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Abstract

A great deal of research achievements for object localization in Wireless Sensor Networks (WSNs)
have been obtained in recent years. In order for a WSN-based system to locate the objects, two
localization stages must be carried out: locating the sensors’ positions because the collected data
without position information is meaningless, and then locating the objects’ positions. This thesis
focuses on solving the problems of both stages of localization.

For sensor localization, the problem has been considered thoroughly and a lot of solutions have
been proposed for many years. Nevertheless, its interesting challenges in terms of cost-reduction,
accuracy improvement, scalability, and distributed ability design have encouraged us to develop
a new algorithm, the Push-pull Estimation (PPE). It is a geometry based algorithm, in which
the differences between measurements and current calculated distances are modeled into forces,
dragging the sensors or nodes close to their actual positions. Based on very few known-location
sensors or beacons, PPE can pervasively estimate the coordinates of many unknown-location sen-
sors. Each unknown-location sensor, with given pairwise distances, could independently estimate
its own position through remarkably uncomplicated calculations. Characteristics of the algorithm
are examined through analyses and simulations to demonstrate that it has advantages over those
of previous works in dealing with the above challenges.

For object localization, we focus on solving the problem of positioning multiple moving ob-
jects based on acoustic signals. It is because acoustic source localization has many important
applications particularly for military tracking foreign objects. Even though WSNs have been de-
veloped for long time, this localization remains a big incompletely solved problem. A system for
source localization must have the ability to deal with the recorded convolved mixture signals while
minimizing the high communication and computation cost. This work introduces a distributed de-
sign for positioning multiple independent moving sources based on acoustic signals in which we
focus on utilizing the relative information of magnitudes recorded at different sensors. The sen-
sors perform pre-processing on the sensed data to capture the most important information before
compressing and sending the extracted data to the base. At the base, the data is uncompressed and
the source locations are inferred via two clustering stages and an optimization method.

Analysis and simulation results lead to the conclusion that in both stages, our system provides
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good accuracy and needs neither much communication nor complex computation in a distributed
manner. For source positioning, it works well when there exists high noise with Rayleigh multi-
path fading under Doppler effect and even when the number of independent sources is greater than
the number of microphone sensors.

Thesis Supervisor: Sungyoung Lee
Title: Professor
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Chapter 1

Introduction

Wireless sensor networks (WSNs) are sets of sensors spatially deployed mainly for many monitor-

ing applications. One of the most popular purposes of tracking using WSNs is the determination

of object locations. It is necessary especially in the military when WSNs have been deployed to

detect foreign, or unwelcome, objects and their locations within the deployed region. In order

to deal with the mentioned problem, a prerequisite work must be considered. That is the prob-

lem of sensor localization in WSNs so that the recorded signals are marked with positions and

the object positioning task is performed. In fact, WSNs are used for applications of observing,

tracking, and controlling. Observing includes collecting data like parameters of temperature, hu-

midity, vibration, pressure, traffic, event counting, etc. Tracking uses the observed data to follow

and sometimes to predict changing data where tracking moving objects is an example. Mean-

while, controlling pertains to decisions in response to data provided by observing and tracking,

like cutting power, sending instructions to control traffic, putting out fires, sending alarms, releas-

ing missiles to detected enemy devices, and so on. Evidently, applications of WSNs are all related

to the physical locations of sensed data where object tracking/positioning is just one specific ex-

ample. This means sensor localization plays an important role and it will take half of this thesis

focus. The thesis taxonomy is depicted in Fig.1.1. The thesis concentrates on two main parts:

sensor localization and object localization. Our contribution for the former issue is Push-pull Es-

timation (PPE) method and the one for the later issue is call Acoustic multiple object positioning

1



CHAPTER 1. INTRODUCTION 2

Mono Object 

Positioning

RFID!based

Object localization

Multiple Object 

Positioning Video!based

Object localization

Sensor localization

Acoustic!based

Centralized

Sensor localization

Distributed Related

Focused

Figure 1.1: Thesis’s taxonomy.

(AMOP) system.

1.1 Sensor localization and schemes

The position of a sensor, or the prerequisite information, can be achieved easily with an integrated

Global Positioning System (GPS) module. However, there is one problem with GPS making local-

ization algorithms necessary in practical implementation. It is the expensive cost of GPS devices

on the sensors, causing the total cost considerably high when the number of sensors in a WSN

is large (an integrated GPS module at the time being is around 40$ [97][98] and the number of

nodes in WSNs can be up to hundreds or even thousands). As a result, only few nodes (a.k.a.

beacons, anchors or pilots) have the known locations with GPS modules. The locations of the re-
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maining sensors (called normal nodes) are automatically estimated based on the measurements to

their neighbors using a localization algorithm. Generally, sensor localization categorizations are

usually made depending on the kind of input data: range-based or range-free; by what method-

ology the algorithm is performed: centralized or decentralized; and whether the result is gained

directly or through iterations: multilateration or successive refinement. Short introductions on

these concepts are discussed below.

a/ Range-based and range-free data

The range-based scheme uses input pair-wise distance data. These measurements can be in-

ferred from such data as received signal strength (RSS), time of arrival (TOA), time of difference

of arrival (TDOA), and angle of arrival (AOA) [61]. Measurement error in RSS suffers from fading

and shadowing, leading to poor accuracy of localizations using this scheme. Meanwhile, TOA and

TDOA also use radio frequency (RF) and acoustic signal as RSS does, but the ranges are estimated

based on the time delay of propagation through the environment (TOA) or the time discrepancy

of an incoming signal at two different nodes (TDOA) [78]. These measurement methods are more

accurate and easier to analyze with the popular Gaussian noise model and, as a trade-off, are more

expensive than RSS systems.

For range-free schemes, the input data of localization algorithms is the connectivity informa-

tion between nodes and their neighbors or the information of who are in the communication range

[70][76]. A node can also estimate the distances to other nodes by counting the shortest paths

(minimum numbers of connections) from itself to other nodes and multiplying this value with the

mean hop distance [58]. The mean hop distance may be calculated by averaging all of the hops

that make up the shortest paths between anchors. Ranges based on connectivity do not require

complicated hardware or high interface power in normal nodes. However, disadvantages of this

scheme are: errors of measurements are inevitable; the number of anchors should be high; and the

distribution of nodes should be uniform [58].

Since range-based algorithms and most range-free algorithms work on the estimated ranges of
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pair-wise distances, we do not distinguish between these two schemes. Instead, we concentrate on

solving the localization problem with the calibrated measurements. Push-pull Estimation (PPE)

actually can be seen as a method using the range-based scheme. It is built to deal with not only

Gaussian error but with any unbiased error as well. PPE can also solve the problem of biased error

measurement input if a de-biasing function is found.

b/ Centralized and decentralized methodologies

A centralized localization is executed by a single computer. It therefore can easily deal with

data combinations and perform complicated computations like matrix operations or eigenvalue,

eigenvector calculations of a large matrix [54][62][99]. However, the cost of communications

becomes dominant when all of the input data enters into one node, and all of the output data

has to exit from only that node. Moreover, the protocols for this kind of method are hard to

be implemented. The running time could be long if the complexity of the algorithm is high,

especially when the number of nodes in the network becomes large. In other words, the scalability

of centralized algorithms is limited. Another variation of the centralized algorithm is related

to clustering methods where the whole network is divided into groups, and each group has a

central computer to run the algorithm [104]. Yet the disadvantages of this method are difficulties

in defining how the groups are divided. The central computer of a group would have strong

computing hardware compared to that of a normal node, so it must be carefully deployed so that

network communication and computation are effective.

To overcome above disadvantages, researchers have been seeking other methods which can

be run distributedly on the simple computers of normal nodes [15][47][58][70][76]. Algorithms

of this manner are called decentralized, distributed, pervasive or collaborative localizations. Real-

world applications prefer this type of algorithm in which the big load of computations is shared, the

calculating time is reduced considerably, and communication bottle-neck is no longer a problem.

Our proposed PPE is designed to avoid all of the disadvantages of centralized or clustering-based

centralized algorithms. It is purely a distributed method performed by all of the normal nodes in
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the network.

c/ Multilateration and successive refinement manner

Multilateration is usually used in distributed algorithms. It takes at least three input range

measurements (in 3-D case, four is the least) to calculate a node’s coordinates [49][90]. The ratio

of the anchor number to the total node number for this manner is often high because multilateration

requires the exact positions of the reference nodes.

Meanwhile, successive refinement obtains the estimated coordinates of all normal nodes through

iterations. If it is designed in a decentralized method, each node has to calculate the estimated

position, send this information to the network, and receive new estimated positions from other

nodes. These tasks are performed repeatedly until convergence. Successive refinement in a dis-

tributed methodology is usually more difficult to design, and its convergence is surely a problem

[61]. However, it reduces the communication cost and makes the number of anchors not necessary

to be as high as in multilateration. In our proposed algorithm, successive updating is used in all

sub-stages of the method.

In this work, sensor localization is solved with a proposed method which is range-based and

distributed with successive refinement manner. The assumption is that the distance measurements

are given (range-based) and unbiased, then the proposed method works robustly with simple cal-

culation and guaranteed convergence.

1.2 Acoustic based object localization

Object localization plays an important role in military application to position foreign objects in

the deployed region and recognize if they are enemies. Unlike the active devices that emit radio

or ultrasonic signals to detect objects based on the reflected waves, sensors in WSNs are usually

passive and only record the signals from objects. Thus, most developed tracking techniques with

passive sensors are based on known communications channels. In other words, they are only suit-

able for localizing objects that are designed to be monitored, not for the very important security
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and defense application of localizing foreign objects. These objects have no prior channels to

communicate with the system and the only detected signals that the system can capture are images

and sounds. For image signals, however, cameras cannot be deployed randomly or casually in

a large number due to high costs, view blockage and the limited angle of view. Moreover, the

communication cost would be very high for image transmission while the computation for posi-

tions needs a centralized method. Therefore, the easiest and most convenient way to monitor an

object is using acoustics. Although localizing objects based on the emitted acoustic signals has

been considered, many works focus on one-source tracking [2][12][13][37]. This thesis describes

a full design for positioning multiple moving objects that emit sound signals and the analysis of

its performance. The design overcomes the drawbacks of both previous works and the previous

version of the system. The input data is not simply the convolved mixtures, which are just the

combinations of signals experiencing different time delays, but is more complicated mixtures in

which Doppler effect and Rayleigh multi-path fading co-exist. Signals that propagate in free envi-

ronment like air, water, or vacuum usually take different paths to receivers because of shadowing

and reflecting effects. Some works consider this kind effect of acoustic signal with a reverbera-

tion model which is often used for indoor settings [23][26][36][82][83]. Our work pays attention

on outdoor localization, so the multi-path fading is model with the popular Young model often

used in telecommunications. Meanwhile, extracted information from the mixtures in this thesis

is not of time-delay differences or direction of arrivals but of the ratios between Received Signal

Strengths (RSS) from each object to different sensors. We remark that we are the first to address

the multi-object positioning problem by focusing on the ratios of source magnitudes extracted

from the complicated convolved mixture data which includes Doppler effect and Rayleigh multi-

path fading. For multiple sources positioning, or even just for separation, the previous works just

deal with stand-still sources and all require high-cost for both data communications and algorithm

computation [1][10][49][52][71][75][105]. In addition, the sensors deployed in the area are not

the arrays of microphones as in many previous works [9][27][40][46][68][92] but the isotropic
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acoustic recorders as in [7][33]. That means in this thesis, the main feature used for source posi-

tioning is not the directions from the sensors to the sources. In fact, we try to extract the distance

relations from the ratios of pairs of frequency component to pairs of sensors. The details will

be presented in later Chapters. More importantly, aiming for a low-cost method, we make the

method applicable into WSNs in a distributed way, where the whole computation load is shared

on the sensors with a low communication cost for data collection. Distributed approaches are

categorized into data decomposition, process decomposition or data-and-process decomposition,

depending on how the algorithm is shared on different computers [4]. In this regard, our system

is designed for working in process and data decomposition manner whose details are discussed

in Chapter 3, Section 3.3. Sensed data is pre-processed, compressed and sent to the base. The

base computer decompresses the data and extracts the information of ratios between the energies

of each dominant frequency component (f-component) collected at different sensors using a clus-

tering method on the frequency domain. These ratios are then used to estimate the positions of

all dominant f-components, and the source location estimations are computed by clustering these

f-component positions.

1.3 Problem statement

This thesis tries to deal with the problem of positioning multiple moving source. It considers the

scenario which is popular in security application and military. Imagine there is a wide area that

a military unit wants to monitor in order to detect unwelcome foreign objects. That unit sends a

group of soldiers to the area to deploy monitoring sensors. They come there and quickly throw the

sensors randomly in the vast area while driving on a vehicle or on a plane before withdrawing back

to the base. Because of the expensive cost of GPS module mentioned above, only a small portion

in number of the sensors have this module and all the rest of sensors must locate themselves under

the range-based scheme. Now the sensors start to communicate with their neighbors within the

communication ranges to setup a network. They also estimate the distances to their neighbors,
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several of which are location-known due to the installed GPS modules. The location-unknown

sensors then run a program to locate themselves and send their locations to the military base

by transferring packages of information via other sensors. But it is not just that since the more

important mission is to locate the objects that emit sound signals within the monitoring area. Each

sensor may be programmed to wake up when sound signals are detected at some threshold level

and begin collecting the sound data. The wireless sensor network then, by some way, must locate

the sources moving in it. The first problem is: how the sensors can locate themselves to transfer

this information to the base given the estimated ranges to their neighbors and to several beacons.

