(iii) Supports incremental learning by using the revise and retain steps of the 

classical CBR methodology. This improves quality of the model with the 

passage of time without relearning or training of the classifier. 

Based on the above listed rationales, hybrid-CBR classifier is selected for the real-

world application of wellness recommendations generation, considered in this 

chapter. 



Chapter 7: Selection and Design of Hybrid-CBR Classifier 

(147) 

7.2.2. Design of hybrid-CBR classifier 

The design methodology of hybrid-CBR classifier is shown in Figure 7.1. 

 

Figure 7.1. Hybrid case-based reasoning classifier  

In the design of CBR classifier, the essential but most challenging task is the creation 

of accurate train test cases, called case base. Hence, in the proposed hybrid-CBR 

model, an accurate rule-based, case preparation methodology is proposed along with 

accurate local and global similarity functions. For the preparation of successful cases 

of the case base, guidelines-enabled case creation is proposed. The idea is that as the 

successful cases are the knowledge of a CBR system, used for resolving new 

unresolved cases, therefore they must be carefully prepared from the domain 

guidelines. Once these cases are created, accurate case retrieval function need to be 

defined. So this chapter present the process of creating accurate case similarity 

functions. The proposed hybrid-CBR classifier is tested and evaluated in a real-world 
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application scenario of physical activity recommendation and showed significant 

improvements in performance with respect to state-of-the-art methods. The rule-

based reasoning part of the whole HRM model is used for creation of new input case, 

unresolved case, from the domain data and the domain knowledge, at run time. This 

new input case is passed to the CBR classifier, where the case-based reasoning 

process utilizes the retrieval functions and recommends top-k most relevant cases as 

the proposed decisions. 

7.3. A real-world application scenario 

The proposed hybrid-CBR model is developed as a part of multimodal hybrid 

reasoner in a real-world application project called Mining Minds (MM) platform 

[182, 183], as shown in Figure 7.2. A brief overview of the MM platform is first 

provided, here, before going to the technical details. 

The overall MM platform is divided into four layers: data curation layer (DCL), 

information curation layer (ICL), service curation layer (SCL) and supporting layer 

(SL). The DCL is responsible for curating the data. It consists of different modules 

for data streaming and communication, data representation and mapping and big data 

storage in a Hadoop Distributed File System (HDFS). HDFS addresses the volume, 

Figure 7.2. Abstract view of the real-world application Mining Minds 
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velocity and variety aspects of raw sensory data acquired using mobile sensors. The 

accelerometer raw data for low-level activities (i.e., sitting, standing, moving in a bus, 

moving in a subway, walking, running, and cycling) are transferred to the DCL virtual 

machine, which is transformed to have a structured format and stored in a relational 

data model on the DCL server machine. The mobile device used in this case works 

as a gateway to connect to the DCL cloud server over the Internet. The stored data 

are fed to the ICL for activity recognition that leads to context formulation and 

behavior analysis of the users’ daily activities. The information is stored back in the 

HDFS logs of the DCL. The processed activities, context, behavior information, and 

personal profile information are utilized by the SCL for reasoning and providing 

personalized physical activity recommendations. In SCL, knowledge bases are 

created by domain experts based on the online guidelines and experts’ past 

experiences. This enables the process of provisioning personalized recommendations 

to users based on their needs, preferences, and interests. SL facilitates other layers by 

providing security, privacy, visualization and user interfaces. The user’s personal 

profile information is collected using a mobile application and stored on the DCL 

server in a relational data model.  

A multimodal hybrid reasoner is a key component of MM and plays the role of an 

intelligent service provisioning agent. It performs execution on the server side of the 

SCL and enables personalization of physical activity recommendations by integrating 

data and knowledge from diverse sources. The focus of this chapter is on the 

reasoning methodology and its usefulness in MM for generating personalized 

physical activity recommendations. 

7.4. Methodology - design and implementation of HRM and 

hybrid- CBR classifier 

For building an intelligent physical activity recommendation system, this thesis 

moved beyond the traditional single reasoning methodology systems to a multiple 

reasoning methodology system. This research integrates RBR and CBR with PBR 

into a single methodology called multimodal hybrid reasoning methodology (HRM). 
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HRM forms the basis of multimodal hybrid reasoner for the MM platform, which is 

the focus of this chapter. In HRM, these methodologies can be integrated in any of 

the following design strategies, shown in Figure 7.3. 

 

Figure 7.3. Design strategies of the proposed hybrid reasoning methodology 

In Figure 7.3 (a-c), the sequence of the design strategy of baseline-RBR is as follows: 

level-1 RBR is followed by level-2 RBR, which is followed by level-3 RBR and PBR. 

The design strategy of the modified-RBR follows the same strategy as the baseline-

RBR, except for the ranged-METs6 rules, which are used at the level-3 RBR. The 

strategy of hybrid-CBR differs from those of the first two strategies at level-3, where 

CBR is used instead of RBR. In our chapter, the first strategy is used for building a 

baseline system to compare the results of the other strategies. The second strategy is 

the improved version of strategy 1, which is implemented in MM system (v1.0) but 

has its own limitations. To eradicate the shortcomings of the first two strategies, the 

third strategy of hybrid-CBR is used, which integrates RBR, CBR, and PBR. This 

strategy is experimented and realized outside the MM platform on a local set up in 

our lab. 

                                                           
6 A metabolic equivalent, or METs, is a unit used to describe the energy expenditure of a specific physical activity. A 

METs is the ratio of the rate of energy expended during an activity to the rate of energy expended at rest (2008 

Physical Activity Guidelines for Americans). 
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Based on the idea illustrated above, the core components of the proposed multimodal 

hybrid reasoner have been defined and depicted them in the functional flow diagram 

shown in Figure 7.4. 

 

Figure 7.4. Functional diagram of proposed multimodal hybrid reasoning model 

Figure 7.4 shows high-level interactions of the different components of the reasoner 

along with the methodology used in each component. Like any other reasoning 

system, the core components of the proposed reasoner include the following: 

input/output interfaces, input data sources, knowledge bases, reasoning methodology 

and outputs. They are explained below as follows. 

Input/output interfaces: user’s smart phone that runs the MM application works as 

the input/output interface for the reasoner.  

Input data sources: inputs of the reasoner include user requests, personal profile data, 

and daily physical activity data. The input data, except for the user requests, are stored 

in an intermediate database. The request for recommendation is received from the 

user’s mobile application. 

Knowledge Base: knowledge of the reasoner is composed of rules created from 

physical activity guidelines and past successful cases obtained from the implicit 

experience of the domain experts. The rules are stored in the rule base, while the past 

successful cases (METs index) are stored in the METs case base (METCB). 
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Reasoning methodology: the reasoning methodologies include RBR, CBR, and PBR, 

which are integrated in a linear combination. The RBR methodology is applied at 

multiple levels: level-1, level-2, and level-3. At level-3, RBR is either used with 

distinct-METs rules or with ranged-METs rules. At the same level, CBR can also be 

used (using METs cases) as a counterpart of RBR for improved services. At the end, 

the multi-level filtration mechanism is applied in PBR to filter out irrelevant 

recommendations by utilizing the user’s preferences and interests. 

Outputs: outputs of the reasoner include wellbeing recommendations for users, 

weight status, weight management plans, personalized physical activity 

recommendations and personalized filtered physical activity recommendations. 

These recommendations are aggregated and prepared by Results Propagator and then 

delivered to the end user and intermediate database. In the intermediate database, it 

is stored for future use as a successful case. 

In the subsequent sub-sections, a detailed description of the architectural design of 

the proposed HRM is provided, and then, the process of knowledge creation is 

discussed. Finally, the reasoning methodology is described in detail. 

7.4.1. Architectural design and workflow 

A detailed data flow diagram of the multimodal hybrid reasoning engine illustrating 

communication is shown in Figure 7.5.  
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Figure 7.5. Detailed data flow diagram of the proposed multimodal hybrid reasoning model 

The key components of the HRM are service request handler (SRH), data loader and 

manipulator (DLM), knowledge base (KB), knowledge loader (KL), hybrid reasoner 

(HR) and result preparator and propagator (RP). The hybrid reasoner consists of RBR, 

CBR, and PBR modules along with the PR module. The RBR, CBR, and PBR 

modules work cooperatively in a linear combination for enhancing recommendations. 

CBR is the key reasoning methodology that is activated by the output of RBR. The 

output of CBR in turn activates the PBR methodology to personalize the 

recommended physical activity.  

From the service execution perspective, when a user requests service, the SRH 

analyzes the request and activates the appropriate module of the reasoner. SRH 

supports the MM platform for multiple service generation. SRH forwards the request 

to HR, where the RBR (level-1, level-2), level-3 RBR/CBR, and PBR methodologies 

are sequentially executed. Outputs of the HR are forwarded to the RP module for final 

preparation and forwarded to the user mobile application interface (UIUX) for being 

displayed to the users. 

For the weight management scenario, the multimodal hybrid reasoning methodology 

operates in the following flow.  

 First, level-1 RBR is applied, which loads the weight status rules (WSR) from 

the KB and the required personal profile data from the intermediate database 

(IDB) using the data loader (DL) component. The necessary computation on 
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the personal data, e.g., BMI calculation from height and weight information, 

is performed using the data manipulator (DM) and passed to the level-1 RBR. 

The level-1 RBR uses RBR methodology to recommend weight status 

recommendations (normal, overweight, underweight) as a service to the user 

and to level-2 RBR for further processing. 

 Level-2 RBR receives the output of the level-1 RBR as input and performs 

the same reasoning procedure as level-1 RBR for recommending the goal 

state and associated calorie consumption plan and weight management plans. 

The level-2 RBR uses the goal and plan recommendation rules (GPR) loaded 

by KL from the KB and the personal profile data loaded by the DL from the 

IDB. The purpose is to generate goal and plan recommendations, which are 

provided to the users as a service and to level-3 RBR/CBR for further 

processing. 

 Level-3 RBR/CBR receives the output of the level-2 RBR as input and 

further generates physical activity recommendations. Level-3 RBR/CBR 

supports both the RBR and CBR methodologies. The RBR results in 

baseline-RBR and modified-RBR systems. The baseline-RBR uses distinct-

METs rules, while the modified-RBR uses ranged-METs rules that are 

loaded from the KB during the activity recommendation generation. The 

CBR methodology uses the METCB of the historical successful physical 

activity recommendations. In our case, the 2011 compendium of physical 

activity guidelines [184] are used as our key physical activity case base, 

which has physical activity recommendations associated with METs values. 

