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Abstract

With the advent of miniaturized sensing technology, which can be bodwy;\itas now possible to
collect and store data on different aspects of human activities undeotidiions of free living.
This technology has the potential to be used in automated activity profilinghsysthich produce
a continuous record of bodily activity patterns over extended periotimef Such activity pro-
filing systems are dependent on recognition algorithms which can efflgdtiverpret body-worn
sensor data and identify different activities.

The automated recognition of bodily activities using body-worn accelereordata is a chal-
lenging area of work. Existing activity recognition systems suffer fromessd obvious practical
limitations such as the number, location and nature of sensors that peopleleviitéo Other
issues include ease of use, discretion, cost, and the ability to performadéilities unimpeded.
Variations can result in the sensor’s output for the same activity aciffesredt subjects and for the
same individual. Errors can also arise due to variability in sensor signadeddy differences in
sensor positioning and from environmental factors such as sensorrsomgesensitivity and very
little work has been done to validate the idea under the unsupervised rddleivoumstances.

This dissertation presents an accurate and robust tri-axial accelerdrasésl bodily activity
recognition framework. The novelty of the system compared to the presimzederometer-based
bodily activity recognition systems lies in: 1) Unlike previous systems, this systaploys a
better mathematical model, developed using using stochastic time series amalglss;ribe ac-
tivity acceleration-data. It is shown that such a model is more appropsatdits the data well
and can be computed in real-time. (2) The system uses a novel state-dusaty classification
scheme that employs the proposed model for recognizing a diversegtsical activities with

a high accuracy. This scheme is capable of distinguishing the activitieshichwhe previous
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systems showed difficulty, such as sitting and standing, with a good agc(8xd he system also
implements a multi-stage classification scheme that employs the proposed maumidimrome-
ter’s positions and attachment free activity recognition, offering betteveadence for long-term
recognition in free-living conditions. It allows users to carry the seis@ny pocket without
attaching it firmly to any body part. 4) Finally, the system also implements a lighthiveigs-

sification scheme that uses the proposed model for recognizing activitrealstime using an
accelerometer equipped smartphone independent of phone’s positibe buman body. It is be-
lieved that such technology will turn future smartphones into really clevedsets which would
be capable of understanding what people are doing at any moment of titiegpating what they

would do next, and providing services automatically and accordingly.
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Chapter 1

Introduction

1.1 Motivation

Human activity recognition has emerged as an active area of researchhevpast few years.
It is an important and challenging field which can support many novel itbiggi applications.
These applications range from smart homes, just-in-time information systefi¢e workers,
surveillance and interactive game interfaces to home healthcare. Actigdggmiion is a multi-
disciplinary research area which shares connection with machine leaantiigial intelligence,
machine perception, ubiquitous computing, human computer interaction, aasyatlychology
and sociology. Thus, it has been drawing increasing interest froareisers in a variety of fields.

The aim of an activity recognition system is to recognize the actions or actiwtigs users
by unobtrusively observing the behavior of people and charactergdtiteir environments and
take necessary actions in response. For example, by means of récg@uivities in real time,
such systems could allow the development of just-in-time learning environmenisdhcate and
inform people by presenting information at the right time as they move throwgérivironment.
Knowing what a person is doing will help determine the best time to interrupt¢bepant to
present them with useful information or messages. Someone preparimay dapresents a good
opportunity for a teaching system to show words in a foreign languageddlacooking.

In a home environment, activity recognition systems can monitor users’ actigiier long
periods of time in order to remind them to perform forgotten activities or complgtiens such
as taking medicine, help them recall information, or encourage them to aetsafaly [1]. In a
hospital environment, such systems can remind a doctor or nurse torparéotain tests before
operating. In a surveillance system, behavior model can be developeabénys of recognized

activities which can enable the system to predict the intent and motive ofepasphey interact

1
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with the environment. Moreover, in a production environment, such systamersure the quality
of the product by monitoring the set of actions. Finally, these systems camplalg a vital role
in encouraging a healthy life-style among their users by suggesting smailibemodifications.
For example, people can be encouraged to use stairs instead of anrede\e&ttnd after a long
period of sitting.

Humans are capable of understanding and interpreting what activitiesdpéeparound them
are performing. The ability of recognizing activities appears to be so sirmglanatural for or-
dinary people but in fact involves complicated task of sensing, learnidgrderence. Imagine
the following scenario. It is 4:00 P.M in the afternoon on an ordinary dagirlbsees her father
standing in his room right beside his desk with a glass of water in his hardudi her past ex-
perience and knowledge on her father's medical history, she can immigdiiés that her father
is taking daily dose of medicine. However, recognizing this activity would gpeeat challenge for
an automated system and a large number of other sensory evidencesne#ided. Humans learn
from their past experiences. However, all these functions of setisengnvironments, learning
from past experience, and applying knowledge for inference areasgiieat challenge for ma-
chines. Therefore, the goal of activity recognition research is tolerainputers to have similar

capabilities as humans for recognizing people’s activities.

1.2 Approaches to Human Activity Recognition

The first step towards achieving the goal of recognizing activities of thaiihg is to equip activity
recognitions systems with sensing capabilities. Three approaches leavenbhaly employed for
this purpose: video based, environmental sensor based and weseabte based, as shown in
Figure 1.1.

Video based systemsThese systems employ video camera for tracking and physical activity
recognition. This approach often works fine in laboratory but fails inesig the same accuracy
under a real home settings due to clutter, variable lighting, and highly vaciedgtias that take
place in natural environments [2]. Complexity of dealing with changes in thaescsuch as
lighting, multiple people, and clutter offers additional challenges. Morem@mnsors such as

microphones and cameras are mostly expensive. Finally, since thesedeviomonly serve as
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Human Activity

Recognition
Y Y
. Wearable Sensor Environmental Sensor
Video Based
Based Based

. Infrastructure Dependent
Hampers Privacy

Expensive
Infrastructure Dependent

Focus of this research

Figure 1.1: Three approaches employed for physical activity recognitio

recording devices, they can also be perceived as a threat to phyagme people.

Environmental sensor based systemsSuch systems are developed to monitor the interaction
between users and their home environment [2, 3]. This goal is achigvéidtnibuting a number
of ambient sensors, especially binary on-off state sensors, througie subject’s living envi-
ronment. The data gathered by these environmental sensors can lie idelligently adapt the
environment in the home for its inhabitants. Environmental sensor basednsygassively moni-
tor their occupants all day, every day, thus requiring no action on thepte user to operate. A
large number of parameters can be monitored in such systems, by employrigts uf sensors
and the processing capabilities of a local PC. Ambient sensors, placegtfout the house, have
fewer restrictions (size, weight, and power) than other types of setiags simplifying the overall
system design. However, such systems are infrastructure depemdecénnot monitor a subject
outside of the home setting. Also, they exhibit difficulties distinguishing betwieemonitored
subject and other people in the home.

Wearable sensor based system&uch systems are designed to be worn during normal daily
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activity to continually measure biomechanical and physiological data negardf subject loca-
tion and thus are an appropriate alternative for the recognition of daily hactavities, especially
bodily or physical activities [4]. Bodily activities require repetitive motiortteé human body and
are constrained, to a large extent, by the structure of the body. Exanmplegkking, running,
scrubbing, and exercising. Wearable sensors are well suited to calleztia on daily physical
activity patterns over an extended period of time as they can be integratetbititimg [5, 6], jew-
elry [7,8], or worn as wearable devices. Since they are attached taoltfects they are monitoring
and are independent of the infrastructure, wearable sensors cafoteemeasure physiological
parameters which may not be measurable using environmental or videwsekt®reover, such
sensors are low-priced and unlike video sensors they are not cetside a threat to people’s
privacy.

A range of body-attached sensors including electromechanical switghe®meters , ac-
celerometers, gyroscopes, pedometers, and actometers, have bddn gapture and analyze
human movement in free-living subjects, as shown in Figure 1.2. Of theselesometers are
becoming widely accepted as a useful tool for the assessment of humam matimical settings
and free-living environments [9]. Accelerometers offer a number ohathges in monitoring
of human movement. Their response to both frequency and intensity of movemages them
superior to actometers or pedometers, which are attenuated by impact or tilt. tyfmeef ac-
celerometers can measure both tilt and body movement, and thus are stgpeniion sensors
that are incapable of measuring static characteristics. Lately, enhansemamicroelectrome-
chanical systems (MEMS) technology resulted in miniaturized and low costexometers. These
features have made possible the development of small, lightweight, portaidensythat can be
worn by a free-living subject without hindering movement. Thus acceletery is emerging as
a practical, inexpensive, and reliable method for capturing and analgaitg physical activi-
ties [10]. In this thesis, a human activity recognition system is developetthéorecognition of

daily physical activities using a single wearable tri-axial accelerometsosen
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Compass Sensors

Accelerometers

Actometers

Wearable Sensors

Gyroscopes

Figure 1.2: Different wearable sensors used to capture and analgzanhmovement

1.3 Challenges in Bodily Activity Recognition using Wearable Sen-

Sors

The automated recognition of daily physical activities using body-worsadsuch as accelerom-
eters) data is a challenging area of work. There exist several pidetigations such as the num-
ber, location and nature of sensors that people will tolerate. Aparttinese obvious limitations,
there are several other issues that directly impact the success ofvanypiysical activity recog-
nition systems. Factors which contribute to the complexity of the recognition sas&ategorized

into following types [11].

1.3.1 Complexity of the Activities

In the field of wearable sensor based recognition of bodily activitieggr&tion algorithms can
be evaluated on the basis of the complexity of the activities they recognieecorhplexity of the
activities can vary and depends on different factors including the nuailaetivities, the types of

activities and the complexity of the training data collected for those activities.
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Number of activities: People perform a large number of different activities in daily life.
Therefore, a human activity recognition system should be able to reegriiverse and large
set of activities. However, recognizing a small set of activities is usuabyee than recognizing
a large set of activities. The reason for this can be attributed to the facathttie number of
activities increases, the classifier has to discriminate among a larger setivitiess, which is
usually harder.

Types of activities: Activities which are static in nature including postures, such as lying and
standing, are easier to recognize than the activities which are periodituirenauch as running
and walking. However, postures that are highly similar, such as sitting tandisg, are also
very hard to discriminate as they overlap significantly in the feature spacthgfmore, activities
with high motion similarities, such as walking along the corridor, walking upstaigsvealking
downstairs, are also very hard to discriminate as such activities sharsitmggrity in the feature
space because of their similar movement patterns.

Moreover, recognizing a large number of activities having both highhesfit and similar
characteristics at the same time makes the recognition problem even hardachicases, high
similarity among activities is not uniform throughout the whole set of activitiesother words,

a subset of activities shares high similarity among its activities but is veryreiftérom another
subset. For example, sitting and standing are very similar (hard to distingngshégver, they are
very different from walking (easily distinguishable).

Data collected for the activities: Training data for the activities to be recognized can be
collected either in the laboratory or free-living conditions. Laboratoita @ae usually collected
using a strict protocol. In other words, the activities are performed agahee speed and for the
same duration by the participating subjects in constrained ways, whergag the free-living
conditions subjects might behave differently and in less constrained \Wwapg-term out-of-lab
monitoring means unsupervised, less-controlled and user-annotatetbtlatdion which brings

along several challenges. The most important of these challenges include

e Under such settings, subjects tend to annotate the data themselves witkauthiess su-
pervision. This results in unreliable annotations which can cause difficultfassifier

training and eventually degrade the classifier's recognition accuracy.
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e There is no standard way to perform an activity. For example: 1) a pensy lie down on
a sofa in a manner that cannot be categorized to be either sitting or lyingp@)saén may
perform dynamic activities, such as walking, at different pace atréifiietimes. In short,
people perform activities in different ways which are hard to categofikerefore, activities
for which the training and test data are collected in laboratory settings aadlyusasier to

recognize than the ones for which the data have been collected in fieg-diondition.

1.3.2 Training Data Requirements

Recognition algorithms can be evaluated based on the type and the amowartheftitaining

data that they require.

Subject independent recognition:In an ideal scenario, any activity recognition algorithm
should be trained on a given subject population and then should reeaaptixities for un-
seen subjects, without requiring any training data from the new subjecise\ér, some
previous works, such as [12], strongly suggest that subject imdiemé recognition of ac-
tivities is hard to achieve especially in the case of a diverse set of actidilieso a high

variability in the way people perform those activities.

Amount of training data for subject-dependent recognition: Previous work on bodily
activity recognition using wearable accelerometers strongly suggestthéhatcognition
algorithms perform better when trained with more person-specific trainiteg thowever,
in case of large number of activities, providing this data can be time consumihiguaden-

some, so ideally training data requirements should be kept to minimum.

1.3.3 Sensor Requirements

The number of sensors employed for the recognition of activities, the tffsEnsors used,
and their location on which they are placed on the human body can significaupthct the

complexity of the recognition algorithm.

Number of sensors: Activity recognition systems that employ a small set of sensors to

recognize activities are easier and convenient to use in real-world apgtis. Since a small
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number of sensors are used, fewer sensor signals are neededralymed than systems
that make use of large number of sensors. Consequently, systems wéthsiemsors have
lower computational requirements. However, the recognition accurasyabf systems is

lower than the systems with large set of sensors as less information is available

Location of sensors:Sensors are usually attached to different parts of the human body for
collecting data on activities. Such configurations might be acceptableddrignm activity
monitoring, however, they are infeasible for long-term activity monitorinthayg take away

the ability to perform daily activities unimpeded [13]. Any system which impetégects’

daily physical activities or forces them into a fixed life pattern due to its smancunication

methods or location is most likely to be rejected [11].

Thus an ideal system should allow its users to carry sensors freely arafiff pockets
and should still be able to recognize activities with a high accuracy. Inrgkribe out-

put of any body-worn accelerometer depends on the position at whicpladed and can
vary for different positions on a subject’s body, even for the sameictirhe output pat-
terns for walking, for example, vary at three different positions asveha Fig. 1.3. The
high within-class variance caused by changes in orientation, magnituti&eguency thus

makes accelerometer’s position free human activity recognition very cgaign

1.3.4 Real-time Constraints

Activity recognition algorithms, especially those running on hand-held dsyishould be
fast-enough and light-enough to be able to perform the recognition taglalfiime, us-
ing as limited resources (such as memory and computational power) asl@ossibther
words, these systems should employ a small number of sensors, phetesitgle sensor,
to perform the recognition task. Systems that use multiple sensors needytpeamaulti-

ple data streams which increases the processing time and the complexity aysteims

significantly.

Moreover, most approaches to activity classification using body-wens®s involve a

multi-stage process. Firstly, the sensor signal is divided into a number df tama seg-
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ments, referred to as windows, each of which is considered sequerfatigach window,
one or more features are derived to characterize the signal. Theseefeare then used
as input to a classification algorithm which associates each window with artyactihese
mechanism of learning and inference (feature extraction and classificatiould also be

light-enough to be performed in real-time.

1.4 Limitations of Previous Systems

Majority of the accelerometer-based physical activity recognition systewedaped in the
past investigated the use of plurality of sensors attached at differenbsiteubject’'s body
[4,12,14-23]. As mentioned earlier, this approach though capableowfdmng higher
recognition rate is not feasible for long-term activity monitoring becausgvofor more
different sites of attachments to the body and cable connections. Corpbrativery small
number of studies have investigated the use of a single accelerometer matmtact,
sternum or back [24-33]. Such systems provided good recognitiottgder the basic
activities including lying, standing, walking and running. However, theledato exhibit
the same accuracy for static activities such as standing and sitting, transaittigiles such
as lie-stand, sit-stand and stand-sit, and dynamic activities such as watkingstairs, and

walking-upstairs.

Most of the previous systems developed for the sake of bodily activitygration, lim-
ited their scope to a small activity set. Few systems did try to recognize a large nu
ber of activities, however, their accuracy was low due to the problemighf similarity
among activities,as mentioned above. A large number of features, botlrisquency and
time-domain, have been investigated in the previous systems with varyingssuates.
Frequency domain features require a large number of components to uistiragtivities
and thus require high computational power and time [4, 16, 19, 22, 27]. dormain fea-
tures, on the other hand, can be easily extracted in real-time and thuserbspsicompu-
tational power [12, 15, 20, 24, 25, 29, 31, 34]. However, the reitiog results using these

features have not had high success rates. Finally, these featuresl@arated over long
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time-windows which reduce their ability to detect the short-duration movements tkee

transitions between sitting and standing or taking a couple of steps.

Moreover, an ideal activity classification scheme should work off-tiedfsin other words,
it should be able to use the data from a range of previous subjects to idactiifities from
an unseen individual. However, most of the times this is not possible andrarsirbject
classification scheme is currently all that can be achieved for some probMfitis this
approach, sample training data are required for a given individuatdefassification can

be performed.

Although the literature supports the fact that accelerometery has emergacdtéective and
inexpensive mean to recognize physical activities, little work has bees wovalidate the
idea under the unsupervised real-world circumstances. Majority of thevpork on phys-
ical activity recognition using acceleration signals relies on the data collgcsegervised
controlled laboratory settings. The researchers investigated a limited nainaetivities
and collected data from a small number of subjects and often these subjgatieththe
researchers themselves. The studies have shown very high sucoesssgnizing the most
prevalent everyday physical activities, such as sitting, lying, walkinranning. However,
when tested for long-term out-of-lab monitoring the recognition accuratyese systems

decreased significantly.

Almost all previous works require accelerometers to be firmly attached fjectsbbodies.
Most studies employed multiple accelerometers attached at different site 4, 17, 19-23],
whereas others investigated the use of a single tri-axial accelerometeted@irnwaist, chest,
thigh, wrist, or sternum [24-33, 35, 36]. Such configurations woutdgsubjects into a fixed
life pattern and hinder their daily physical activities and thus make thesensystepractical for

long-term activity monitoring during unsupervised free living.

1.5 Study Goal and Methodology

In conclusion, physical activity recognition using body-worn acceteiers pose five main re-

quirements. (1) The recognition system should recognize activities irtine@l- This demands
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that the features used for classification should be those that can betedtirareal-time. More-
over, short window lengths must be employed to avoid delayed respbirsaly, the classifica-
tion schemes should be simple, light-weight and computationally inexpensieegtiol®to run on
hand-held devices. (2) The classifiers need to be able to discriminatdithitescthat exhibit sig-

nificant similarities in their characteristics. This needs increasing the low batalass variance
that results due to these similarities (3) The system should employ less sqsfesably one,

and recognize activities independent of sensor’s position and its firchatent on the human
body. This requires that the high within-class variance that results duadmg the sensor on
different positions must be decreased. (4) The recognition systeuldsivork off-the-shelf. In

other words, it should recognize activities of the new subjects withouggbimugh the training
phase again. This is very challenging as people perform the same actiNftaently, in terms

of speed and intensity, and thus huge amount of variations could existiirathigity patterns.

(5) Lastly, recognition system’s accuracy should not get effected dydhations in the activity
patterns for the same subject. This is also very hard to achieve as hunmgpsrfam the same
activities in infinite different ways and it is difficult to collect enough traindaga to cater for this
need.

The aim of this study was to implement a single triaxial accelerometer-bassitalhgctivity
recognition system that fulfills only the first three requirements. It previdal-time information
on physical activity by employing features that are well-suited to descdtigtg acceleration-
signals and can also be computed in real-time, independent of senssitisipon the human body.
Since the last two requirements are not targeted due to the level of difficuttivéd, the activity
data for training and validation were therefore collected from differabjexts using a standard
protocol in order to keep the variations in activity patterns, for diffesefiiects and even for the
same subject, to minimum. The system employs sliding window protocol, fixed witehugth
for each activity, due to its simplicity and feasibility for real-time applications. dpgropriate
window length was chosen through careful analysis of the training dalte chosen window
length provided good estimates of the features and was also short elcugtresult in a delayed
response. One limitation of this approach is that problems can arise if aiyeletsts for shorter

or longer time periods than the window length. However, it provided gopdoxpmation for the
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study objectives.