The second problem is how they can work with the base to locate multiple moving sources while

the data load is big due to high sampling frequency and the data is the convolved mixtures with

Doppler effect. The two later Chapters will alternately present proposed one method to each

problem with full description and analysis. Chapter 2 is for sensor localization and Chapter 3 is

for the next mission of positioning the multiple moving sources. Both methods in both stages

work in a distributed manner which we can see in later descriptions.

1.4 Related works

Previous works on object localization usually rely on the assumption that the locations of sensors

are available and neglect the importance of how to get this information [2][3] [12][13][37][40][96].

Other works for estimating sensor location information only focus on sensor localization [47][57]

[61]. That means previous works pay attention to solving either sensor localization or source lo-

calization, but not both. That leads to the problem of combining these two tasks into one whole

work. Designing modules for a sensor will be more efficient when the whole task of both sensor

localization and object positioning stages are considered. The reason is that the designer can uti-

lize both hardware and software modules of one stage for the another. For example, if the sensor

has the microphone module to position the object via acoustic signals, then the TOA or TDOA

schemes [49][99] for sensor localization should be used. In addition, sensors in WSNs usually
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communicate with their neighbors for the purposes of transferring data and maintenance the net-

works, the RSS schemes [15][47][50][61] can also be utilized to enhance the sensor localization

accuracy. This thesis gives contributions in both stages: the prerequisite information and its related

problem of sensor localization will be considered via a proposed method with full analysis called

Push-Pull Estimation [17], and the locations of multiple moving object will be determined by the

Acoustic Multiple Object Positioning (AMOP) [19] system. In the following part, we separately

introduce what previous works have been achieved for both sensor localization and acoustic based

object localization.

Related works of sensor localization

For sensor localization, pairwise distance is usually used for position estimating, even range-

free methods. Besides few methods like RF-based fingerprint matching [102] and grid-scanning

[32][76] that do not use range estimation, the other range-free methods, to improve accuracy,

estimate distances by counting the hops between nodes and then using these estimates as their

inputs. For these ones, distance-vector based (DV-based) positioning [58] is one good way for

approximating the ranges. Apparently, pairwise distance is quite necessary not only with range-

based schemes but also in range-free schemes. In both of these schemes, the statistical model

of pairwise measurement is usually assigned to the very popular Gaussian model. This model

represents the most unpredicted noise (maximum entropy) and has a parametric function which is

easy for analysis. However, it is only appropriate for TOA, TDOA, and AOA measurements [99].

In WSNs, where RF signals are always available, RSS is likely the cheapest and most convenient

means for range-based schemes. Its error model, however, is not typical Gaussian but a log-normal

distribution, or Gaussian in the log-domain [15][47][50][61]. In [50], although Malaney does not

give solutions, he presents how log-normal fading models influence location accuracy and also

gives the mathematical analysis for the combination model of multipath fading and log-normal

power shadowing. Another technique using parametric channel models is proposed in [87] to
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reduce error by using the information of many parameters to refine the node locations. Recently,

an approach in [57] has used least square (LS) and maximum likelihood (MLE) algorithms to

locate an unknown-coordinate node with references to anchors only.

The mentioned localizations are either “centralized and successive refinement” or “decentral-

ized and non successive refinement.” Since successive refinement methods usually give higher

accuracy and decentralized methods are more practical, the combination has gained more and

more research interest. Patwari and Costa first propose a learning-based algorithm [63], a candi-

date with the ability to find the eigenvalues and eigenvectors of a sparse and symmetric matrix.

Then, they introduce a distributed weighted-multidimentional scaling approach (dwMDS [15])

developed from classical multidimentional scaling (MDS), a centralized and more complex al-

gorithm. In fact, MDS is such a novel tool that many of its variations have been developed for

node localization in WSNs. Iterative MDS (IT-MDS) and simulated annealing MDS (SA-MDS)

discussed in [8] are two of these variations in which simulated annealing is a famous method imi-

tating the metal cooling process to find the optimal state. Fastmap and MDS are combined in [44]

to give a two-stage algorithm in which Fastmap provides the initial coarse input and MDS does

the distributed gradient descent for more accuracy like in [15]. Another MDS method based on

connectivity only is presented in [38][73][74]. Generally, MDS variations require a big load of

computation, especially when the smallest eigenvalues and eigenvectors are used to make MDS

work distributedly [20]. They also result in poor accuracy, thus the scalability of the methods is

still an issue. A distributed MLE with better accuracy [62] has been introduced, but this increased

accuracy occurs only when the algorithm has good first guess input data (raw estimation). In [47],

another method uses MDS to calculate the initial data and then uses MLE to produce the refined

result of localization, making the computation and communication costs even higher. In this the-

sis, we introduce a distributed successive localization. At each iteration on a normal node, only

few simple computations are needed. Moreover, the communication cost can be reduced remark-

ably with an insignificant accuracy trade-off as it can be seen in later chapters on analysis and
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simulations. One remarkable point is that PPE is unlike other methods which base on available

algorithms, thus it needs to be analyzed fully. The analyses in later sections prove that PPE can

obtain the global convergence even it is performed distributedly. It is a convergent and robust

algorithm with any unbiased measurement input. Therefore, it can deal with not only Gaussian

model but the log-normal model with a de-biasing function as well. In fact, PPE can deal with

all three most popular and widely-used measurement models which are mentioned in details in

Section 2.1.5, see Fig.2.8. That means, under the assumption that the pairwise distances are given

and unbiased, PPE can be applied with simple calculation and guaranteed convergence.

Related works of acoustic based object positioning

Technically, most current acoustic approaches which utilize passive sensors in WSNs can only

deal with one tracked object [2][12][13][37][49][69][80][88][92], and few works have studied

multiple object tracking problem [3][40]. Moreover, the mentioned methods are strongly based on

the techniques for one target tracking. The common focus of those techniques is on the Direction

of Arrival (DoA), or the relative angles between sound sources and sensor arrays [23][26][86].

After that, particle filter [5][86], Kalman filter [30][103] or hidden Markov model [53][101] may

be used to enhance the tracked routes of the sources [3][96].

For general method based on DoA schemes, generalized cross correlation would be applied

to compute the time delay estimation (TDE). This is the most popular variant for the acoustic

source localization and tracking problem where DoA values are estimated based on the sensor

arrays. In many cases, the sensor array can have only two microphone sensors and the signal’s

DoA is computed based on the differences between these pairs of recording microphones. This

scheme is actually good only for the scenario in which a single source is monitored by several

arrays of sensors, calculation of localization is usually based indirectly on maximizing the cross

correlation [92] or directly on Time Differences Of Arrival (TDOA) [49]. In order to compress

the reverberation or multipath fading, several TDE works have been proposed and can be found in
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[9][25]. Another set of methods related to the direction are relying on beamforming (BF) [13][64].

The microphone sensors of an array are organized and tuned in order to focus on some particular

positions in the monitoring area and to measure the averaged power. The directions to the sources

are obtained by the detection of maximum power when the BF tries to scan all over the monitoring

space (usually 2-D space). In other words, the beamforming is steered electronically by the array

of microphone sensors to locate the source’s position based on the detected power. The assumption

in those methods is that the beamforming power is large at the focused positions. However, the

methods usually have local maxima and the result accuracy suffers as a consequence. Except for

the BF technique [40][64] used in the passive towed array sonar system, the numbers of tracked

sources used in previous works are small, two is common and at most three [3][68]. Towed array

sonar system is an array of sensors deployed along a tow which is usually considered to be straight.

Based on delay times and linear phase differences recorded at sensors, it gives proper directions

of arrival signals if the sources are far from the tow but it gives poor range estimation [27][40].

Such sonar system, after all, is a well developed DoA sensor array. Actually, both mentioned

TDE based and BF based methods are just for positioning in which the prediction based on the

past and present observations are not considered. To fill in this neglect, particle filters (PF) [95]

and Kalman filters (KF) [30][85][103], which provide dynamic models via time steps, have been

applied. These two approaches are often used along with some schemes where the positioning

task is performed in advance with TDE or BF, then they will enhance the system performance

by considering the model of the objects’ moving in terms of speed, direction, statistical history

of moving, etc. To give a proper name, PF and KF methods can be referred to as tracking stage,

which is based on some positioning stage beforehand. The positioning stage is carried out by

using such methods as TDOA, TDE, BF, and so forth.

In this work, we do not use the nodes each of which has a sensor array because this kind of

node also has the problem when being randomly deployed. Instead we design a node with an

isotropic microphone, so randomly deploying sensors is not an issue and the load of sensed data
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is also reduced. The direction of arrival information is then not the feature for solving the source

localization because of the change of the input data. For the framework in which a large number

of sources to be located with the isotropic sensors, we would intuitively consider some techniques

that can be applied to the problem, including Principal Component Analysis (PCA) and Indepen-

dent Component Analysis (ICA) techniques [34] which are capable of solving a class of Blind

Source Separation (BSS) problems [55]. When the sources are recovered, the different time de-

lays from sources to sensors can be obtained for location estimating. Nevertheless, computing the

delay from sources to sensors proves to be difficult since the signal from a source takes different

time delays to reach the sensors, so the observed data is a set of convolved mixtures. Although

convolved mixture ICAs have been developed to deal with this kind of complex data, their disad-

vantages include the excessive computation cost since the Finite Impulse Response (FIR) Linear

Algebra model must be used [42][79]. The necessity of a centralized manner makes the communi-

cation load become so big that it is difficult, if not impossible, to apply convolved mixture ICAs to

WSNs. Moreover, related works on blind source separation so far can not deal with the data that

has Doppler effect, not to mention the interference of high noise and Rayleigh multi-path fading.

The reason is previous works on multiple source positioning so far has just been for stand-still

sources [41][46][56][81][93], thus the Doppler effect does not exist in their signal models. Deal-

ing with convolved mixtures under the influence of Doppler effect and Rayleigh multi-path fading

for localization, which has not mentioned before, will be discussed in this work.

We have introduced the early version of the system design for source positioning based on

ICA technique on the frequency domain in order to eliminate the influence of time delays and to

extract the ratios between original source energies for position estimating [18]. Our preliminary

method can deal with convolved mixture data [14][79] and avoid many drawbacks of convolved

mixture ICAs on both time and frequency domains [69][89][96]. Nevertheless, it can only be

used for positioning still sources and does not adequately tolerate the noise. It fails to recover the

frequency images, or magnitude spectral images, of moving sources when Doppler effect causes
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different spectral shifts on the frequency domain especially when Rayleigh multi-path fading is ex-

perienced [28]. Using ICA on the data of frequency images, we observe that independent sources

allow for replacing the high-cost and low-reliability ICA techniques with clustering methods. The

positioning can be solved relying on the information of magnitude ratios each of which is calcu-

lated from energies of an f-component at different sensors. Object localization method based on

this information has not appeared in any previous works before either and will be presented in

the later chapters. For multiple moving source localization, this thesis does not pay attention to

tracking stage but to positioning instead. That means the tracking which considers the past and

present states, the velocity and the direction of moving to enhance the estimation accuracy is not

the focus of this work and will be left as the future improvement work.



Chapter 2

Push-pull Estimation (PPE) for Sensor

localization

This chapter describes the idea of Push-pull Estimation (PPE) along with the annotations [17].

Then the analyses of the proposed method are presented to highlight its advantages in terms of

distributed ability, scalability, low computation cost, low communication cost, accuracy, etc. The

simulation results are in the first Section of Chapter 4 for the purposes of verifying the analyses

and comparing the results with those of other contemporary successive refinement approaches.

2.1 Push-pull Estimation (PPE)

2.1.1 Annotation and description of PPE

Our proposed algorithm [45] is based on geometry in which the errors of measurements are mod-

eled into pushing and pulling forces. The influence of these forces leads a node to the point where

all of the forces are balanced or, in other words, where the errors are minimized and canceled out

through the averaging mechanism. The algorithm is named the Push-pull Estimation because of

this original concept. PPE is designed to meet the basic requirement that if the range measurement

15
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is shorter than the calculated distance between two nodes, these two nodes pull each other, and

vice versa. In addition, the force magnitude should be a monotone function of the discrepancy

between the measured and the calculated distances in order for PPE to work and converge. The

bigger is the discrepancy, the higher is the influence it gives to reduce itself. This idea is demon-

strated in Fig.2.1 where node i needs to update its coordinates to the balanced position. Node j

causes a pushing force on i because the range measurement between i and j is longer than the cur-

rent calculated distance between them, and contrarily, node k exerts a pulling force on i. It should

be noted that in the concept of this model, we give normal nodes the moving ability and consider

location updating as a process in which normal nodes move under the influence of forces caused

by their neighbors. When a normal node attempts to locate its balanced position, it considers the

other nodes to be still.

Assuming that the total node number of a 2-D deployed sensor network is N , N = n + m

where n is the number of normal nodes and m is the number of anchors, m << n. Let x = {xi :

i = 1..N}, xi ∈ R2, be the true coordinate vector of normal sensors {xi : i = 1..n} and anchors

{xi : i = (n+ 1)..N}. The true distance dij is the Euclidean distance between i and j,

dij = ∥xj − xi∥ ; i, j = 1..N, (2.1)

so, dii = 0 and dij = dji.