In either case (i.e., baseline-RBR, modified-RBR or hybrid-CBR), the list of 

all of the performed physical activities is loaded from the IDB and 

commutated for the duration, amount of consumed calories, remaining 

calories and corresponding metabolic equivalent (METs) value. The 

corresponding physical activities for the METs value are recommended and 

provided to the users. These physical activities are not filtered according to 

the preferences and interests of the users; therefore, they are forwarded to the 

PBR module for further personalization.  



Chapter 7: Selection and Design of Hybrid-CBR Classifier 

(155) 

 PBR first receives the physical activities recommended by level-3 RBR/CBR 

and then loads the personal preferences and interests information from the 

IDB. The associated preference-based rules (PR) are loaded from the KB to 

apply multi-level filtration for filtering out irrelevant recommendations. The 

final filtered recommendations are personalized according to the user’s 

personal preferences.  

 The personalized recommendations are passed to the RP for proper 

preparation and packaging to be forwarded to the user application to be 

displayed on the user’s mobile application.  

 The user query, intermediate recommendations, and final personalized 

recommendations are stored in the future case base (FCB) for future use. 

7.4.2. Knowledge Acquisition 

Knowledge is one of the most important ingredients of a reasoning system. This 

section describes how the knowledge used by the HRM is created. The key 

methodologies of HRM are RBR and CBR; therefore, first need is to create 

knowledge in the form of rules and cases. The process of knowledge acquisition is 

discussed below. 

7.4.2.1. Rules Creation: Translating Guidelines  

Wellness guidelines are the key source of information for improving the quality of 

life. Translating guidelines into computer-processable rules is a challenging task 

because it requires the involvement of knowledge engineers and domain experts 

[185]. In our work, knowledge from the unstructured guidelines of a weight 

management scenario is translated to rules with the help of three knowledge engineers 

and two domain experts. Based on the design of our research, the knowledge 

engineers first studied the weight management scenario, surveyed the weight 

management guidelines, indexed them, and categorized them into two groups: (a) 

standard equations to compute standard values and (b) indexes to be used in rule 

creation. An example of the first category is the calculation of calories burned/day, 



Chapter 7: Selection and Design of Hybrid-CBR Classifier 

(156) 

while an example of the second category is the BMI index. These rules are used by 

the RBR to generate physical activity recommendations. The process of guideline 

translation is described below. 

Personal profile assessment 
To classify users into underweight, normal or overweight states, personal profile 

assessment based on the standard BMI index is required [186]. The BMI index and 

personal profile information are combined together to form rules, which are shown 

in Table 7.1. For the BMI calculation, the standard BMI formula is used. 

Table 7.1. Weight status rules (WSR) based on Body Mass Index (BMI) 

Gender Age BMI value Weight status 

M or F >20 <18.5 kg/m2  Underweight 

M or F >20 >18.5 and <25 kg/m2  Normal 

M or F >20 >25 and <30 kg/m2  Overweight  

These rules are applicable for adults and used by level-1 RBR for finding the weight 

status of the users. 

Goal setting and plan management 
A weight management system requires goals and the associated plans to achieve the 

goals. A goal can be either a local goal or global goal (gloGoal). A global goal is the 

final objective of the user to be achieved, while the local goal refers to a set of sub-

goals to reach the global goal. For example, the total weight to be lost is considered 

a global goal, while weekly targets are considered local goals. To set a global goal in 

the context of the weight management scenario, first, an estimation of the ideal body 

weight (idlWgt) is required, which can be obtained using the Robinson JD [187] 

equation. The difference between the current weight (curWgt) and ideal weight yields 

the best estimation for the target goal in terms of the number of kg to be lost. The 

ideal body weight and global goal are computed using equation 1 and equation 2. 

𝐢𝐝𝐥𝐖𝐠𝐭 =  𝟓𝟏. 𝟔𝟓 𝐤𝐠 +  𝟏. 𝟖𝟓 𝐤𝐠/𝐢𝐧𝐜𝐡 𝐨𝐯𝐞𝐫 𝟓 𝐟𝐞𝐞𝐭       (𝐦𝐚𝐧)  
(1) 

idlWgt =  48.67 kg +  1.65 kg/inch over 5 feet       (woman) 

The ideal body weight is a debatable topic but has successfully been used in 

healthcare systems, such as drug dosage estimation [187] and cell transplantation 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Robinson%20JD%5BAuthor%5D&cauthor=true&cauthor_uid=6869387
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[188]. Therefore, it has been adopted for the estimation of the global goal in our 

research scope. 

𝐠𝐥𝐨𝐆𝐨𝐚𝐥(𝐤𝐠) = 𝐜𝐮𝐫𝐖𝐠𝐭(𝐤𝐠) − 𝐢𝐝𝐥𝐖𝐠𝐭 (𝐤𝐠)  (2) 

In our system, gloGoal by itself is a user service, but it is aimed towards devising 

plans for achieving the global goal. The rules defined for identifying appropriate 

plans, such as a weight loss plan, weight gain plan and weight maintenance plan 

(GPR), are shown in Table 7.2. 

Table 7.2. Goals and weight management Plan Rules (GPR)  

Gender 

Male (M)/ 

Female (F) 

Global Goal 

(gloGoal) - Kg 

Weight Status 

(WS) 
Plan Prescription (PP) 

M or F > 0 (+ive) Normal or 

Overweight  

Weight Loss Plan (WLP): lose gloGoal(Kg)  

M or F = 0 (neutral) Normal Weight Maintenance Plan (WMP): 

motivational statements  

M or F < 0 (-ive) Underweight Weight Gain Plan (WGP): gain 

gloGoal(Kg) 

In Table 7.2, the focus is only on the first two cases. 

Details of the suggested plan, i.e., duration for achieving the global goal, can be 

computed using equation 3. 

𝐰𝐠𝐡𝐑𝐞𝐝𝐏𝐥𝐚𝐧 (𝐝𝐚𝐲𝐬)  = 𝐫𝐨𝐮𝐧𝐝𝐮𝐩 (
𝟕(𝐝𝐚𝐲𝐬)  ∗  𝐠𝐥𝐨𝐆𝐨𝐚𝐥(𝐊𝐠)

𝟎. 𝟓 (𝐊𝐠)
) (3) 

In equation 3, a constant value of 0.5 represents the weight to be lost during one week. 

From this equation, local goals for weeks and months can be determined by 

subtracting a weight of 0.5 kg from the weight of the previous week (weekly plan). 

These plans can also be estimated in terms of the calories burnt (per day, per week, 

per month, etc.) using equation 4. 

𝐜𝐚𝐥𝐓𝐨𝐁𝐮𝐫𝐃𝐚𝐲 =
 𝐠𝐥𝐨𝐆𝐨𝐚𝐥(𝐤𝐠) ∗ 𝐂𝐚𝐥 (𝟏𝐤𝐠 𝐟𝐚𝐭)

𝐰𝐠𝐡𝐑𝐞𝐝𝐏𝐥𝐚𝐧 (𝐝𝐚𝐲𝐬)
  (4) 
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In equation 4, Cal represents the number of calories equivalent to burning 1 kg of 

body fat.  

All of these rules are used for setting the goal, devising plans, and managing weight 

and are used by level-2 RBR. 

Physical activities assessment 
Once a weight management plan is assessed, monitoring and recognition of the user’s 

physical activities are required. Based on monitoring the previous day’s activities, 

using the accelerometer sensor of the smartphone, the next day recommendations are 

planned. This process is performed in terms of the duration spent in each activity and 

the estimated amount of calories burnt. The amount of each activity (amtAct) is 

calculated by taking sum of all of the time slots (timSlot) during which the user 

performed that activity (Act), computed using equation 5. 

𝐚𝐦𝐭𝐀𝐜𝐭𝐢 =  ∑ 𝐀𝐜𝐭𝐢. 𝐭𝐢𝐦𝐒𝐥𝐨𝐭 𝐣

𝐭

𝐣=𝟏

  (5) 

The estimation of calories (Cal) for a specific activity (Acti) in a specific time 

duration, amtAct i, can be estimated by the product of the METs of that activity with 

the amount of activity and current weight of the subject. This calculation is shown in 

equation 6, which is adapted from the compendium of physical activities [184]. 

𝐀𝐜𝐭 𝐢. 𝐂𝐚𝐥 = 𝐀𝐜𝐭 𝐢. 𝐌𝐄𝐓𝐬 ∗ 𝐚𝐦𝐭𝐀𝐜𝐭 𝐢(𝐡) ∗ 𝐰𝐞𝐢𝐠𝐡𝐭 (𝐤𝐠)  (6) 

METs estimates the capacity and tolerance level of an individual to exercise in which 

he/she may participate safely without hurting him/herself [189]. In the proposed 

system it is used to estimate calories from the physical activities and vice versa. In 

the calorie estimation process, the average METs, rather than the exact MET value is 

used. The average METs for an activity (e.g., walking) is calculated by considering 

all types of walking included in the METs guidelines [184] and taking the average. 

The same procedure is used for other activities that are considered (i.e., running, 

jogging, transportation, sitting, and standing). The rationale behind the average METs 
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is the limitation of our current activity recognition system in recognizing the exact 

intensity of every sub-type of activity, for example, walking. 

After applying equation 6, for all of the activities, equation 7 is used to sum all of the 

estimated calories.  

𝐭𝐨𝐭𝐚𝐥𝐁𝐮𝐫𝐧𝐞𝐝𝐂𝐚𝐥 =  ∑ 𝐀𝐜𝐭 𝐢. 𝐂𝐚𝐥

𝐚

𝐢=𝟏

 (7) 

The remaining calories (remCalToBurn) for the rest of the day (in a daily calorie 

consumption plan) are computed using equation 8.  

𝐫𝐞𝐦𝐂𝐚𝐥𝐓𝐨𝐁𝐮𝐫𝐧 = 𝐜𝐚𝐥𝐓𝐨𝐁𝐮𝐫𝐃𝐚𝐲 − 𝐭𝐨𝐭𝐚𝐥𝐁𝐮𝐫𝐧𝐞𝐝𝐂𝐚𝐥  (8) 

The aim of estimating the remaining calories is to recommend the appropriate 

physical activity using our reasoning system to meet the goals of the day. This 

recommendation requires the METs value computed from the remCalToBurn using 

equation 9 [184].  

𝐌𝐄𝐓𝐬 =
 𝐫𝐞𝐦𝐂𝐚𝐥𝐓𝐨𝐁𝐮𝐫𝐧

(𝐚𝐦𝐭𝐀𝐜𝐭 = 𝟏𝐡) ∗ 𝐰𝐞𝐢𝐠𝐡𝐭 (𝐤𝐠)
  (9) 

The METs value is used, both, in RBR and CBR to recommend the appropriate 

physical activity. For RBR, rules need to be created using the user’s personal 

information and the required METs value. For CBR, a case base is to be prepared. 