1.6 Contribution

As mentioned above, this works implemented an accurate and robust a siogjlerameter based
physical activity recognition system. Unlike previously developed bodtiyicrecognition sys-
tems which considered a small number of activities for recognition, fiftediybactivities were
considered for recognition in this study which are listed in Table 1.1. Thetséties include pos-
tures (such as sitting and standing), short-duration movements (suctsemsitand stand-sit) and
long-duration movements. Thus the chosen activity set was large andalivéh high similarity
in posture and movements patterns among different activities. Therefdrieving an effective
discrimination among activities was harder.

The proposed system employed a single triaxial accelerometer for aceeibgmition. The
use of a single accelerometer offered two advantages. Firstly, adtmesgnals from a single
sensor were needed to be analyzed and thus the computational reqtér@reemvery low. Sec-
ondly, carrying or attaching a single accelerometer on the human bodyases than attaching
multiple sensors on different body-parts. The chances of hinderihgataivities of people were,
therefore, very low which made the system easier to use and more cortéortab

Unlike previous single accelerometer based bodily activity recognition regstnis system
was capable of recognizing a set of large number physical activities witghaaccuracy. The
reason for system’s high accuracy was due to the use of a novel ategirfeature model for
representing the activities. It is shown that activity-acceleration signali; dact random signals
generated by an autoregressive (AR) process and thus an AR-isaslell-suited to represent
the activities in the feature space due to the intensity and frequency tdréstics of the these
signals. The calculation of these features was performed using a fixddwviangth that not only
provided good estimates of these features for both long and short-auaatigities such sit-stand
and stand-sit but was also feasible for real-time recognition. The festodel was then used for
activity recognition in three different case-studies.

Firstly, the feature model was used to implement a two-stage classificatiomstbeesolve

the problem of high similarity (similar postures and movements) among activitieswhadkes
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the recognition of a diverse set of 15 bodily activities very hard. Thelacometer was firmly
attached to a subject’s chest in this case. The proposed classificationestitst separated groups
of similar activities using their statistical characteristics. These groups of siattaities were
then represented by the augmented feature model. The generated $patcedor each activity
group was then projected to a new feature space using projections thatsled the overlap
between similar activities. The features from this projected feature spareethen used for final
classification.

Secondly, the feature model was used to implement accelerometer’s posidi@ttachment
free activity classification scheme that was capable of recognizing akewanh bodily activities
independent of accelerometer’s position on the human body. The anoeler was freely placed
into five different pockets instead of a firm attachment to any body-phg.alm was to recognize
daily physical activities without posing any preconditions on accelerofagtesition and orien-
tation relative to a subject’s body but maintaining the same high standards inagéansuracy.
The proposed classification method thus allows more flexibility and conveniemmplementing
a system for long-term activity monitoring in free-living conditions as it juieg people with the
freedom of carrying sensor freely in five different pockets.

Lastly, the proposed augmented feature space model was used fos¢haf pduysical activity
recognition using accelerometer-equipped smartphones. In this cas@&l gtention was paid to
keep the computational requirements and the complexity of the classificatiemeas minimum
as possible. This was important as phones usually have lower computgtiover unlike normal
desktop computers. The proposed classification scheme was validatgactsiity data collected
from five body positions using a phone with a built-in tri-axial accelerometer.

In first case-study, the performance of the proposed activity retiogisystem was evaluated
using datasets collected in both laboratory and free-living conditions eMeryin second and third
case-studies only data collected in free-living conditions were useaftmrmmance evaluation. In
every evaluation study, the performance of the recognition algorithms isag¢ed using both
subject-dependent and subject independent training. The amourairuhdy data required for
the subject-dependent case is evaluated using different amounts ofgrdata to determine the

minimum amount required to get good recognition results.
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Table 1.1: The Classified states and activities recognized in this study
State Activity
Lying
Static Sitting
Standing
Lie-Stand
Stand-Lie
Lie-Sit
Transitions Sit-Lie
Sit-Stand
Stand-Sit
Walk-Stand
Stand-Stand
Walking
Dynamic Walking-upstairs
Walking-downstairs
Running

1.7 Structure of the Dissertation
The thesis has been organized into seven chapters, as shown in Fgure 1

e Chapter 1 has presented a brief introduction of the concepts of HARsdtissed the im-
portance of HAR, its applications in different fields, its requirements andattters that
make it challenging. The problems associated with the existing wearable racceter-
based physical activity recognition systems were summarized and finalbyeaiew of

my contributions was given.

e Chapter 2 discusses the related work in the area of wearable accelerbasd phys-
ical activity recognition in detail. Firstly, it describes different types ofavedble-sensor
based HAR systems, types of wearable-sensors and the reasond tiehimigh choice of
accelerometers for bodily activity recognition. Secondly, this chapteustss different
kinds of physical phenomenas investigated, such as gait analysis ardneavclassifica-
tion. Lastly, it discusses different parameters of pattern recognitiomiepobs, including
different types of features and the classification algorithms employed ar the recogni-

tion of physical activities in both supervised laboratory and unsupervisd-home settings.

e Chapter 3 provides an overview of the research approach and methpdollowed in this

work. It also presents details on the sensor devices used and diffetarcollection studies.



1.7 STRUCTURE OF THE DISSERTATION

16

Chap 4: Features of
Acceleration Signals

Model Identification
Model Validation
Augmented Feature

Model Chap 5: Recognizing a
N Diverse set of
~ Activities using
Chap 3: y Proposed Features
Proposed
Methodology o Activity Clusters
o State-Activity
— Classification Model
Research o Experimental Validation
Methodology
o Sensor Devices Chap 6: Position and
Data Collection Attachment Free
Recognition using
y Proposed Features
»- ¢ High Within-Class Variance
¢ Position Free Classification
Model
Experimental Validation Chap 7: Smartphone
based Recognition

using Proposed
Features

4

o Lightweight Requirements
o Single Layered
Classification Model

\ 4

o Experimental Validation

Figure 1.4: The structure of the dissertation



1.7 STRUCTURE OF THE DISSERTATION 17

e Chapter 4 describes the proposed augmented feature space modephlaihsein detalil
different stages of the analysis process, including model identificatesanpeter selection

and model validation.

e Chapter 5 describes in detail the procedure employed for evaluatingetod tiee proposed
augmented feature model for the classification of a large and diversEstsical activities
in both controlled and naturalistic settings. It also presents details and suwnneg behind
the implementation of a multi-stage classification scheme used for the given chtgwsifi

task.

e Chapter 6 presents details on the implementation of the accelerometer's position-

independent physical activity recognition scheme.

e Chapter 7 presents details on the implementation of the accelerometer’s posiiactivity

recognition system for accelerometer-equipped smartphones.

¢ Finally, chapter 8 discusses the application of the proposed system intab&bealthcare.

It also discusses the implementation and validation of the real-time personaglggdtem.



Chapter 2

Related Work

2.1 Types of Wearable Systems

Wearable systems are designed to be worn during normal daily activity towcally measure
biomechanical and physiological data regardless of subject’s locatiasedon their data col-
lection methods, wearable systems can be classified as: data proceasinipgding, and data
forwarding.

Data Processing Wearable System$hese systems include a processing element such as
a PDA or a microcontroller device. These consume more power than othes ofpvearable
systems but they can provide realtime feedback to a user and do noerEgge amounts of data
storage, as the raw data are typically summarized in real-time before stormgesmission. The
use of summarized data also reduces costs by lowering the upload time tovére ser

Data Logging Wearable SystemBata logging are those which simply acquire data from the
sensors and log these for offline analysis. They have the advantdgéngfable to monitor the
subject regardless of their location. The disadvantage of data loggitensy is that the subjects
mobility patterns cannot be analyzed between uploads. If an alarming toendsdbetween up-
loads it will not be discovered until that data is uploaded and analyzecdegrthT his problem will
become more significant as improving memory technology increases the timeshatpleads.

Data Forwarding Wearable Systemdata forwarding systems are those which simply ac-
quire data from the sensors and forward these directly to a local comfputirrther analysis.
These are used when the weight of the wearable system is a key factoasa storage or a data
processing unit can be replaced by aminiature transmitter. However,afaiarding wearables,
which typically use RF, Bluetooth, or WLAN, are range-limited, and theeetbe data from the

subject is not recorded when the subject is outside the range of theeredeéis makes data for-

18
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warding systems suitable for housebound subjects but not necessasiéymimo are independent

and have the ability to move outside of the house.

2.2 Types of Wearables Sensors

A range of wearable sensors, shown in Figure 1.2, have been usssegsalaily mobility levels
in free-living subjects. Of these, accelerometers have emerged as thesefsd tool for mobility
assessment in both clinical and home environments. The reasons foa sumicle acceptance
of accelerometers are: Firstly, they can respond to both frequencintarsity of movement.
This fact makes them superior to actometers or pedometers which are wtebyampact or
tilt [37]. Secondly, most of the widely available accelerometers can mebstinghe movement
and the tilt which makes them superior to motion sensors that lack the capabilitre=asuring
these characteristics. Thirdly, due to enhancements in microelectromesdhaystems (MEMS)
technology, today’s accelerometers are not only coming in small size antbatprice but are
also capable of demonstrating a high degree of reliability in measurement.

Accelerometers are devices which are capable of measuring the appigldration acting
along a sensitive axis. Accelerometers use transducers for meascerigration. These come
in different varieties, such as piezoelectric crystals, piezoresistiveosg, servo force balance
transducers, electronic piezoelectric sensors and variable capac#tarelerometers. Some ac-
celerometers require an external power supply whereas others ddoraover, some accelerom-
eters are capable of responding to static accelerations (such as theratame due to gravity)
whereas others do not.

Most physical activity recognition systems have used accelerometerk efgicapable of re-
sponding to acceleration due to gravity as well as acceleration due to maveAtegmny point
in time, the output of such accelerometers is a linear combination of these twanentp, the
acceleration component due to gravity (GA) and the acceleration compduaerto bodily mo-
tion (BA) [25]. Since these two components are linearly combined and @vedth in time and
frequency, they cannot be easily separated. However, low pasmfjlean be used to make ap-
proximation to the two components. Low pass filtering, when applied to an aatietesignal,

separates the GA from the actual signal. GA can then be subtracted feariginal signal to ob-
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tain the BA. Since most human movements occur between 0.3 and 3.5 Hz [38]nuestigators

have used a filter with a cut off frequency between 0.1 and 0.5 Hz toatefthe two components.

2.3 Recognizing Bodily Activities using Accelerometers in the Past

2.3.1 Recognition Problems Investigated in Previous Works

The position at which the accelerometer is placed on the body is important in Hsureenent of
bodily activity [9]. Normally, accelerometers are attached to the part ofddg twhose movement
is being studied. For example, accelerometers attached to the thigh or amkigedrto study leg
movement during walking [17, 39, 40], accelerometers attached to thehaxistbeen used in the
measure of Parkinsonian bradykinesia [41].

However, in many cases, the intention is to study whole body movements.Hrcases, some
investigators have achieved this by using multiple instruments placed acrdsxithgt, 12,15,17,
19, 42-44], while others have used a single instrument placed close teritie of mass, which is
located within the pelvis [24-26,28-30, 45].

The accelerations generated during human movement vary across thartitbdepend on the
activity being performed [9]. Accelerations increase in magnitude fromhde to the ankle,
and are generally greatest in the vertical direction, although the adietsrén the other two
directions cannot be neglected [37].

The major energy band for daily activities is 0.33.5 Hz [38]. Although feaokteration at heel
strike can reach frequencies of up to 60 Hz, 98% of the acceleratioarghwing bare foot walk-
ing is contained below 10 Hz and 99% is contained below 15 Hz [46]. Slightlyeniffequencies
occur during running, but most acceleration is below 18 Hz at the ankle .nfaximum frequen-
cies obtained decrease from the ankle to the head, and are greater émtibal direction than in
the transverse plane . In the light of such findings, it was concludedntoatier to assess daily
physical activity, accelerometers must be able to measure acceleratitm4 21 in general, and
up to 6g if they are attached at waist level, and that they must also be ablesamaé@quencies
between 0 and 20 Hz [9, 34].

There are design trade-offs between the number of instruments thasedethe cost, the
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usability and the transferability of an ambulatory monitoring system [9]. Theydef the recog-
nition or monitoring systems is usually determined to a large extent by the puspdsguration
of the monitoring. In short-term, supervised monitoring situations, large ninabdody-fixed
sensors can be used to allow the collection of greater quantities of informlatialing to very ac-
curate assessments of movement, however, in long-term, unsupervisgdrimgrenvironments,
subject compliance is essential if the system is to be used [9]. In this situdit®mnearable in-
strumentation needs to be easy-to-use, comfortable and as unobtsipssible. One approach
is to embed multiple sensors into an item of clothing [47]. The subject then agsoonear the
item of clothing, and all of the sensors are attached in the correct locatimveever, increasing
the number of sensors increases the complexity and cost of the systeritiodalty, items of
clothing must be designed in a range of sizes in order to ensure a pitopeafi subjects. A sim-
pler approach is to use only one instrument that is attached at a single losatiba body. This
greatly simplifies the design and use of the system, but it also reduces th#yakinformation
that is obtained about the movements. A review of the literature demonstratedebpite this
limitation, useful information can in fact be obtained from a single device athobar the centre

of mass of the subject (see, for example, [27, 34]).

2.3.1.1 Gait Analysis

In addition to being an important skill for independent living, parametergaitf can provide
indication of deteriorating functional ability and increasing falls risk. Wallgpged is related to
functional status [48] and is a predictor of falls [49].

It has been shown that simple parameters such as step and cycle time anslysindetry can
be determined during normal gait from waist, thigh or heel acceleratié)50} Accelerometers
attached to the legs have been used to enable automated extraction of tegafiquatterns in-
cluding left and right heelstrikes and toe-offs [40]. Aminian et al [46¢ditwo neural networks
to estimate incline and walking speed during unconstrained walking using ataagelerometer
attached to the back and a uniaxial accelerometer attached to the top of theeeyhThe stan-
dard deviation of the estimated incline was less than 2.6%, and the maximum ofefffieient

of variation between speed estimation was 6%. However, after applying arsappeoach, [51]
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reported that their system allowed accurate prediction of speed but imatine during running.
Outdoor walking speed has been accurately measured using a combirfatoelerometry
and altimetry [52]. Studies have demonstrated thatwalking on level grouhdvalking on a
stairway can be distinguished in the signals of a waist-mounted triaxial agoedeer [27].
The vertical acceleration component of the trunk- or back-mounted TAeignibst important
in the assessment of gait [34,42,43]. This is the component that is msdtiweto the presence

of gait disorders and from which elements of the gait cycle can most easitlebtified .

2.3.1.2 Sit-Stand and Stand-Sit transfers

The ability to rise from a chair is of fundamental importance for functiona¢pesthdence. Rising
from a chair is regarded as the most mechanically demanding functionaindsktaken during
daily activities and is a prerequisite for gait. An inability to rise from a chair peevent an

otherwise functionally independent subject from independent livid§ [bhe ability to sit down

in a controlled manner is of equal importance.

Little work has been reported using accelerometers for assessmensi$thrdsit movement.
Sit-to-stand and stand-to-sit transitions can be automatically identified asipefiactivity [24],
and they can be classified by identifying the preceding and succeedstgre® as sitting and
standing [40, 42]. A preliminary study found a moderate correlatiog 0.537) between the
accelerometry characteristics of the sit-to-stand transfer measured aaitfteand falls risk in
37 elderly subjects [54]. Other useful clinical information may be able toltaimed from the

accelerometry signals of the sitstandsit movement, but this remains to be integktiga

2.3.1.3 Fall Detection

One of the biggest risks to the health and well being of the elderly is the ristodbidity from
injury, leading to functional dependence. Falls are a very seriousaiské elderly, particularly
for those living in the community. In those aged over 65 years, two thirds@flants are falls
and, for example, in the general Australian community, accidents are théefifting cause of
death, and one quarter of them are falls.

Accelerometry has been proposed as being suitable for falls detectiocgeitiving subjects
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but there has been relatively little work done in this field to validate the method.b@kic ap-
proach was first published in [55]. In this approach, a change intatien from upright to lying
that occurs immediately after an abrupt, large negative acceleration (dm@dot) is indicative
of a fall. Both of these conditions can be detected using an acceleromdtbhatha dc response,
and have been incorporated into fall detection algorithms using an aaoelEno

However, little real data are available on the ability of an accelerometrydisgstem to detect

falls in a community setting. This remains an area requiring further work.

2.3.1.4 Movement Classification

Accelerometry systems have been used to identify and classify sets ofgsostul activities. Most
of these systems have used multiple sensors, some systems have usedeaalpmeters, while
other systems have used accelerometers together with another typeaf Jédmesmost common
placement locations are the chest or waist and the thigh [15, 40, 42—44].

Algorithms for the detection of posture and motion patterns remain a cruciattaspac-
celerometry, and the ability to achieve an adequate data reduction while stdl &g to differ-
entiate between a variety of dynamic activities is still under investigation [43].

Systems have been developed to identify the postural orientation of atsubjeer systems
have used accelerometers placed on the chest orwaist and the thigtritoidete between pos-
tures and activities sitting, lying, standing, walking, stair climbing and cycling avitigh degree
of accuracy [15, 18, 40, 44] by first discriminating between activity esgt, and then between
different resting postures, and different activities. Accelerometsgesygs using multiple instru-
ments placed across the body have been also used to achieve classifitatigtiple activities
and postures [17,42,43]. Accelerometry has also been used in ctiojuwith heart rate, GPS
or gyroscopes to classify postures and activities.

The majority of movement classification systems have been custom designedpecific
domain of postures and activities. Although many of these systems havecprbdxcellent re-
sults in classification of specific movements, there is still scope for the deweltpof systems
that are able to automatically identify and classify arbitrary movements perfloimfece-living

conditions.
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2.3.2 Components of the Recognition Algorithms

Most approaches to activity classification, using body-worn acceldéssménvolve a multi-stage
process. Firstly, the sensor signal is divided into a number of small time ségjmeferred to
as windows, each of which is considered sequentially. For each wirmlmevor more features
are derived to characterize the signal. These features are thensuggulaito a classification

algorithm which associates each window with an activity.

2.3.2.1 Kinds of Features Investigated

Previous physical activity recognition schemes have used a large vafietghniques to generate
features in order to characterize windows of body-fixed acceleratitm @nce generated, these
features are then employed as inputs to classification schemes. In this seetipresent a brief
overview of different feature generation techniques.

Heuristic Features: Output of a body-worn accelerometer comprises two components. The
first is the static acceleration. It results due to the effect of gravity andges a measure of the
inclination of the sensor to the vertical. The second is the dynamic accelerhtisrdue to the
acceleration of the body segment to which the accelerometer is attached. thi¢hgubject is at
rest, the measured acceleration is equal to the cosine of the sensortiomeaitgle relative to the
vertical. This angle, often known as tilt angle, is often used as an inputdsifitation algorithms,
particularly those designed to distinguish static postures [40] and idenstyad transitions [4].