We used the range-based scheme for PPE input by assuming that with a certain methodology,

unbiased measurements from a node to its neighbors and several anchors are available. This is

normal in most range-based localized WSNs. The ranges can also be estimated through hops

[58][90], and the anchors may have a large broadcasting range. Then the pair-wise measurement

or the measured distance between node i and j is δij : i, j = 1..N ; δij = δji, δii = 0 and δij = 0

if the range from i to j is too large, or out of range. Since the error of measurement is always

proportional to the real distance, δij has the following form [44]

δij = dij + dij .noiseij , i, j = i..N (2.2)
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(a)

(b)

Figure 2.1: (a) Node i and measurement errors from i to its reference nodes. (b) The errors are

modeled as pull-push forces.
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where noiseij ∼ K
(
0, σ2

n

)
, some zero-mean distribution. We also define the current estimated

coordinate vector to be x̃ = {x̃i : i = 1..N}, x̃i ∈ R2, certainly we always have x̃j = xj , j =

(n+ 1)..N . The localization problem can be succinctly stated: the input data of the algorithm are

measurements δij and anchors’ locations {xj : j = (n+1)..N}; the algorithm will give an initial

x̃ and will update each x̃i of x̃ so that the difference between x̃ and x is as small as possible, x̃ then

is the solution to the problem. Let the current calculated pair-wise ranges be d̃ij , then

d̃ij = ∥x̃j − x̃i∥ , i, j = 1..N. (2.3)

Now the distributed PPE algorithm for a normal node i is presented with three phases. In each

phase node i uses iterations to produce a balanced position by updating position x̃i with the two

following equations:

−→
Fi

(p) =
1

M
(p)
i

∑−→
fij

(p)
, (2.4)

x̃i ← x̃i + α(p)−→Fi
(p). (2.5)

α(p) in (2.5) is the movement rate and
−→
Fi

(p) is the mean-force caused by a set of M (p)
i related

nodes. These parameters vary in different phase p of PPE.

- Phase 1: Raw estimation:

Node i needs at least three different beacon positions and the measurements from itself to

these beacons. By computing (2.4) and (2.5), i gets its raw estimated location where the sum of

forces caused by the related beacons is balanced. At each iteration, these forces are

−→
fij

(1) =
(
d̃ij − δij

)−→eij , (2.6)

where j is the index of beacons related to i, and −→eij is the unit vector pointing from x̃i to x̃j to

indicate the direction of
−→
fij . The initial position of x̃i is chosen as the mean position of these

beacons. Choosing the initial position is empirical and will be mentioned later in Section 4.1.1.

M
(1)
i is the number of beacons related to i, see Fig.2.2.
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i

i

Beacon node 

Normal node 

j

Figure 2.2: Phase1 reference nodes are the beacons that node i refers to
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- Phase 2: Pre-refinement:

After normal nodes complete the raw estimation phase, node i takes the measurements to all

of its related nodes, consisting of related neighbors and beacons (see Fig.2.3), and their current

updated positions for determining its new balanced position. For normal neighbor j, x̃j is the

current estimated position and for related beacon j, it is the actual position. At each round the

individual forces are

−→
fij

(2) =
(
d̃ij − δij

)−→eij . (2.7)

For both phase 2 and phase 3, after a certain number of iterations, node i must send out its

current updated position to its normal neighbors and get the new updated positions of the neighbors

for better location computing.

- Phase 3: Refinement:

This phase is used last to improve result accuracy because the error of measured distance is

proportional to the actual distance. It has the same behavior as phase 2 with the same related

nodes, or M (3)
i = M

(2)
i . The difference is the way node i calculates the forces caused by all of its

related nodes.
−→
fij

(3) is obtained by dividing
−→
fij

(2) by d̃ij ,

−→
fij

(3) =

(
d̃ij − δij

d̃ij

)
−→eij =

(
1− δij

d̃ij

)
−→eij . (2.8)

j in phase 3 is the same as that in phase 2, the index of all nodes related to i. The stop condition

for all three phases is when the magnitude of the mean-force on i is less than some small positive

value or when a given maximum number of iterations is reached. Note that d̃ij ̸= 0 in all three

phases, d̃ij = 0 means that i does not have the measured distance to j and so will not use j as a

related node for updating its position.

For convenience of description and further analysis, we add the following common formula

−−→
f
(p)
ij =

(
d̃ij − δij

Lij

)
−→eij , (2.9)
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i

Beacon node 

Neighbor nodes 

j

Figure 2.3: In phase 2 and phase 3, a node has the same reference nodes which are the beacons

and the neighbors that it refers to
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where

Lij =

 1 for phase 1 and phase 2

d̃ij for phase 3
. (2.10)

Clearly, if δij < d̃ij , then
−→
fij , having the same direction with vector−→eij , will be a pulling force

given by node j on node i; and vice-versa, if δij > d̃ij ,
−→
fij will be a pushing force. If δij = d̃ij ,

the force of j on i is zero.

This force model is the core idea of the algorithm. When a normal node, say node i, is at a

position where the forces around it are not balanced, i will move under the force influence to a new

position where the sum-force tends to be weaker. While i is moving, at any new position, the sum-

force changes in both of magnitude and direction, so the path of movement is actually a curve.

Since we can not make a continuous curve, we will use step-wise movements over iterations to

update the estimation. In addition, α(p)−→Fi
(p) must be a quantity in the same unit as that of dij or

δij . We can define α(p) with a more specific formula


α(1) = α1

α(2) = α2

α(3) = α3d̃ij

, (2.11)

where αi is a non-unit quantity and is small enough to guarantee convergence; and d̃ij is the mean

value of the distances measured from i to its neighbors and can be replaced by other parameters

provided that the replaced ones have the same unit of length. Determining the value of α(p) so

that the step is small enough to guarantee convergence is difficult. If α(p) is too small, too many

iterations are needed. If it is too large, the algorithm may not converge. There are a few approaches

for adjusting α(p) to overcome this dilemma. For consistency with the goal of low cost, we choose

the line search technique by doubling α(p) until
∥∥∥−→Fi

(p)
∥∥∥ starts to increase.

For evaluating the accuracy of PPE in later sections, we use the root mean square of the

position errors.
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RMS =

√
1

n

∑
k

∥x̃k − xk∥2, (2.12)

where k is the index for a normal node.

2.1.2 PPE’s convergence analysis

We analyze PPE’s convergence by proving the following statements:

i) “In all three phases, a node will always find a balanced position via the force mechanism.”

This statement implies that the force described in (2.9) converges the location of a normal node

i to a balanced point, and therefore i would never get stuck in infinite loop. In this part, we try to

prove that when a node moves along the mean force influencing on it, the mean force magnitude

will decrease. Therefore, it finally gets to a position where the mean force is zero, or the position

where the forces around make the position a balanced point. We decompose the mean-force
−→
Fi

(
−→
Fi =

−−−→
F

(1,2)
i ) into two orthogonal sub-components

−→
Fu and

−→
Fv in a coordinate system uOv in

which−→eu and−→ev are the basis vectors. In order to simplify the analysis, we choose
(
−̂→
Fi,
−→
Ou

)
= 0

and let φj =

(
−̂→
Fi,
−→
ij

)
(see Fig.2.4). For phase 1 and phase 2, the mean-force is rewritten:

−→
Fi =

1

M
(p)
i

∑
j

(
d̃ij − δij

)−→eij , (2.13)

−→
Fi =

−→
Fu +

−→
Fv, (2.14)

−→
Fi =

−→eu
M

(p)
i

∑
j


(√

(ui − uj)
2 + (vi − vj)

2 − δij

)
×

cosφj


+
−→ev

M
(p)
i

∑
j


(√

(ui − uj)
2 + (vi − vj)

2 − δij

)
×

sinφj

 .

(2.15)
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(a)

(b)

Figure 2.4: (a) The mean-force in coordinate system uOv. (b) The mean-force decreases in mag-

nitude when a node moves along it.
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Now we analyze how the mean-force changes when i moves along
−→
Fi’s direction such a small

distance that φj is considered to be unchanged. It should be noted that although the v-component
−→
Fv = 0, when i moves along

−→
Fi,
−→
Fi becomes

−−→
Fi

+, and the v-component of
−−→
Fi

+ is not zero. Partial

derivation of equation (2.15) reveals

∂
−→
Fi

∂ui
=
−→eu

M
(p)
i

∑
j

 (ui − uj) cosφj√
(ui − uj)

2 + (vi − vj)
2


+
−→ev

M
(p)
i

∑
j

 (ui − uj) sinφj√
(ui − uj)

2 + (vi − vj)
2

, (2.16)

∂
−→
Fi

∂ui
=

 1

M
(p)
i

∑
j

− cos2 φj

−→eu
+

 1

M
(p)
i

∑
j

− cosφj sinφj

−→ev .
(2.17)

Equation (2.17) means that when i moves along
−→
Fi a very small distance ∆u (∆u > 0),

−→
Fi

changes by an amount of ∆
−→
Fi, which is composed by two orthogonal components ∆

−→
Fu and ∆

−→
Fv

(see Fig.2.4),

∆
−→
Fi = ∆

−→
Fu +∆

−→
Fv. (2.18)

∆
−→
Fi =

 1

M
(p)
i

∑
j

− cos2 φj

∆ui
−→eu

+

 1

M
(p)
i

∑
j

− cosφj sinφj

∆ui
−→ev .

(2.19)

The new updated mean-force on i becomes
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−−→
Fi

+ =
−→
Fi +∆

−→
Fi. (2.20)

Because of the fact that
∑
j
− cos2 φj < 0, the inner product

⟨
∆
−→
Fu,
−→eu
⟩
< 0, or ∆

−→
Fu always

has a counter-direction to
−→
Fi. In addition,

∥∥∥∆−→Fv

∥∥∥ ≪ ∥∥∥−→Fi

∥∥∥. As a result, for phase 1 and phase 2

(see Fig.2.4b):

∥∥∥−−→Fi
+
∥∥∥ ≈ ∥∥∥−→Fi +∆

−→
Fu

∥∥∥ <
∥∥∥−→Fi

∥∥∥ . (2.21)

In the same manner, in phase 3, we infer the change amount of
−−→
F

(3)
i ,

∂
−−→
F

(3)
i

∂ui
=

1

2M
(3)
i

∑
j

(
− δij

d̃2ij

)
cos2 φj

−→eu
+

1

2M
(3)
i

∑
j

(
− δij

d̃2ij

)
sinφj cosφj

−→ev .
(2.22)

The u-component ∆
−−→
F

(3)
u is also opposite in direction with

−−→
F

(3)
i . Therefore, (2.21) holds for

all three phases of PPE. This means that when i moves under PPE’s force effect, the mean-force’s

magnitude gets smaller and smaller. As a result, i’s location eventually converges to a balanced

position.

One can easily see that PPE is basically an optimization method for a normal node in which

the objective function to minimize is the length of the mean-force,

x̃i = argmin
x̃i

∥∥∥−→Fi
(p)
∥∥∥ . (2.23)

Aiming at a low-cost algorithm, we have avoided much of the complicated load of the gra-

dient descend method which provides the optimal direction of movement. By letting a normal

node gradually move along the mean-force, our method is simpler and involves only few simple

computations. The proof above guarantees the minimization.
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ii) “Estimation of a normal node in phase 1 is unbiased.”

In this phase, the reference nodes of a normal node i are the anchors. Since E {δij} = dij , the

expectation of the mean-force is

E

{−−→
F

(1)
i

}
=

1

M
(1)
i

∑
j

(
d̃ij − dij

)−→eij (2.24)

where j is the index of the known-location nodes. This equation implies that the expectation

of the mean-force is built upon the correct measurements from the known-location nodes. Each

individual force
−→
fij tries to move i to the circle Cij , having the radius dij , to minimize its own

magnitude (see Fig.2.5). As the result, i’s position converges to the intersection point i0 of these

circles Cij , or

E {x̃i} = xi. (2.25)

iii) “Estimations of a normal node in phase 2 and phase 3 are unbiased.”

In these two phases, every normal node has its raw location estimation and uses all of its

reference nodes to better the estimation. Since the algorithm mainly deals with probability issues,

we not only consider the force effects to be specifically caused by the nodes but also consider the

force effects caused by sub-areas. We assume that the whole deployed area is divided into small

sub-areas, in each of which the node number is large and the node distribution is uniform. Fig.2.6

illustrates this idea: the actual positions are the black round nodes, e.g., k0, while the current

estimated positions are the smaller black square nodes, e.g., k. The solid links between them are

the current errors of estimations. What we want to do here is to prove that even with these errors

of estimations, the balanced position of node i under PPE mechanism is its actual position i0.