Rules creations 
Based on the estimated METs value and the user’s personal information (e.g., age), 

two types of rules are created. The first type is based on distinct-METs values, and 

the second type is based on ranged-METs value. The distinct-METs rules are used to 

build the baseline-RBR system, while the ranged-METs rules are used for building 

the modified-RBR system. When distinct-METs is considered and age together, total 

122 rules are created for the 48 distinct-METs values. The distribution of the rules is 

as follows: 22 rules belong to the Young age group, 33 rules belong to the Older 

Adults group, and 47 belong to the Adults group. In the context of physical activity 

recommendation, age plays an important role; therefore, it is considered an essential 
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part of the rules. The transformation of age to different age groups is supported by 

the guidelines from WHO [190] and UK [191]. These guidelines categorize users into 

three major age groups: Young (age 5-17), Adults (age 18-64), and Older Adults (age 

≥65). A partial list of the distinct-METs rules is shown in Table 7.3. 

Table 7.3. Distinct-METs rules for baseline-RBR 

Rule ID 
Age 

Group 

METs 

value 
Activity prescription 

R#1 Young 2 Walking, household 

R#2 Older 

Adults 
6.5 

Climbing hills with 0 to 9 lb load; Race walking; rock or 

mountain climbing 

R#3 Young 7.8 Backpacking; hiking or organized walking with a daypack 

. . . . 

R#122 Adult 15 Running; stairs up 

In the MM implementation, ranged-METs rules are used; therefore, first, ranges are 

defined for the METs values used in these rules. According to the well-known 

physical activity guidelines from the center for disease control and prevention (CDC), 

American College of Sports Medicine (ACSM) [192], WHO [190], US [193] and UK 

[191], physical activities can be grouped into three categories: light (< 3.0 METs), 

moderate (3.0 to 6.0 METs) and vigorous (> 6.0 METs). According to these 

guidelines, moderate to vigorous-intensity physical activities are recommended to 

Young, Adults and Older Adults, but with slightly changed doses and patterns. For 

example, the Young group is recommended a physical activity of METs ≥ 3-7, and 

the Adults and Older Adults groups are recommended a physical activity of METs ≥ 

3. However, the Older Adults group is recommended the same physical activities in 

the range of METs values for the Adult group but with lower intensity and dose due 

to their lower capabilities for exercise and physical activities. These guidelines are 

formulated by considering the threshold value of METs ≤ 10.25 for Older Adults, 

METs ≤ 7 for Young and METs ≤ 23 for Adults. The light-intensity activities (i.e., 

METs < 3) are appropriate for all age groups because they do not lead to injuries. 

Based on this grouping of the METs values by the age groups, the ranged-METs rules 

are defined and summarized in Table 7.4. 
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Table 7.4 Ranged-METs rules for modified-RBR 

Rule ID Age Group METs value Activity prescription 

R#1 Young, Adults, Older 

Adults 
< 3 Light activity 

R#2 Adults ≤ 23 Moderate – vigorous-intensity 

R#3 
Older Adults ≤ 10.25 

Moderate – vigorous (lower intensity 

level) 

R#4 Young ≤ 7 Moderate  

7.4.2.2. Case Base Creation 

The CBR part of HRM operates based on well-established past successful cases to 

generate physical activity recommendations. The cases in the case base are adapted 

from the 2011 compendium of physical activity guidelines [184]. These guidelines 

contain a list of physical activities associated with METs values. The METs values 

are used and the associated physical activities as the two key attributes of our case 

base. This case base is named as METs case base (METCB). Based on the discussion 

made in last section, the number of attributes of the METCB are extended to include 

an additional attribute, age group. The relationship between age group and METs 

ranges is represented in equation 10 and depicted in Figure 7.6. 

𝐀𝐠𝐞 𝐆𝐫𝐨𝐮𝐩 = {𝐀𝐥𝐥 𝐀𝐠𝐞 ⊆ 𝐘𝐨𝐮𝐧𝐠 ⊆ 𝐎𝐥𝐝𝐞𝐫 𝐀𝐝𝐮𝐥𝐭𝐬 ⊆ 𝐀𝐝𝐮𝐥𝐭𝐬} (10) 

 

Figure 7.6. Distribution of subjects based on age factor 

In the above equation 10 and Figure 7.6, it can be seen that a fourth age group, which 

is labelled as ‘All Age’ (METs < 3), is added to the case base. It is a subset of all of 

the other age groups because activities of this intensity are not injurious and can 

equally be recommended to any age group. The current METCB contains 119 
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instances, which may increase in the future. Table 7.5 presents the detailed 

characteristics of the METCB.  

Table 7.5. Case base structure 

Attribute Data type Possible value Description  

Age Group Symbol 
{All Age, Young, Adults, 

Older Adults} 
Age of the subject 

METs Float Min=1.3, Max=23.0 
Metabolic Equivalents of 

Tasks one hour 

Recommendations String 

Physical activities {running, 

walking, cycling, traveling-

bus and subways, standing, 

sitting} 

Physical activities 

7.4.3. Hybrid Reasoning and Recommendation 

Hybrid reasoning is the key methodology implemented in the proposed reasoning 

engine that generates personalized physical activity recommendations in the MM 

system. It is composed of RBR, CBR, and PBR and is discussed in the subsequent 

sub-sections. 

7.4.3.1. Rule-based reasoning and recommendation 

In HRM, the RBR methodology works at three levels (level-1, level-2, and level-3). 

Its objectives include the following: (1) assessment of personal information and 

recommendation for weight status, (2) assessment of the ideal body weight and 

recommendations for goals and plans and (3) assessment of the performed physical 

activities and recommendations for appropriate physical activity. The 

recommendations of each level are provided to the user, on one end, and to the next 

level, on the other. For example, the first level of recommendations is provided to the 

user and to the level-2 RBR. This process involves a sequential flow, and finally, 

recommendations are generated, which are provided to the users on their mobile 

applications. The idea of provisioning intermediate results to the users is motivated 

from the fact that MM system supports the PULL service model, where users can 

subscribe either to a single service or a combination of services. Using this approach, 

some of the users subscribe only for weight status recommendations, while others 
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subscribe for goal and plan recommendations and physical activity recommendations. 

If the MM system is constrained only to support the PUSH service model, then it may 

be enough for the users who require services on the subscription basis but will not 

support users who require customized subscription-based services. 

Level-1 RBR 
Once the user query arrives at the HRM, level-1 RBR gets activated, loads personal 

profile information, performs the necessary computations, retrieves the WSR (Table 

7.1) and starts the rule-based reasoning process [194]. The outputs are provided to 

the end user and to the level-2 RBR. The steps of the level-1 RBR are listed in 

Algorithm 1. 

Algorithm 1. Rule-based reasoning for the recommendations of weight status 

Begin 

          Input: UID:uid 

          Output: Weight Status (WS): List <Weight Status>  

Let SID:sid = Weight Status Service Id 

WSR: Set of Weight Status Rules, WSR = ∅ 

KB: Knowledge Base 

1. Foreach RULE R in KB 

If (R ∈ sid) 

WSR:=WSR ∪ R; 

End If 

End for 

2. 𝐅𝐨𝐫𝐞𝐚𝐜𝐡 RULE R in WSR 

WS: = ExecuteWSRule (R, uid) 

𝐈𝐟 WS ≠  “Underweight” 
PropgatWSResultsToUIUX (uid, WS); 
InvokeLevel2RBR (uid, WS ); // See Algorithm 2 
Go to step 3 

Else 
    

PropgatWSResultsToUIUX (uid, educational & motivational statments for Weight Gain) 

Go to step 3; 

End If 

End for 

3. FCB ≔ AddWStatus(uid, WS); // See discussion 
4. Exit; 
End 

In first step of Algorithm 1, WSR are loaded from the knowledge base using an 

iterative loop process. The design of the knowledge base is based on the types of 

services, and rules are stored accordingly. Therefore, the type of service identifies the 

type of rules to be loaded. The type of service can be identified by the service Id (sid, 
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in this case). Once the rules are loaded, the execution commences. The definition of 

ExecuteSWRule() is given in Function 1, and it loads the personal profile data of the 

user from the IDB and performs the necessary computations. The data loading 

process of the IDB uses a simple object access protocol (SOAP)-based service, 

defined in the SCL. Finally, the pattern matching process starts, and when a rule is 

matched, it is fired, and its corresponding weight status recommendations are 

generated. The results of this function are returned to Algorithm 1 for further 

processing. 

Function 1. Rules execution for the weight status recommendations 

ExecuteWSRule (RULE R, UID uid) 

Let WS = Weight Status, showing BMI status of the user 

IDB: Intermediate Database 

PPROF: Personal Profile 

BMI: Body Mass Index 

RHS: Right Hand Side 

LHS: Left Hand Side 

1. Load PPROF of uid from IDB;  
2. Compute BMI;  
3. 𝐈𝐟 R. LHS. values = (PPROF and BMI) 

WS ≔ RHS of R; 
𝐄𝐧𝐝 𝐈𝐟 

4. Return (WS) 

When the weight status recommendations are received by Algorithm 1, they are 

forwarded to the user mobile application interface (UIUX) and to the level-2 RBR. 

The function PropgatWSResultsToUIUX() is responsible for providing the 

recommendations to the user while the function InvokeLevel2RBR() is used to 

invoke the level-2 RBR. The propagation function first communicates with the user’s 

mobile application and then provides the generated intermediate recommendations 

along with some metadata for display purposes. In case the intermediate result of the 

level-1 RBR is the underweight status, then the system propagates motivational and 

educational statements using the PropgatWSResultsToUIUX() function. 

Level-2 RBR 
Level-2 RBR is activated by level-1 RBR for setting goals and prescribing the 

associated weight loss and calorie consumption plan recommendations. In level-2 

RBR, the goal and plan rules (GPR) specified in Table 7.2 are used along with eqs. 

1-4. The algorithmic steps of level-2 RBR are given in Algorithm 2. 
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Algorithm 2. Rule-based reasoning algorithm for goals and plans prescription recommendations 

Begin 

         Input: UID:uid, WS 

        Output: Weight Loss Plan (WLP) 

Let SID:sid = Weight Loss Service Id 

GPR: Goal and Plan Rules, GPR = ∅ 

PP: Plan Prescription 

1. Foreach RULE R in KB // KB: Knowledge Base 

If (R ∈ sid) 

GPR:= GPR ∪ R; 

End If 

End for 

2. 𝐅𝐨𝐫𝐞𝐚𝐜𝐡 RULE R in GPR 

PP: = ExecuteGPRRule (RULE R, UID uid)  

𝐈𝐟 PP = "WLP" 

Let wlPlan:= List <WLPlan>; 

wlPlan = ComputeWLPlansInKgAndCalories(); // use equation 3 and 4 

PropgatWLPResultsToUIUX (uid, wlPlan); 

FCB ≔ AddRecommendedPlan(uid, wlPlan); // See discussion 

InvokeLevel3RBR − CBR (uid, wlPlan ["caloriesPlan"]); // See Algorithm 3 

Go to step 3; 

Else 

PropgatWMPResultsToUIUX(uid, educational & motivational statments  

for Weight Maintenance) 

Go to step 3; 

End if 

End for 

3. Exit; 

End 

In Algorithm 2, the rules are loaded from the KB on the basis of service type (sid). 