All movement patterns result in time varying segmental accelerations. Diffarethods have
been used to derive certain heuristic features to quantify the amplitudesef dlceelerations. Be-
fore these features are derived, a high pass filter is applied to the sigreahove any baseline
offset. These features includes the signal magnitude area [24],tpgsak acceleration [56],
mean rectified value [17] and root mean square [15]. This type of ie&wften used to differen-
tiate between static and dynamic activity [24]

Time-domain Features:Some studies derived time-domain features directly from a window
of acceleration data and are typically of statistical nature. Examples incledag¢han, median,
variance, skewness, kurtosis [12, 20, 29]. Other studies employédalnid low pass filters to

separate accelerometer signals on a frequency basis. Means atatedlseparately for the low
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frequency and rectified high frequency components which are thehassaputs to the classi-
fication schemes. Cross-correlation coefficients have also been usg@ntfy the similarity
between acceleration signals from different axes on the same body rsegnukacross different
segments [12].

Frequency-domain Featuresin order to derive frequency-domain features, the window of
sensor data must first be transformed into the frequency domain, nornsaily a fast Fourier
transform (FFT). The output of a FFT typically gives a set of basiffictents which represent
the amplitudes of the frequency components of the signal and the distribfitiem signal energy.
Different methods can then be used to characterize the spectral distifrotiothese coefficients.
For example, median frequency [14] or a subset of the different ETficients can be used [10].
Alternatively, information from a number of coefficients can be combinedue g single fea-
ture. Examples include spectral energy, which is the sum of the squ&eddefficients [57],
and frequency-domain entropy, which is the normalized information entwbplge FFT com-
ponents [12]. This latter feature allows for differentiation between activitigich have simple
acceleration patterns and those with more complex patterns. For exampjeliag mwvolves a
uniform movement of the legs, a frequency-domain analysis of thigh aatele shows a single
dominant frequency. In contrast, running may result in more compleXexatien pattern and
often displays many major FFT components. This difference leads to a muuér liigquency-
domain entropy for running in comparison to cycling [12].

Wavelet Analysis:Unlike Fourier analysis which can only be used to extract information on
the frequency content of a signal, wavelet analysis can be used tdigateshoth time and fre-
guency characteristics. Like Fourier analysis, wavelet analysis ciomrbelated via a continuous
or discrete wavelet transform. Previous work on activity monitoring hadamag the discrete
wavelet transform (DWT). The discrete wavelet transform is normally implged using the
filter bank interpretation. In this approach, the original signal is suae@gsdecomposed into
separate low and high pass filtered signals, referred to as approximatiotetail coefficients
respectively.

Wavelet analysis allows a body-worn sensor signal to be decomposed mbmber of indi-

vidual coefficients, each of which contains data on a specific frequieaied. As these coeffi-
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cients characterize the original signal along its entire length, they contamriafion on temporal
changes in frequency content. Thus, unlike Fourier analysis, waeeleniques can be used to
analyse and characterize non-stationary signals (those in which fregoentext changes over
time).Wavelet analysis has been applied to three different types of protiliin activity mon-
itoring. These are signal enhancement [4], identification of activity tiianspoints [58] and

generation of timefrequency features subsequently used for clagsifif4b, 58].

2.3.2.2 Feature Selection and Dimensionality Reduction Methods

People tend to perform the same movement in a variety of different way$whitlead to sub-
stantial variability in the features derived from body-fixed sensor dataerefore, to achieve
effective classification, identifying features with high discriminative abilityfisigh importance.
A good feature set should show little variation between repetitions of the samemmeats and
across different subjects but should vary considerably betweeandatiff activities.

A number of different techniques, of varying complexity, have beed tseelect appropriate
features for activity classification. These include visual and statistiedysis to assess the distri-
bution of a given feature for different activities [59] and correlatimsed feature selection [20].
Another method for feature selection is a forwardbackward searchichvidatures are sequen-
tially added and removed from a larger set. Optimal features are identifigehdimg on the
resulting classification accuracies for each feature subset [60].

As an alternative to selecting a subset of the existing features, it is ofssibjeto combine
the original features to define a new set of variables. There are tvaditsemssociated with such a
procedure. Firstly, the often unnecessarily large numbers of featasesting from many sensors,
can be reduced. Secondly, the new reduced set of variables fitgghas better discriminative
ability for classification problems. Principal component analysis (PCA)ladependent compo-
nent analysis (ICA) are the two most commonly used dimensionality reductibnitemes used in

the field of activity monitoring using body-worn accelerometers [16].
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2.3.2.3 Classifiers

Once features have been derived to characterize a window of ségitsorthey are used as input
to a classification algorithm. The degree of complexity of these differensititzetion schemes
varies from simple threshold-based schemes to more advanced algoritictmassartificial neural
networks or hidden Markov models. With these advanced classificatiorithlgs, appropriately
implemented software learns to recognize and associate patterns in thecapues$ with each
activity. As such, this field of study is often referred to as machine learnMgchine learn-
ing techniques are generally considered to fall within one of two categ@itber supervised or
unsupervised.

With supervised learning, a significant amount of fully labelled activity dateedgsired in
order to train the classification algorithm. Once the training phase is complettagiséier is able
to assign an activity label to an unknown window of sensor data. With @mgised approaches
no activity labels are required for the training dataset. Instead, all tis®sdata are passed to the
algorithm which automatically identifies a number of states or data clusterspéadtich may
correspond to a particular activity.

Within the field of activity classification, the classical cross-validation (CAf) be adapted to
evaluate the accuracy of the system in two ways: between-subject and-suithject evaluation.
In the former case, the classifier is first trained with data from all subjecepea few and then
tested with data from the excluded subjects. The accuracy is then calcatatbd proportion
of correctly classified windows of data across all activities. The psoésxcluding some sub-
jects and performing a traintest cycle is repeated until all subjects hatieipated in the testing
datasets. The finally overall accuracy is then calculated as the ave@agaey across all traintest
cycles. When one subject is used for the testing, for a number of cyqles® the number of sub-
jects, this is called leave-one-subject-out CV. For within-subject evahydtiaining is performed
using a portion of windows for a specific subject, while testing takes placethdéhemaining
samples of the same subject. This process is then repeated, each time uffiegeat ¢ghortion
of the subject samples for testing. The overall accuracy is determinectifi® average of all the
cycles for all available subjects.

Although an overall accuracy is often provided, more detailed views ofltssifiers perfor-
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mance can be given through sensitivity and specificity. These are daltdeparately for each
activity by determining whether each data window in the test dataset hasdmified as the

correct activity or not. Sensitivity represents the ability of the classifieelecs instances of a
certain activity class, whereas specificity represents the true negatéseaf an activity. These
measures are based on the analysis of the confusion matrix, which sunstihezzedicted and
actual instances for each class.

Threshold-based Classificationdith threshold-based classification, a derived feature is sim-
ply compared to a predetermined threshold to determine whether a particildy ébeing per-
formed. This approach has been used successfully to differentiatedresiatic postures, such as
standing, sitting and lying, using angles derived from accelerometersdotat combinations of
the pelvis/trunk and chest [4, 17,40, 56]. Moreover, threshol@dakassification have also been
applied on SMA to differentiate between static postures and dynamic acti&it24]

Hierarchical Methods: Several studies employed hierarchical classification methods to clas-
sify activities using body-worn sensors [19,24-26,42,59]. To impieradierarchical classifica-
tion scheme, a binary decision structure is constructed which consistauailzen of consecutive
nodes. At each node, a binary decision is made depending on the iapurefe This decision re-
sults in either a definite classification being made or in a transition to anotherwbdee further
differentiation between activities is performed. The exact nature arahpers of the decision
made at each node is obtained via manual inspection and analysis of thegtdsitanwhich means
that this approach is very time consuming.

Decision Trees:The decision tree approach is similar to hierarchical classification. Hayweve
rather than the decision structure being constructed manually by theigessus algorithms exist
to automate the process and create a compact set of rules. These algarittknigy examining
the discriminatory ability of the features one at a time to create a set of ruled whimately
leads to a complete classification system.

Decision trees have been applied to a wide range of classification prod&py29[59]. One
of the most comprehensive studies was carried out by [12] who usidtibe and frequency
features to differentiate between 20 activities. Using five sensors, thtejned an accuracy of

86%. However, additional analysis showed an accuracy reductionlpf36 if only data from a
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thigh and wrist sensor was used.

k-nearest Neighbors: With a k-nearest neighbor (kNN) classification scheme, a multi-
dimensional feature space is constructed, in which each dimension pumdssto a different
feature. The feature space is first populated with all training data poit, @& which corre-
sponds to a particular activity. Unknown windows of sensor data aresepted in the feature
space and th&-nearest points (or neighbors) of training data identified. Classificatitmeis
determined by the majority of thenearest neighbors which correspond to a given activity. The
value ofk typically varies from 1 to a small percentage of the training data and is selesiegl
trial and error, or ideally using cross-validation procedures.

Foerster et al [14] were the first one to use KNN in activity classificatiodifferentiate
between nine activities. Later they extended their original approach,inorgla kNN classifier
with a hierarchical decision structure and including a frequency-doneainife. At each node of
their hierarchical decision structure, they constructed an appropeiateré space using a subset
of features. With this approach they were able to accurately classify a vadge of activities
than in their previous work.

A similar approach has been used in [17]. However, rather than applytngtandard kNN
approach, they used training data for each activity to specify a maximumianaum value along
each axis. This effectively defined a volume corresponding to eackitatiithin the feature
space. For an unknown window of activity data, classification was detethiiy the closest
activity volume within the feature space. With this approach, they were ableifigd a wide
range of movements and postures with good levels of accuracy.

Artificial Neural Networks: An artificial neural network (ANN) can be likened to a flexible
mathematical function configured to represent complex relationships bettgeeputs (indepen-
dent variables) and outputs (dependent variables). The ANN is initiadlggmted with a set of
training data and some form of optimization process is employed to enable lowaputs to be
predicted for a given set of inputs. Once trained, the ANN can thendxtosobtain the outputs
for any set of inputs. In the field of activity classification, the inputs arenadly features derived
from sensor data with the outputs being the different classes of activite§, 19, 23].

One of the most common ANNS is referred to as amulti-layer feedforwardiheetwork or
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multilayer perceptron. This consists of inputs and outputs which are inteected via special
nodes, distributed in so-called hidden layers. The flow of information dirahe network is
controlled by the weighting of the links between the nodes and the transfetidn within each
node. This type of network is trained by iteratively optimizing the weights inrai@eaccurately
produce the desired training outputs from the corresponding inputeré@estudies have employed
such ANNSs for the task of activity classification with high success rated .89, 23].

An alterative to the feedforward ANN is the probabilistic neural netwoniliké most ANNs
which require an extensive training period, this type of network enaldssification to be rapidly
performed using example patterns stored in memory. This approach haadezkin [18] where
ANN was trained using template waveform patterns for each activity, rdtharusing features de-
rived from sensor signals. Although their classification schemewas ti@igard to implement,
an individually designed network was required for each subject.

Support Vector Machines:Support vector machines (SVMs) constitute a popular machine
learning method which is based on finding optimal separating decision Hgpegpbetween
classes with the maximum margin between patterns of each class. Additionallgiriy the
so-called kernel functions, they can project the data from the origaslfe space they lie in,
to another higher dimensional space. In this way, a linear separation irethepace becomes
equivalent to a non-linear classification in the original space. An optimiztgimique is used to
find the optimal separating hyperplanes that perform the required atasisifis. SVMs have only
been applied in a small number of activity classification studies [29, 61].

Naive Bayes and Gaussian Mixture Model$he Bayesian classifier is based on the estimated
conditional probabilities or likelihoods of the signal patterns available fraohectivity class.
Given such likelihoods, the probability of a new unknown pattern haviren lgeenerated by a
specific activity can be estimated directly. With a naive Bayes classifier, tha faatures are
assumed to be independent of each other. With this assumption, it is possiiprass the
likelihood function for each activity as the product of n simple probabilitysitgriunctions, where
n is the number of features. These functions are typically expressetktadimensional normal
distributions. Although the assumption of feature independence is oftertedoldne Bayesian

approach is popular due to its simplicity and ease of implementation. A more geesian of
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the naive Bayesian is discriminant analysis, where cross-correlateingéen features are taken
into account.

Mixed results have been reported when the Bayesian approach to aclagsification has
been compared to other methods. For example, [20, 29] found this appimaither outperform
or match the classification accuracy of other methods, whereas [12] fourlevels of classifica-
tion accuracy. They suggested that the reason for this poor perfoenmaaly have been the ques-
tionable assumptions that acceleration features can be considered c@ilitiodependent and
modelled by a normal distribution. Other studies which have used the Baygmaoach [21, 61].

A Gaussian mixture model (GMM) operates along similar principles to a Bayekiasifier.
However, the likelihood function is not assumed to be a single Gaussiaahplibbdensity. In-
stead, it is assumed to be of unknown shape and functional form andgpipueximated by a
weighted mixture of Gaussian functions. The weights and the parametetse@and covari-
ances) of the mixture components are calculated using the expectation-maxim{gM) algo-
rithm. Allen et al [30] employed this approach using time-domain features tsirmt separate
GMMs for a number of movements/postures. To train the GMMs and calculajgatieneters,
they used an approach similar to EM but which employed a statistical estimatesptbm the
field speech recognition. Classification of test data was achieved byisglttee GMM (activity)
with the highest probability of having produced that particular set of featurhey showed that,
provided subject-specific training was used, the GMM outperformed arbtgdcal classifier.

Markov Chains and hidden Markov Modeldg=or certain classification problems, some transi-
tions between activities are more likely to occur than others. For examplejghily lunlikely that
an individual would sit down directly after descending stairs, but woeltidely to start walking.

A Markov chain is a discrete time stochastic process in which each activitgrissented as a dif-
ferent state. Markov chains can be used to represent the likelihoaghsittons between different
activities.

An HMM is similar to the Markov chain, but the state of the model at any given time is
unknown (or hidden) and can only be determined from observablengdeas which depend on
the state. In contrast to the Markov chain, the HMM can be used directictority classification

problems. The observable parameters are the features derived dyworn sensor data, with
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the states corresponding to the different activities. Unlike a Markov ¢Btdtes in an HMM can
correspond to more than one activity. As with previous classification tegbgj@n HMM is first
trained using example data. Once trained, it can then be used to determinesthi&ehosequence
of state transitions (and thus activities) which could have resulted fronbsereed sequence of
features. HMMs are trained by determining state transitions along with thalmtiies that each
possible set of observations (features) will be observed for a gitaga. In activity classification
studies, HMMs have been used with varying success rates [21, 22, 28]

Fuzzy Logic: Fuzzy logic is based on fuzzy set theory. The idea is to use reasoninf ish
approximate rather than specifically defined. The advantage of usimglfugic is that it provides
the freedom to map from a set of inputs to one or more outputs using a siehme gf-then
statements, which are called rules. In case of physical activity classificatablem, features
extracted from body-worn sensor signals make the inputs, whereastfhégsare the fuzzy truths
which correspond to each class of activity. Flow of information throughzayf system happens
via a number of steps. Firstly, the inputs, or features in this case, are@dsigembership to
fuzzy sets. This assignment is carried out using appropriate membeuskiohs.

In classical set theory, data points or members are either part of a set,an other words,
partial membership among multiple sets is not allowed. However, the casezyf $at theory,
by allowing the membership function to range between 0 and 1, permits partial engmybin
multiple sets. Once each input has been assigned membership of a fuz\ttbailes can be
applied to produce a corresponding output. In the case of activity ctaggifi problem, the output
is a membership value, or fuzzy truth, which ranges from 0 to 1 for eads dbactivity. The
classification result is then normally taken to be the activity with the maximum fuasy. tr

Using fuzzy logic, it is possible to reason with imprecise concepts. As duzhy logic is
sometimes better suited for dealing with real-world problems than conventiagialudnich is
normally used in hierarchical or decision tree classification schemes.it®dsis, fuzzy logic
has only been applied to a limited number of activity classification problems. net&lase [62]
applied this approach, first using simple heuristic features to identify diffestatic postures,
and then using the fuzzy classifier to differentiate between different mewts. They defined

membership functions in terms of the standard deviations of the sensor sigddlse short-term
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changes in orientations, calculated from the gyroscope signal. By usitgérules based around
the min operation (the fuzzy equivalent of AND), they were able to distifigisétween different
gaits with good accuracy.

The Mamdani fuzzy inference method is one of the most common techniqudsvieloping
a fuzzy logic classifier. With this approach, it is possible to specify certaimieeship func-
tions and then to develop a set of rules which allow the training inputs (fettrdoe mapped
to the training outputs (activity classes). Salarian [63] used this methodrasf@athree-stage
activity classification scheme. This scheme first used a statistical classifientify sit-to-stand
and stand-to-sit transitions, and then employed a threshold-basedelppoadentify periods of
walking and lying. Finally, a fuzzy classifier was used to identify periodsittihg and standing.
This classifier was developed using membership functions constructedaftmowledge of ac-
tivity states before and after the period of interest. Classification adesrabtained using this
approach were shown to be better than those obtained using simple thnegeslg].

Boissy [64] used Mamdani’s fuzzy inference to identify falls. Data frotm-axial accelerom-
eter were used as input to a fuzzy classifier and the amplitude of eadbratiom component was
used to determine membership values for the classes: low, medium and higtal 8ft&7 rules
were used to produce the output, which was expressed in terms of acthssanembership func-
tion (no, maybe and yes) representing the occurrence of a fall. The wgélhis output function
was then combined with the knowledge of body orientation using conventBuoaéan logic to
determine whether a fall had occurred. By collecting a large datasell @inid non-fall events
from 10 subjects, they were able to demonstrate average fall detectioraeaies ranging between
86 and 93%, depending on sensor location.

Combined Classifiers: The popularity of Meta-level classification schemes, within the
biomedical community, has increased recently . They are known for imgrakia performance
of individual classifiers by combining their output. The combination of oututchieved us-
ing different techniques. These include majority voting (where the majorigsdmaccepted),
stacked generalization (which trains the base classifiers and then usgsrélaéctions as data
to a new learning stage) or boosting (which assigns weights to the trainingnsatitecombine

the performance of weak classifiers) [65]. Ravi [29] used a metd-tdassification scheme in a
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pilot study with two subjects who performed eight common activities. Five-leas classifiers

were used in their study, including SVMs, decision trees, kNN and naaye® In general, when
an inter-subject design was used, the boosted SVM was shown to autpesther meta-level

classification schemes.

AdaBoost is a type of adaptive boosting that incrementally trains clasdifjessiitably in-
creasing the pattern weights to favour the misclassified data. Thus, it canhiméple weak
classifiers to create a single more powerful one and has been use@] byhéy studied ten com-
mon daily activities deriving a large number of statistical and frequenayadio features from a
range of sensors. They then constructed a set of weak binary dess#fach of which accepted
only a single feature as input and obtained a classification result fronighted combination of
the weak classifiers. They compared the performance of two differesik elassifiers: a discrim-
inative decision-stump (a binary decision tree classifier constrained ts¢hefa single feature)
and a generative naive Bayes model and found the Bayesian appmaperform best. Classi-
fication accuracy was then improved by using the output from the weasifedas as input to a

HMM.

2.4 Conclusion

This chapter has presented an overview of the different techniguek tvwve been used for activ-
ity classification from body-worn sensor data. Information has beesmargd into two principal
sections, the first dealing with feature generation and simple threshadd-bssification and the
second dealing with more advanced classification techniques.

Within this framework, features were categorized as heuristic, time-domagqudncy-
domain or timefrequency (wavelet). Heuristic features are derived &dondamental under-
standing of how a specific movement or posture will produce a charaditdrisly-worn sensor
signal. By using such features in simple threshold-based classificatiemsshit is possible to
accurately differentiate between static postures and dynamic activity arehtiifydfalls with high
levels of accuracy.