Let the mean force on i caused by the area SK be

−−→
FiK =

1

nk

∑
k

(
d̃ik − δik

Lik

) −→
ik

d̃ik
. (2.26)
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Figure 2.5: When the measurements have no error and the reference nodes’ locations are known,

the balanced point of a node is its actual position.
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Figure 2.6: The force effect of a sub-area on a node is equivalently the force effect caused by the

center position of this sub-area with the correct measurement.
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E
{−−→
FiK

}
= E

{(
d̃ik − dik − dik.noiseik

Lik

) −→
iK +

−→
Kk

d̃ik

}
. (2.27)

K is the center point of SK , and nk in (2.26) is the number of nodes in SK . In (2.27), noiseik

and
−→
Kk are independent of each other and of dij , d̃ij . E

{−→
Kk
}

= 0 since the estimation of the

previous phase is unbiased. Equation (2.27) is rewritten as

E
{−−→
FiK

}
= E

{(
d̃ik − dik

d̃ikLik

)}
−→
iK (2.28)

E
{−−→
FiK

}
= E

{(
ik − i0k0

d̃ikLik

)}
−→
iK. (2.29)

Assume that the estimation errors of nodes in Sk are small so that k still has a uniform distri-

bution in SK , or E {ik} = E {ik0}.

- If iK = i0K, then E {ik0 − i0k0} = 0. Since d̃ikLik is a positive and bounded value,

E
{−−→
FiK

}
= 0.

- If iK > i0K, then E {ik0 − i0k0} > 0, and E
{−−→
FiK

}
becomes a pull force with the

direction of
−→
iK.

- Conversely, if iK > i0K, then E
{−−→
FiK

}
becomes a push force. Hence, the balanced point

of i belongs to the circle C(K, i0K).

Combining the effects of other sub-areas on i, we find that i0 becomes the unique balanced

position of i. With the previous proof that PPE leads i to a balanced point, we can conclude that

the estimations of i in phase 2 and phase 3 are unbiased.

In these two phases, a normal node acts as if it is affected by forces caused by groups of

reference nodes, where each group plays the role of a beacon. With more reference beacons,

phase 2 has a better accuracy of estimation than does phase 1 (see Section 2.1.3). In addition,

it should be noted that the assumption that k has a uniform distribution in SK is not a tight one.

However, through iterations, each node updates and achieves a better and better estimation, so the

assumption becomes tighter and tighter. Consequently, the expectation of the balanced point of
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a normal node i is the very i0, and PPE drags i toward i0 even when the current estimations of

the reference nodes are experiencing errors. In other words, one node’s updating is independent

of the others’ and global convergence is obtained. This means that the distributed PPE is a robust

convergent algorithm.

2.1.3 Necessity of PPE’s phases

Raw estimation, i.e. initial input data, is the same requirement for most successive localizations,

unless the Procrustes algorithm is used [44][47]. Procrustes is the method used in the last module

of localization to fix a flipped or rotated result. However, it usually needs all of the node location

estimations, leading to a centralized mechanism and the associated problems, which all distributed

approaches aim to avoid. The raw estimation can be any one of the low cost algorithms so far.

However, multilateral localizations have either complicated calculation (localizing the most likely

area) or a high number of anchors [51][63][65][76][87][94]. Contemporary successive algorithms

are surely more complex; in [47], MDS is used to obtain this raw estimation. Clearly, PPE’s phase

1 plays an important role for the later phases based only on simple computations. Moreover, by

using phase 1, we can utilize the same hardware and software modules because the structures of

all of three phases are similar. This makes the method more practical.

In all three phases, if the reference node number is infinitely large, the node’s balanced position

will be at its actual position. Unfortunately, the limited reference node number M (p)
i and the errors

of measurements make the mean-force non-zero at the correct position i0, drive i out of i0, and rise

PPE’s error (see Fig.2.7a). Obviously, the larger is the variance of the mean-force’s magnitude, the

larger is the error in the final result. Therefore, to compare the performances of the three phases,

we examine the variance of
∥∥∥∥−−→F (p)

i

∥∥∥∥ at position i0 when all of the reference nodes are at the correct

positions.

Let
∥∥∥∥−−→F (p)

i

∥∥∥∥ = F
(p)
i ,

∥∥∥∥−−→f (p)
ij

∥∥∥∥ = f
(p)
ij and decompose each individual force

−−→
f
(p)
ij into components

as in Fig.2.7b, so
−−→
f
(p)
ij =

(
f
(p)
ij cos θj , f

(p)
ij sin θj

)
. Remarking that E

{
f
(p)
ij

}
= 0 , E

{
F

(p)
i

}
=
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(a) (b)

Figure 2.7: (a) The mean-force is not a zero vector at the correct position because measurements

have errors and the number of reference nodes is limited. (b) A force is decomposed into horizontal

and vertical components.

0, (unbiased measurement error and unbiased estimation respectively), and f
(p)
ij and θj are two

independent variables, we have

−−→
F

(p)
i =

1

M
(p)
i

∑
j

−→
fj , (2.30)

−−→
F

(p)
i =

 1

M
(p)
i

∑
j

f
(p)
ij cos θj ,

1

M
(p)
i

∑
j

f
(p)
ij sin θj

 (2.31)

var
(
F

(p)
i

)
= E

{(
F

(p)
i

)2}
− E2

{
F

(p)
i

}
(2.32)

var
(
F

(p)
i

)
=

E


 1

M
(p)
i

∑
j

f
(p)
ij cos θj

2

+

 1

M
(p)
i

∑
j

f
(p)
ij sin θj

2
(2.33)
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var
(
F

(p)
i

)
=

var
(
f
(p)
ij

)
M

(p)
i

. (2.34)

Equation (2.34) implies that the variance of F
(p)
i does not depend on the directions of the

forces caused by neighbors, but only on the reference node number and the variance of the in-

dividual force. It also guarantees that phase 2 is necessary to improve phase 1’s result, which is

obtained only with anchors (M (1)
i < M

(2)
i ).

In order to show the necessity of phase 3 over phase 2, we compare the variances of the

individual forces in these two phases because the number of reference nodes in these phases are

the same, M (2)
i = M

(3)
i . From (2.4) and (2.11), we have var
(
f
(2)
j

)
= var (α2 (δij − dij)) = var (α2dij .noiseij)

var
(
f
(3)
j

)
= var

(
α3dij .

δij−dij
dij

)
= var

(
α3dij .noiseij

) (2.35)

Obviously, in each phase, the balanced position of a node is the same with any αi provided that

αi is small enough so that PPE can obtain convergence. Therefore the comparison is meaningful

only when the forces have equivalent magnitudes, or

∑
j

α2dij .noiseij ≈
∑
j

α3dij .noiseij ⇔ α2 ≈ α3. (2.36)

Then,

var
(
f
(2)
j

)
= α2

2

[
E
{
(dij .noiseij)

2
}
− E2 {dij .noiseij}

]
= α2

2

[
E
{
d2ij
}
E
{
(noiseij)

2
}
− 0
] (2.37)

⇔ var
(
f
(2)
j

)
= α2

2

(
var (dij) + E2 {dij}

)
var(noiseij) =

= α2
2E

2 {dij} var (noiseij) + α2
2var (dij) .var (noiseij) .

(2.38)

Meanwhile,

var
(
f
(3)
j

)
= α2

2dij
2
var (noiseij) = α2

2E
2 {dij} var (noiseij) . (2.39)
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Equations (2.38) and (2.39) lead to

var
(
f
(3)
j

)
< var

(
f
(2)
j

)
. (2.40)

The variance of the mean-force is reduced in the refinement phase. Consequently, the result

of estimation in phase 3 is better than that in phase 2 when the measurement error is proportional

to the real distance. Confirmations are conducted via simulation in Section 4.1.3.

2.1.4 Distributed ability and scalability

In any of the three mentioned phases, PPE works distributedly in the way that the computation load

of localization is divided into sub-tasks performed by the normal nodes of the network. Statements

proved in Section 2.1.2 assure the convergence of the whole result, even if the reference positions

are not correct. Hence, normal nodes do not require synchronized updating while the localization

is being performed. In other words, PPE is a distributed algorithm.

One important point is that the lack of minor information can be accepted by PPE. Removed

or added nodes will not affect much a node’s position updating as long as the number of these

nodes is small compared to the number of reference neighbors. The reason is that each individual

force contributes to the mean-force an amount proportional to 1
/
M

(p)
i

. Some nodes, including

newly added ones, even do not need to obtain the distances to the beacons beforehand because

they can use the estimated positions of the reference neighbors. Besides, each node only uses

the information of its nearest anchors and neighbors, so the scalability of a network using PPE is

assured.

In any distributed successive refinement localizations, a node needs to know its neighbors’

current positions in order to obtain a higher estimation at every iteration. The communication cost

would significantly increase, whereas network designers continually try to reduce and replace it

with computation cost. Fortunately, PPE is a good way to soothe the burden of communication

cost. Proven statements guarantee that a node’s updated result is not affected much by those of oth-

ers. Hence, it is unnecessary for a node to send out requests to its neighbors for reference updated
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positions after every iteration. Instead, the communication cost can be reduced when a normal

node sends the request task once after every R internal iterations on it, or in other words, the task

is skipped R − 1 times. We call R the cycle request number. Consequently, the communication

cost decreases by R-fold.

PPE Communication Cost =
C.Cost

R
, (2.41)

where C.Cost is the total communication cost of a net work when R = 1. This again verifies

PPE’s distributed ability and scalability for practical implementation with light computation and

communication. A simulation set in Section 4.1.1 shows how little a node’s iteration result de-

pends on those of the others; and another in Section 4.1.3 illustrates the slight trade-off of accuracy

for significant communication cost.

2.1.5 De-biasing function and RSS scheme

The noise model in this work does not have to be a specific one which can be represented by

a mathematical formula. The only constraint of the noise model is a zero-mean distribution or

unbiased measurements.

Suppose we have a function g (.) that changes the distribution of variable δij into an unbiased

distribution of variable g (δij) and g (.) is a monotone increasing function so that PPE can correctly

define the direction of the force, the formula (2.6), (2.7), and (2.8) now can be replaced by

−→
fij

(1) =
−→
fij

(2) =
(
g (δij)− g

(
d̃ij

))−→eij (2.42)

and

−→
fij

(3) =

g (δij)− g
(
d̃ij

)
g
(
d̃ij

)
−→eij . (2.43)
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Phase 3 with (2.43) is necessary only when the error of g (δij) is proportional to g (dij). In re-

ality, RF power decays proportionally to a negative exponent of the distance. As a result, the power

error measured at a receiver is modeled to the log-normal distribution, Pij ∼ N
(
E {Pij} , σ2

p

)
.

This log-normal is proven to be suitable for modeling the decaying power of RF signals in both

practice and literature [67]. We will find the de-biasing function g (.) for this case:

Pij = P0 − 10 log10

(
δij
d0

)
, (2.44)

Pij = E {Pij}+ Pnoise. (2.45)

Pij is the received power in decibels at node i when node j transmits to i and Pnoise ∼

N
(
0, σ2

p

)
while P0 is the received power, also in decibels, from a node at a reference distance d0.

In this thesis, we do not focus on the physical parameter channel-loss, which is included in the

Gaussian variable Pnoise (see Appendix of [44]), and just use Pnoise for the simulation of the

log-normal measurement model. Rewrite (2.45):

10 log10 (δij) = 10 log10 (dij)− Pnoise. (2.46)

Even though δij does not have an unbiased distribution over dij , 10 log10 (δij) does over

10 log10 (dij). Therefore the de-biasing function in PPE to deal with the log-normal distribu-

tion is g (d) = 10 log10 (d). Actually, the function g (d) does not need to be exactly 10 log10 (d),

but any of the log variations providing that g (d) is a monotone increasing function and

g (δij) = g (dij) + t.N
(
0, σ2

p

)
, t ̸= 0. (2.47)

Then,

g (d) = a log10 (d) , a ∈ R+. (2.48)
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For a log-normal RSS scheme, the measurement model is (from (2.46))

δij = dij10
Pnoise/10, (2.49)

and only the first two phases with (2.42) are used.

In general, PPE is a geometry based method for sensor localization. The measurement model

can be of any providing that it is unbiased. When it is not, if a de-biasing function is derived,

then PPE can be used properly. For three most usual situations of measurement model depicted

in Fig.2.8, PPE gives good performance as one can see in the experiments in later chapter. For

the first model, δij = dij + noiseij , the first two phases are used. For the second model, δij =

dij + dij .noiseij , all three phases are used. For the log-normal distribution of the third model, the

first two phases are used with the de-biasing function defined in (2.48).

2.1.6 Details of PPE

As a consequence of all PPE’s characteristics and the related analysis, PPE for a normal node

i now can be described in details as in Fig.2.9 and in the algorithm flows. In this description,
−→
fij

(p) is defined in (2.42); g (.) is the de-biasing function. We choose g (d) = d if the distance

measurement is unbiased ( both δij = dij + noiseij and δij = dij + dij .noiseij) and (2.43) and

g(d) = log10 d if it has a log-normal distribution (δij = dij10
Pnoise/10,). R is the cycle request

number.

Followings are the algorithm details of all three phases:
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 ! !2
~ 0,ij nnoise K  , some zero-mean distribution

=ij ij ijd noise !

d d i = .ij ij ij ijd d noise !
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Figure 2.8: PPE’s measurement noise model. (a) simple unbiased noise model [7][99], (b) pro-

portional to distance unbiased model [43][24], (c) log-normal model [15][50]
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PPE’s phase 1 

(Raw Estimation) 

PPE’s phase 2 

(Refinement for normal 

unbiased measurement) 

PPE’s phase 3 

(Raw Estimation) 

 
Unbiased 

Measurement ? 