The service is goal and plan recommendations, and the associated rules are the GPR. 

After the rules are loaded, Algorithm 2 executes ExecuteGPRRule() to generate the 

plan prescription (PP) recommendations. The definition of this function is shown in 

Function 2, which takes each rule from the GPR and retrieves the required personal 
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profile data from IDB and computes the ideal body weight (idlWgt) and global goal 

(gloGoal). The pattern matching process then starts, and each attribute of the left hand 

side (LHS) of the rule R is checked against the loaded and computed values. When a 

match is found, rule R is fired, and its right hand side (RHS) is provided as the PP 

recommendation. These recommendations are returned to Algorithm 2 for further 

processing. 

Function 2. Execution of the goal and plan rules for goal and plan 

recommendations 

ExecuteWMPPlanRule (RULE R, UID uid) 

Let IDB: Intermediate Database 

gloGoal: global Goal 

idlWgt: ideal Weight 

PPROF: Personal Profile  

LHS: Left Hand Side 

RHS: Right Hand Side 

PP: Plan Prescription 

1. Load PPROF of uid from IDB; 

2. Compute Ideal Weight (idlWgt) ; //use equation 1 

3. Compute Global Goal (gloGoal); //use equation 2 

4. 𝐈𝐟 R. LHS. values = (PPROF, gloGoal) 

PP ≔ RHS of R; 

𝐄𝐧𝐝 𝐢𝐟 

5. Return (PP); 

If the output retained in PP is weight loss plan (WLP), then the 

ComputeWLPlansInKgAndCalories() function is activated for computing daily, 

weekly, and monthly plans in terms of the number kg to lose and the associated 

calorie consumption plans. These plans are forwarded to the users and are displayed 

on their mobile application interface (UIUX) and are also forwarded to level-3 RBR-

CBR. The functions responsible for these tasks are PropgatWLPResultsToUIUX() 

and InvokeLevel2RBR − CBR(), respectively. In case the PP value is the weight 

maintenance plan (WMP), then educational and motivational statements are provided 

to the users using the PropgatWMPResultsToUIUX() function. 
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Level-3 RBR-CBR 
In HRM, level-3 RBR-CBR uses either baseline-RBR or modified-RBR or CBR 

methodology. For these methodologies, an assessment of the performed physical 

activities is required in terms of the burned calories, remaining calories, and 

equivalent METs value. This assessment and the computations are performed using 

equations 5-9. In the baseline-RBR, distinct-METs rules (Table 7.3) are used, while 

in the modified-RBR, ranged-METs rules (Table 7.4) are used to generate 

personalized physical activity recommendations. The algorithmic steps for both the 

baseline-RBR and modified-RBR are given in Algorithm 3 and are the same from the 

methodology perspective but different based on the nature of rules they use (for the 

level-3 CBR, see section 7.4.4). 

Algorithm 3. Assessment of physical activities and prescription of physical activity 

recommendations using rule-based reasoning 

Begin 

         Input: UID:uid, wlPlan 

         Output: Personalized Physical Activity Recommendations (PAR): List <Recommendations> 

Let SID:sid = Personalized Physical Activity Recommendation Service 

APR: activity prescription rules and APR = ∅ 

1. Foreach RULE R in KB // KB: Knowledge Base 

If (R ∈ sid) 

APR:= APR ∪ R; 

       End if 

     End for 

2. 𝐅𝐨𝐫𝐞𝐚𝐜𝐡 RULE R in APR 

PAR: = ExecuteActPrescRule (RULE R, UID uid) 

𝐈𝐟 PAR ≠ ∅ 

 Break; 

End If 

3. End for 
4. PropgatPARResultsToUIUX (uid, PAR); 
5. FCB ≔ AddRBRPAR(uid, PAR); // See discussion 
6. InvokePBR(uid, PAR); // See Algorithm 5 

7. Exit; 

End 

Algorithm 3 first loads the activity prescription rules (ARP) from the KB based on 

the service id, specified in the service request. For generating appropriate 

personalized physical activity recommendations (PAR), the ExecuteActPrescRule() 

function is used, the details of which are given in Function 3. The physical activities 

are recommended on the basis of the final computed METs values and the user’s 



Chapter 7: Selection and Design of Hybrid-CBR Classifier 

(168) 

personal profile information. The METs value represents the intensity level of a 

physical activity. Within the same physical activity type, for example, walking, 

different intensity values exist that range from a METs value of 2.3 to a METs value 

of 12 [184]. Similar ranges exist for other activities as well, such as running, cycling, 

transportation, standing, and sitting. In the METs guidelines, a large number of 

distinct METs values are available, which makes it hard to define distinct METs rules. 

One of the solutions to this issue is to define range-based METs rules. In the MM 

implementation for the weight management scenario, METs range-based rules are 

used. 

Function 3. Execution of distinct-METs and ranged-METs rules for physical activity 

recommendations 

ExecuteActPrescRule (RULE R, UID uid) 

Let IDB: Intermediate Database 

METs: Metabolic Equivalent of Task 

PPROF: Personal Profile  

AMTACT: Amount of Physical Activity Performed 

PAR: Personalized Physical Activity Recommendations: List <Recommendations> 

 LHS: Left Hand Side 

 RHS: Right Hand Side 

1. Load PPROF, AMTACT of uid from IDB;  
2. Compute AMOUNT OF PHYSICAL ACTIVITY performed so far; //use equation 5 
3. Compute CALORIES for each ACTIVITY; //use equation 6 
4. Compute TOTAL BURNED CALORIES ; //use equation 7 
5. Compute REMAINING CALORIES ; //use equation 8 
6. Compute METs value; //use equation 9 
7. 𝐈𝐟 R. LHS. values = (PPROF, METs) 

PAR ≔ RHS of RULE; 
End if 

8. Return (PAR) 

Once PAR are generated, they are provided to the end users on their mobile 

application interface (UIUX) using the PropgatPARResultsToUIUX() function. The 

output of Algorithm 3 can be a list of physical activities that are generated either on 

the basis of ranged-METs rules or multiple physical activities against a single METs 

value in a rule. To filter this list of recommendations and personalize them to another 

level, they are provided to the PBR methodology by using the InvokePBR() function 

call of Algorithm 3 (see section 7.4.5 for the PBR functionality). 

7.4.4. Case-based Reasoning (CBR) 
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To overcome the limitations of level-3 RBR implemented in the MM platform, CBR 

is used for generating more personalized recommendations. The CBR 

implementation is performed outside the MM implementation in our lab with the aim 

of enhancing the performance of HRM. The CBR methodology helps in 

recommending specific physical activity to users based on their gender information 

and required intensity for physical activity i.e., METs value. The CBR methodology 

is selected due to its capabilities of (1) recommending specific and precise physical 

activities to the user, (2) providing a list of top relevant physical activities as 

recommendations (e.g., walking) with multiple similar alternatives (e.g., running or 

cycling) and (3) refining the suggested recommendations based on the user’s 

feedback for enhancing recommendation accuracy and specificity. CBR execution 

follows the standard CBR cycle (retrieve, reuse, revise and retain) to complete the 

process of suggesting and refining recommendations along with an incremental 

learning approach. In our thesis, the revise step could not be performed in the HRM 

due to the limitation of the MM system in being unable to handle user feedback. This 

phase is left as future work. 

7.4.4.1. Retrieve and Reuse Steps 

In our CBR model, the case query contains two attributes, age group and METs value. 

The age value is retrieved from the personal profile of the user, which is transformed 

to the predefined age group. The value of the METs attribute is computed from the 

user’s personal profile information and the physical activities the user performed so 

far. For this purpose, steps 1-6 of Function 3 are used. These values are provided to 

the retrieve step of the CBR, which starts retrieving similar cases from the METCB. 

For the retrieval of age group and METs values, two local similarity functions are 

defined, which are shown in equation 11 and equation 12. 

𝐌𝐄𝐓𝐒𝐢𝐦𝐥(𝐧𝐂, 𝐞𝐂) =
𝐝𝐠(𝐌𝐚𝐱𝐌𝐄𝐓,  𝐌𝐢𝐧𝐌𝐄𝐓) − 𝐝𝐥(𝐧𝐂𝐌𝐄𝐓,  𝐞𝐂𝐌𝐄𝐓) − 𝟏

𝐝𝐠(𝐌𝐚𝐱𝐌𝐄𝐓 ,  𝐌𝐢𝐧𝐌𝐄𝐓)
 (11) 

Here, METSiml calculates the similarity of the METs between the new query case 

(nC) and existing cases (eC) in the METCB. Similarly, dg is the global distance 
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function that calculates the distance between MaxMET (maximum METs value in the 

METCB, i.e., 23 for running) and MinMET (minimum METs value in the METCB, 

i.e., 1.3 for resting). Here, dl is the most important local similarity function that 

computes the distance between the METs values of nC and eC. 

𝐀𝐆𝐒𝐢𝐦𝐥(𝐧𝐂, 𝐞𝐂) = {
𝐀𝐆𝐢𝐣 = 𝟏 𝐟𝐨𝐫 ∀ (𝐢 ≥ 𝐣)𝐎𝐑(𝐢 = 𝟎 𝐎𝐑 𝐣 = 𝟏)

𝟎 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞
} (12) 

In equation 12, AGSiml is the local similarity function that matches the METs values 

of eC with nC. The similarity criterion used in the equation is the exact match, which 

is denoted as value 1. The interpretation of this value is that if the age group of the 

query case is similar to that of the existing case (i.e., AGnC = AGeC), then this value 

will be 1; otherwise, it will be 0. The symmetric view of the local similarity function 

of this attribute is represented in a confusion matrix shown in Table 7.6. 