In order to differentiate between large numbers of dynamic movements atdres it is

necessary to use advanced classification schemes which accept mueeofeatures as input.
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Although a small number of studies, comparing the performance of diffetassifiers, suggest
that either decision trees or artificial neural networks may give the highessification accuracy,
differences are often small. Furthermore, there are many other methduassupport vector
machines and hidden Markov models which have shown promise in small pithéstout have

yet to be tested in larger-scale studies. Therefore considerablerfundhieis required to establish
the suitability of the different techniques for a range of classificationlpro®. Most previously

published activity monitoring studies vary considerably in the choice ofosgriacements and in

the range of activities analyzed.



Chapter 3

Proposed HAR Methodology

This chapter presents overview of the design of the activity recognitistesypresented in this
work. It also describes the research approach followed to collecEitessary data to develop the

data-model and evaluate the model and the classification algorithms.

3.1 Overview of Research Approach

The method used in this work for the development of the activity recognitistesyconsisted of
four main steps. (1) Firstly, activity data were collected on different jghyactivities from dif-
ferent subjects. (2) Once these data had been collected, a set ofigjst@nalysis was performed
on the collected dataset to determine some important parameters of the recogjgiviathm that
enable real-time performance. These parameters include the mathematicaltimabaan best
describe the data, the number of parameters of the model, the sliding windgv &d the final
feature set to use. (3) Four more activity-datasets were then colleotadififerent subjects under
different settings. (4) Finally, appropriate classification schemes werelaped to evaluate the

parameters determined in the third step for physical activity recognition tisgnigur datasets.
3.2 Sensor Devices
In this work, two sensor devices were employed for collecting data origaiyctivities.

3.2.1 WITilt

Figure 3.1 shows the accelerometer called Witilt v2.5. It's a 2.4GHz Wirelesds3¥ilt Sensor

from Sparkfun. It employs a FreeScale MMA7260Q triple-axis or tridaa@elerometer and

36
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a class 1 Bluetooth link from BlueRadios. MMA7260Q is a surface mountedrimtied circuit
accelerometer that runs on low volta@®2V — 3.6V) and is capable of measuring acceleration
along the X, Y, Z axes. This accelerometer also features a 4-level sépsitiale (1.5g, 29, 449,

69), with 1.5g setting being the most sensitive. It measures both (+) aadog)eration.

3.2.2 TOmnia

TOmnia is a smartphone from Samsung, also called SCH-M490. It suppoidsial accelerom-
eter which can measure acceleration in the range2gf. TOmnia accelerometer’s resolution is

0.004g and its axis directions are shown in Figure 3.2.

3.3 Speech Annotation System

In this work, annotations are performed using a bluetooth headset cainlitrespeech recog-
nition software. During each data collection study, the starting and endintspod each activity
were marked by using a predefined set of commands. The headsén tisisdstudy is called the
Jabra BT250v bluetooth headset, shown in Figure 3.3. It offers a&mainf0 meters and a battery
power for 300 hours standby and 10 hours active talking. The sadtisastoring the annotations
was developed following the idea presented in [3]. It is written in C and coesteiements of the
bluetooth API with the Microsoft Speech API.

This method proved very accurate and efficient as annotations arglgdavy the user on
the spot. It also resulted in very little interference while performing activiti@sminimize any
mislabeling, data within 5 seconds of the start and stop times are discarded.tl®nsubject is
probably standing still or sitting while he records the start and stop times, thendaediately

around these times may not correspond to the activity label.
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Figure 3.1: WITilt v2.5: A 2.5 GHz Wireless 3-axis Tilt sensor from Sparkfun
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Figure 3.2: TOmnia(SCH-M490), a smartphone from SamSung with a built-kdtiaccelerom-
eter. The X axis is along the width of the device, and positive on the righttdire The Y axis is
along the length of the device, and positive on the down direction. The Zsasleng the depth
of the device, going into the screen
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Figure 3.3: Jabra BT250v bluetooth headset
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3.4 Data Collection

3.4.1 Dataset for Model Identification

This dataset contains data on four physical activities collected from siicipants (three male,
three female, mean age = 28 years old). The four activities include lyingliatg walking and
running. In general, the output of any body-worn accelerometenuispen the position at which
it is placed [9]. Accelerometers are normally attached to the part of the Whdge movement
is being analyzed, such as arm, wrist, thigh, etc. However, since the anovesaudy the whole
body movements, the WiTilt sensor, with a sampling frequency of 45Hz, \easg at a position
closer to the center of mass, i.e., the subject’s chest as shown in Figure. 3.4

These data were used to determine important parameters of the recognitdthaig The
most important parameter includes the model for describing the data thateteamthed using
the stochastic time series analysis of the activity-data. The main differetwedrethis dataset
and the others is that during this study each participant performed the sainity dor longer
periods of time, i.e., about 30min per activity per participant thus each fileicmd data on a
single activity. However, in other studies each participant performeerdiit activities in fixed or
random sequences where a single activity lasted for not more than 3miaahdile contained
data on multiple activities. The reason for this approach was to have emmmgihuous data
on each activity for developing a better understanding of the frequamgyntensity characteris-
tics of the acceleration-signals for model identification. This dataset wasd®ata-for-Model-

Identification (DMI).

3.4.2 Controlled Laboratory Dataset for Model Evaluation

Ten healthy subjects, i.e., four females and six males with the mean age oftidippted in this
study. The WiTilt was attached to their chests to to collect the 15 physicaltedithat are listed
in Table 1.1. The sampling frequency was 45Hz.

The subjects performed the activities under researcher’s superviity were told where
and how to perform these activities. Annotations were performed usingeweloped speech

annotation system. About 35 hours of activity data were collected. A saragleeace of the



Figure 3.4: WITilt (a tri-axial accelerometer) being attached to a subjeat'stéh order to collect data on 13 bodily activities
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activities performed by each subject at a time is: sitting (2mingit-stand— standing (2min)—
stand-lie— lying (2min) — lie-stand— standing (40sec)» walking (2min)— standing (40sec)
— walking-upstairs— standing (40sec)- walking-downstairs— standing (40sec)- stand-sit
— sitting (40sec)- sit-lie — lying (40sec)— lie-sit.

It is obvious that these data were collected using a strict protocol. Inwthrels, each subject
followed a standard activity-sequence, performed each activity withatime speed each time for
a fixed timed-interval. Thus there were very less variations in activity pati@ecross different
subjects. The purpose was to have a dataset where the problems thauarie the variations in
the sensor’s output for the same activity across different subjectetdexist. In other words, this
dataset was for evaluating system’s performance for best casaiscefas dataset was hamed

Controlled-Laboratory (CL) dataset.

3.4.3 Naturalistic Dataset for Model Evaluation

The same ten subjects as the previous study participated in this study antheveame sensor
device at their chest with a sampling frequency of 45Hz. This time the pantisipgere not

told about how and where to perform the activities. They were just peovidith approximate

time duration for each activity except for walking-upstairs and downstaing time duration of

these activities depended on the length of stairs at each subject’s hortieianéried among the
subjects. The participants were trained on the use of data collection aaothaom applications.

Each person then collected the activity data at home without the resesirstigervision. They

made the annotations themselves throughout the data collection. About ldialata were

collected in this study.

Thus these data were collected in less-constrained free-living settidgs purpose of this
dataset was to evaluate system’s performance for real-life cases @dwrsubject could perform
activities differently from the other subjects and the activity accelerataa-thus could vary
significantly across subjects. Moreover, whenever system was &@lusing this dataset, activity
data from only eight subjects were used as training data whereas thgyalkzdta from the last two
subjects were used as testing data (subject independent evaluation)etthmakassification task

more difficult. This dataset was named Naturalistic (NL) dataset.
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3.4.4 Sensor’s Position Free Dataset

About 24 hours of activity data were collected using the WiTilt sensorjdrithe laboratory, in
naturalistic less-controlled home settings. The sensor, with the samplingfregaf 45Hz, was
placed on eight elderly subjects (six males, two females, age: mean = 65,3¥ears old))
on 5 different positions, i.e., chest pocket, front left trousers podkant right trousers pocket,
rear trousers pocket, and inner jacket pocket. The activities to bgmzea were resting (ly-
ing/sitting/standing), walking (along the corridor), walking upstairs, walklagnstairs, running,
cycling, and vacuuming. The cycling activity was recorded in a gym.

An approximate distribution of the data for each subject regarding the dighg sites and the
seven activities in our study is: resting (40 minutes, 8 minutes per site), walkihminutes, 8
minutes per site), running (25 minutes, 5 minutes per site), cycling (25 minuteges per
site), vacuuming (25 minutes, 5 minutes per site), walking-upstairs (10 miritefsmutes per
site), and walking-downstairs (10 minutes, 2 minutes per site).

The subjects were trained on the use of data collection and annotation tippticim the
laboratory where they were given short definitions of the seven aclabigls. Each subject then
collected the data at home, without researcher’s supervision, whéskehperformed random
sequences of the seven activities at their own pace and labeled thenstamé points of each
activity. Approximately 24 hours of the activity data, i.e., 3 hours per stilgjece collected. This

dataset was named Position-Free (PF) dataset.

3.4.5 Smartphone based Dataset

In this study, TOmnia was used to collect activity-data. Samsung WindowsléMSBK and
Windows Mobile 6 SDK were used to obtain the accelerometer’s data andisturegphone’s
storage card. The accelerometer was configured to provide data withgdirsg frequency of
90Hz. Activity data were collected by placing the phone on six healthy sisbjecfive different
positions: shirt’'s top pocket, jeans’ front-left pocket, jeans’ frontirigocket, jeans’ rear pocket,
and coat’s inner pocket. The five activities to be recognized were rgsiitigg), walking, walk-
upstairs, walk-downstairs, and running. For realistic recognition, br@fements such as stretch-

ing or changing posture were allowed during resting. For a natural seitalging, walk-upstairs,
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walk-downstairs, and running were performed outdoor at variousdspel his dataset was called

SmartPhone (SP) dataset.

3.5 Noise Reduction

The raw data from an accelerometer might contain some noise that must bectakeof before
using these data for further experimentation. In case of activity actieleisignals this is usually
high frequency noise. This section describes the procedure thatsedsa handle the noise in
acceleration-signals before using the collected datasets in differeassifithe research process.
In this work, moving average filtering technique of order 3 was employeddoae or filter-
out the random noise. A moving average filter smooths data by replacihglas point with the
average of the neighboring data points defined within a given sparr @rthe filter). This process
is equivalent to low-pass filtering with the response of the smoothing giyethé difference

equation

ys(i) = 2N+1(y(i +N)+y(i+N-1)+...+y(i—N)) (3.1)

whereys(i) is the smoothed value for tlith data pointN is the number of neighboring data points
on either side of/s(i) and 2\ + 1 the span. The choice of such a filtering technique offers two
advantages. Firstly, it reduces random high frequency noise whiieirgga sharp step response.
Secondly, since each data point is replaced by the average of the meighlata points, this

helps in reducing the random measurement errors that may result whilennezen activity.

3.6 Segmentation Technique

Like any other pattern recognition problem, in activity classification the sesigoal is first di-
vided into smaller time segments more commonly knows as windows. Featuresngpated
separately for each window and fed to the classification algorithms. Irtinealapplications,
windows are defined concurrently with data collection and a continuol:imeaactivity profile

is produced. When the sensor data are processed off-line, the varadewlefined first and classi-
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fication algorithms applied sequentially to each window. This information is thesbced to give
an activity profile along the entire signal. Three different windowing teqpes have been used
in activity monitoring, sliding windows, event-defined windows and activéyi#ted windows.

With the sliding window method, the signal is divided into windows of fixed lengith wo
inter-window gaps. A range of window sizes have been used in prestadies from 0.25st0 6.7
s, with some studies including a degree of overlap between adjacent vaiitloyt 2]. The sliding
window approach does not require pre-processing of the sengwl €igd is therefore ideally
suited to real-time applications. Due to its implementational simplicity, most activity ctzsgin
studies have employed this approach.

In order to use event-defined windows, pre-processing is requirbmtabe specific events,
such as heel strike or toe-off. These events are then used to defoessive windows. Given that
such events may not be uniformly spaced in time, the size of these windowtdiisatio A number
of different approaches have been proposed for identifying tiélet &ind toe-off from body-worn
sensor signals. For example, it is possible to define search windowftioen a low pass filtered
version of the original signal [40, 67] or segmental angles [68] withifictvimaxima or minima
correspond to gait events. Another approach is to identify the times at Wigadmnterio-posterior
component of the trunk acceleration changes sign. Heel strike is theadamza given time offset
from these points [69, 70].

The use of activity-defined windows is dependent on determining the timgsett the activ-
ity changes. These points are then used to define windows of sensaatdiaf which correspond
to a different activity. A number of methods have been proposed to ideantifyity-transition
points prior to explicitly identifying the specific activities. For example, wavatfetlysis can be
used to identify localized changes in frequency characteristics [58jwduirespond to a change
between activities. Once defined, classification is performed for eaatowjrsometimes using
only a subset of the data contained within the window.

In conclusion, (1) The longer the length of the window, the better the qudlitiyeofeatures
estimated. However, the longer the window-length, the longer the endiasetio wait for the
recognition result. Moreover, longer windows result in failure of regtgn of activities per-

formed for short periods, such as sit-stand or walking a couple of.s{8p$he optimal window



3.6 SEGMENTATION TECHNIQUE 47

length to use for the feature-computation depends on the activity beingmieed [57]. However,
utilizing one window length per activity is computationally expensive.

Since the goal of this study was to implement a system which is light-weight tararhand-
held device and is capable of recognizing activities in real-time, this workfitrer utilized only a
single window length for all activities. Performance of different windongths for different ac-
tivities across multiple subjects was analyzed to select one that gave dmodtes of the selected
features using the least number of samples in a given window. One limitatiors @fthroach is
that the appropriate window-length is training data dependent. Howeyenuides reasonable

approximation for the study objectives.



Chapter 4

Features of Acceleration Signals

In machine learning, pattern classification is the process which employificpéyorithm and
rules to assign an output (which is mostly a class-label) to a given input. délegto assign
each input a specific class from a given set of classes. It is a stefepyrocess where the data
about some real phenomena, after pre-processing of some sorsuclise reduction, are used
to extract features. These feature vectors have the ability to descrikoalh characteristics of
the any instance. The features are then fed to a module, the classifidr,implements a specific
classification algorithm.

In the case of physical activity recognition using wearable accelerosp#éterdata are activity
acceleration-signals which are measured using wearable acceleroatttetsed to the human
body. As mentioned above, each window of the acceleration data is peatés remove noise
and calculate representative features which are then fed as an inpaolassHier to recognize a
particular physical activity.

This chapter presents details on the procedure used for identifying thd thatean best
describe the activity acceleration-data. The DMI dataset (section 3.4slyged for model iden-

tification.

4.1 Need for a better Mathematical Model

Features used in the previous studies can be categorized into thres:group
e Frequency domain features, such as FFT.
e Time-Frequency domain features, such as wavelet analysis.

e Time domain features, such as mean and standard deviation.

48
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Both frequency domain and time-frequency-domain features require highhcomponents to
discriminate different activities. Moreover, calculation of these featuegsire longer time-
windows. Hence they increase computation and are not suitable for reapiptieation.

On the other hand, time domain features can be easily extracted in real tinedothethey are
more popular in many practical acceleration activity recognition systems. gthactivity recog-
nition using time domain features was successful to some limit, the recognitidtsnesing these
features have not had a high success rate because such methoaks #egtiactivity acceleration
signals are deterministic. However, in fact, the activity acceleration sigrelsadom signals in
their nature. Figure 4.1 shows the probability distribution function of verticakleration signals
of walking activity that follows a normal or Gaussian distribution. Thus it’s intgoat to establish
a better mathematical model using stochastic time series analysis to descrilaatiaeJdere are
many reasons for wanting to do this. (1) To get a better understandititysical mechanism gen-
erating the signal. (2) To predict signal’s future behavior. (3) To impithke quality of the signal,
for example, reduction of noise. (4) To achieve data compression faigg@nd transmission. (5)

To generate artificial signals similar to the natural ones. (6) To classifyighals

4.2 Autocorrelation Analysis for Model Identification

There are a number of approaches to modeling time series. Autocorrellitda @ commonly
used tool for identifying a model that can best describe a given timessefietocorrelation is
the average of the product of a data samgjie with a version of itself advanced by a lag. The

autocorrelation function is described by the equation
r k—1 X[njx[n+k (4.2)
ok = 5 3 Xinxin+K :

whereryy[K] is the autocorrelation value afat sample delak, andN is the number of data points.
For a very small advance, the values of the two signals at any giveniingthhe very similar.

As the lag increases, the difference between the two values becomes laaysignal has both
a periodic and a random component, the latter gradually disappears ag tinerkzases . The

property is useful for extracting periodic signals from random noise.
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Figure 4.1: Probability Density Function and Cumulative Density Function fdhe activity-
acceleration data (vertical axis) for walking activity
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Figure 4.2: Autocorrelation values for 20 lags for the activity-accelanatignals (vertical axis)
of standing, showing strong positive autocorrelation suggesting thaataeedme from an under-
lying autoregressive process

The autocorrelation plot can provide answers to the following questiéh$és &n observation
related to adjacent observation? (2) Is the observed time series whit€ (8jsks the observed
time series autoregressive? Figure 4.2 and 4.3 show autocorrelation photsirgle axis for
standing and walking respectively. The plot starts with a high autocornelatitag 1 that slowly
declines. The conclusion that can be drawn from these plots is that tiwiyaaticeleration-
data come from an underlying autoregressive model with strong positiee@relation [71].

Therefore, autoregressive models are employed for modeling the aetbdgleration signals.

4.3 Autoregressive (AR) Models

Autoregressive (AR) modeling utilizes the time history of a signal to extractitapbinformation
hidden in the signal. It is superior to many other methods, especially in bionheitjoal process-

ing as it can take advantage of the noise inherent in a biological systerx#madt information
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Figure 4.3: Autocorrelation values for 50 lags for the activity-accelenaignals (vertical axis) of
walking, showing strong positive autocorrelation suggesting that the date from an underlying
autoregressive process
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from propagation of that noise in a signal.

An AR model predicts the current values of a time series from the pastsvafube same se-
ries. Basically, the AR model may be regarded as a set of autocorrelatiotidns. AR modeling
of a time series is based on an assumption that the most recent data poinits wmmeainforma-
tion than the other data points, and that each value of the series can @qutes a weighted

sum of the previous values of the same series plus an error term. The A& imdéfined by:
M
x[n| = zlaix[n— i]+ &[n] (4.2)
i=

wherex[n] is the current value of the time series which in our case is the activity actetera
signalg; - - - ay are predictor (weighting) coefficients] is the model order, indicating the number
of the past values used to predict the current value ggmdepresents a one-step prediction error,
i.e. the difference between the predicted value and the current value potht.

The AR model determines an analysis filter, through which the time series isdilt@it@s
produces the prediction error sequence. In the model identification,RhenaAlysis filter uses the

current and past input values to obtain the current output value. Bpgvequation 3.2 in a form
M
g[n] =x[n] — Zax[n —i] (4.3)
i=

we get the filter with an impulse responde—a; - -- — ayv], which produces the prediction error
sequence. The predictor coefficients are usually estimated using thedeases minimization

technique so that they produce the minimum egiof. From equation 3.2 we get
X[n] = agx[n— 1] + agx[n— 2] + - - -amX[n — M| + €[n| (4.4)

If we use equation 4.4 to write the expressions for several estimatés| ofve get a set of linear
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equations:

XM +1] = agx[M] + apx[M — 1] + - - -aux[1] + €[M + 1]

XM +2] = ayx[M + 1] + axx[M] + - - -amX[2] + E[M + 2]
(4.5)

XIN] = agx[N — 1]+ ax[N—2] +---auXx]N —M]+ &[N]

We needVl equations to solve thd unknown coefficients;,i = 1--- M. The least squares solution

is easiest to achieve by matrix calculation. The above equation may be rewrittextrix form:

xM]  xM-1] ... X[1]

xM+1] xM] .. X[2] _

X= a+e=Xa+e¢ (4.6)
XN—1] x[N—2] X[N —M]

where
| a ] | EM+1] ]

a= and € = : 4.7)

am eN]

In other WOI‘dS)ZiS a square matrix witM rows andVl columns, ané ande are column matrices
consisting oM rows and 1 column.