 Error proportional 

to distance? 

PPE’s phase 1 with 

Debiasing Function 

END 

Start 

N 
Y 

N 

Y 

PPE’s phase 2 

with Debiasing Function 

Figure 2.9: The summary flow chart of all PPE’s phases and the condition for using them.
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+ Send out requests for nearest anchors’ coordinates xj (at least three) and the

measurements to each.

+ Set the initial position, x̃i = 1

M
(1)
i

∑
j
xj .

+ Set the initial moving step α(1).

+ k(1) = 0, k(1) is the iteration index.

repeat
k(1) = k(1) + 1;
−→
Fi

(1) = 1

M
(1)
i

∑
j

−→
fij

(1);

(j is the index of the nearest beacons).

if F (1)
i still decreases over the iterations then
Double α(1);

end

else
Halve α(1);

Stop updating α(1);

end

x̃i ← x̃i + α(1)−→Fi
(1);

until (k(1) > k
(1)
max) OR (

∥∥∥−→Fi
(1)
∥∥∥ < ϵ) ;

Algorithm 1: Phase 1: Raw estimation
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+ α(2) = α(1);

+ k(2) = 0, k(2) is the iteration index.

repeat

if mod(k(2), R) == 0 then
Request the current updated coordinates of the neighbors.

Send out the current self updated position x̃i to the neighbors.

end

k(2) = k(2) + 1;
−→
Fi

(2) = 1

M
(2)
i

∑
j

−→
fij

(2);

(j is the index of all reference nodes).

x̃i ← x̃i + α(2)−→Fi
(2);

until (k(2) > k
(2)
max) OR (

∥∥∥−→Fi
(2)
∥∥∥ < ϵ) ;

Algorithm 2: Phase 2: Pre-refinement
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+ α(3) = α(2);

+ k(3) = 0, k(3) is the iteration index.

repeat

if mod(k(3), R) == 0 then
Request the current updated coordinates of the neighbors.

Send out the current self updated position x̃i to the neighbors.

end

k(3) = k(3) + 1;
−→
Fi

(3) = 1

M
(3)
i

∑
j

−→
fij

(3);

(j is the index of all reference nodes).

if F (3)
i still decreases over the iterations then
Double α(3);

end

else
Halve α(3);

Stop updating α(3);

end

x̃i ← x̃i + α(3)−→Fi
(3);

until (k(3) > k
(3)
max) OR (

∥∥∥−→Fi
(3)
∥∥∥ < ϵ) ;

Algorithm 3: Phase 3: Refinement



Chapter 3

Acoustic based multi-object positioning

We have the discussions in previous Chapters about the sensor localization with the proposed

method named Push-pull Estimation (PPE). The sensor localization is actually a must that provides

prior information about sensor locations without which the object positioning could not be done.

When the first problem is solved, we continue to present a method for the next problem to locate

the moving sources, which is the ultimate goal of this thesis. This chapter introduces the idea

for solving the problem of localizing multiple moving sources which is already described in the

beginning of the chapter, then a full description is introduced next. In the first parts of the second

Section of Chapter 4, the simulation results are for the idea illustration and the idea evaluation

while in the later part, an demonstration with real data is presented.

3.1 Annotation and proposed method

Assume that there are M objects emitting continuous zero-mean acoustic signals and Q location-

known sensors; these signals can be considered as sj(t), j = 1, ..,M . At each sensor i, the

received data is denoted as xi(t). The data received at each sensor is the actual signal with contin-

uous values of delay, similar to the model in [80], and is calculated according to

43
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xi(t) =
M∑
j=1

aijsj(t− τij(t)), i = 1, .., Q (3.1)

where aij is a real positive number representing the amplitude gain of the signal from source j

measured at sensor i and τij(t) is the propagation time of this signal. When the sources are fixed,

the delays τij(t) are constants. However, if the sources move, these parameters change at different

time points,

τij(t) =
dij(t)

vc
, (3.2)

where dij(t) is the immediate distance from sensor i to source j and vc is the velocity of acoustic

propagation. Source j’s movement with velocity vj causes τij(t) to increase or decrease over time,

resulting in a stretched or compressed image of the source signal on the time domain at receiver i.

As a result, different shifts are caused to different f-components at the receivers. This phenomenon

is known as Doppler effect [72] (chapter 17) and is expressed as

fij =

(
vc

vc + vj cos(θij(t))

)
fj , (3.3)

where fj is some f-component of source j, fij is the shifted version of fj received at sensor i, and

θij(t) is the immediate angle between −→vj and
−→
ij . Doppler effect demonstration is in Fig.3.1

The problem can be stated as: Without prior knowledge about the sources except for the

received data at the sensors and the information that delayed versions of the sources are statistically

independent of one another, the locations of sources must be determined.

Specifically, the problem can be seen in more details in Fig.3.2 with many challenges. The

signals are compressed or stretched depending on the speeds of the sources due to Doppler effect.

The collected data also includes Rayleigh multi-path fading noise. Rayleigh fading effect is caused

when a signal propagates in every direction out of the source and is reflected when hitting obstacles

in the setting before reaching to the recorders. As a consequence, not only the line-of sight signal

to the sensor is recorded but also the reflections of the signal are recorded. The coming reflections
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Figure 3.1: Doppler effect illustration.
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Figure 3.2: Acoustic multiple moving object problem and its challenges in terms of acoustic

delays, Doppler effect, Rayleigh fading noise and environment noise.
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is unpredictable in terms of amplitude and phase, making the recorded signal exceeds at some

frequencies and degrades at some others. The problem is even more difficult when the sources

move, that means the signal comes out of the source at different directions will be different on

the time domain due to Doppler effect. Now each sensor receives a combination of signals from

the sources or the data of convolved mixtures with the Rayleigh fading noise and the setting

noise. In this part of source positioning, the Gaussian noise is assumed to be the noise of the

environment. Fortunately, under the assumption that the source signals are independent, we can

solve the problem of source positioning mainly with two clustering stages and an optimization

stage.

As mentioned before, the feature τij(t) is actually the best measurement, giving good results

of object location estimation. However, it is difficult to extract this feature and a big load of

communication is required to transmit all of the data to the base in order to perform the algorithm.

In this thesis, we mainly focus on extracting the relative information among the magnitudes of the

f-components at different sensors.

3.2 Distance information extraction

Note that if there is only one active fixed source and the others are inactive, or emitting no sound,

applying Short Time Fourier Transformation (STFT) [66] to the sampled data si(tk) at this source

and sampled data at each sensor, we obtain the same magnitude spectral images. The different

parts of the STFT results are the scalar coefficients and the phase spectral images. Obviously, the

time-delay τij only affects the phase spectral image. Therefore, for multiple fixed and independent

sources, if STFT is applied at each sensor for each mixture, the result is:

Xi(ω) =
M∑
j=1

aijSj(ω)e
−2πτij , i = 1, .., Q, (3.4)
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|Xi(ω)| =
M∑
j=1

|aij | |Sj(ω)|, i = 1, .., N. (3.5)

As usual, the continuous form of STFT is difficult to compute and store, so the Discrete Fourier

Transformation (DFT) form is the best choice of replacement. Equation (3.5) is rewritten in the

discrete form as

|Xi(ωk)| =
M∑
j=1

|aij | |Sj(ωk)|, i = 1, .., Q. (3.6)

Evidently, the magnitude spectrum data takes the form of instantaneous mixtures. The sound

signals are zero-mean, mainly composed of sinusoid waves. Also, the delayed versions of source

signals are statistically independent of one another. That leads to the fact that if an f-component is

included in one source, it would not be present in the others. Therefore, the magnitude spectra of

different |Sj(ωk)| are orthogonal to each other or

|Su (ωk)|T |Sv (ωk)| = 0, u ̸= v. (3.7)

As a result, when the number of sources is less than or equal to the number of sensors, |Sj(ωk)|

in (3.6), or the the magnitude spectral image of si(tn) can be restored using a standard ICA

[11][18][34][77]. The idea of applying ICA on Fourier domain is presented on [6][35]. However,

note that ICA cannot restore the magnitudes of the original Independent Components (ICs). In-

stead of providing the exact |aiz| |Sz(ωk)|, ICA results in bz |Sz(ωk)|, bz ∈ R. That means ICA

can restore the signal with some different scale coefficient bz . |Xi(ωk)| is the linear combina-

tion of orthogonal vectors |Sj(ωk)|, thus the inner product of each IC vector |bz| |Sz(ωk)| and

each magnitude spectral image |Xi(ωk)| contains the information of energy of this IC observed

by sensor i.

(|bz| |Sz(ωk)|)T |Xi(ωk)| = |bz| |Sz(ωk)|T
M∑
j=1

|aij | |Sj(ωk)| (3.8)
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Figure 3.3: Sensor architecture and Base architecture of the proposed system.

or

(|bz| |Sz(ωk)|)T |Xi(ωk)| = |bzaiz| |Sz(ωk)|T |Sz(ωk)| . (3.9)

Therefore, for each IC z, for each pair of magnitude spectral images of observed data at sensors

i and l, the ratio
∣∣∣aizalz

∣∣∣ can be achieved as

∣∣∣∣aizalz

∣∣∣∣ = (|bz| |Sz(ωk)|)T |Xi(ωk)|
(|bz| |Sz(ωk)|)T |Xl(ωk)|

. (3.10)

Meanwhile, ∣∣∣∣aizalz

∣∣∣∣2 = a2iz |sj(tn)|
T |sj(tn)|

a2lz |sj(tn)|
T |sj(tn)|

=
Eiz

Elz
, (3.11)
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where Eiz is the energy sent by source z and received by sensor i in an interval of time. Since

the absorption of gas molecules is insignificant, due to the inverse square law, the energy of sound

decreases proportionally to the inverse square of the distance [72] (chapter 17). In other words,

Eiz

Elz
=

(
1/diz

)2
(
1/dlz

)2 . (3.12)

From (3.10), (3.11) and (3.12), we have the relationships of all pairs of distances from any

tracked object j to all sensors,

rilz =

∣∣∣∣aizalz

∣∣∣∣ = dlz
diz

=
(|bz| |Sz(ωk)|)T |Xi(ωk)|
(|bz| |Sz(ωk)|)T |Xl(ωk)|

, i ̸= l. (3.13)

Based on these relationships, the locations of all of the sources will be inferred.

However, it should be remarked that ICA achieves poor separation in the presence of noise.

Moreover, when the sources move, frequency shifts occur and ICA can no longer produce ICs

bz |Sz(ω)|. Therefore, we extend the meaning of “independent” for sources to “being in the state

in which a shifted major f-component of a source does not overlap the shifted major f-components

of other sources”. The interferences of minor f-compo-nents among the sources are considered as

noise. For this situation, instead of using ICA, we apply a more robust method, the main idea of

this study, which involves less computation based on clustering techniques. Equation (3.6) then is

rewritten as

|Xi(ωk)| =
M∑
j=1

|aij | |Sij(ωk)|, i = 1, .., Q, (3.14)

where |Sij(ωk)| is the discrete frequency image of the signal emitted by source j under the “view”

of sensor i. Remark that for different sensors, Sj is not the same as in (3.6) due to different

frequency shifts caused by Doppler effect.

Note that the method only needs the magnitude information of the source’s DFT results, not

on the phase as in [59]. Now considering a specific segment on the frequency domain (ωa, ωb)
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containing all shifted versions of some f-component of source z without any interference from

other sources’ shifted f-components, we have

∣∣∣Xi(ω
(m)
k )

∣∣∣ = M∑
j=1

|aij |
∣∣∣Sij(ω

(m)
k )

∣∣∣
= |aiz|

∣∣∣Siz(ω
(m)
k )

∣∣∣ , i = 1, .., Q,

(3.15)

where ω
(m)
k ∈ (ωa, ωb) and m is the index of the f-component. Although this f-component has

different shifted versions, its energy is unchanged. The reason is while a signal is stretched and

compressed by Doppler effect on the time domain, its amplitude at the source keeps unchanged,

or

∣∣∣Siz(ω
(m)
k )

∣∣∣T ∣∣∣Siz(ω
(m)
k )

∣∣∣ = ∣∣∣Slz(ω
(m)
k )

∣∣∣T ∣∣∣Slz(ω
(m)
k )

∣∣∣ ,
i ̸= l.

(3.16)

Based on this fact, if an f-component belongs to source z, then all relative distance relation-

ships in (3.13) are computed according to

r
(m)
ilz =

∣∣∣∣aizalz

∣∣∣∣ = dlz
diz

=

√√√√√√
∣∣∣X̃i(ω

(m)
k )

∣∣∣T ∣∣∣X̃i(ω
(m)
k )

∣∣∣∣∣∣X̃l(ω
(m)
k )

∣∣∣T ∣∣∣X̃l(ω
(m)
k )

∣∣∣ , i ̸= l (3.17)

where X̃i(ωk) is the result of noise filtering Xi(ωk) and X̃i(ω
(m)
k ) is the frequency image of

X̃i(ωk) on the segment (ωa, ωb) (see Fig.3.3). This implies that, for each f-component m of a

source within the frequency segment, a set of relative distance relations can be computed and the

position of the source having these components can be estimated. Therefore, there are necessarily

two clustering stages, one for grouping the shifted frequency components to determine the segment

(ωa, ωb), and the other for grouping f-component positions to calculate source locations after f-

component positions are computed. This is the main idea of the design which is described in more
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details in the next section. The advantages of this system are: (a) it is more robust than our previous

system even when the sources are fixed, (b) it works well with moving sources and tolerates the co-

existence of Doppler effect and Rayleigh multi-path fading, (c) it is considered to be a distributed

method since the computation load is shared among the sensors and the communication cost is

low, and (d) it is not constrained by the condition that the sensor number is larger than the source

number.