Table 7.6. Local similarity matrix of ‘age group’ attribute 

Age Group All Age Young Older Adults Adults 

All Age 1 1 1 1 

Young 1 1 0 0 

Older Adults 1 1 1 0 

Adults  1 1 1 1 
 

In the above confusion matrix, the diagonal value of each age group is equal to 1, 

which shows the exact match relationship of each age group with itself. The age 

group, labeled as All Age, represents the list of METs values (less than 3) that can be 

equally recommended to the rest of the age groups; therefore its value is 1 for all of 

the other age groups. Similarly, the METs values of the age group Young (less or 

equal to 7) are also a subset of the METs values of the Older Adults and Adults age 

groups; therefore its value is 1 for all these age groups. This makes both the columns 

identical in the similarity matrix table. 
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After computing the local similarities, the weighted sum global similarity function, 

Simg, is used to compute the global distance between nC and eC, as shown in equation 

13. 

𝐒𝐢𝐦𝐠(𝐧𝐂, 𝐞𝐂) = 𝛃(𝐀𝐆𝐒𝐢𝐦𝐥(𝐧𝐂, 𝐞𝐂)) + 𝛄(𝐌𝐄𝐓𝐒𝐢𝐦𝐥(𝐧𝐂, 𝐞𝐂)) (13) 

Here, β denotes the weight value assigned to the attribute age group and γ denotes 

the weight value assigned to the METs attribute. The value of β is 0.1 (i.e., β = 0.1), 

and the value of γ is 0.9 (i.e., γ = 0.9). The higher value of γ represents the 

importance and contribution of the METs attribute in the final decision. For the 

selection of similar cases, k-NN [195] with k=3 is used to select the top three similar 

cases and reuse them as the suggested recommendations. In the MM system, the 

selection of the top three cases provides choices to the users for following any of the 

proposed recommendations based on their personal preferences and interests. The top 

recommended activities are of the same intensity or close to each other in intensity 

and have similar impacts on an individual’s health. The acceptance of the top three 

recommendations is based on the threshold value (confidence), denoted by symbol µ. 

The threshold value is set to be greater than or equal to 95 (i.e., µ ≥ 95). If a single 

case satisfies the threshold, only one recommendation is provided as the final physical 

activity recommendation. If more than 1 case is retrieved, then PBR is activated for 

further filtration and personalization of the suggested physical activity 

recommendations (see section 7.4.5). The confidence value for the acceptance of 

recommendations is the threshold value, which is computed using equation 13. It is 

the aggregate score obtained from the local similarity values of equations 11 and 12. 

The method used for aggregation is the weighted sum, which has a higher weight γ =

0.9 for the METs attribute and lower weight β = 0.1 for the Age Group attribute. To 

set the confidence/threshold value as µ ≥ 95 (0.05 threshhold), the motivation is 

taken from the well-known studies [196-198] of the statistical community. The 

authors considered a 95% confidence interval or 0.05 threshold value as the 

acceptable value for accepting a hypothesis. The detailed working methodology of 

the proposed CBR is presented in Algorithm 4. 
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Algorithm 4. Case-based reasoning methodology for generating personalized physical activity 

recommendations 

Begin 

Input: UID:uid, METCBurl, nC:= new Case, where nC ⋳ {PPROF, METs} and nC is computed using 

equations 5-9 

Output: Personalized Physical Activity Recommendations (PAR) ): List <Recommendations> 

Let PAR:= A set of top 3 relevant existing cases as the proposed recommendations 

Simg[]:= Array of global similarities of existing cases 

 

1. METCBr: =  ReteriveCaseBaseFromKB(METCBurl), Where METCBr is the matrix eCmxAn, 

eCm is the set of existing cases, i.e., eC = eC1, eC2, eC3, … , eCm. Similarly, An is the set of 

attributes, i.e., An = A1, A2, A3, … , An 

2. 𝐅𝐨𝐫 i = 1 to SizeOfCases(METCBr) 

Let Siml[]:=Array of local similarities of attributes of individual cases 

𝐅𝐨𝐫 j = 1 to SizeOfAttributes(METCBr) 

Siml[Aj]: = ComputeLocSim(nC. Aj, METCBr[i, j]); // use equation 11 and equation 

12 

End for 

𝐒𝐢𝐦𝐠[eCi]: = ComputeGlobSim (𝐒𝐢𝐦𝐥); // weighted sum method (equation13) 

3. End for 

4. PAR: = ApplyKNN(𝐒𝐢𝐦𝐠]); //where k = 3 

5. PropgateCBRResultsToUIUX(uid, PAR); 

6. FCB ≔ RetainCBRPAR(uid, PAR); // See discussion 

7. InvokePBR(uid, PAR); //See Algorithm 5 

8. Exit; 

End 

Algorithm 4 begins execution when nC is input to the CBR algorithm. In the first 

step, the ReteriveCaseBaseFromKB() function is used to load the existing cases 

from KB to the METCBr. For this purpose, the URL of METCB, METCBurl, is used. 

Each eC is matched against nC, and the distance is calculated using the local and 

global similarity functions (i.e., equation 11-12). k-NN with k=3 is used to obtain the 

top three similar cases as the suggested physical activity recommendations. These 

recommendations are specific and precise compared with the results of the baseline-

RBR and modified-RBR systems. The retrieved case(s) is/are passed to the end users 

as the proposed personalized physical activity recommendations with the help of the 

PropgateCBRResults()function. Similarly, this/these recommendations(s) is/are 

also forwarded to PBR using the InvokePBR() function to filter them according to 

the user’s preferences and interests. 
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7.4.4.2. Retain steps 

Once the reuse step suggests recommendation(s), the whole case needs to be retained 

in the case base as a new case. In the proposed HRM, this new case is added to a data 

store, called the future case base (FCB). If the retrieve step ends with a single 

recommendation, the whole case, including the user’s personal profile and suggested 

activity, is stored in the FCB. However, if more recommendations are generated, the 

new case is stored in the FCB after applying the PBR methodology (see section 7.4.5). 

7.4.5. Preference-based Reasoning (PBR) 

The recommendations generated by the RBR and CBR methodologies are based on 

the knowledge created based on general guidelines, which are unable to reflect the 

user’s personal interests and preferences. These recommendations are not 

personalized from the perspective of the user’s personal interests and preferences; to 

satisfy them, another level of refinement and filtration of the suggested 

recommendations is required that is performed by the PBR methodology. The PBR 

mechanism exploits the user model, built on top of the user profile. A user model 

contains the user’s personalized requirements, such as preferences and interests. This 

information is initially acquired from the user, during the registration process and 

updated thereafter. The recommendations provided by the RBR and CBR exploit data 

only from the user’s personal profile and physical activity behaviors and do not take 

into account the preferences. When recommendations are provided on the basis of 

these methodologies, multiple interpretations can be made. For example, consider a 

scenario where a user U requires X METs of physical activity to burn an amount Y 

of calories. The RBR or CBR can generate the following set of recommendations for 

the mentioned scenario.  

 Walking M1 minutes OR Running M2 minutes OR Cycling M3 minutes OR 

Hiking M4 minutes, etc. 

These recommendations are equivalent and can meet the user’s requirement 

mentioned in the scenario’ however some of them may not fit the user’s personal 
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interests and preferences adequately. It may be that the user is interested in walking 

and cycling but not in running and hiking. Therefore, the final recommendations 

should only include walking and cycling.  

To obtain the user’s final preference-based personalized recommendations, a multi-

filter approach is proposed and implemented as part of the PBR. According to this 

approach, filtered personalized physical activity recommendations (FPAR) are 

obtained from the list of generated personalized physical activity recommendations 

using the user preferences (UPrefrences). This process of filtration is shown in 

Algorithm 5. 

Algorithm 5. Filtration of the personalized physical activity recommendations using user 

preferences 

Begin 

          Input: UID: uid, PAR 

          Output: Filtered Personalized Physical Activity Recommendations(FPAR): List 

<filteredRecommendations> 

Let UPrefrences[] = List of user preferences 

FCB:=Future Case Base 

FPAR: = ∅ 

1. UPrefrences[] = loadUserPrefences (uid);//Load user presences from user profile in IDB 

2. Foreach Recommendation Rec in PAR 

If (Rec ∈ UPrefrences) 

FPAR:= FPAR ∪ Rec; 

       End if 

     End for 

3. PropgatFilteredPARToUIUX (uid, FPAR); 
4. FCB ≔ AddFPAR(uid, FPAR); // see discussion 
5. Exit 
End 

The process of preference-based reasoning starts by loading the user’s list of 

preferences, denoted by UPrefrences, from the intermediate database. The filtration 

process is performed in step 2 by taking each recommendation from the PAR and 

checking it against the preference list of the user. If the recommendation does not 

satisfy the user’s preference, it is filtered out; otherwise, it is added to the filtered list 

FPAR. This process is continued till all of the recommendations in PAR are checked. 

Finally, the filtered personalized recommendations are provided to the user on his 

mobile application interface using the PropgatFilteredPARToUIUX () function. At 

the same time, the final FPAR are retained in the FCB as the recommended physical 
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activity. This incrementally grows the FCB, which can be best used in future for 

successful cases of physical activity recommendations. 

7.5. Experiments and evaluation 

For evaluating the performance of the proposed HRM, the following set of tasks are 

performed. Initially, a weight management scenario is defined, then set up a set of 

experiments, and finally performed the experiments and analyzed the results. 

7.5.1. Case-study: weight management 

A weight management scenario is designed and implemented for healthy individuals 

who are overweight or tend to overweight. After implementation of the methodology, 

ten volunteers (ages 26-38 years) were asked to use the system for a couple of weeks. 

The basic personal information of these individuals is shown in Table 7.7.  

Table 7.7. Personal profile information of the volunteers for system evaluation 

User 

ID 

Gender: Male 

(M), Female (F) 
Age 

(Years)  
Height 

(Feet)  
Weight (Kg)  Preferred activities 

1 M 26 6.2 84.5 running, walking 

2 M 28 5.7 72.5 running, walking, cycling 

3 M 28 5.8 70.1 walking 

4 M 31 5.4 68 running, cycling 

5 M 31 5.6 71.9 walking, traveling 

6 M 32 6 85.9 running 

7 F 32 5.2 65 walking, jogging 

8 M 37 5.8 75 walking, cycling 

9 F 30 5.2 75 walking running, cycling 

10 M 38 5.8 71 running, cycling 

The individuals were asked to use the application during the specified period of time 

and follow the recommendations provided. During the user’s physical activity, the 

mobile application collected the user’s daily physical activity data using the 

accelerometer sensor of the smartphone. These activities included sitting, standing, 

moving in a bus, moving in a subway, walking, running and cycling, which are 

recognized by the activity recognizer module (in the ICL) of the Mining Minds 

platform (Figure 7.2). For the detailed methodological process of recognition of these 
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activities and the support of ICL, refer to the work of Han et al.[199], and Banos et 

al., [200]. The data are stored in the DCL, from where they are recognized by the ICL 

and provided to the SCL for recommending the appropriate physical activity for the 

remaining targets. 