When two vectors form a 90 degree angle, and one vector is projedietherother, the result
is a zero vector. The vectors are then said to be orthogonal, and theipiugeict equals 0. The
inner product of any two column vectaasandb of the same length is defined ash, whereaT is
the transpose .

The optimum predictor coefficientsopt) can be obtained by applying the orthogonality prin-
ciple in the least-squares minimization technique. This means that the prediefficieats are

selected so that column vectois orthogonal to each explanatory vectgi = 1... M, i.e. to each
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column vector in matrix. As in normal regression analysis, this minimizes the mean-square er-
ror. Then,g vector is independent of the daXai.e. it contains the part of the time series that can
not be explained b previous data points.

Since in this work the activity acceleration-signal is a 3-dimensional,x-e axis, y — axis,

andz— axis, we model each axis separately and generate the following feature:vector

F:[aX17"'7a-XM7ayl7"'7ayM7aZla"‘7aZM] (48)

whereay, ..., axv are the AR-coefficients fax — axis, ay1,...,aym for y—axis andag,...,am

for z— axisrespectively.

4.3.1 Optimum Model-order and Window-length

There is no straightforward way to determine the correct model ordemfétR model. A proper
order for an AR model would yield a good data fitting effect while retaininggh data compres-
sion ratio. In order to determine the optimal AR model order we adapted theviofariteria:
Akaike Information Criteria (AIC) Although root mean square error is generally used to

achieve a good estimate of an AR model order, it is still not the most appr@phia information-
based criteria which is more appropriate for model order selection is AT [[f is a measure

of goodness of fit of an estimated model. Based on the concept of en&lipyffers a relative
measure of information lost when a given model is used to describe afijiverseries. Given a
dataset, several models are fitted and ranked according to their AlGorihbaving the lowest

AIC is usually the best model for describing the dataset. AIC is defined by
AIC= —2L+2m (4.9)

whereL, is the maximized log-likelihood anch is the number of parameters in the model. The
index takes into account both the statistical goodness of fit and the nufrimmameters that have
to be estimated to achieve this particular degree of fit, by imposing a penaltycfeasing the
number of parameters. Lower values of the index indicate the preferrddlribat is, the one

with the fewest parameters that still provides an adequate fit to the data [73]
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AIC vs. Model Order for Windows of Different Sizes (Postures)
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Figure 4.4: Average AIC values for three axes plotted against modet fwd standing for win-
dows of different length. Different colors represent windows diedént lengths (min = 1sec, max
= 60sec). AlC-curves for all windows tend to even out near 30 (I@gis) suggesting that 10 is
the appropriate model order in this case

Figures 4.4 and 4.5 show AIC values for different models orders (ctedpusing the aic-
function from Matlab) using data-windows of different lengths/sizespiostures standing and
walking respectively. The smallest window is 1sec long, i.e., 45 samplesqaatinpling fre-
guency of 45Hz) whereas the largest window is 1min long, i.e., 2700 sanydésy these plots,
it is difficult to conclude which window-length is the most appropriate. Hawethe conclu-
sion that can be easily drawn is that although larger windows providedlglgrhaller AIC than
smaller windows, the AIC-curves for all windows tend to even out neasdhnge model order, i.e.,
30 (10 per axis). Each AIC value in these plots represent average slthvalues for three axes.

In order to determine the suitable window-length, AIC values were calcufatedifferent
window-sizes (starting from 1sec to 45sec) for both postures and mowemiwen the model-
order 10. Resulting AlIC-values are shown in Figure 4.6 and 4.7. It esgabily concluded that
the window-size of 3sec, i.e., 135 samples is the most appropriate as & thfeesame goodness

of fit as larger windows and is not too long to result in a delayed-regpomiich is desirable
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AIC vs. Model Order for Windows Different Sizes (Movements)
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Figure 4.5: Average AIC values for three axes plotted against modet fmdwalking for windows
of different length. Different colors represent windows of diffgréeengths (min = 1sec, max =
60sec). AlC-curves for all windows tend to even out near 30 (10agi) suggesting that 10 is
the appropriate model order in this case
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AIC vs. Window Size (Postures)
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Figure 4.6: Average AIC values for three axes for the chosen modelr dor standing using
windows of different length. No significant decrease can be seenth#t@vindow size of 3sec

considering the real-time requirements of human activity recognition systems.

4.3.2 Model validation

After the AR-model has been identified, it's validity must be checked. Timegoy tool for model
diagnostic checking is the analysis of the residual, i.e., the prediction eqoence. If the chosen
model is a good model for the data, the residuals should be white noisen dranv a fixed
distribution with a constant mean and variance [71]. Another method to validatselected
model is to treat the AR-model as an all-pole filter and compare its power apdetrsity with
the power spectral density estimate of the modeled signal [71]. To validathertthe selected
AR-model of order 10, given a window-length of 3sec (135 samples),geod model for the
activity acceleration-data, both validation methods were employed.

First, the AR-coefficients were estimated using the least square minimization dnlise
cussed above). These parameters were then used to create copiesradditled signals and

residuals were collected. Figure 4.8 shows the estimated probability densitjofuand the cu-
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AIC vs. Window Size (Movements)
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Figure 4.7: Average AIC values for three axes for the chosen modelr dor walking using
windows of different length. Again, no significant decrease can be aéier the window size of
3sec

mulative distribution function of the residuals when fitting the chosen modelsa oawalking
activity and it can be seen that the residuals are in fact white noise withrfieath and variance.
Second, the power spectral density of the model was also compared witbwlee spectral
density estimate of the modeled activity acceleration-signal. Figure 4.9 anghbo®0this com-
parison for standing and walking respectively. These plots show an gjmedgct match that
indicate the strength of the chosen AR-model in describing the activity aatiele-data. Finally,

figure 4.11 shows some exemplary fitting results for walking activity.

4.4 Augmented Feature Vector

Besides AR-coefficients, other time domain features (which have beestigmted in previous
works) were also calculated from the activity acceleration-data. Tleedares are listed in Ap-
pendix . AR-coefficients and these features were combined to creagalsige feature-set. The

next step was to analyze the classification performance of the diffevafigarations of the front-
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Estimated Probability Density Function of Residuals
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Figure 4.8: Probability Density Function and Cumulative Density Function afgbieduals show-
ing that the residuals are random white noise with a fixed mean and variance proving the
validity of the chosen model
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Periodogram Power Spectral Density Estimate
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Figure 4.9: Power spectral density of the model vs. the power spectirtime original data for
standing, indicating a perfect match and thus proving the validity of the ohmedel in describing
the activity-acceleration data
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Periodogram Power Spectral Density Estimate
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Figure 4.10: Power spectral density of the model vs. the power specirtm original data for
walking, indicating a perfect match and thus proving the validity of the chosmtel in describing
the activity-acceleration data
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Figure 4.11: Fitting results for activity acceleration-signals of walking foe¢haxes showing a
good-fit
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end features. The purpose was to identify the feature(s) having thpdsésrmance in classifying
the activities used for AR-model identification.

All these features were tested with the forward-backward searchy#0h is a well-known
feature selection algorithm. With this procedure, a subset of best (ditinpest classification
result) features can be determined for the final analysis. In forwanttis€FS), every feature is
tested for the classification one by one, and the best is selected to a alubsst features. The
features that remain are then tested with the selected one, and the bestalaeted to the subset
and so forth. The procedure starts from one feature. The FS findiegisingle features but does
not find the best combination subset.

Backward search (BS) starts with classifying all features and removngrik that is low-
ering the classification result. In forward-backward combination, twaufea are selected with
FS and one is removed with BS. The classification is usually done with a simpgifielasThe
classification, in this case, was done using artificial neural networkscdg®icients along with
two other features gave the best classification accuracy for all activitiesse two features are:
Signal Magnitude Area (SMA):As mentioned earlier, an acceleration signal is a linear combi-
nation of two components: a component due to gravitational acceleratioa amchponent due
to bodily motion. These components are separated using the method disicusisapter 2. The
component due to the body movements is then used to calculate SMA. It cawotainsower of

the signal and is calculated as

N
SMA= _;(!X(i)l)Jr(Iy(i)|)+(|2(i)|) (4.10)

wherex(i), y(i) andz(i) indicate the acceleration signal along x-axis , y-axis, and z-axis respec
tively.

Tilt Angle (TA): It refers to the relative tilt of the body in space and helps in distinguishing
postures different in angle such as standing and lying. It can be dedfthe angle between the

positive z-axis and the gravitational vectpand can be calculated according to

g = arcosz) (4.11)
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Thus the feature vector used in this study for representing activities ire#tteré space includes
the AR-coefficients augmented with SMA and the TA, shown in Figure 4.1% named aug-

mented feature vector and can be represented as

F= [axl,. . .,axM,ayl,. . .,ayM,aﬂ, ee ,azM,SMATA] (4.12)

whereay, ..., ax are the AR-coefficients for X-axisy, ..., ayv are the AR-coefficients for
Y-axis, 4,1, . . . ,azm are the AR-coefficients for Z-axi§MAIs the signal magnitude area ahé

is the tilt angle.



4.4 AUGMENTED FEATURE VECTOR

66

afi)

af2)

afp)

SMA

T afp)

Accelerometer T -
Signalfor Three Inal Feature
Axis AR-Coefficientsfor Vector

all Three Axis

Figure 4.12: Block diagram, showing components of the augmented feaitha v



Chapter 5
Recognizing a Diverse Set of Activities using Proposed

Features in Controlled and Naturalistic Settings

This chapter describes in detail the procedure employed for evaluatingséhef the proposed
augmented feature model for the classification of a large and diversd péisical activities
in both controlled and naturalistic settings. It also presents details and genie@ behind the

implementation of a multi-stage classification scheme used for the given classifieesk.

5.1 Study Goal

The activity-set investigated in this study contained 15 physical activitigaglSitting, Standing,
Sit-Stand, Stand-Sit, Lie-Stand, Stand-Lie, Lie-Sit, Sit-Lie, Walking, Walkipgtairs, Walking-
downstairs, and Running. Recognizing this activity-set is challengingusec (1) the activities
are hard to discriminate as they share highly similar postures-patternsa@sitting and standing)
and movement-patterns (such as walking, walking-upstairs and walkingstairs). (2) this high
similarity among activities is not uniform throughout the whole activity-set. theopwords, a
subset of activities shares high similarity among its activities but is very diffdrom another
subset. For example, sitting and standing are very similar (hard to distingo@shé¢ver, they are
very different from walking (easily distinguishable). (3) In addition todeduration movements
and postures, short duration movements such as sit-stand and stanecatgbgpresent which only
last for few seconds. These are the most widely performed tasks phasest transition from one
physical activity to another. Their recognition plays a vital role if real-timté/ag recognition is
required because if these transitions are not handled properly thigyresult in a large number

of miss classification. Recognizing these short-duration activities with agomgdacy has not be

67
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successful previously because the features employed in previdesnsyseeded to be calculated
over longer time-windows. Thus the goal of this study was to devise aldatga classification
scheme that, unlike previous systems, can recognize a large and digefephysical activities

with a high accuracy in real-time using the proposed augmented feature model.

5.2 Classification using Three Different Neural Network Training

Algorithm

As mentioned in chapter 3, the neural network were chosen for initialiiitaé®n during the
model identification phase due to their high accuracy for activity classificatiprevious works.
It was a feed forward backpropogation network with one hidden lageinly the same number
of neurons as the input layer. However, the scope of this initial clagsificevas limited to only
four activities compared to the current classification task that involvedifitagion of 15 physical
activities . Therefore, the first step in the overall evaluation approachtavinvestigate different
neural network training algorithms and topologies. This section first pesvidief description of
the algorithms used and then discusses the classification results of thesthralgdor both CL
and NL datasets (section 3.4.2 and 3.4.3).

Various algorithms have been proposed proposed in the past to train a neultdag-forward
network. There exists a theoretical framework that focuses on estimagiggtieralization ability
of a network as a function of architecture and training set consideringetfien of weight space
consistent with the training set; that is, a particular learning rule might fasmesegions over
others [74]. However, the suitability of a training algorithm in producingdygeneralization abil-
ity, in relation to a particular application, is usually determined by experimentslfytis study,
three commonly applied neural network learning algorithms were investigaaeakly, standard
Backpropagation, Scaled Conjugate Gradient Algorithm and Backgatipa with Bayesian Reg-
ularization in order to find the best suited algorithm for the given classificatioblem.

Standard Backpropagation (BP)This algorithm uses gradient descent technique for itera-
tively updating the weights to map a set of input-output pairs. The input vectaultiplied by

weight vectors to produce outputs at the hidden layer. Similarly, hiddem taytputs are mul-
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tiplied by their respective weights and are propagated to the final outpart IBackpropagation
minimizes the sum of squared error. Further details can be found in [74].

Scaled Conjugate Gradient (SCGThe purpose of scaled conjugate gradient technique is to
achieve faster convergence in training in multilayer feedforward netwbrkhese methods, a
search is performed along conjugate directions [76]. The new seagthion is determined by
combining the new steepest descent direction with the previous searctiatirgo the current and
previous search directions are conjugate. This technique is based asstimaption that the error
in the neighborhood of a given point is locally quadratic. Further detaisegound in [77].

Bayesian Regularization (BR)The main goal of any classification problem is to develop a
classifier that, once trained, should be capable of recognizing not amlyaiming data but also
the test data. In other words, the trained network should generalize nviileainseen data.

In order to achieve better generalization in multilayer feed-forward néttwaining, a method
has been proposed in [78] which employs Bayesian framework fotradmiag the size of network
parameters by regularization. Regularization technique forces the hetwvsettle to a set of
weights and biases having smaller values. This causes the networksespdre smoother and
less likely to overfit and capture noise. Further details can be found jn [78

Each neural network model had an input layer with 32 neurons (qgmnekng to the 32-
dimensional augmented feature model), one hidden layer (the number ehHigers was kept
limited to one due to the real-time recognition requirements) and an output layetSvwitburons
corresponding to 15 physical activities. Cross-validation was employedainate the perfor-
mance of the classifiers in case of CL dataset. The data from all the subjétthis case were
divided into six segments of equal length. Data from five segments wetldaitain the classifier
whereas the data from the sixth segment were used as test data. Tasspras repeated until
data from all the subjects’appeared in the test samples. In case of Ndetladata from eight
subjects were used to train the classifiers whereas data from the remainiagljects were used
for validation. Experiments were conducted with increasing number of hiddearons until no
further significant increase in the accuracy was achieved. All thdtsgeesented in Table 5.1 are
based on the number of hidden neurons that gave the best accurachioase.

Table 5.1 summarizes the results for this experiment. It can be noticed thaRth&gy8rithm
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gave the best performance among the three network training algorithm®veiuhe best overall
performance was just 71.6% in the case of CL dataset and 56.5% in thefddiselataset for the
BR algorithm. The recognition rates for NL dataset are even lower as itubjac-independent

classification case where the classifiers have not seen the data frorsttheltiects before.

5.3 Need for Dimension Reduction and Discriminating Feature Ex-

traction

All algorithms exhibited better recognition rates for lying and running activitidewever, the
recognition accuracy for the rest of the activities was low. This is due tiatt¢hat these activities
share highly similarity and thus overlap significantly in the feature spacesXemnple, figure 5.1
and 5.3 show the range of possible estimates of SMA and TA, across allltfects, for sitting
whereas figure 5.2 and 5.4 show the range of possible estimates of thaseefss for standing
respectively. It can be seen that the average values of these paréondébe two activities are
almost the same. Moreover, figure 5.5 and 5.6 show the power spectsiydestimates for sitting
and standing respectively which show the presence of almost the sajnericy components in
acceleration-signals.

It is due to these similarities in time and frequency-domain parameters which nedesth
crimination of these activities very difficult. In other words, the preserogery low between-
class variance in the activity-data resulted in low recognition accuracyreder, the BR al-
gorithm (which showed the best performance among three algorithmsyedtie best accuracy
with 30 neurons in the hidden layer. Such a large number of neuronsfisasittle when real-time
recognition (especially on hand-held devices) is desirable. One gdeotesson for this high num-
ber of hidden units might be the high number of neurons in the input layem€Bgons) as some
theories suggest that neural networks usually require at least thensemiier of hidden units as
the input neurons in order to converge properly. Therefore, a methedequired which not only
achieves dimension reduction but also increases the low between-ctesseao increase the
class separability before the features were fed to the classifier. Dimaesioction by means of

extracting discriminating features works on the idea of maximizing total scattbeafata while



Table 5.1: Average recognition results(%) for the three algorithms for®btAnd NL datasets

-

Algorithm Back Propogation | Scaled Conjugate GradientBayesian Regularizatio
Activity CL Data| NL Data | CL Data NL Data CL Data| NL Data
Lying 93 92 94 92 95 95
Sitting 71 52 70 51 74 52
Standing 62 50 70 51 74 52
Lie-Stand 64 51 64 50 64 52
Stand-Lie 87 50 88 51 90 52
Lie-Sit 61 42 60 43 61 44
Sit-Lie 50 40 52 40 54 44
Sit-Stand 62 42 62 41 68 44
Stand-Sit 50 40 50 41 50 45
Walk-Stand 80 52 80 53 81 61
Stand-Walk 71 51 72 51 74 54
Walking 70 60 70 61 74 62
Walking-Upstairs 69 55 70 58 72 59
Walking-Downstairs 68 52 68 52 70 55
Running 81 60 80 61 85 66
Total 69 52.6 69.3 53 71.6 56.5

NOILOVHX3 F3dN1V3d ONILVYNINIFOSIA ANV NOILONA3d NOISNINId 904 d33N €°'G
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Figure 5.2: Probability density, Cumulative density functions, mean andnezriaf SMA esti-
mates across all subjects for standing
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minimizing the variance within classes. One of the best techniques usedfopsipose is Linear
Discriminant Analysis (LDA).

Linear Discriminant Analysis (LDA): LDA easily handles the case where the within-class
frequencies are unequal and their performances has been examimaddomly generated test
data. This method maximizes the ratio of between-class variance to the withsnvelaance
in any particular data set thereby guaranteeing maximal separability. Ehef wdA for data
classification is applied to classification problem in speech recognition. Lbéyzes an optimal
linear discriminant function which maps the input into the classification spaeéa the class
identification of the samples is decided. The witBjp and betweelss class comparison is done

by following equations.

C

S = _Zl\]i (M —m)(m —m)" (5.1)
I ) (me T 5.2
Sw i;ﬁ;@ (M —my) (M —Tmy) (5.2)

whereJ; is the number of vectors iith classC;. ¢ is the number of classes and in our case, it
represents the number of activities within each stateepresents the mean of all vectomsthe

mean of the clas§; andnmy the vector of a specific class. The optimal discrimination projection
matrix Doyt is chosen from the maximization of ratio of the determinant of the between anid with

class scatter matrix as

[DTSeD| _

Dopt = arg max [0y, d, ..., ch]" (5.3)

DTSWD|
where Doy is the set of discriminant vectors &y and § corresponding to the — 1 largest
generalized eigenvalugsand can be obtained via solving (10). The sizégf ist x r where

t <r andr is the number of elements in a vector.
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Ssdi = AiSpd i = 1,2,...,C— 1 (5.4)

where the rank o0& is c— 1 or less and hence the upper bound valueist — 1.