3.3 Multi-object tracking system architecture

The design of the system for acoustic tracking [19] is depicted in Fig.3.3 based on the key idea

mentioned in Subsection 3.2 about distance information. The figure describes both acoustic sensor

work flow and central base computer work flow. Because of the nature of WSNs, the input data

is already decomposed at the sensors and hence can be utilized to build up a data decomposition

algorithm. It also can be seen in the figure that the source localization computing is decomposed

into two different processes, one at the sensors and the other at the central base. A powerful

enough computer is used at the base to solve its flow in a short time, not longer than the sum of

the computing time at the sensors and data transmission time. Then although the process at the

sensors must be executed before that at the base, with continuous input data, these two processes

function in a pipeline manner, or the system works with process decomposition method. In other

words, the design can be considered to be data-and-process decomposition. Since the data is

decomposed into portions at sensors and the sensors have the same work flow, the process at the

sensors obviously uses SIMD (Single Instruction on Multiple Data stream) approach [4]. Details

of the work flows are following.

3.3.1 Acoustic sensor architecture

At the sensors, the acoustic signal is sampled and synchronically segmented into half-overlapped

frames in the “Sampling and Time Segmentation” stage. A frame at sensor i is denoted by xi (tn)
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Figure 3.4: An example of data after filtering on Fourier domain
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and the time length of the frame is also called time segment, denoted by Tf .

Since our method is based on the energies within frequency intervals, we need to minimize

the spectral leakage effect [31] caused by limited length DFT transformation. Thus, each frame

of sensed data with length L is multiplied by the Hamming window whose weights are defined as

[22]

wHamming(k) =0.54− 0.46 cos

(
2π(k − 1)

L− 1

)
;

k = 1, .., L.

(3.18)

The input data from the recorders always includes additional Gaussian noise whose spectrum

is spread over the frequency domain. We can remove the noise by detecting its level and forcing

all low f-components to zero. Fig.3.4 demonstrates the results after the filtering process. The

filtered data may have some lost f-components and may include redundant f-components; this is

tolerated by the system as we will see in later analysis. Filtering step allows for the retention of

only several dominant f-components, and as a result, the amount of data to be transmitted from a

sensor to the base computer is reduced considerably. Moreover, only half of the frequency image

length is needed owing to the symmetric property of the image. For example, instead of sending

1638 values in every time segment of 0.2s with sampling frequency Fs = 16.384KHz, each

sensor sends only the compressed data containing less than twenty f-components (pairs of values

and indexes). This is one of the key ideas for reducing the communication cost so that the method

can be implemented into WSNs.

As the trade-off to this low communication cost, the computation cost at the sensors is high

with DFT transformations of lengthy frames. However, as can be seen in Fig.3.4, a sensor can skip

calculating the frequency bins where the probability of major f-components’ existence is low due

to the feedback from the base. Only the frequency bins in the high energy ranges are computed.

Therefore, the computation cost at sensors are also reduced considerably.



CHAPTER 3. ACOUSTIC BASED MULTI-OBJECT POSITIONING 55

3.3.2 Central base computer architecture

At the central base, the flow is straightforward and consistent with what we analyzed in Section

3.3. Data received from the sensors needs to be decompressed and fed into the “Frequency-

Segmentation” process. This stage marks dominated f-components as well as the segments that

contain the components with the index m. Then the process “Relative Distance Information Calcu-

late” computes a set of r(m)
il for each component. These sets are then input into the “F-component

Positioning” process to estimate the output position of each dominant f-component p⃗(m). Ideally,

the f-compo-nents that belong to the same source j should have the same position p⃗j . However,

factors that affect the frequency images will influence the detection result and make f-components

belonging to the same source j not have the same position but have the positions that are close to

the real position of source j. Some factors do not much influence the frequency image, like the

measurement error due to sampling resolution, the heat noise of the electric system and the DFT

frequency leak. DFT frequency leak, which depends on the length of frame (window length), ob-

viously changes the frequency image but is reduced considerably by Hamming window multipli-

cation. Others factors are more serious like setting noise, Doppler effect and Rayleigh multi-path

fading effect. Setting noise, or background noise is usually very high and affect much the measure-

ments. Meanwhile, Doppler effect causes the shifted f-component, which increases the probability

of wrong grouping on frequency domain. Rayleigh multi-path fading is even more serious than

background noise since it affects directly on the regions that cover dominant f-components. With

the same level of noise, Rayleigh multi-path fading gives more changes on the frequency im-

ages than other kinds of noise. How background noise, Doppler effect and Rayleigh multi-path

fading effect influence the localization can be seen in simulation results of Section 4.2. Due to

those factors, f-components of a source have positions that are close to the real source position.

Therefore, the final stage “Source Positioning” is necessary to cluster those p⃗(m) and estimate p⃗j

using the averaging mechanism. Details of the three main processes are described in the following

subsections.
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Frequency Segmentation

“Frequency Segmentation” determines the frequency segments on which all shifted components of

a dominant f-component are included. As can be seen in Fig.3.4, data from the “Decompressing”

block may have some missing and redundant f-components. Frequency segmenting is actually a

clustering task which groups shifted components of an dominant f-component and determines the

frequency segment based on the cluster. Dopp-ler effect influences the f-components differently,

the higher is the frequencies, the larger is the shift. From (3.3), an f-component of source j at f0

has shifted versions within ( vc
vc+vj

f0,
vc

vc−vj
f0). This frequency interval varies depending on f0 on

the frequency scale, however, it is fixed on the logarithmic scale. Indeed,

∆f(dB) = log10(
vc

vc − vj
f0)− log10(

vc
vc + vj

f0)

= log10(
vc + vj
vc − vj

)
(3.19)

Therefore, clustering is performed on the log10(.) scale of the frequency image according to

the criteria: (a) the width of each segment is not larger than ∆f(dB) as defined in (3.20); (b) the

number of nonzero f-components within the clustered interval is greater than 2 so that the number

of constraints is at least 3; and (c) the average energy of an f-component received at the sensors

must be larger than the detected noise level. A sliding window with the width ∆f(dB) is used

here to detect the frequency intervals that satisfy (b) and (c). With such a mechanism, the number

of sources can be larger than that of sensors. The total loss of some f-components due to filtering

is acceptable because a source can be positioned with only one of its f-components. In addition,

the redundant f-component will hardly be taken into account, and the groups with missing data can

still be considered for position estimating. The maximum number of sources now depends on the

sampling frequency, the speeds of the sources and the number of dominant f-components in each

source. If the minimum frequency of all f-components is fmin, the mean number of f-components

in a source is nf . Then the possible number of sources can be up to
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Mmax =

(
log10

Fs
2
−log10 fmin

∆f(dB)

)
nf

, (3.20)

where the numerator is the possible total number of f-components caused by all sources. If the

maximum source velocity decreases, then the maximum number of sources increases. Obviously,

the possible number of sources is not related to the number of sensors since the locations of sources

are determined by their dominant f-components. The accuracy is improved with a large number

of sensors but it is not if the number of sources is changed, providing that the shifted versions of

dominant f-components of sources do not interfere with each other on the frequency domain.

F-component Positioning

All of the ratios rilz of different pairs of distances from a source to sensors are calculated (see

(3.17)) in “Relative Distance Information Calculating” process before being fed into the “F-

component Positioning” process. Each ratio defines a constraint, or a position curve to which

the source belongs. As illustrated in Fig.3.5, if r(m)
ilj = 1, the curve is the perpendicular bisector

of the line segment connecting sensor i and sensor l; otherwise, the curve is a circle.

The additional noise and spectral leakage always exist in the recorded data and cannot be

completely removed. Moreover, when a source is very close to a sensor, its signal may dominate

at this sensor but be at a level lower than noise level at other sensors and produce large errors

in the constraints. Therefore, the error in the constraints is unavoidable, and the solution for the

position of f-component m should be a vector p(m), p(m) ∈ R2 that compromises its constraints.

We propose an objective function in a quadratic sum form for this compromise

Fj =

Q∑
i

Q−1∑
l,l ̸=i

(dij − riljdlj)
2, 0 < rilj <∞ (3.21)

and the solution for source j will be
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Figure 3.6: Illustration of the rigid problem, one of the reasons that make gradient-based conver-

gence slow.

p(m) = arg
p(m)

minFj . (3.22)

In fact, the objective function in (3.21) is not the quadratic form with respect to p(m), but each

constraint gives a quadratic form with respect to the minimum distance from p(m) to the curve

that satisfies dij = riljdlj . As depicted in Fig.3.6, a combination of constraints may cause a valley

whose bottom is slightly sloped. This situation takes the simple negative gradient method much

time to converge because upon reaching the bottom of the valley, the search process oscillates back

and forth on the sides with little progress to the optimum position. Based on the analysis in [100]

(page 149) and the results in [91], we choose the Fletcher-Reeves conjugate-gradient method for
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this optimization problem. The line search is performed using the Fibonacci segment search [100]

and the first order derivative used in the optimization is:

dFj

dp(m)
=



Q∑
i

Q−1∑
l,l ̸=i

 2
(
(pjx−mix)

dij
− rilj(pjx−mlx)

dlj

)
×

× (dij − riljdlj)


Q∑
i

Q−1∑
l,l ̸=i

 2

(
(pjy−miy)

dij
− rilj(pjy−mly)

dlj

)
×

× (dij − riljdlj)




(3.23)

One remarkable note is that since our method is derived from the mutual information from

every pair of active sensors, when the sensor number is greater than 3, the constraint number

becomes much higher than the sensor number. For instance, if the sensor number is 5, then the

constraint number is 10. The more constraints are there, the more accurate will be the results due

to the averaging mechanism.

Source Positioning

Data from the “F-component Positioning” stage includes the positions of the f-components. The

source to which a specific f-component belongs must next determined, and the answer can be

found based on the estimated positions of these f-components. This stage clusters f-component

positions and computes the source coordinates as the mean values of f-component groups. The

nearest-neighbor clustering, or d-min clustering technique [21] is used in this “Source Positioning”

process with some modification compared to the typical version. The reason for this modification

is that the resulted positions of different f-components have different levels of error depending on

their energy to noise ratios. The higher is the energy, the more reliable is the resulted position.

Therefore, each f-component position should be assigned with a weight. Then, instead of being

randomly chosen as an input of d-min clustering, the positions are considered in the order of their

weights. Moreover, the weights are also used to calculate the final source locations so that the

computed f-component positions with higher energy play more important roles (see Fig.3.7). The
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weight, w(m), is the mean values of the f-component’s energies at the sensors. Equations (3.24)

and (3.25) estimate the position of a source that includes the f-components whose positions are in

the group j′, denoted by Dj′ :

p̂j′ =

∑
p(m)∈Dj′

w(m)p(m)

∑
p(m)∈Dj′

w(m)
. (3.24)

where

w(m) =
1

Q

Q∑
i

E
(m)
i . (3.25)

E
(m)
i is the energy of the f-component m received at sensor i. The distance from an f-component’s

position to a current group j′ is the distance from it to the current estimated p̂j′ .
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3.3.3 Algorithm summary of the proposed method

* SELF LOCALIZATION:

+ De-biasing function g(d) = d;

if measurement error model is log-normal then
De-biasing function g(d) = log10(d);

end

+ Phase3 Flag =0;

if measurement error model is proportional to distance then
Phase3 Flag = 1;

end

+ Perform PPE’s phase 1 with g(d);

+ Perform PPE’s phase 2 with g(d);

if Phase3 Flag == 0 then
+ Perform PPE’s phase 3 with g(d);

end

+ Send location to base station.

* DATA COLLECTION FOR OBJECT POSITIONING:

while AcousticDetectF lag == 1 do
+ Sample and do time segmentation

+ Get xi(tn), n = 1..L

+ Multiply Hamming window

wHamming(k) = 0.54− 0.64cos
(
2π(k−1)
L−1

)
x = xTwHamming

+ DFT amplitude calculation

Xi(ωk) =
L∑

n=1
xi (tn) e

−2πjtn

+ Filtering

X̃i (ωk) =

 Xi (ωk) if |Xi (ωk)| ≥ max (|HighFrequencyNoise|)

0 otherwise.

+ Compress
∣∣∣X̃i (ωk)

∣∣∣ and send it to base station.

end

Algorithm 4: Sensor i work flow
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+ Decompress data

+ Frequency Segmentation base on Sliding window in 3.3.2

+ Calculate relative distance information

r
(m)
ilz =

∣∣∣aizalz

∣∣∣ = dlz
diz

=

√√√√ ∣∣∣X̃i(ω
(m)
k )

∣∣∣T ∣∣∣X̃i(ω
(m)
k )

∣∣∣∣∣∣X̃l(ω
(m)
k )

∣∣∣T ∣∣∣X̃l(ω
(m)
k )

∣∣∣ , i ̸= l (see (3.16))

+ Position frequency component

Fj =
Q∑
i

Q−1∑
l,l ̸=i

(dij − riljdlj)
2, 0 < rilj <∞

p(m) = arg
p(m)

minFj . (see Appendix B and first derivative of Fj in (3.22)).