7.5.2. Experimental setup 

To perform experiments, first experimental environment is set up, then the data and 

knowledge, required for the experiments, is specified and finally the evaluation 

criteria is defined. 

7.5.2.1. Environment 

The implementation of HRM was performed on a distributed framework in the 

Microsoft Azure public cloud environment. As described in section 7.3, the MM 

platform is composed of four layers, and each layer is deployed on an individual 

virtual instance. The proposed HRM is part of SCL, which was hosted on a standard 

A3 MS Azure instance with Microsoft Windows Server 2012 R2 as the guest 

Operating System (OS). HRM communicates with DCL and SL and communicates 

with DCL to load data for reasoning and storing final recommendations. With SL, 

HRM provides a recommendation service on the request and response model. The 

services in SCL are implemented as SOAP-based web services, and their accessibility 

is defined using service contracts between layers. Web services are implemented in 

Java and deployed on Glassfish server on virtual machine (VM).  

For implementation of the third experiment, hybrid-CBR, which operates on 

METCB, we used myCBR7, which is an open-source similarity-based retrieval tool. 

We used the Windows environment on a PC with an Intel Pentium Dual-CoreTM (2.5 

GHz) with 4 GB of memory. 

                                                           
7 http://mycbr-project.net/index.html 
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7.5.2.2. Data and knowledge (rules/case base) 

As we evaluate our proposed hybrid-CBR methodology in terms of the performance 

of the baseline-RBR and modified-RBR systems, we therefore require data and 

knowledge on all of these systems. For the baseline-RBR and modified-RBR 

experiments, we used the user’s personal profile, physical activity data and 

knowledge rules created based on the guidelines (Table 7.3, Table 7.4). For the 

hybrid-CBR experiments, we use METCB, prepared from METs guidelines [184]. 

The size of our ‘METCB’ is 119 instances. It contains the activities we focus on in 

the MM platform. The distribution of these activities in METCB is shown in Table 

7.8. 

Table 7.8. Distribution of the physical activities in the METs Case Base 

S.No Type of activity Distribution 

1 Running 25 

2 Walking 56 

3 Cycling 18 

4 Standing 5 

5 Sitting 4 

6 Transportation 4 

7 Volunteer  7 

Total instances 119 

In the compendium of physical activity guidelines [184], “standing” and “sitting” are 

the sub-categories of volunteer physical activity. More details on the structure of 

METCB are given in Table 7.5. For the offline testing and evaluation of the 

methodology, we designed a Test Case Base (TCB) that contains 64 test instances. 

We prepared these test cases from the original METCB. The method used for defining 

the value of the METs attribute of the TCB was random value computation. The 

random value is computed from the METs attribute of the original METCB using 

Microsoft Excel [201]. The function used for the random value generation is shown 

in equation 14. 

𝐌𝐄𝐓𝐬. 𝐯𝐚𝐥𝐮𝐞 =  𝐫𝐚𝐧𝐝𝐛𝐞𝐭𝐰𝐞𝐞𝐧(𝐛𝐨𝐭𝐭𝐨𝐦, 𝐭𝐨𝐩) (14) 
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Here, bottom  represents the minimum value of the METs and top represents the 

maximum value of METs for the new test cases. We used bottom = 1.3 and top =

23. The values 1.3 and 23 are the minimum and maximum values, respectively, of 

the METs attribute in the original METCB. 

7.5.2.3. Evaluation criteria 

To evaluate the proposed reasoning methodology, a group of system-centric 

evaluation criteria are used [202]. We evaluated the system using Type I (False 

positive-FP) and Type II (False negative-FN) errors, precision, recall, accuracy, and 

f-score criteria. We do not focus on a user-centric evaluation that addresses the user’s 

satisfaction because in the current implementation, only a prototype of the MM 

platform is implemented. The hybrid-CBR experiments were performed in a closed 

environment in our lab; therefore, we leave user-centric evaluation as future work 

when the MM platform will be fully implemented with the feedback mechanism. 

7.5.3. Experiments and Analysis of the Results 

As the design of HRM is based on RBR-first followed by the CBR strategy, we 

therefore first evaluate the RBR and then tailor its results to CBR. During the RBR 

execution, the level-1 RBR is first executed for reasoning the weight status of all of 

the subjects using Algorithm 1 and presenting the output as recommendations to the 

users, as shown in Table 7.9,. If the weight status is not underweight, the output is 

fed to level-2 RBR for setting goals and recommending weight loss and calorie 

consumption plans using Algorithm 2. The resulting recommendations of the level-2 

RBR are also shown in Table 7.9.  
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Table 7.9. Output of level-1- and level-2 rule-based reasoning models 

User 

ID 
Level-1 RBR 

(algorithm1) Results 
Level-2 RBR (algorithm 2) Results 

 BMI 
Weight 

status 

Ideal 

body 

weight 

(Kg) 

Goal (# 

of Kg to 

lose) 

Weight 

management 

plan 

Duration 

plan 

(weeks) 

Calories  

burning plan 

(daily) 

1 23.9 normal 78.0 6.5 weight loss 13 550 

2 25.02 overweight 64.8 7.7 weight loss 15 550 

3 23.5 normal 66.6 3.5 weight loss 7 550 

4 25.7 overweight 59.1 8.9 weight loss 18 550 

5 25.8 overweight 62.9 9.0 weight loss 18 550 

6 25.7 overweight 74.2 11.7 weight loss 23 550 

7 26.2 overweight 52.0 13.0 weight loss 26 550 

8 25.14 overweight 66.6 8.4 weight loss 17 550 

9 30.24 obese 52.0 23.0 weight loss 46 550 

10 23.8 normal 62.1 8.9 weight loss 18 550 

These recommendations include the goal in terms of kg to lose, weight management 

plan, number of weeks to successfully execute the plan and daily calorie consumption 

plan. The volunteers were asked to follow these plan recommendations. The objective 

of HRM is to recommend appropriate physical activities for these plans. The HRM 

estimates METs values to materialize the plans. The METs estimation is required in 

two cases: 

 At the start of plan, when HRM initially recommends the physical activity for 

starting the plan 

 During the plan, i.e., the subject follows the plan and the system makes 

further recommendations 

In the first case, the METs estimation is performed only for the recommended ‘daily 

calorie consumption plan’, which is the output of the level-2 RBR. In the second case, 

the METs estimation is based on the remaining calories (see equation 8). Once the 

METs value is computed, the corresponding physical activity recommendations are 

generated. These recommendations can be generated using the baseline-RBR, 

modified-RBR and hybrid-CBR systems; therefore, we perform three different sets 

of experiments, which are discussed below. 
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7.5.3.1. Experiment 1: Baseline-RBR system 

The purpose of this experiment is to build the initial baseline-RBR system for 

comparing the results of the systems. The results of this experiment were generated 

prior to the implementation of the proposed idea in the MM platform. In level-3 RBR, 

distinct-METs rules, shown in Table7.3, are used to generate physical activity 

recommendations using Algorithm 3 with exact match criteria. A few examples of 

the prescribed recommendations are shown in Table 7.10. These are based on the 

initial calorie consumption plan of the 10 volunteers. 

Table 7.10. Recommendation of the baseline rule-based reasoning system 

User ID METs Personalized physical activity recommendations 

1 6.5 
i. Climbing hills with 0 to 9 lb load. 

ii. Race walking; rock or mountain climbing 

2 7.6 X 

3 7.8 i. backpacking; hiking or organized walking with a daypack 

4 8.1 X 

5 7.6 X 

6 6.4 X 

7 8.5 

i. bicycling; BMX 

ii. bicycling; mountain; general 

iii. bicycling; 12 mph; seated; hands on brake hoods or bar drops; 80 

rpm 

8 7.3 i. climbing hills with 10 to 20 lb load 

9 7.3 i. climbing hills with 10 to 20 lb load 

10 7.7 X 

While generating these recommendations, the first METs values for all volunteers are 

computed based on their calorie plans and then combined with the attribute age group 

to prepare the data for the rules. The symbol ‘X’ in Table 7.10 denotes that no 

recommendation is generated for these query cases. From Table 7.10, it is clear that 

five out of ten queries cases are unsuccessful and that recommendations could not be 

generated for them. These include the queries of users 2, 4, 5, 6 and 10. The reasons 

for the empty recommendations are that these queries do not match any rule described 

in Table 7.3. The distinct rules used in this experiment use METs values adopted from 

the METs guideline for physical activity, which does not include the values 7.6, 8.1, 

7.6, 6.4, and 7.7. Therefore, no rule with these values exists in Table 7.3, and hence, 

no match is found during the reasoning process for the specified input query cases. 

For the detailed evaluation of the baseline-RBR system, the whole ‘TCB’ is used as 
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a test case. The results are calculated and presented in Figure 7.7 and Figure 7.8, 

which show that the recall of the baseline-RBR is very low (45%) and that the Type 

II errors are very high (54.5%). The limitations of this experiment are summarized as 

follows: (1) creation of distinct rules for each value of METs is a difficult task that 

results in a rule intractability problem, (2) the closest similar recommendations are 

overlooked if an exact match is not found, and (3) a high Type II error rate is 

observed. 

7.5.3.2. Experiment 2: Modified-RBR system 

Based on the lesson learnt from the baseline-RBR system, level-3 RBR is 

implemented with ranged-METs rules (Table 7.4) in the MM platform. Algorithm 3 

is used to execute these rules. To demonstrate the effectiveness of this experiment, 

we consider an example query for volunteer 4 (Table 7.7) with age group = adults 

and METs = 8.1 (see Table 7.10). The modified-RBR generates multiple 

recommendations for this query, though baseline-RBR fails to do so. To fully 

evaluate Algorithm 3, the whole ‘TCB’ is applied, and the results produced are shown 

in Figure 7.7 and Figure 7.8. The recall and accuracy are increased from 0.45 to 0.89 

and the f-score is increased from 0.62 to 0.66, while the Type II error rate is reduced 

from 54.7 to 10.9. The advantage of the modified-RBR system is that all queries are 

served and no query is returned with empty recommendation results. For example, 

when the query case with ‘age group’ = All Age and METs = 2.7 is processed, a total 

of 17 recommendations are generated, as shown in Table 7.11. When the baseline-

RBR is used for this query, no recommendation is generated because the METs value 

of the query case has no match with the METs values of the distinct rules. However, 

in the modified-RBR, the ranged-METs rule with a METs value less than 3 is 

satisfied, and hence, all of the associated recommendations are generated. Similarly, 

all of the queries yields results, and no query is unsuccessful. 
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Table 7.11. Recommendations generated using modified rule-based reasoning system 

Recommendation 

# 

METs Suggested physical activity recommendations 

1 1.3 riding in a car or truck 

2 1.3 riding in a bus or train 

3 1.5 sitting; meeting; general; and/or with talking involved 

4 1.5 sitting; light office work; in general 

5 2.0 walking; household 

6 2.0 walking; less than 2.0 mph; level; strolling; very slow 

7 2 sitting; child care; only active periods 

8 2 walking; less than 2.0 mph; very slow 

9 2.3 carrying 15 lb child; slow walking 

10 2.3 standing; light work (filing; talking; assembling) 

11 2.5 bird watching; slow walk 

12 2.5 walking from house to car or bus; from car or bus to go places; 

from car or bus to and from the worksite 

13 2.5 walking to neighbor’s house or family’s house for social reasons 

14 2.5 walking; to and from an outhouse 

15 2.5 sitting; moderate work 

16 2.5 automobile or light truck (not a semi) driving 

17 2.8 walking; 2.0 mph; level; slow pace; firm surface 

The limitation of the system is its high False Alarm rate (i.e., Type I error), as shown 

in Table 7.11. From this table, we see that a list of 17) recommendations is generated 

for a single query. On average, 52 options of physical activities are provided as 

recommendations for each query, which is problematic. A summary of the Type I 

error for this experiment is shown in Figure 7.8. The high False Alarm rate results in 

a wide scope of recommendations that may not fit well with the user’s required 

physical activity. This effect is normalized in PBR when multiple filters are applied 

for filtering unnecessary and irrelevant recommendations. 