Thus, LDA maximizes the total scatter of the data while minimizing the within scatter of the
classes. Augmented feature vectors were calculated for each windtive efcceleration data
for both CL and NL datasets and then to acquire a better feature spadd)Aheas applied to
the extracted augmented feature vectors. The new feature vectorsL¥ingn the augmented

feature space can be represented as
F = ADJ (5.5)

whereF andA; represent the LDA-feature vector and augmented feature vectordfor-thh data
window respectively. These LDA features were then fed to the BR clasgiinly BR was used as
its performance was better than the other two algorithms) for activity claggifiaasing the same
cross-validation procedure adopted previously. The results are simacham Table 5.2. It can
be seen that there was a slight improvement in the accuracy in the casedaft&et, however,
no improvement in the overall recognition rate for NL dataset was obderV@e recognition
rates for lying and running improved a little but the accuracy for the othesitaes still remained
low. One benefit of the use of LDA was the decrease in the number of iidd#s. In this
experiment, the BR neural network achieved its best accuracy with omgddns in the hidden
layer which was much better than the previous case (30 neurons). Ehusdlof LDA succeeded
in providing an effective data reduction for achieving the same accwadyefore with a less
complex neural network however it failed in resolving the overlap or letwieen class variance

among the activities.
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Table 5.2: Average recognition results(%) for the BR neural netwarkdth CL and NL datasets
after applying LDA

Activity CL Data | NL Data
Lying 96 95
Sitting 74 51
Standing 65 54
Lie-Stand 66 52
Stand-Lie 90 51
Lie-Sit 62 45
Sit-Lie 54 44
Sit-Stand 67 44
Stand-Sit 51 46
Walk-Stand 82 60
Stand-Walk 73 54
Walking 74 61
Walking-Upstairs 73 59
Walking-Downstairs 70 55
Running 90 68

Total 72.4 56.6

5.4 Activity-clusters

The reason for failure in resolving the problem of low between-classuves in the previous
experiment is due to the fact that activities tend to lie in clusters in the augmesatieold space.
In other words, a subset of activities share similarities and this subsefasedif from another
subset in both its frequency and intensity characteristics. For exampleg sitith standing are
very similar and tend to lie in one cluster but they are very different fronking-upstairs and
walking-downstairs which lie in a different cluster. Since LDA tried to impréetal-scatter of
the data, therefore, such a techniqgue when applied to the augmentee fgzdoe for the whole
dataset (for all activities) failed in extracting effective discriminating fesduas it worked on
global mean instead of local mean (within the cluster). In other words, theocted discriminating
features maximized the separation among activity-clusters further, howleeseparation among
the classes within these cluster still remained small. Figure 5.7 shows the 3efphtis of four
transitions from the original feature space of the 15 activities. It careée that these transitions

are clustered together with a very low between-class variance among tigume 5.8 shows the
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Figure 5.7: 3D feature plot showing just four transitions from the origfeature space of 15
activities before applying LDA

3D feature plot of the same four transitions from the LDA-feature spatteed.5 activities. In this
case, LDA was applied using the global mean ( mean for all the activitiesnlbe seen that the
cluster has become more compact, however, the classes still exhibit actertap. Therefore, it

was proposed that LDA should be applied to each activity-cluster separa

5.5 State-Activity-based Classification

5.5.1 Architecture

Based on their characteristics, postures and movement patterns actiétesiwided into three
clusters or groups. These clusters were named ‘States’. Static, Tragsiiod Dynamic. The
grouping of 15 physical activities into three states is shown in Table 1.1 elodke of first three
activities the human body is at rest and the net acceleration is due to tlieagoaal acceleration

(lower frequency components only and smaller SMA). Therefore, thengwgrouped as static-
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Figure 5.8: 3D feature plot showing just four transitions after applyiné t®the whole feature
space of 15 activities
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Figure 5.9: Block diagram for the proposed state-activity based réd@mgrechnique. AT the
lower level, state (static, transitions or dynamic) was recognized by meastatistical signal
features followed by activity recognition at the lower-level

activities. The next eight activities in Table 1.1 are short-duration moverfremisone activity to
another activity. Therefore, these activities were assigned to transikorally, in the case of last
four activities in Table 1.1, the acceleration is mainly due to the bodily motion (higbguency
components and greater SMA). Therefore, these activities were gg@agdynamic-activities.

A multistage classification scheme was then proposed. At the first stage ddbgnition
process, state of a given data window was identified. Once the state mwas lkaugmented feature
vectors were calculated only for the activities within the recognized staté. Wk then applied
to the augmented feature space to achieve dimensionality reduction and alasteseparation.
These LDA features were then fed to the classifier for the final activitggeition. Thus two
classifiers were used for classifying a data window as a particular activity

The proposed State-Activity-based classification scheme’s architestilltestrated in Figure
5.9. As mentioned above, it is a two-staged architecture which incorpaadéerent set of
features at each stage. The first layer is called the state-layer whesecived layer is called the

activity-layer.



5.5 STATE-ACTIVITY-BASED CLASSIFICATION 84

5.5.2 Results for State Recognition

The purpose of the state recognition is to determine the state to which an actiditgb. Since
the three states differ significantly in their physical characteristics, asrshofigures, simple
time-domain parameters such as mean and standard deviation were thenafdoged for state
recognition. A brief description of these features is provided in AppeAdird they were called
the ‘State-features’. A neural network based on BR algorithm was tfaisieg these features for
both CL and NL datasets. The network converged to give a high agcuréoth cases using only
2 and 3 hidden units in the case of CL and NL datasets respectively. €bgniton accuracy
for in the case of CL dataset was almost 100% because (1) states vgdyedistinguishable
(2) dataset was collected in the controlled settings with almost no variationsivityapatterns
across differnt subjects and (3) data from all the subjects were osdmbth training and testing
the system. The recognition accuracy for NL dataset was lower than thagatiset, as shown
in Table 5.3. Nevertheless, 97.1% is a very good accuracy considedatthéhNL dataset was
collected under naturalistic settings and test subjects were not part ohihiegrprocess. These
results confirm that states, clusters of highly similar activites, are easilygligtimable from each
other even in free-living scenarios where the way of performing activtiay vary significantly

among the subjects.

Table 5.3: Average recognition results(%) for for state recognitiondtin L and NL datasets

State CL Data| NL Data

Static 100 99
Transition 100 95
Dynamic 100 97

Total 100 97

5.5.3 Final Results for Activity Recognition

Once the state for a given data-window was recognized, the tri-axigltgctcceleration-signals
were used to calculate augmented feature vectors. LDA was then appliegl éattacted aug-
mented feature space to extract discriminating features which maximize theebetVess vari-

ance and minimize the within-class variance for the recognized state. ThédaDdxes were then
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used as inputs to a neural network for final classification, as shownurefig10. Figure 5.11
shows the three-dimensional feature plots for the four transitions aftepihiecation of LDA to
the transition-cluster only. These plots prove the success of employingal@#ithm on each
state separately. The activities which were otherwise very hard to disctendoa to a significant
overlap in the feature space have clearly been separated from each oth

Three separate networks were trained using the BR algorithm for thpegase states: the
neural network to recognize static activities (SNN), the neural networkdognize transitions
(TNN), and the neural network to recognize dynamic activities (DNNg ifiput to each of these
NNs was the output of the LDA module as shown in figure 5.10.

Different number of layers and neurons were tested in order to optimizetfi@mance. The
maximal value of the weights in the neuron connections was normalized to theunamful.
Different steps of the increment for the weights were also investigatezltraiming of ANN was
also repeated several times by changing the input order in a randoiorfash

SNN gave its best performance with two hidden units for the CL dataset sgaltifdden units
for the NL dataset. Further increase in the number of hidden units did swlt ie any signifi-
cant increase in SNN's accuracy for both datasets. TNN started gigitgst results when the
number of hidden neurons was increased to seven for both CL and fdkats. No significant
increase in accuracy was achieved beyond this number. One probabtrfor slightly higher
number of neurons in the case of TNN was the fact that it was requirdddsify larger number
of activities as compared to static and dynamic cases. DNN started givigrgoognition rate
when the number of hidden neurons was increased to two in the case ofdfow in the case
of NL datasets. The overall recognition results of the state-activity belssdification scheme
for all activities for both CL and NL datasets are summarized in Table 5.4 vghioty an average
recognition rate of 97.9% and 85% for the CL and NL datasets respect®ebe again the recog-
nition rate for the CL dataset was high because (1) There were very litilgioas in activity-data
across different subjects and (2) Data from all the subjects weretodeain the system and thus
it was subject-dependent classification.

Recognition accuracy of 85% in the case of NL dataset is in fact veryigiog considering an

activity set of 15 activities which include both short and long-duratioviiets. Moreover, the NL
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Figure 5.10: Block diagram for the activity recognition method: Once the &atecognized,
activity acceleration-signals are used to calculate the augmented feattwesy& DA is applied
to increase the class separation and the LDA-features are then fed tagbiéier to recognize the
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Figure 5.11: 3D feature plot for four transitions after LDA showing a moetter class separation.

Thus the application of LDA to the augmented feature space within the transitister improved
the class separation significantly
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dataset represents the subject-independent classification caseerlvotts, the activity patterns
from the test subjects were not seen by the system before. Theraforverage recognition
accuracy of 85%, especially high recognition accuracies in the cagsafdc activities, proved
the success of the proposed framework for bodily actvities recognitidarwronditions close to

those found in real-world settings.

Table 5.4: Average recognition results(%) for the complete state-activigititzation scheme for
both CL and NL datasets after applying LDA

Activity CL Data | NL Data
Lying 99 99
Sitting 95 74.7
Standing 99 78.6
Lie-Stand 94 82.3
Stand-Lie 96 78
Lie-Sit 92 81
Sit-Lie 94 80
Sit-Stand 99 80.1
Stand-Sit 99 79.2
Walk-Stand 99 91
Stand-Walk 99 90
Walking 99 92.2
Walking-Upstairs 99 87.7
Walking-Downstairs 99 86.3
Running 99 96.2
Total 97.9 85

5.6 Conclusion

This study aimed to develop an accurate and robust classification schisimé¢hesproposed aug-
mented feature model of human activities for recognizing an activity-s&b ghysical activities
in both lab and free-living conditions. The proposed classification sclieeféective in a sense
that it was capable of recognizing a broad set of daily physical activitissan average accuracy
of 97.9% in the lab-settings and 85% in naturalistic free-living settings. Iltabésto distinguish
between the activities with high accuracy that exhibited difficulty in discriminaticthe previ-

ous works. Examples include sitting and standing postures, sit-stand ades#ité&ransitions, and
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walking-upstairs and walking-downstairs movements.

There are two main reasons behind the high recognition accuracy ofstersyFirstly, the
augmented feature model used in this study employs AR-coefficients obtan&R-modeling
of the activity acceleration signals. Since these signals are generatedabyoaegressive process
(shown in chapter 4), the AR-coefficients therefore provide verybidgiastimate of the frequency
spectrum of these signals and are an appropriate choice to be usatlasséor the their classifi-
cation. Moreover, unlike previous features, they can be computedlitimeaand are independent
of the length of the data-sequence. This makes them an ideal choice tecbasufeatures for the
classification of short-duration activities (transitions).

Secondly, the low between-class variance in the activity-data or oveslagebn different ac-
tivities is resolved by applying LDA to the augmented feature space ofatepgnoups of activities
(states) to extract discriminating features that correspond to a single statd bis not only in-
creased the class separation within a particular state but also providetiveffdimensionality
reduction which helped reducing the complexity of the neural networkveerfieidden units were
required to perform the classification task.

Lastly, one important advantage of the proposed multistage classificatiomedh that it is
simple and makes it easy to focus on states. For example, in cases whedymeatyic activities

are of interest, the rest of the two states can be ignored.



Chapter 6
Accelerometer’s Position and Attachment Free HAR

using Proposed Features

Previous chapter presented details on the state-activity-based cléissifezdneme which used the
proposed augmented feature model to recognize a variety of daily phgsioaties using only
a single accelerometer with a high accuracy both in controlled and uncodtesiiéronments.
This chapter presents details and the reasoning behind the implementatioraot¢herometer’s
position-independent physical activity recognition scheme. In this sthdyPF dataset (section

3.4.4) was used for analysis and evaluation.

6.1 Study Goal

Long-term activity recognition in free-living conditions brings along sal/éechnical require-
ments which must be addressed. These include instrument usability, feas®-@nergy con-
sumption, reliable wireless communications and secure transfer of informdédany of these
issues are being resolved with the development of home wireless netwbriotegies and very
low power instruments that are designed to be used in wearable monitoritegnsysHowever,
the requirement of developing easy-to-use cost-effective recogmilimmithms that can function
robustly in free-living conditions without forcing subjects into a fixed lifdtgan or hindering
their daily activities still needs to be addressed.
Ensuring the ease-of-use requires addressing several factbrasthe number of the sensors

used, their comfort and their location on the human body. In general, tipeitoof any body-
worn accelerometer depends on the position at which it is placed. Thet ofigouaccelerometer,

when positioned at a lower-body position such as legs, registers higlgeiehcy components and
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greater magnitude compared to the scenarios where the sensor is positianmagpper-body po-
sition, such as chest. Moreover, in order to have an accurate estimateadh parameters such as
tilt-angle, an accelerometer needs to be firmly attached to the human bodyedhisement en-
sures that the sensor’s orientation will not change while users pedoyractivity which involves
bodily motion, such as walking and running.

The activity acceleration-signals, therefore, can vary significantlglifterent positions on the
human body, even for the same activity. The problem gets further cordpdihthe placement
of the sensor is not firm, in other words, if the sensor is placed freelyyrnpanket without a
firm attachment to any specific human body-part. Such changes in orientatégnitude, and
frequency thus make accelerometer’s position and attachment free gdhgsiivity recognition
very challenging. Almost all previous works thus require accelerométebg firmly attached
to subjects’ bodies. Most studies employed multiple accelerometers attactdfém@nt sites
[4,12,16,17,19-23,79-83], whereas others investigated thd asgrgle tri-axial accelerometer
mounted at waist, chest, thigh, wrist, or sternum [24—-33, 35, 36]. Senfigerations would force
subjects into a fixed life pattern and hinder their daily physical activities ansl iake these
systems impractical for long-term activity monitoring during unsuperviseel living.

The aim of this study was therefore to recognize physical activities withosihg any pre-
conditions on accelerometer’s position and orientation relative to a sulijeclsyet maintaining

the same high standards in terms of accuracy.

6.2 Exclusion of Tilt Angle from the Feature Model

Table 6.1 summarizes the features used in the state-activity-based cliegifsciieme (section
5.5). The first column lists the features used for the state-recognitiomeagethe second col-
umn lists the features employed for the activity-recognition task. Among teasarés, tilt-angle
played a vital role in distinguishing static postures: lying, sitting and standingielisas, the

transitions between these static postures. However, in order to haveuwatacestimate for the
tilt-angle from the tri-axial activity acceleration-signals, accelerometaisiaebe firmly attached
to the human body. Loosely placing the sensor on the human body couldineshanges in sen-

sor’s orientation while subjects perform a dynamic activity and, thus, makesy difficult to land
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Table 6.1: Features employed in the State-Activity-based classificatiomsche

State-Recognition Activity Recognition
Mean Autoregressive-coefficients
Variance Signal Magnitude Area
Standard Deviation Tilt-Angle

on a correct estimate for the tilt-angle. Therefore, tilt-angle was excludedthe feature-list in
the case of accelerometer’s position and attachment free recognitiose@antly, the three static
postures: sitting, standing and lying, were combined into a single class catlegelsting-activity.

Moreover, transitions between different activities were also not indliréhis study.

6.3 Feature Analysis

The feature extraction phase was proceeded by the feature analgises, phhich was performed

in the following two steps.

o Firstly, the classification performance of the different configurationtheffront-end fea-
tures for a single sensor position was analyzed. The purpose was tifyidiea feature(s)
having the best performance in classifying activities from a single s&igo(one of the
five pockets/sites used for data collection). The features mentioned aleogdested with
the forward-backward search (section 4.4), which is a well-knowtufeaelection algo-
rithm. The AR-coefficients augmented with the SMA, i.e., the AR-SMA provedetthie
best discriminating features for all activity classes for all sensor positimmsidering one

at a time.

e Secondly, the activity-data from all 5 sensor positions were combined isitogée dataset
to evaluate the classification performance of the AR-SMA. A significantedese in the
performance was witnessed due to high within-class variance resultimgofositioning the
sensor on 5 different sites. The output patterns for walking, for el@magry at three dif-
ferent positions as shown in Figure 6.1. To minimize this variance, a twodkasdification

scheme was proposed, i.e., classifying the acceleration-signal to befmitherpper-body
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(chest and inner jacket pocket) or from lower-body positions (famak rear trousers pocket)
before classifying the activity itself. Thus the idea was to perform positassification be-
fore the activity classification to achieve position-independent activitygeition. During
the analysis it was revealed that the activity acceleration-signals for méirdi¢ activities
registered higher frequency components for the lower-body sensdrgms, i.e., front and
rear trousers pocket, and lower frequency components for the-bppigrsensor positions,
i.e., chest and inner jacket pocket. Since during the resting activity theibad rest, same
frequency components (very low) were therefore seen for all sgrusitions. Therefore,

Spectral Entropy (SE) was employed for the initial position classification.

6.4 Position-Free Classification Scheme

6.4.1 Architecture

Based on our findings, a two-level classification approach was finalliedrchitecture is illus-
trated in Figure 6.2. At the lower level, the SE was employed to recognize Seslase., the
resting activity, dynamic-activity (upper-body), and dynamic-activityv@o-body). Such a divi-
sion helped reducing the high within-class variance for dynamic activitistiieg from the upper
and lower-body sensor positions and avoiding the cost of computing thEMR feature when
the subject is at rest.

If the resting activity was not recognized at the lower-level, the systetpubtthe sensor
position as upper or lower-body for the case of dynamic activities. Theddéfficients and SMA
were then calculated from the noise reduced acceleration signal to fommgmented feature
vector. However, a high within-class variance and low between-clasanea due to different
sensor positions, i.e., front and rear trousers pockets in the caseefhbmdy whereas chest and
inner jacket pockets in the case of upper-body, could still exist in this anggmented feature
space.

As mentioned in section 5.3, LDA produces an optimal linear discriminant funettuch
maps the input into the classification space on which the class identification sathgles is

decided. Thus to acquire a better feature space, the LDA algorithm wéedfo the extracted
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Figure 6.1: Sample acceleration signals for walking from three differesitipns.
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Figure 6.2: Block diagram of the proposed recognition scheme: (a) A mawerage filter of
order 3 was used to filter out the random noise from the acceleratior.sfghAt the lower-level,
the SE and the neural net (LNN) was employed to recognize three cld$sesensor position was
outputted as lower or upper-body in the case of dynamic activities (absdmesting state). (c)
Augmented features (AR-coefficients + SMA) were calculated, LDA{{se¢ext) was applied and
the neural net (DUNN) was employed to recognize dynamic activities in the afupper-body.
(d) DLNN was used to recognize dynamic activities in the case of lowey-bod
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augmented feature vectors of different dynamic activities. The newreaéctors using LDA on

the augmented feature space can be represented as
Fi = ADgp (6.1)

whereF; and A represent the LDA-feature vector and augmented feature vector dor-thh
dynamic activity sample respectively. Each neural network was trained tlsee BR algorithm
(chapter 5). The training of each network was also repeated severalliynehanging the input
order in a random fashion. The training and the testing datasets were sednpbmixture of
activity data collected from the five sensor positions.