+ Cluster for final source position

w(m) = 1
Q

Q∑
i
E

(m)
i .

p̂j′ =

∑
p(m)∈Dj′

w(m)p(m)

∑
p(m)∈Dj′

w(m) .

Algorithm 5: Base station i work flow



Chapter 4

Experiment results and discussions

4.1 Experiment results and Discussions on PPE

We conduct four main experiments. The first experiment focuses on PPE’s convergence confirma-

tion; the second tests the accuracy enhancement of the refinement phase compared with that of the

pre-refinement phase. The third experiment is about PPE’s ability to reduce communication cost,

while the last one analyzes the performance comparison of PPE with dwMDS and MLE, both with

simulated data and real data. We mainly examine a group of nodes to highlight PPE’s characteris-

tic instead of simulating the whole network with a very large number of nodes. Each normal node

has four reference anchors and has other normal nodes as reference neighbors. Table.4.4 defines

the common parameters that we use in all four experiments. For convenience of demonstration,

the values α(2) and α(3) are equal to α(1). In this section, the normal nodes are updated in a

random order to show the distributed ability of PPE.

4.1.1 Verifying the convergence of PPE

This simulation set is aimed at verifying the algorithm’s robustness in both pre-refinement and

refinement phases. We choose a normal node as the tested node and examine its movement trend

64
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Table 4.1: Common parameters used in simulations.

Deployed area [0m, 28m] x [0m, 28m]

Total number of nodes N 196

Number of anchors 4

Distribution over area uniform

under the force effect of the other normal nodes in the group after they undergo their raw esti-

mations. The chosen nodes are tested in two situations: at the corner and in the middle of the

deployed area of the group. The noiseij in this subsection is Gaussian with σn = 0.4, the largest

value in the chosen range.

Fig.4.1a is the result of the first phase where each normal node uses anchors to produce its

raw-estimation (k(1)max = 10). The actual locations of all nodes are denoted as small dots while the

errors are presented as solid lines. Fig.4.1b illustrates the convergence image (or the representation

of the movement tendency) of the corner tested node. Every position on the [-7m,35m]x[-7m,35m]

grid with a grid step of 2m (the deployed field is [0m,28m]x[0m,28m]) is examined as if it is the

current estimated position of the tested node. From each position, the tested node performs two

successive position updates which are presented by two arrows to show its movement tendency.

The figure shows that the tested node, at any current estimation and with its reference nodes

suffering from a high degree of error, always moves to the unique balanced point which is close to

its actual position.

Likewise, Fig.4.1c is the estimation result of all normal nodes when phase 2 is finished with

k
(2)
max = 10 and Fig.4.1d is the convergence image of the corner tested node with respect to the

estimation result in Fig.4.1c. The errors of all normal nodes are reduced compared to the result of

the raw estimation in Fig.4.1a. Comparing the two convergence images (Fig.4.1b and Fig.4.1d),

the balanced positions of the corner tested node are almost the same. This confirms the fact that

a node’s updating is quite independent of those of others and this is the basis for the reduction in
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Figure 4.1: (a) and (c) are the estimation results at the beginning and ending of phase 2, alternately,

the errors of the estimated positions are denoted with solid lines. (b) and (d) are the movement

tendency images of the corner tested node with respect to the estimation results in (a) and (c),

alternately when equation (2.7) is used.
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Figure 4.2: (a) and (b) are the movement tendency images of the middle tested node with respect

to the estimation results in Fig.4.1a and Fig.4.1c, alternately when equation (2.7) is used.
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Figure 4.3: (a) and (b) are the movement tendency images of the corner tested node and the middle

tested node, alternately at the start of phase 3 in which equation (2.8) is used.
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communication cost of PPE, as we mentioned in Section 2.1.4. This is also true when the tested

node is in the middle of the deployed area, as depicted in Fig.4.2. Fig.4.2a and Fig.4.2b are the

convergence images of the middle tested node when phase 1 is complete and when phase 2 is

complete, respectively. The movement tendency of a middle node is straighter and faster than that

of a corner node. The balanced point is still unique and quite independent of the current estimation

result of the reference neighbors.

The movement curve in the convergence images can be explained by the force effects of the

small sub-areas of the reference nodes. Each of these areas attempts to keep away the tested node

at a distance approximate to the distance from itself to the balanced point. Therefore, on the way

to the balanced position, the tested node tends to move away from the side on which there are

more reference nodes and creats the movement curve. Fig.4.1 and Fig.4.2 show that if the current

estimated position is in the middle of the group, then the convergence is fast and the movement is

straight. This is why we use the average beacon position as the initial input position in phase 1.

Phase 3’s convergence verification is demonstrated in Fig.4.3, after phase 2 is complete.

Fig.4.3a is for the corner tested node, and Fig.4.3b illustrates the middle tested node. It can

be seen that if the current estimated position of the tested node has a large error, phase 3 still guar-

antees a correct convergence. The balanced position is unique and close to the actual position.

Although the number of steps for the tested node to get to the balanced position is higher, the

result of estimation is better. Obviously, all three phases of PPE guarantee network localization

convergence even when the updates are ubiquitously performed on nodes. In other words, PPE is

a robust distributed algorithm.

4.1.2 Necessity of the refinement phase when the distance error is proportional to

the real range

In these simulations, we vary the standard deviation of noiseij , σn, and use different distributions

for noiseij to show the improvement in the refinement phase over that in the pre-refinement phase.
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Figure 4.4: RMS error of the estimated position over 30 iterations, the curve with diamonds

represents the result of using the pre-refinement phase only while the curve with squares represents

the result of refinement phase after ten iterations. Error is in log10 of meters.

After the first ten iterations of phase 2, the comparison between phase 2 and phase 3 occurs in the

next 20 iterations. Apparently, the analysis in Section 2.1.3 is verified with the lower RMS error

(see (2.12)) for phase 3 as shown in Fig.4.4. Higher accuracy is gained with a very simple but

efficient step which eliminates the distance factor from the force model.

Fig.4.5a displays the average error result of 20 trials when phase 3 is used and not used after

the 10th iteration. Gaussian, Rayleigh, and Uniform distributions for noiseij are used, and 30 total

iterations take place after the completion of phase 1. Although Uniform distributions for noiseij

are not appropriate in reality, we use it to emphasize that PPE does not depend on any specific

distribution. Meanwhile, Fig.4.5b plots the percentage of the improvement of phase 3 over that

of phase 2. Generally, the error reduction is around 26%, a significant improvement. Fig.4.5a
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Figure 4.5: Error and accuracy improvement over σn, (a) Result error with and without refinement

phase. (b) Percentage of improvement when the refinement phase is used.

does not only demonstrate the linear relation between the standard deviation σn of noiseij and the

RMS error of the solution, but also the independence of the result on the distribution of noiseij .

These consequences are consistent with (2.34), (2.38), and (2.39), in which the variance of the

mean-force is linearly proportional to the variance of the individual force and does not depend on

the distribution of the individual force. This independence is an important advantage point of PPE

whereas other successive refinement methods like MLE [47][84] or MDS variations [8][15][44]

depend strongly on the noise model. For these approaches, the formula of the measurement error

distribution must be known in order to derive the formula of the result error and then to find the

calculation to force this error to a minimum.

4.1.3 Communication reduction

This experiment is performed to examine the ability of PPE to reduce communication cost. Each

sub-figure in Fig.4.6 is the average result of 20 trials, with the total iteration number of each trial

being 30 (iterations of phase 1 are not included). The sub-figures correspond to the different

cycle request values R: 1, 2, 3, 5, 6, and 10. Fig.4.6 again shows that the convergence of PPE
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Figure 4.6: Illustration of communication cost reduction when the cycle request number R = 1, 2,

3, 5, 6, and 10, alternately.
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Figure 4.7: Communication cost and final RMS error over the number of iterations. “C.Cost” is

the maximum communication cost when the cycle request number R is 1.

is quite independent of the current position at the reference nodes. Apparently, achieving high

accuracy incurs a trade-off of the number of iterations and the communication cost. Nonetheless,

it is worth reducing the communication cost, the most critical cost, especially when the trade-

off error increases insignificantly as in Fig.4.7. Increasing the cycle request number R is very

efficient especially when this number is not very high (2, 3 or 5). The RMS error then increases

insignificantly (0.94%, 1.52% or 3.2%) while the communication cost decreases remarkably (50%,

75% or 80%) compared to the error when a data exchange occurs with every node position update

(R = 1). Even when the number of internal iterations between two successive data exchanges is

9 (R = 10), the error would increase only 17.1%. Hence, based on the specific requirement of

designed networks in terms of communication cost and accuracy, an appropriate R can be chosen.
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4.1.4 Comparison to MLE and dwMDS via simulations

The contemporary popular MLE and dwMDS methods aim to minimize the stress function [15][47]

S =

N−1∑
i=1

N∑
j=i+1

wij(d̃ij − δij)
2, (4.1)

where wij is the weight value.

For the dwDMS (distributed weighted Multi Dimensional Scaling) simulation, we rely mainly

on Costa’s paper [15] and a part of the Matlab code available on Patwari’s website [60] to solve

our problems and compare the results with our PPE’s. For MLE (Maximum Likelihood Estima-

tion), the updating method is the nonlinear conjugate gradient. dwDMS is actually a two-step

method in which the first step is raw estimation, and the second is refined estimation. However,

the convergence time of this algorithm is large; the result of the first step suffers from negative

estimation (the estimated positions make the deployed area look shrunk); and the accuracy is poor

especially when the measurement error has the log-normal model. Meanwhile, MLE’s estimation

would hardly converge with random initial positions of the normal nodes. Therefore, we take the

output of PPE’s phase 1 as the raw estimation inputs for both MLE and dwDMS although this

unbiased estimation is one of the important advantages of PPE over other algorithms. Especially

for the case of log-normal distance error, we use the actual positions of all nodes as the input for

the second step of dwDMS so that the simulation time is smaller and the accuracy is higher. Even

so, the simulation results illustrate that the performance of PPE is superior to those of the other

methods.

Measurement error proportional to the real distance case

The measurements are generated according to the noise model in (2.2) where noiseij is Gaussian

for comparison purpose. σn varies from 0.1 to 0.4 in intervals of 0.05, as in Fig.4.8. We use the

same set of actual node positions, and with each value of σn, we create 20 sets of measurement

data based on the error distribution. For dwDMS and MLE, the algorithms stop if the maximum
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Figure 4.8: RMS errors of different methods over the standard deviation σn of noiseij , for the

error model in equation (2.2)

iteration number reaches 80 or if the average updating change of the stress function is less than

10−4. The stop conditions for PPE are k
(1)
max = 10, k(2)max = 10, k(3)max = 30, or the movement

distance is less than 10−4m. Fig.4.8 shows that PPE gives the lowest RMS error at every value

of σn. This means that PPE has a better performance even when dwDMS and MLE use the

unbiased raw estimation of PPE’s phase 1. Moreover, PPE also attempts to eliminate dij from the

error, turning the variance of dij .noiseij into the smaller variance of dij .noiseij (see (2.40)). As

a consequence, the accuracy of PPE in the range-based scheme whose error of measurement is

modeled in (2.2) is better.

Table.4.5 shows the approximated computation costs of each normal node for three methods in

the simulation. The values in the second column are the approximated numbers of multiplications

in one iteration. We consider a square-root operation as a multiplication and ignore several extra

multiplications outside the loops. The values in the third column are the average numbers of
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Table 4.2: Computation cost.

Multiplications per iteration Iteration number

dwDMS 3(M
(3)
i )2 + 13M

(3)
i 80

MLE 7M
(3)
i + 3M

(3)
i ∗ Iter0 52

PPE 5M
(3)
i 40

iterations necessary to produce the final result when the input data is the raw estimation. Iter0

is the extra number of iterations used in MLE for computing the line search optimization. The

average of this number or mean(Iter0) is 5.6. Table.4.5 also shows that PPE requires fewer

iterations than do dwDMS and MLE to reach a better result. In other words, PPE needs less of

both communication and computation costs even when the cycle request number in this simulation

is 1.

Log-normal distribution for the measurement error case

For this part, sets of measurements modeled in (2.49) are used instead of those in (2.2). σp is

the standard deviation of Pnoise and it is varied from 1 to 4 in increment of 0.5. We repeat that

with log-normal error model, only two first phases of PPE with the de-biasing function log10(.)

are used. MLE has the same stop condition as in the previous experiment while PPE stops at

k
(1)
max = 20, k(2)max = 40, or when the movement distance is less than 10−4m. It should be

noted that the input data for PPE does not include the information of normal nodes’ locations,

while dwMDS uses the real node positions as the raw input and MLE uses PPE’s raw estimation

provided by phase 1. Therefore, for dwMDS, we set the maximum number of iterations to be 20

in this case because a small value of this number leads to small final error. However, it can be

seen in Fig.4.9 that dwMDS gives the worst error compared to those of PPE and MLE which have

equivalently good result at small σp. Although MLE has the best result when σp = 1, MLE’s

accuracy decreases faster than that of PPE while PPE’s error maintains a linear relation with σp



CHAPTER 4. EXPERIMENT RESULTS AND DISCUSSIONS 76

1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

Pnoise_sigma σ
p

R
M

S
 E

rr
or

 o
f r

es
ul

t (
m

)

 

 

PPE
dwMDS Estimation
MLE Estimation

Figure 4.9: RMS errors of different methods over the standard deviation σp of Pnoise, for the

error model in equation (2.49).

when σp is large (σp > 3). Obviously, MLE is more sensitive to the big log-normal noise. Even

with the same raw estimation, and when the stop conditions are tougher for a higher accuracy,

MLE is not as good as PPE when σp increases. It is known that large values of σp are the case of

the practical implementation, especially for indoor settings.