7.5.3.3. Experiment 3: CBR system 

The objective of using CBR is to minimize limitations of the baseline-RBR and 

modified-RBR systems. To overcome these problems, we performed the CBR 

experiment in a local set up without involving the MM setup. The outputs of level-1 

RBR and level-2 RBR and the estimated METs value generate a query case for the 
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CBR methodology. Algorithm 4 uses the local similarity function, global similarity 

function, k-NN with k=3 and a threshold µ>=95 to generate appropriate physical 

activity recommendations. The CBR methodology has significantly improved Type I 

and Type II errors, as shown in Figure 7.8. CBR offers the following advantages: 

 Type I errors are reduced – k-NN with k=3 retrieves the top cases that are 

most relevant to the query case and specific to the user’s requirement. Hence, 

the False Alarm rate is significantly reduced.  

 Type II errors are reduced and recall is improved – the global similarity 

function of CBR with threshold µ>=95 has reduced Type II errors. The 

retrieval of most similar recommendations minimized the False Negative 

cases and improved recall. 

 Relevant and specific recommendations – the retrieve phase of CBR retrieves 

the top three recommendations that are either exactly the same as required by 

the user or close to the user’s specific requirements for physical activity. 

Hence, the number of recommendations is reduced to an optimum level on 

the one hand and is closer to the user’s specific requirements on the other.  

To demonstrate the effectiveness of the CBR methodology for these objectives, we 

consider the case of 10 volunteers of the MM evaluation team and their estimated 

METs values (Table 7.10). The initial recommendations for the calculated METs 

values and age group=adults are shown in Table 7.12.  

Table 7.12. Recommendations generated using case-based reasoning methodology 

User 

ID 

New case 

(METs 

value) 

Retrieved 

cases 

(METs value) 

Suggested physical activity recommendations 

1 6.5 

6.5 i. climbing hills with 0 to 9 lb load. 

6.5 ii. race walking; rock or mountain climbing  

6.3 iii. climbing hills; no load 

2 7.6 

7.3 i. climbing hills with 10 to 20 lb load 

7.5 ii. bicycling; general 

7.8 iii. backpacking; hiking or organized walking with a daypack 

3 7.8 

7.8 i. backpacking; hiking or organized walking with a daypack 

8 ii. running; training; pushing a wheelchair or baby carrier 

8 iii. running; marathon 
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User 

ID 

New case 

(METs 

value) 

Retrieved 

cases 

(METs value) 

Suggested physical activity recommendations 

4 8.1 

8 i. running; training; pushing a wheelchair or baby carrier 

8 ii. running; marathon 

8 iii. carrying 25 to 49 lb load; upstairs 

5 7.6 

7.3 i. climbing hills with 10 to 20 lb load 

7.5 ii. bicycling; general 

7.8 iii. backpacking; hiking or organized walking with a daypack 

6 6.4 

6.3 i. climbing hills; no load 

6.5 ii. climbing hills with 0 to 9 lb load 

6.5 iii. race walking; rock or mountain climbing  

7 8.5 

8.5 i. bicycling;  

8.5 ii. bicycling; mountain; general 

8.5 iii. bicycling; 12 mph; seated; hands on brake hoods or bar 

drops; 80 rpm 

8 7.3 

7 i. walking; 4.5 mph; level; firm surface; very; very brisk 

7.3 ii. climbing hills with 10 to 20 lb load 

7.5 iii. bicycling; general 

9 7.3 

7 i. walking; 4.5 mph; level; firm surface; very; very brisk 

7.3 ii. climbing hills with 10 to 20 lb load 

7.5 iii. bicycling; general 

10 7.7 

7.5 i. bicycling; general 

7.8 ii. backpacking; hiking or organized walking with a daypack 

8 iii. bicycling; 12-13.9 mph; leisure; moderate effort 

Table 7.12 shows that for each query case, the top three most relevant physical 

activity recommendations are provided, which fulfills the user’s specific 

requirements. For the query age group = Adults and METs = 8.1, baseline-RBR failed 

to generate recommendations (see Table 7.10) and modified-RBR produced 59 

possible recommendation options, but CBR produced only three recommendations 

(Table 7.12). The difference between the required METs values of the query case and 

the one using the rules is only 0.1, which is negligible; however, baseline-RBR fails 

to generate recommendations. This clearly shows the effectiveness of the proposed 

CBR methodology in HRM. 

Moreover, to fully evaluate the CBR methodology, we apply the whole ‘TCB’ to 

generate recommendations. The results are shown in Figure 7.7 and Figure 7.8. These 
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results are significantly improved compared with those of the baseline-RBR and 

modified-RBR methodologies. 

 

Figure 7.7. Comparison of baseline-RBR, modified-RBR and hybrid-CBR system 

The green line at the top of the graph in Figure 7.7 shows the performance of hybrid-

CBR, which is superior to the other two approaches. 

 

Figure 7.8. Comparison of baseline-RBR, modified-RBR and hybrid-CBR 
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Figure 7.8 pictorially shows that hybrid RBR/CBR has improved Type I and Type II 

error results compared with the other experiments. To present the results of hybrid-

CBR with different threshold values i.e., µ ≥ 95, µ ≥ 90 and µ ≥ 85, we applied the 

‘TCB’ and calculated the results, which are shown in Figure 7.9. 

 

Figure 7.9. Performance of hybrid-CBR for different thresholds 

Figure 7.9 shows that the proposed hybrid-CBR model produces 100% results for 

precision, recall, and F-score when the threshold µ is taken as 85. 

7.5.4. Comparison of hybrid-CBR with jCollibri 

To compare results of the proposed hybrid-CBR with state-of-the-art CBR system, 

we selected jCollibri 2.0, a case-based reasoning framework [152], which provides a 

reference implementation of the most commonly used similarity functions for 

building CBR systems used in different applications. We are motivated to jCollibri 

as a comparison system because its similarity functions have open implementation 

and are more similar to our proposed hybrid-CBR’s local and global similarity 

functions [203]. We compare the equal and interval similarity functions, shown in 

equations of the jCollibri with the hybrid-CBR functions defined in equation 11, 12 

and 13. 
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𝐄𝐪𝐮𝐚𝐥𝐒𝐢𝐦𝐥(𝐧𝐂𝐚𝐢,  𝐞𝐂𝐚𝐢) = {
𝐝𝐥(𝐧𝐂𝐚𝐢,  𝐞𝐂𝐚𝐢) = 𝟏,  𝐢𝐟 𝐧𝐂𝐚𝐢 =  𝐞𝐂𝐚𝐢

𝟎, 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞
} (15) 

IntervSiml(nCai,  eCai) = 1 −
dl(nCai,  eCai)

(interval)
 (16) 

For the global similarity, weighted sum function, described in equation 13 is 

used. The weights used in this equation are manually set by utilizing domain 

knowledge describing importance of the attributes of case base. The value of β 

is 0.1 (i.e., β = 0.1), and the value of γ is 0.9 (i.e., γ = 0.9). In the equation 16, the 

interval value is set to maximum value of the attribute.  

A test case base of fifty input cases is used to test against the case base, 

containing around 120 resolved cases, using both the hybrid-CBR and jCollibri 

similarity functions shown in equations 15, 16.  We measured the performance 

of both the systems using precision, recall and consequently the f-score measure 

whose results are shown in Figure 7.10.  

 

Figure 7.10. Performance of hybrid-CBR and jCollibri similarity functions 
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terms of recall/accuracy as compared to the jCollibri retrieval functions. The equal 

match function, equation 15, of the jCollibri system returns 1(100% match) if input 

case’s attribute has same value as the existing case’s attributes value, otherwise zero. 

However, there are situations where a set of values of an attribute constitute a super 

set, which can equally likely be applicable for the values of the subset as well, as the 

scenario is shown in equation 10 and Figure 7.6. In this scenario, which is practical 

in real-world applications, jCollibri’s equal match function, equation 15, returns 0 if 

the value of a new case (nC) is not found in its own set. This function has the 

limitations of considering the applicability of the sub-set of values. Due to this reason, 

the case value is not matched, which should be, and consequently the contributions 

of this value in the overall weighted sum reduces its score and thus miss the actual 

case to be retrieved. The second, jCollibri interval match function, shown in equation 

16, performs the same as the proposed hybrid-CBR function, provided the interval 

used is provided correctly. The proposed hybrid-CBR equal similarity function, 

shown in equation 11 and Table 7.6, can resolve these situations and hence improves 

the performance of the CBR retrieval phase. 

7.6. Limitation of the proposed hybrid-CBR classifier 

As shown by the experiments and results, the proposed hybrid-CBR classifier 

performs well as compared to the baseline-RBR and modified-RBR as well as state-

of-the-art jCollibri system, however it suffers from a number of limitations, as 

described below.  

1. Without past successful/resolved cases and the availability of domain 

knowledge, accurate case authoring is challenging issue. The proposed 

guideline-enabled rule-based method used for the creation of training and 

new test cases is based on expert’s rigorous inspection which is not efficient. 

A semi-automatic or automatic case preparation method is required to device. 

2. By introducing new attribute in the case base, a new similarity function is 

required to be defined and tested prior to its real implementation in a real-

world application. 
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3. For weighting the case attributes, i.e., quantifying preference levels of the 

attributes in the form of attributes weight, the presented method in this study 

is depended on domain experts’ knowledge. We have not introduced any new 

method for automatically weighting the attributes, therefore a new weight 

estimation method is required. 