For the lower-level recognition, only one network (LNN) was trainede iputs to LNN were
the SE-features. It consisted of one hidden layer with three neurbnsen after experimenting
with different number of neurons) and an output layer with three neucorresponding to three
classification outputs, i.e., the resting activity, dynamic activity (lower-boalydl dynamic activ-
ity (upper-body). For the upper-level recognition, two networks wesed, i.e., a neural net to
recognize the dynamic activities from the lower-body positions (DLNN) ameural net to rec-
ognize the dynamic activities from the upper-body positions (DUNN). Thetito each of these
networks were the LDA-features. Each of these networks had onerhidgter with five neurons
(again chosen after experimenting with different number of neurortsaarutput layer with six
neurons corresponding to six dynamic activities.

The classical cross-validation [84] was adopted to evaluate the besudggrt accuracy of
the system. In other words, the networks were first trained with data fisulgects except few
and then tested with data from the excluded subjects. The accuracy wasalbelated as the
proportion of correctly classified windows of data across all activitiéss process was repeated
until all subjects had participated in the testing datasets. The final overaltaay was then

calculated as the average accuracy across all train-test cycles.

6.4.2 Experimental Results

Performance of the proposed hierarchical recognition system wawalidated in the following

three studies.
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Figure 6.3: 3D-feature plot for four dynamic activities recorded fram fiifferent body positions,
showing a high within-class variance.

Single-Level Recognition without LDAIN this study, a single BR-based neural network was
used to recognize all seven activities without employing the proposedrdtigal recognition
scheme. Features including the AR-coefficients, SMA, and SE werelatdito form a single
feature vector. The 3D-representation of the feature space is shduguire 7.2, only four classes
are shown for the sake of visualization. Severe non-linearity and a higmvelass variance could
be observed. These features were used to train the network. Duriimgtesch test activity was
modeled in a similar fashion and the ANN was used for recognition. The nletveat one hidden
layer and it gave its best performance with 15 hidden neurons. No sagtifimprovement in the
accuracy was achieved beyond this number. The recognition resuftararearized in Table 6.2,
showing an average recognition of only 47% only.

Single-Level Recognition with LDALIN this study, after calculating the AR-coefficients, SMA,
and SE, the LDA was applied to the extracted feature space. The LDA-ésawvere then used

to train a single BR-based neural network. The LDA-features for the &ativities are shown
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Table 6.2: Average recognition results(%) for the first experiment

Activity Single-Level (S-L)
Resting (Lying/Sitting/Standing 72
Walking downstairs 42
Walking upstairs 39
Walking 44
Running 52
Cycling 44
Vacuuming 36
Total a7

Table 6.3: A comparison of average recognition results(%) for the fistlze second experiment

Activity Single-Level (S-L)|| S-L with LDA
Resting (Lying/Sitting/Standing 72 89
Walking downstairs 42 53
Walking upstairs 39 51
Walking 44 56
Running 52 68
Cycling 44 50
Vacuuming 36 44

Total 47 58.7

in Figure 7.3. They show improved class separability. However, a high withss variance
could still be observed. During testing, each test activity was modeled in a isfaslaion and
the network was used for recognition. The network had one hidden &nekit gave its best
performance for nine hidden neurons. No significant increase irracgwas achieved beyond
this number. The recognition results are summarized in Table 6.3, showinvg@aga recognition
rate of 58.7% only.
Proposed Hierarchical Recognition:In this study, the proposed hierarchical recognition

scheme was used to achieve accelerometer’s position-independeity aetrognition. Figure
7.4 demonstrates the LDA-features for the four dynamic activities colleobed the lower-body

sensor positions, i.e., front and rear trouser pockets.. A significanbiraprent in class separabil-
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Figure 6.4: LDA feature space for four dynamic activities, recordeahffive different body
positions, after applying the single-level recognition system.
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ity and a very low within-class variance could be observed. The recogmiggults for this study
are summarized in Table 6.4, showing an average recognition rate of 9hith i a significant

improvement over the recognition rates of the two previous studies.

6.5 Conclusion

In general, the output of any body-worn accelerometer depends ats floeation on the human
body and can vary significantly for the same for different locationss&lvariations result in high
within-class variance which reduces the recognition accuracy sigrtificahherefore, most of
these systems require accelerometers to be firmly attached to specific dnslytpereby forcing
subjects to live into a fixed life pattern which can be burdensome especiallygdong-term
recognition.

Though the system showed high accuracy in distinguishing 15 activitig#l, iequired users
to attach the accelerometer firmly to their chests. As mentioned earlier, thisenegumi is not
feasible for real-life scenarios. The accuracy of the proposedmystkeen tested by freely placing
the sensor in different pockets, went down to 47%.

The aim of this study was to implement a single tr-iaxial-accelerometer-baseahhactivity
recognition system without posing any preconditions on accelerometsigm and orientation
relative to a subject’'s body. About 24 hours of activity data were colieate7 bodily activities
of the daily living from 8 elderly subjects at home, outside the laboratorytivilies were rec-
ognized from the data by loosely placing a tri-axial accelerometer in 5 eiftgrockets, without
attaching it firmly to the subjects’ bodies. Annotations were performed orpthteby the subjects
using a bluetooth headset together with speech recognition software kelsigbed in very little
interference while performing the activities.

In the state-activity based classification framework , the tilt angle (TA) vezsl s a part
of an augmented feature vector to recognize three static activities, incllydimyg sitting, and
standing, with an above 90% average recognition accuracy. The &fsnefthe relative tilt of the
body in space and its computation requires accelerometer’s firm attachmbatiiody. In cases
where the sensor is placed freely in different pockets, the sensmrgation can undergo arbitrary

changes while performing an activity, it is therefore very hard to compuédiable estimate of
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Figure 6.5: LDA feature space for four dynamic activities, from lowedy i.e., front and rear
trousers pockets, after applying the proposed hierarchical recagsitgiem.



Table 6.4: A comparison of average recognition results(%) for all thxperements

Activity Single-Level (S-L)|| S-L with LDA || Hierarchical Scheme
Resting (Lying/Sitting/Standing 72 89 98
Walking downstairs 42 53 96
Walking upstairs 39 51 94
Walking 44 56 96
Running 52 68 96
Cycling 44 50 94
Vacuuming 36 44 87

Total 47 58.7 94.4
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the TA. Moreover, since the body is at rest, the three postures redistestedhe same frequency
components and the intensity. Therefore, these activities were combinealsittgle group, i.e.,
the resting activity.

However, a higher level analysis can be employed to achieve furtheifidaton of the rest-
ing activity as lying, sitting, and standing. For instance, by employing an inggrénowledge
of the transitional movements, such as lie-to-sit, sit-to-lie, sit-to-stand, and-&tasit, these ac-
tivities could be distinguished from each other with a greater accuracether words, if the
system recognizes that the subject is currently resting and he/she haisdasgone a sit-to-stand
transition, then it can infer that the subject is now standing.

A high within-class and a low between-class variance, caused by cliasgasor orienta-
tion, magnitude, and frequency, makes accelerometer’s position freenhartigity recognition
very challenging. Therefore, extracting discriminating features, whiclinmie and maximize
these variances respectively, was crucial. Linear discriminant analgsismployed this purpose.
However, it is a linear technique in nature and does not perform welhvgbeere non-linearity
is involved. The experimental results of our the second study, i.e., singlerErognition with
LDA, support this fact.

To improve the recognition accuracy, a hierarchical recognition appraeas employed to
separate the dynamic activities from the upper and lower-body sensitiope using their SE-
values. Consequently, the high within-class variance resulting from puesgéons was removed,
which reduced the complexity of the classification task. A better featureespas then created
by applying the LDA on the augmented feature space, i.e. the AR-coefS@egmented with the
SMA.

There are clear limits on what can be achieved in a free-living activity mamgi@nvironment
using a single accelerometer, without posing any pre-conditions on its poaitiorientation. A
greater number of sensors, attached firmly to different body-parts atlove accurate activity
classification. However, the proposed system is more practical for contEnlong-term activity
monitoring in free-living subjects because of its simplicity, ease-of-usaptiance, lower cost,
and the ability to recognize some important dynamic activities of daily living with 4%4verage

recognition accuracy.



Chapter 7
Smartphone based HAR using Proposed Features

This chapter presents details on the implementation of light-weight classificatieme that em-
ploys the augmented feature model for sensor’s position-free physitiaity recognition using
an accelerometer-enabled smartphone.

These days, more and more people are using hand-held computers snchike phones with
advanced features like Internet, touch screens, built-in-cameradesmneters for user interface
control, and so on. As the popularity of such devices increases ancctstidecreases, oppor-
tunities for the novel healthcare applications arise. More importantly, mobilagshare part of
people’s daily life. People carry these devices with them nearly evemngathey go. Also, they
mostly tend to keep their phones functioning and charged. Consequertdtydsvices can be
employed to collect healthcare related information and thus deliver new thileralth-related
services continuously over long periods of time during free-living conuktio

Though hundreds of applications appear every day which exploit thabddies of these
phones, their usage in creating smart, low-cost and timely healthcare drigaméces is yet to
be explored. One important area where mobile phones, especially acoeter-enabled smart-
phones can be applied is in creating valid and reliable measures of phgsisétly and energy
expenditure. As explained in chapter 1, automatic detection of physicakyagiould enable new
types of health assessment and intervention tools that help people maintaienigly balance
and stay physically fit and healthy. For example, mobile phones could bietasen algorithms
that automatically recognize physical activities and estimate energy expeniddm body worn
accelerometers and display this information as behavioral feedbacK-itinmea

Another powerful extension of mobile technology is to use it to deliver jusinie interven-

tions at the point of decision, for example, to encourage a positive lmgtehange. In this sce-
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nario, accelerometer-based mobile phones can be used to detect actiiiesest (e.g. walking
slowly) and encourage increases in intensity levels (e.g. brisk walkingwadking slowly). Ob-
viously, for these types of applications to be possible, activity recognitgorithms running on
mobile phones have to be capable of recognizing the intensity of phystoatyaA new area of
research where such accelerometer-enabled mobile phones might algpliee is non-exercise
activity thermogenesis. Recent results suggest that small changes toodéig such as walking
upstairs vs. riding the elevator, sitting fidgeting feet vs. sitting and briskin@lks. walking can
accumulate over the course of a day to meaningful amounts.

Therefore, the R&D labs at major cell phone/OS vendors plan to turn acosd¢er-enabled
future smartphones into really clever handsets capable of understamitigpeople are doing at
any moment of time, anticipating what they would do next, and providing seragtmatically
and accordingly. Recently, [85] described systems and techniquesifomatically activating
applications on a mobile device based on a comparison of current real-traete@tion data
measured by the mobile device and acceleration profiles that are storedrioliiie device. Each
stored acceleration profile can be associated with an activity that the ugezngage in while
using the corresponding mobile device application.

A user profile is a collection of personal data, such as favorite applicatassociated to a
specific user. Today’s smartphones are capable of storing a largeenofrguch profiles, each of
which can be further associated with a specific activity and the corrdsgpapplication that the
user prefers to engage in while performing that particular activity. Thegirce of accelerometer
in these phones makes them capable of recognizing these activities in nsay Taerefore, the
aim of activity-aware smartphones is to recognize these activities by mébuastan accelerom-
eters, match it with stored user-activity profiles and then provide the ssraind applications
associated with the target activity to the user automatically and accordingly.

Figure 7.1 illustrates an example in order to provide a better understandimpohctivity
profiles and accelerometer-enabled activity-aware smartphones. K.l BMonday morning. |
wake up and get ready for jogging. Before leaving my house, | put mytphmane and the headset
in my trouser’s pocket. Once inside the park, | activate the music player ammastphone to play

an already complied list of my favorite jogging-songs. | enjoy jogging listetintipe jogging-
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songs for about 30 minutes and then walk for another 15 minutes. Sineder fistening to a
different set of songs while walking, | once again reach the music play@y smartphone and
choose the walking-songs.

Itis 7:30 A.M now. | am in a train on my way to work. During the commute, | oncairmg
reach my phone and log on to my favorite newspaper’s website to checkakerdaws. It is 8:30
A.M and | am walking towards my office-building. During the walk, | check nay'd schedule
on my phone’s schedule application. Finally, it is 8:50 A.M and | am sitting in mk.deence
again reach my phone and go online to check my emails.

In the above example, | used my phone at different times, every dagifferent purposes
while performing different activities. Let us consider that the phone ltlzatry is an activity-
aware smart phone. During the first week, the training period, | storeatnyitg profiles on the
phone. | perform and label activities along with the activated applicatiarrimdtion, which |
want my phone to store for automatic activation in future. The phone collegtadteleration
data on labeled activities in order to train itself for recognizing these actiatigsmatically in
future. After the training period, the phone now has information on whaliGgtions do | activate
at different times while | perform a specific activity.

Its 5:40 A.M on the first Monday after the training-week. | just started joggifige phone
recognizes the running activity and activates the music player to play thegpggngs automat-
ically. After 30 minutes | stop jogging and start walking. The phone recegnilze change in
activity and switches to walking-songs automatically. At 7:30 A.M, the activitpgaition mod-
ule reactivates to see if | am in the train or not. Upon successful recagnititbgs on to the
newspaper website and displays the latest news. The other two applicatibaduler and email,
are also activated automatically by recognizing the walking and sitting activisieg tuilt-in

accelerometer.

7.1 Study Goal

The owners of smartphones are more likely to carry their handsets fretiigimpockets, hands
or even bags rather than attaching them firmly to a specific body part. Te&eation data thus

could vary significantly for the same activity, leading to poor recognitionltesTranslating the
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idea of activity-aware smartphones into an actual product thus recanregtivity recognition
method that can function independent of phone’s position along subfeadg and is capable
of providing high recognition results even in the absence of adequatenarabtraining data
from different positions. For such a recognition system extractingidistating features, which
maximize the between-class variance and minimize the within-class varianaagia.cr

The sensor’s position and attachment free activity recognition scheesemied in the pre-
vious chapter, exhibited a high accuracy in distinguishing seven physitigities. However, its
hierarchical structure and the use of spectral entropy as a featuesriakfeasible for smart-
phone considering their limited processing and memory resources.

Therefore, the aim of this study was to implement a light-weight system whighthg pro-
posed augmented feature model (time domain features only, spectralyewmemot used any-
more) and employs only one neural network for the classification task.gdakwas to find a
method that can resolve the high within-class variance in the feature gpateesults due to
freely placing the phone in different pockets, before feeding the fiesiio the classifier. In this

study, the SP dataset (section 3.4.5) was used for analysis and evaluation

7.2 System Design

Figure presents the overall design of the system. After computing the atephfeature model
from the activity acceleration signals, some method would be applied to dedieahigh within-
class variance. Several techniques exist in the literature for this purgtréncipal Component
Analysis (PCA), also known as eigenface method, has been widely adoptelving such prob-
lems. However, it is worth noticing that the features extracted by PCA #wmalfcglobal features
for all face classes, thus they are not necessarily representatidesfoiminating one face class
from others [86]. LDA (section 5.3) seeks to find a linear transformatypmiaximizing the
between-class variance and minimizing the within-class variance, provesl dontore suitable
technique for classification [86]. Although LDA can provide a signifiadiatriminating improve-
ment to the task of recognition, it is still a linear technique in nature. Wheneeeon-linearity is
involved, this method is intrinsically poor. Kernel Discriminant Analysis (KPaXkernel based

technique, has been developed to compute the non-linear discriminating/éetsiss which has
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shown good performance in cases where LDA failed [86]. In this stuohy LDA and KDA were
used to solve the problem of high within class variance and there resukkscampared. A de-
tailed description of LDA is provided in section 5.3 whereas details of KDAr#lgo are given
below.

Kernel Discriminant Analysis(KDA): KDA is a non-linear discriminating approach based
on kernel techniques to find non-linear discriminating features. Suppeskave a set ofm
augmented feature vectoxs, X, - - - ,Xm € R®P*1 belonging toC activity classes where is the

AR-model order. Let

T
Xj = [axlaax27 e 7aXp7 ay17ay2a e 7ayp; az1,92, - 7aZpas]

whereay, ayi, anda; are the AR coefficients for three axes aid the SMA. We considered the
problem in a feature spade induced by some nonlinear mappigg: R3*1 — F. Our choice
of ¢ was the radial basis function. For a properly chogean inner product,) can be de-
fined in F which makes for so called reproducing the kernel Hilbert space. Mueeifgcally,
(¢ (xi),9(xj)) =K(xi,Xj) holds whereK (., .) is a positive semi-definite kernel function. To find

the linear discriminant ifr, we needed to maximize

T
J(w) = Fﬁ% (7.1)

where

C
= me(uf — ) (1l — o) (7.2)

%= 5 (B0 6) ) (o ) -)') &

are the between-class and within-class scatter matrices respectivelgnidw is the KDA basis

vector. u!; and ug are the mean of thi-th class and the global mean respectivety is the
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number of samples in theth class. The solution to equation (3) is a linear combinatiog (af)

[4] with coefficientsa; such that
w=" aip(x) (7.4)
i; | |

Leta = [oq,--- ,am]T it can be proved [4] that equation (3) is equivalent to

oKWK a

30) =~ rica (7.5)

and the optimalrs are given by the eigen vectors with respect to the maximum eigen values of
KWK a = AKK a (7.6)

whereK is the kernel matrixKi; = K(x;,x;)) andW is defined as

1/my, if x; andx; belong tok—th class
Wij = (7.7)
0, otherwise

For a new patterr its projection onto a KDA basis vectos in F is calculated as

(@,¢(x) = aTK(:,%) (7.8)
where
K(:,X) = [K(lex)v"' ,K(Xm,X)]T (7.9)

More details are available in [87].

7.3 Experimental Results

The performance of the proposed recognition system was validated iolkhweihg three studies:

Recognition using Original Featuresin this study, the augmented feature vectors i.e., AR-
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Figure 7.2: Feature plot for four activities before LDA and KDA showirigh with-in and low
between-class variances.

coefficients and SMA, were calculated from the acceleration data andt@sein a neural net-
work using BR (chapter 5) algorithm. The network started giving its be$bpeance when the
number of hidden layers was reached 24. No significant increase irctheagy was seen after
this number. During testing, each test activity was modeled in a similar fashtbthamesulting
augmented feature vector was fed to the network for final recogniti@elyplacing the sensor at
four different positions resulted in high within-class and low betweersalagances in the input
feature space as shown in Figure 7.2. Only four activities are showthdaake of visualization.
The average recognition rate was only 46%. Results are summarized in.Table

Recognition using LDA FeaturesThe purpose of this study was to evaluate the effectiveness
of LDA in minimizing the within-class and maximizing the between-class variancggalBng
LDA on the original features, one can improve the feature set as shokigume 7.3. However,
being a linear technique in nature, it was not effective enough and énage/recognition rate was

60%. Results are summarized in Table I.
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Figure 7.3: Feature plot for four activities after LDA.

Table 7.1: Average recognition results(%) for three studies

Activity Original Features| LDA Features|| KDA Features
Resting 61 74 99
Walking 41 52 95
Walk upstairs 41 56 95
Walk down-stairs 37 49 92
Running 50 69 99
Total 46 60 96

Recognition using KDA Features:In this study, we applied KDA to the same feature set

used in the previous study. The distribution of KDA patterns for four elsi$s shown in Figure

7.4. Compare to that of LDA patterns, the improvement on class separabilignificant. The

average recognition rate for five activity classes was 96%, in this caselltR are summarized in

Table 1.



7.4 CONCLUSION 113

7.4 Conclusion

All existing accelerometer-based physical activity recognition systemshengroposed position
and attachment free recognition framework (though it allows users ty taersensor in any
pocket) require users to carry an extra device with them all the time. Thedigated by these
devices is either sent to a computer in real-time or stored on portable desitesidy users and
later read off-line. This is acceptable during a short-term monitoring. Mervearrying these
extra devices could be considered as a burden when long-term monistiregoal.

Todays mobile phones, called smartphones, come equipped with built-in racoeters and
better computational power. Moreover, people don't consider mobilagshas a burden and are
used to carrying them all day long in pockets or handbags. Thesecttr@stics make these de-
vices an ideal mean for recognizing physical activities for longer durstidherefore, a prototype
of the position and attachment free activity recognition scheme was implementaddrtphones.
Considering their low computation power compared to traditional persongbaters, the hierar-
chical scheme was altered to use only a single ANN for the recognition tasiquicalculating
any frequency-domain features. The high within class variance whathtsedue to carrying the
phone in different pockets is reduced by employing KDA. The technicagwalidated using the
activity data collected from five body positions using a smartphone. Thugrtdpmsed system
increases the applicability of activity classification systems. By using aremoogeter enabled
smartphone, which could be placed in any pocket without firm attachmerdgedific body part,

activities could be monitored throughout a longer period of time.
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Figure 7.4: Feature plot for four activities after KDA.



Chapter 8

Application in Healthcare

8.1 Overview

| pose a question for us to ponder upon. What is our most valuablegsi@s@ A thing which
if we possess makes us feel as if we have everything. Some of us wguitlisdheir family,
others would describe it as their wealth, profession, or even religion.meg it is my health.
When we have health, we have everything. But | also wonder that wiest id take to make a
person healthy? Perhaps being healthy means being free from diséaréranity and moreover,
includes a state of complete mental and social well-being. | would describdfrhgsdthy if |
look and feel great and have abundance of energy, free of akyesis.

Maintaining a healthy state and preventing sickness requires a healthtastricture which
includes a healthcare system. The motivation behind such a system is totpteag and manage
sickness and preserve physical and mental well-being of a persamgthtbe services offered
by medical, nursing and allied health professions [88]. However, traditiogalthcare delivery
system failed in providing consistent, timely and high quality medical care toailp¢88]. Such
systems are established to help people receive the medical care that isl tmiloreet their needs
and is based on the best scientific knowledge, yet evidence suggéedtigtisequently is not the
case. In fact, between the healthcare systems we have today and thedreaifstems we could
have lies a huge gap [88].

There are many problems with today’s healthcare infrastructure whidilmate to this huge
gap. The biggest and the most important one of which is the approachst thkecuses almost
entirely on treating diseases and health problems and very little effort is @p@neventing them
[89]. This leads to many problems including the high cost of treatment whichgsinedy larger

than the cost of prevention [89]. Numerous programs have shownglatigg just an hour on

115
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preventive care with patients would cut down the annual medical cosfisarily [89].

Another problem that can be attributed to reactive healthcare infrasteustthe use of an-
tibiotics for treating diseases [89]. Once sick, people are bound to hase #ntibiotics and thus
all good bacteria are also being wiped out of their bodies. This may seenpartant, but when
another virus or bacteria enters the human body, it will be much less abldtmfighe intruder
and build up immunity to it. Once the good bacteria are gone from the humanibadl/take a
great deal of time to regain the immune function.

Moreover, there exist certain factors, more commonly known as lifestgkmdes, which can
further lead to certain chronic diseases such as diabetes, stroke)dughcholesterol, hyperten-
sion and cardiac failure [90]. One such lifestyle-disease, which texs regid increase over the
past decades, is obesity. In fact, obesity is now regarded as a gjmtiahec that may dramat-
ically impact health, especially in the industrialized world [91]. The prevaesfmbesity from
1960 to 1994 in the U.S alone increased approximately 50% from 13.4% to 2A8%adays,
about 65% of adult Americans aged 20 years or more are consideseg@ght and about 30%
are considered obese. Furthermore, 16% of children and teenagetbetween 6 and 9 years
are considered overweight and the numbers are increasing [9®esity continues to increase at
such a rate and no action is taken to halt its growth, the majority of the adultgtimpucould be
overweight within in few generations [92].

Obesity can be termed as a complex condition which results from the interaétinarny
factors, including genetic makeup, neuroendocrine disorders, ematiors/en secondary effects
from medical treatments [90]. However, the recent rapid increase in iwspidad, throughout
the world, is generally believed to result from a caloric imbalance [92]. &tays, most people
have high caloric intake due to easy access to foods and beveragesghittaloric content and
extremely low levels of physical activity to relative to that caloric intake [F3ysical activities
such as sports and outdoor activities, which used to be a part of aveady life, are now being
increasingly replaced by sedentary behaviors such as television vievidlepgame playing and
internet surfing [94]. In fact, a study conducted in 2003 revealedAhsricans aged 13 years
and older spend on average eight hours a day sitting and four howans\aadching TV, playing

video games or surfing the web [95].
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Such a lifestyle-disease apparently poses no immediate threat to peoplé'sdrdife but is
in fact a time-bomb in itself, ready to explode in years to come. It is this versactexistic of
these diseases which leaves them unnoticed or unattended due to the neaictie of the current
healthcare system [89].

Moreover, the world is experiencing a so-called grey population. Irratioeds, the ratio of
the number of persons aged between 16 and 65 to those aged 65 @swesglled the care-ratio,
is in decline. According to a recent study [96], the number of Americaprd & years or older
(the elderly group) in the year 2008 was about 38.9 million, which is abo@42f the U.S
population. In terms of gender, there were about 22.4 million elderly womeriLérb million
elderly men. The study suggested that the percentage of the elderly pgeugpled, i.e., from
4.1% in 1900 to 12.8% in 2008. Furthermore, the older population itself is gettangasingly
older. According to the statistics [96], the number of people aged betwe&d §ears was 20.1
million in 2008 which was over 9 times larger than in 1900. In contrast, the nuofbezople
aged between 75-84 years was 13 million which was 17 times larger and thenaf#bmericans
aged 85 or older was 5.7 million which was 47 times larger than in 1900.

Futhermore, the statistics also suggest that persons reaching age @& ihad an average
life expectancy of additional 18.6 years [96]. In other words, a chilah liw 2007 was expected
to live 77.9 years, which is about 30 years more than a child born in 19088.ifdcrease can be
attributed to the reduced death rates for children and young adults. Thieenwf people who
celebrated their 65th birthday in 2008 was about 2.7 million and about 1.8 millimope aged
65 or older died. Thus, the final figures revealed an annual incode®27,305 in the number of
persons aged 65 years or older [96]. Such a trend suggests thatnidtidre less people to take
care of the elderly in the coming years. This problem is compounded flbthitre fact that the
many of the older people are living on a low income, suffering a disability amaglieither by
themselves or prefer to live at home, being cared by their friends and faatiigr than being
hospitalized.

Faced with such circumstances the health care delivery system, therefeds reinvention to
meet the challenges at the hand [88]. In order to combat the increasvejqmce of the lifestyle

diseases and the grey-population, the healthcare system must focotsomiyrtreating people but
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also advising and guiding them about how to deal with and prevent chnogdtical conditions
[89]. It is generally expected that to create an efficient, high-qualityldwitcost health care
delivery system the use of information and communication technologies wiichered [97]. One
such technology is telemedicine. It involves the use of communication methddefarmation

technology in order to deliver efficient, timely, cost-effective and higatdy medical care to
people, especially the elderly [88].

An application of telemedicine is telemonitoring [13]. It involves remotely monitothrey
patients who are living at their homes, with their own community away from théhtheare
service providers. It works on the idea of bringing medical care to oords which are the best
and the most natural place to implement modern telecommunications technologfiveridg
healthcare to all people [13]. Telemedicine and telemonitoring offer huyetien in healthcare
costs by providing nursing services to the home [98]. Several compargessing this idea to
provide home healthcare services at a very low-price then an on-sitf8git

A study conducted in [99], investigated the use of telemonitoring technoloidpeihome care
settings. Their preliminary findings indicated that the technology is depéndal that average
telehealth video visits are cost-effective and are about 60% shortenifiles vs. 45 minutes)
than on-site visits, with no decrease in patient satisfaction. In the pastyvpasfiiects have been
reported on diabetes, asthma, and hypertension patients when treatedrs/aofhitelemonitoring
[99]. These positive results could mainly be associated with the fact thatdaleoring, by means
of for more frequent follow-up of patients, may provide earlier detectifomarning signs that a
patient’s state of health is deteriorating.

Let us use an example to get a better understanding of how cost-effectil/time-efficient
telemonitoring technology can be. Itis 9:00 A.M Monday and a nurse is prept see her first
patient at a home healthcare center in a hospital. However, her patienblvailes away. Rather
than drive there, the nurse steps into the center’s video room as it is timedmbe video nurse.
Through a video interface, the nurse asks her patient and the patemily & series of routine
qguestions, which are indeed the same questions the nurse would hasdfasikesre a face-to-
face visit. At the same time, the nurse accesses the patient’s life log, medidalgs such as

heart rate captured by the devices installed at the patient’s home and tradsmittie center via
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internet on continuous bases. Using the patient’s life log and their anstiversurse concludes
her visit and leaves a voice message for the doctor summarizing the hetlthefther patient.
Such a technology not only saves extra-cost and time but also givestpadied their family a
sense of confidence as they know that help is only a phone call awaheyndan see the nurse.

In general, the telemonitoring based health care delivery systems regti@ntp to have mon-
itoring devices at their homes [13]. The result of these devices is transmittéelephone or in-
ternet to the health care service provider, as shown in Figure 8.1. Thaisiafion holds clinically
useful trends that can allow physicians to make informed decisions, to maleiterioration in
chronic conditions, or to assess the response of a patient to a partiealanént [13]. Telemoni-
toring, therefore, has the potential to provide safe, effective, patiemtered, timely, efficient, and
location independent monitoring; thus, fulfilling the six key aims for improveroéiealthcare
as proposed by the Institute of Medicine, Washington, DC [88].

Some of the more common things that telemoitoring devices keep track of inclade &ie,
blood pressure, blood glucose and mobility. Mobility refers to the amount of weepend in
the dynamic activities, such as walking or running, as well as the static actj\dtieh as sitting,
standing, and lying [13].

It is mostly believed that being engaged in vigorous physical activities asi¢tigh-intensity
exercise programs is associated with reductions in physical decline. idgveeich perceptions
exclude the elderly patients, especially the oldest ones who suffer fridwitia, cardiovascular,
or neurodegenerative diseases which result in limitation of mobility and plyasitivity of the
affected persons. Therefore, such patients are unable to takevparinelow-intensity exercise
programs.

It is in such scenarios where assessment of daily mobility levels, time speetfrming
simple daily physical activities such as walking, standing straight, standitfigoopa chair etc.,
play a vital role in determining physical independence and functional aliityeased mobility,
especially in case of elderly patients, improves stamina and muscle strengttomiotes their
psychological well-being and quality of life by increasing their ability to perf@ greater range
of activities of daily living [100]. Thus, objective mobility data can be usedhtmnitor health to

assess the relevance of certain medical treatments and to determine the qlitdif an elderly
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Figure 8.1: Telemonitoring: Patients are monitored using monitoring devicesiahthmes and
the result is transmitted via Internet to the health care service provider
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patient.

Moreover, the thermodynamic expression of the principle of the cornsamaf energy states
that when energy is added to a system, it is either stored or used to pevimtn When we
apply the same physical law to living things, such as animals and humansnweesiyy reach the
conclusion that when total energy intake, by means of food, is greateretiergy expenditure,
excess energy would be stored in the body as fat. In other words,ssaiehof disequilibrium
between the amount of energy taken into the body and the amount of eneigymed or expended
results in obesity, which is a preventable cause many chronic diseasefingdiype Il diabetes,
hypertension, stroke, degenerative arthritis, sleep apnea, aner ¢aar

There are two ways humans can spend the calories. One is to perfomausgexercises such
as weight training and rowing. The other is through all the activities of dailgdi also known
as Non-Exercise Activity Thermogenesis (NEAT). NEAT has got a latténtion in the research
community over the past decade. The theory behind NEAT is based orctliegaminor behavior
modifications to a person’s daily routine, such as sitting fidgeting legs vs. sitiagding vs.
sitting, brisk walking vs. walking, and using stairs vs. elevator, can suovepthe course of day
and boost overall energy expenditure and thus provide a proteffiaot against lifestyle diseases
like obesity [101, 102]. The reason for this can be attributed to the fattibat of the energy
expended everyday comes from non-exercise activity. Theréfa@@andheld device like mobile
phone could recognize non-exercise activities and the energy aigrenassociated with them, it
could then suggest people minor changes in their daily routine that might inmeaadaily energy

expenditure positively.

8.2 Personal Life Log

Personal life log (PLL) is a set of data containing an individuals daily #iets/collected in one or
multiple media forms. These life log data is able to help provide personalizeddippvarious
real world applications such as health monitoring, activity level checkiieg, e

This section explains the real-time personal life log (PLL) that was developthis work to
evaluate the real-time performance of the proposed system. It employedosed state-activity

based classification scheme to recognize physical activities of a peFsom the recognized
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activities, medically useful information, such as step counts from walkiamggup-stairs, and
going down-stairs, walking distance and duration, energy expenddtag,are extracted. Upon
the computation of activity classification and exercise information, all informasictored in a

database as a personal life log for future reference, as shown ireRada..

8.2.1 Generation of Exercise Information

Once each activity is classified, exercise information is computed based antihity recognition
result. In this study, exercise information includes stride length, step caatikjng distance,
walking speed, and energy expenditure. A rough estimate of a stride lgfregsibh user is obtained

based on a subjects height. Table 8.1 is used for assistance.

Table 8.1: The Ratio between Stride Length and Height in General WalkiageR#f 10-60 Aged
Men and Women

Age Gender The Ratio between Stride Length and Height(%)

10-30 Age  Male 42.36
Group Female 43.56
40-60 Age  Male 41.17
Group Female 40.55

Step counting is performed based on a zerocrossing detector whichvegedtonly for walk-
ing, going up-stairs, or going down-stairs. To reduce the influence®iséna threshold of three
times the standard deviation of the static activities was used. The number ®Qstepomputed

by equation 8.1, and an example of detected zero crossings is shown ia Bigu

Number of Steps= Number of Zero Crossing (8.1)

The total walking distance and the walking speed are computed by equatiandB&2, respec-

tively.

Distance= StrideLengthx StepCounts (8.2)
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Speed= Distance DurationWalking) (8.3)

The standard reference for the measurement of physical activity is ttadatie energy expended
due to that physical activity. Unfortunately, estimating an accurate maasuteof energy ex-
penditure is challenging. At present there is no technology that allowslepém measure these
variables comfortably, accurately and continuously over the courselay and obtain real-time
feedback. Therefore, true total energy expenditure is very difftoufheasure, and nearly all
techniques use approximations.

In order to calculate the metabolic energy expanded, the Metabolic Equiv8METS) values
[8] were used which are most frequently used for the calorie count,nguate energy consumed
during each activity. MET is defined as the ratio of a per- sons workingbubtarate relative
to the resting metabolic rate. METS values correlate with oxygen requirem8tasting with
1, which is the least amount of activity (such as resting), the values sereith the amount of
activity. For example, running at 9.7 km/h has a METS value of 10. Stardhalds exist that
provide METS values for a wide range of exercises and activities. sopsrcalorie consumption

can be easily calculated using this METS values given by equation:

EnergyExpenditurgcal) = 1.05x METS x Duration'hour) x Weight'kg) (8.4)

The METS values for six activities (lying = 1.0, sitting = 2.0, standing = 2.3stars = 8.0,
down-stairs = 3.0, driving = 2.0) are obtained from [2]. Since the ME&Resfor walking can
be very different depending on speed, we computed the METS valweafking according to the

following equation [6]:

METS(walking) = 0.0272x Speedm/min) + 1.2 (8.5)
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8.2.2 PLL Database

A PLL database is created using Microsoft Office Access, which is cepgpof four tables such
as Activity-Definition (AD), State-Definition (SD), User-List (UL), anceBult- Recorder (RR).
The AD and SD tables predefine the human states and the human activitiestikedy which

the PLL system is able to recognize. The UL contains a list of users andssaciated physical
information (e.g., height, weight, etc.), and the RR is used to record themzedgactivities and

the estimated exercise information.

8.2.3 Experimental Validation

A new data collection study was conducted in order to validate the real-time RitLsubjects
participated in the training. These subjects were given a brief introductieaal activity, how-
ever, they were not provided with any protocol. Each subject was alldaperform activities in
random, with varying speed and postures. To train the hierarchical ASBistion 5.5), activity
acceleration-signals were collected for several hours per subjefiiympeg activities randomly
with varying speeds and postures. After training the ANNs with the data feonsubjects, the
system was tested with two new subjects, which did not take part in data caile@iging the

experiment, the test subjects activities were recorded by a camera foralbateon of accuracy
rate.

The activity classification performances were evaluated after the expegriti® summarized
in Table Il showing the average classification accuracy of activities étvib subjects, the overall
accuracy rate was 84.8%. An example of extracted exercise informatioovigisn Figure 8.4: all
the exercise information was recorded and delivered to the databas¢-fimre. In Figure 8.5, the
error rates for the step counter are shown which are 6.5%, 13.3% 0at% Tfor walking, going
up-stairs, and going down-stairs, respectively. The errors werelyréue to the misclassified
activities. One should note that not all exercise information can be validatetb some dependcy

on each individuals physical conditions.
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Stride length: 5cm
The number of steps

- Walking: 466

- Upstairs: 212

- Downstairs: 275
Walking Distance: 3439.5m
tverage Speediwalking): 1.34n/s
Energy Expenditure

- Lying T 2. 21keal
- Sitting :  B5.Blkeal
- Standing - 3.68kcal
- Walking - 23.72keal

Upstairs - 31.58kcal
Downstairs: 13.08kcal
Oriving - 20.83kcal
- Total : 100, Blkeal

Figure 8.4: Exercise information extracted from acceleration signalsufjact
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Appendix A

Different Features investigated in This Study

Mean vector:Each sample from the sensor device at any given time is a three dimensiamal p

and can be represented as

ax(t)
At)=| at) | eR (A1)

az(t)

wherex, y andz represent the three axes of an accelerometer. A sequence of atioalef length

T with N samples can be represented as

A(T) = ay(l) ay(Z) PERRR) ay(N) (A.2)

whereN is the total number of samples for each axis. The mean vector for the abqpverse of

samples can be written as

e

AT)=|a | eR® (A.3)

2

where

141
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a==-y5 a(i) (A.4)

Standard deviationThe standard deviation for an acceleration sequence representeabin Eq

tion (3) is a three dimensional vector written as

ST) = R’ (A.5)
S
where
Sl X 2% A6
s= mi;[a(l)—éj (A.6)

wherea is the mean for a given axis given by Equation (5).
Spectral entropySpectral entropssy of the acceleration signal for the frequency bdpd f;

was calculated as

fa
_ fgf P(f)log(P(f;))

log(N [f1, f2])

Su(fy, f2) = (A.7)

whereP( ;) represents the power spectral density (PSD) value of the frequdernidye PSD values
are normalized so that their sum in the bafd- f,] is one.N[f; — f;] is the number of frequency
components in the corresponding band in PSD.

Correlation: The aim of including this feature was to find out the relationship among three
axes. Correlation indicates the strength and the direction of a linear reldfiomstween two

random variables. A sample from the sensor device at any givent tisngiven by Equation (2)
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and a sequence of such samples for a time segment of |@ngthgiven by Equation (3). The
correlation among three axes for the aforementioned acceleration seques represented in a

matrix form as

Mxx I'xy Mxz
FzxTzy (22
where
1 Nrai)—a\ [a(i)—a
_ A.9
M2 N_1 i; ( s = (A.9)

wherer i, represents the correlation between two axes of an acceleromgjehe value of the
ith-sample for a given axig@ the mean for a given axis, whilg ands, the standard deviation for

both axes respectively.
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