7.7. Summary 

This chapter has presented the rationales behind the selection of hybrid-CBR 

classifier and its accurate design for the real-world application of physical activity 

recommendation generation. It also describes how effectively rule-based reasoning 

methodology is integrated with the CBR methodology to facilitate its adoption and 

extension in other application domains. The hybrid-CBR classifier achieves the 

objective of precise and specific recommendation decisions according to the specific 

requirements of the input test case, which is the user’s specific needs formulated in 

query. The key features of the proposed hybrid-CBR discussed in this thesis are real-

time case creation using the rule-based reasoning methodology that consumes the 

domain knowledge and the accurate similarity function that guarantee the accuracy 

of the recommendation decisions. The proposed classifier is tested in a weight 

management scenario and significant results are generated, which are measured in 

terms of precision, recall, accuracy, and f-score. The performance achieved is 0.97% 

precision, 0.94% recall, 0.94% accuracy, and a 0.95% f-score on a test dataset of 64 

cases. Similarly, the Type I and Type II errors are significantly reduced as compared 

to the classical rule-based recommendation models, i.e., baseline-RBR and modified-

RBR system built during this research. Furthermore, the proposed hybrid-CBR 

classifier can be easily extended to other application areas, which will increase its 

worth. 
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Chapter 8 

Conclusion and Future Work 

 

8.1. Conclusion 

This thesis focused on empirical performance evaluation of classification algorithms 

for classifiers ranking, meta-learning based automatics classifier selection, design of 

rough-set and hybrid-CBR classifiers and the associated issues, such as data 

acquisition for real-world datasets and cases preparation, semantics-preserving 

discretization, and accurate case similarity functions definitions. In first part of the 

thesis, focus is on the selection of accurate classifier selection using multi-criteria 

decision making and meta-learning and reasoning approaches. In the multi-criteria 

decision making, the thesis has proposed and developed an accurate multi-metric 

decision making methodology (AMD) which correctly recommends suitable 

classification algorithm for structured and prepared dataset. In AMD, first, a concepts 

of algorithms’ quality meta-metrics (QMM) is proposed which describes physical 

meanings of the evaluation criteria, and a classification model, referred as classifiers 

quality meta-metrics model, is developed for it. This model helps experts in the 

selection of suitable evaluation criteria for comparison of the classifiers. Based on the 

experts’ consensus, expert’s grouped-based decision making method is developed for 

the selection of suitable evaluation metrics from a large set of evaluation metrics. A 

set of suitable evaluation metrics are identified for the comparison of results of the 

heterogeneous classifiers from the perspectives of speed, accuracy and consistency. 

Furthermore, a relative criteria weighting technique is developed, based on the AHP 

method, for consistently weighting the evaluation metrics. The analysis of the 

performance of classification algorithms is performed using statistical significance 

test the fitness evaluation function. The algorithms are ranked by computing the 

relative closeness value of all the algorithms with respect to the ideal ranking, using 
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the AHP-based estimated weights and local and global constraints on the evaluation 

criteria.  

In the meta-learning based classifier selection method, a CBR-based meta-learning 

and reasoning (CBR-MLR) framework is proposed for accurate classifier selection 

using data characteristics, called meta-features, and classifiers characteristics, called 

performance metrics. The relationship of data and classifiers characteristics is 

represented as cases to form a training dataset, called Case-Base, for a CBR 

classifiers. The recommendations of an accurate classifier for a new case or test 

dataset is performed using the CBR multi-view, multi-level reasoning methods, 

developed as part of the proposed framework. In this approach, a set of four view of 

data characteristics are introduced and represented. These are: general characteristics, 

basic statistical, advanced statistical and information-theoretic families. These 

families represents the datasets from multiple aspects and are thus a good 

representative set of characteristics for building a model. The candidate nine decision 

tree classifiers, considered for this study, are taken from Weka environment with their 

default settings. In the online recommendation part, the CBR standard methodology 

is enhanced with accurate similarity functions and a post processing classifier conflict 

resolution methods to recommend the most appropriate classifier for a given new 

dataset or learning problem. The methodology is tested on 52 test datasets, taken from 

UCI/OpenML repositories, which has produced overall accuracy of 94%. 

In the second part of the thesis, expert’s heuristics based approach is used for selection 

of the classifiers and two accurate rough-set and hybrid-CBR classifiers are designed. 

The rough set classifier is developed for a real-world application scenario of the 

diabetes mellitus where the data is scattered in patients notes. Domain specific 

guidelines-enabled approach is used for structuring the data in the rough set 

information system format. The discretization phase is enhanced by introducing a 

semantics-preserving discretization scheme that has preserved the semantics of actual 

data in the rules. The rough set classifier’s selection is made based on its capabilities 

of building an accurate comprehensible and interpretable model with the best 

approximation capabilities of the rough boundaries of different classes in the dataset. 
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Furthermore, the thesis has also built an accurate and precise hybrid-CBR classifier. 

The proposed hybrid-CBR classifier is supported with an enhanced rule-based 

mechanism for case preparation, which consumes the domain specific guidelines for 

preparing accurate resolved cases. Accurate similarity functions are defined which 

increase the accuracy of matching new case against the existing cases. 

The evaluation results and comparison of the AMD and CBR-MLR methodologies, 

rough set and hybrid-CBR classifiers, with state-of-the-art methods, have shown that 

the proposed methods perform significantly better that the existing methods. The 

AMD has achieved 0.97 Spearman’s rank correlation coefficient (Rs) on 15 test 

datasets using 35 classification algorithms and CBR-MLR has achieved 94% 

accuracy of correct classifier recommendation, in the scope of top k=3 best classifiers, 

using 100 training and 52 test datasets from the UCI/OpenML repositories. Similarly, 

rough set classifier has achieved 0.95% classification accuracy on a diabetes dataset 

and hybrid-CBR has achieved 0.97% precision, 0.94% recall, 0.94% accuracy, and 

0.95% f-score on a physical activity dataset.  

8.2. Future Directions  

The thesis has presented four methods, the first two solely for the selection of accurate 

classifiers and the last two for the both selection and design of accurate classifiers. 

The first two are based on automatic methods AMD and CBR-MLR, while the last 

two are based on rough-set and hybrid-CBR methods. The expected future extensions 

in each of these method is given below. 

8.2.1. Future perspective of AMD method 

 Automatic criteria selection: The proposed method has provided minimum 

support for the automatic criteria selection. A partially automatic solution, in 

the form of classifiers quality meta-metric classification model, is provided, 

however it is not enough to reduce the experts’ efforts and time. To resolve this 

issue an advanced method is required to minimize the experts’ time and efforts 

by introducing a semi-automatic analysis method for analyzing the classifiers 
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performance metrics against the goal and constraints defined by the end user 

for his/her application. 

 New method for criteria weighting: The AMD methodology uses relative 

criteria weighting mechanism which is a semi-automatic way requiring experts’ 

preferences for quantifying their opinion in the form of weights. However, 

experts’ availability is not always guaranteed, therefore, in future, we plan to 

introduce and design new methods for estimating criteria weights. 

 Exhaustive search: The proposed method is based on exhaustive search 

mechanism to rank algorithms and finally select a single one for the application 

in hand. In future, we plan to introduce a hierarchical searching mechanism 

with multi-level filtration to filter-out the most unfit classifier from the 

competition and reduce the search scope for recommending suitable algorithm. 

8.2.2. Future perspective of CBR-MLR method 

 Finding an optimum and suitable set of meta-features: the process of finding 

right classifier for a dataset using a machine learning model that is based only 

on the datasets global features is not enough and may lead to a wrong decision. 

The reason is that the proposed 29 features for the selection of classifier does 

not represents the whole meta-feature space of the datasets and thus cannot be 

declared as the final optimum list of features. Therefore, in future we plan to 

perform an extensive set of experiments using statistical, information-theoretic, 

landmarking, model-based and  complexity-based meta-characteristics and find 

an optimum set of meta-characteristics for best estimating data qualities, 

required for automatic selection of classifiers.  

 Classifiers performance analysis for finding class label: while creating the 

successful cases, the proposed method analyses the performance results of the 

candidates classifiers using predictive accuracy and standard deviation, however 

this evaluation is application dependent. The users may interested in other 

characteristics of the classifiers to be selected. In that case, the proposed Case-
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Base may not work well for them and need to be updated according to their 

application requirements, which is an exhaustive experimental work. To 

overcome this issue, in future we plan to introduce an efficient method to 

automatically or semi-automatically perform this analysis and produce the class 

label of the resolved cases. 

 Ranking classifiers with similar performance results (tie cases): while 

analyzing the performance results of the classifiers for finding the best 

classifiers to make them class-labels, we perform the process of ranking the 

classifier. However, in case of small datasets most of the classifier perform with 

equal performance and are thus ranked same. This makes the process more 

complex because each dataset has the list of almost all the candidates’ classifiers 

as the class labels, which makes the problem of classifier selection as a multi-

label learning problem. However, the correct solution has no such strategy to 

properly address this situations. We simply create multiple cases with the same 

problem description part (i.e., meta-features list) and different class labels, each 

for a classier with same rank. In future we plan to design sophisticated multilevel 

analysis of the classifiers and introduce multilevel learning. 

8.2.3. Future perspective of rough-set classifier 

 Automatic data extraction: In future the plan is to introduce an automatic data 

extraction method to extract information from the patients’ charts, in order to 

eliminate the dependency on domain experts. 

 Conflict resolution of approximate rules: approximate rules generated by the 

rough set classifier needs further processing using domain knowledge to reach 

accurate and more correct decision without any ambiguity. The future plan is to 

introduce a second level of evaluation of the conflicting rules by utilizing 

domain knowledge or some priority scheme, based on the rule conditions 

attributes. 

8.2.4. Future perspective of hybrid-CBR classifier 
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 Semi-automatic or automatic case preparation: Without past 

successful/resolved cases and the availability of domain knowledge, accurate 

case authoring is challenging issue. The proposed guideline-enabled rule-based 

method used for the creation of training and new test cases is based on expert’s 

rigorous inspection which is not efficient. We plan to introduce a semi-automatic 

or automatic case preparation method to reduce the experts’ time and efforts in 

preparing these cases. 

 Automatic weight assignment: For weighting the case attributes, i.e., 

quantifying preference levels of the attributes in the form of attributes weight, 

the presented method is depended on domain experts’ knowledge. Our future 

plan is to introduce a new method for automatically or semi-automatically 

weighting the attributes, based on the relative score rather than absolute values 

of weights.
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