4.1.5 Comparison to MLE and dwMDS with real data

In this part, we perform the comparisons among PPE, dwMDS and MLE with the real data which

is available on Patwari’s website [60]. The data sets are the RF power measurements and the

distance measurements under TOA scheme. Both of data sets are obtained from the test-bed in

which there are 4 beacons and 40 normal nodes in the area of [-4m,10m]x[0m,12m]. The beacons

are around the corners of the deployed area and are denoted with the red diamond nodes in Fig.4.10

and Fig.4.11. To visualize the accuracy of the proposed algorithm, we draw lines connecting the
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Figure 4.10: PPE’s result based on TOA real data [60] for 4 beacons and 40 normal nodes, RMSE

= 1.1028m.

estimated and actual coordinates of sensors respectively. The real locations of the normal nodes

are denoted with round dots while their estimated positions are denoted with triangle dots.

Fig.4.10 displays the final estimation result of the normal nodes’ locations when the input

data is the distance set obtained from TOA data. Meanwhile Fig.4.11 is the final result of sensor

location estimations where the distance is estimated from the RF power measurements. The de-

biasing function in (2.48) is used to improve our previous work [45]. The statistical results of the

two figures are in Table.4.3. They are also for the comparison purpose with other popular works

such as Standard MDS, dwMDS and MLE. For RSS data, MLE’s result is also comparatively as

good as PPE’s result, but for TOA data set, its result is not as good as dwMDS. Consistent with

the analysis and simulation results above, it can be seen in Table.4.3 that PPE gives the best results

for both RSS and TOA data sets.
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Figure 4.11: PPE’s result based on RSS real data [60] for 4 beacons and 40 normal nodes, RMSE

= 2.1688m. Triangle dots are estimated position

Table 4.3: The RMSE result comparison among PPE with other popular methods of localization

estimation in WSNs.
Clasical MDS MLE dwMDS PPE

RSS 4.26m 2.18m 2.48m 2.17m

TOA 1.85m 1.23m 1.12m 1.10m
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4.2 Experiments and discussions on Acoustic Based Multi-Object Po-

sitioning

For the system working demonstration and the system evaluation, two main experiment sets are

conducted via simulations in this section. They will be presented in details after we introduce the

experiment setup and modeling in the next subsection. At the end of this section, system working

is demonstrated with a real data set. Moreover, a comparison table is presented to highlight the

proposed method’s superiorities.

4.2.1 Experiment setup and modeling

The monitored area is within [0m,12m]x[0m,12m]. We generate five simulated sources (M = 5),

four of which imitate the sounds of different vehicles and motors while the rest mimics the sound

of a siren (see Fig.4.12). They are parametrically determined so that the received signals affected

by Doppler effect can be generated properly using equation (3.1). These continuous sources have

equivalent power levels, none have overlapped dominant f-components, and each is at least 5

meters from the others. It is reasonable to consider a group of close sources as one sound source;

thus in order to illustrate how the system works, it is necessary for the sources to be distinct

from one another. If the system functions properly when the sources are separated, then the source

characteristics can be determined, memorized and then used for future localization even when they

are close to one another. The independence condition that requires no overlapped f-components

among the sources is an elastic requirement. If the interference of other f-components is small,

then it is considered as noise. In order to illustrate this point, we let one source, the second one in

Fig.4.12, have a wide spectrum which interferes into other frequency segments. The wave files of

received signals are available on the website [16] as examples where the source speed is 40km/h

in 3 seconds at the highest noise level used in these simulation sets. Four sensors (N = 4 < M )

are deployed around the corners of the deployed area in which the sources are set randomly (see
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Figure 4.12: Signals of sources which are parametrically determined to imitate sounds of vehicles,

motors and a siren.

Figure 4.14). The locations of sensors are not based on previous estimation but are indicated

exactly. A source can move into and out of the monitored area during the monitoring time. The

energies of the line-of-sight signals propagating to the sensors decrease according to the inverse

square law at the sound speed of c = 343m/s. The sampling frequency is Fs = 16.384KHz and

the time segment length is not less than 0.2 seconds. Because the sound signals of vehicles and

motors are mainly composed by low frequency components, Fs and time segment Tf are set to be

high so that different f-components can be separated as much as possible. The background noise

is considered to be produced by the surrounding environment and the microphones, thus the noise

is chosen to be Gaussian and its level is the same at all sensors.

In reality, received acoustic data always includes the effects of shadowing and fading due to
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multiple path reflections besides the received line-of-sight signals and Doppler effect. Therefore,

we examine the situation under the existence of a Rayleigh fading channel and consider Rayleigh

multi-path signals as another kind of noise, instead of taking the reverberation model which is

often used for indoor settings [23][26][36][82][83]. Generating multiple paths for each source

takes much computing time especially when Doppler effect is present, due to: (a) for each source,

a large number of random paths are needed and for each path a new signal with respect to the

direction of the path has to be generated, and (b) for each sensor, we have to generate different

sets of simulated data as in (a). To reduce the simulation time for generating input data, the Young

model [39], which generates a Rayleigh channel with two arrays of Gaussian random variables and

the inverse-DFT (IDFT) technique, is applied. The model in [39] is for single f-component signals

whereas the signals in this simulation set are multi f-component signals. Moreover, different

f-components have different Doppler shift ranges and the Rayleigh energy in a range must be

statistically proportional to the energy of the corresponding f-component. Therefore, in these

simulations, after the ranges of Doppler shifts are determined, for each frequency bin within the

range, a complex value is generated. The value’s real and imaginary parts are Gaussian variables

with the same standard deviation. If the ranges overlap, then the number of generated complex

values is the number of overlapped ranges, and the Rayleigh noise at the bin is the sum of these

values. In order for the result of IDFT to be real, the array representing the Rayleigh fading effect

on the frequency domain R(k) must satisfy R (0) = 0

R (k) = R∗ (Q− k) , k = 1, .., Q− 1
, (4.2)

where the asterisk denotes the conjugate of the complex number. This makes the magnitude of

the frequency frame |R(k)| symmetrical over the dash line at k = Q/2 (see Fig.4.13). Fig.4.13

illustrates the generated Rayleigh fading signal on the frequency domain. The higher is the fre-

quency of the f-component, the wider is the Doppler shift range and the smaller are the frequency

magnitudes within the spread range.
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Spectrum of an example signal (FFT result) 

A Doppler shift range 

Rayleigh fading effect on frequency domain. 

k

k

 !R k

Figure 4.13: Each bin within a Doppler shift range is generated with two Gaussian random vari-

ables to produce Rayleigh fading effect.
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We increase the level of the total noise and choose the parameter Signal to Noise Ratio SNR

for evaluating noise influence.

SNR =
Emean

Enoise

=
Emean

αRLERayleigh + (1− αRL)EBackground
.

(4.3)

where Emean is the mean value of the average signal energies received at the four sensors, Enoise

is the sum noise energy of the background noise EBackground and the Rayleigh noise ERayleigh,

while αRL ∈ (0, 1) represents the percentage of Rayleigh noise energy in the total noise energy.

4.2.2 System working demonstration

Four sensors in the deployed area are used to record data transmitted from fives sources, as de-

scribed in Subsection 4.2.1. The processing steps of the system are basically consistent with those

previously mentioned. The recorded data is sampled and segmented into overlapped frames. In

this thesis, we do not concentrate on continuously monitoring and refining the position estimations

but only on positioning. Therefore, overlapped frames are not meaningful in these simulations.

Each frame is multiplied by a Hamming window whose length is equal to the frame length (see

(3.18)). DFT transformation is applied to convert data to the frequency domain in which the Gaus-

sian noise filtering occurs. The filtering task can be conducted by detecting the maximum value of

the frequency magnitude in the high frequency region having no f-components from the sources.

Another simple method to detect Gaussian noise level is to determine the maximum magnitude

of f-component on the frequency domain in advance when no sources are monitored. After the

“F-component Positioning” stage, each f-component’s position is determined and plotted with a

circle. The radius of the circle is proportional to the f-component’s weight or to the mean energy

that the sensors receive from that f-component. Those f-components whose estimated positions

are close to one another are grouped together as described in 3.3.2, in which dmin = 3.5m (new

cluster is generated if an f-component’s location is more than dmin from all others).
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Table 4.4: Percentages (%) of resulting clusters when Tf = 0.2s and αRL = 0.2.
SpeedPPPPPPPSNR (km/h)

0 8 16 24 32 40

Percentages of resulting into 5 clusters

∞, (no noise) 91.7 85.9 86.8 84.3 84.1 86.8

40.21 89.5 83.2 80.6 83.5 85.1 81.6

10.05 86.5 79.3 77.7 74.4 79.0 76.8

4.46 72.6 71.5 67.1 67.5 67.8 69.4

2.51 66.3 64.8 63.7 62.6 63.2 64.8

Percentages of resulting into 4 clusters

∞,(no noise) 6.4 9.2 10.2 11.9 11.7 8.9

40.21 8.4 12.2 15.3 12.4 10.5 13.1

10.05 10.0 14.4 16.4 16.7 14.1 14.0

4.46 17.8 18.5 18.3 19.7 19.1 17.6

2.51 19.4 20.9 21.0 19.4 19.34 19.6

Percentages of resulting into 6 clusters

∞,(no noise) 1.9 4.9 2.7 3.6 4.1 4.2

40.21 2.1 4.6 3.9 3.8 4.1 4.8

10.05 2.9 5.0 4.8 7.2 6.4 8.2

4.46 9.1 8.8 13.5 11.4 11.0 11.5

2.51 12.6 13.0 13.7 16.3 15.1 14.2
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Figure 4.14: (a) and (b) are the estimation results of two examples using the highest level of noise

in the simulation set and αRL = 0.2. One (a) locates five sources with source speeds of zero and

the other (b) positions five sources with source speeds of 40km/h.
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Fig.4.14 demonstrates the results of source positioning when the system tries to localize five

independent sources in the time segment Tf of 0.2 seconds and the Rayleigh fading noise energy

contributes 20% of the total noise energy. The path trails that the sources leaves within the time

segment of 0.2 seconds are denoted with the bold lines. The estimated positions of the sources

are calculated based on the groups’ f-component positions and their weights according to equa-

tions (3.24) and (3.25). Fig.4.14a shows the position estimation results when the speeds of the

sources are zero, so the path trails are the small dots. Meanwhile, Fig.4.14b presents the position

estimation result when the speeds of the sources are all 40km/h. It can be seen that the system

is able to locate the sources even when the source number is greater than the sensor number. The

Root Mean Square Errors (RMSEs) for the successful clustering in both Fig.4.14a and Fig.4.14b

are less than 1.6 meters, an acceptable level especially when the speeds of the sources are high (in

0.2s, the trail lengths are around 2.2m). Obviously, positioning based on f-component localization

is a good method to deal with multiple acoustic source positioning in situations affected by high

Gaussian noise, multi-path fading and Doppler effect. The SNR here is 2.51, the highest level of

all simulations.

To demonstrate the results of clustering, Table.4.4 shows the percentages of the group number

resulted after f-component positions are clustered in the same condition as in the above example

(Tf = 0.2s, αRL = 0.2). This task is repeated for 1000 trials for each pair of total noise level

and source speed. Since we focus on statistically evaluating the performance of the system during

positioning, we do not try to monitor the sources in sequences of frames or to refine the location

estimations over time. Instead, for each trial, we randomly set the positions and the moving

directions of the sources and let the system perform positioning with only one frame. As one

can expect, the percentages of exactly grouping into 5 sources decreases with the rise of noise

and source speed, while the percentages of resulting in 4 and 6 groups after clustering increase.

However, in worse case, the percentage of clustering into 5 groups is still high, not less than 62%.
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4.2.3 System performance evaluation

This simulation aims at examining the influences of time segment Tf , signal-noise ratio SNR

and speed vj on the results of positioning. The chosen Tf is either 0.2s or 0.25s, while the speed

value varies from 0 to 40km/h in increments of 8km/h. The signal-noise ratios are generated based

on the linear increment of the standard deviation of Gaussian noise. The set of SNR values are

maintained statistically the same for the purpose of comparison, even when Tf and αRL vary.

Fig.4.15 shows the results of distance errors under influences of noise level SNR, the percent-

age of Rayleigh multi-path fading noise αRL and the speed of sources vj when the time segment

is 0.2 seconds. Meanwhile, Fig.4.16 illustrates the results when the time segment is 0.25 seconds.

Each plotted error is the average value of RMSEs of 1000 trials. At each trial, the RMSE is com-

puted from the shortest distances between the estimated source positions and the actual source

positions. When the number of estimated positions is different from that of actual positions, the

number of distance pairs used to compute RMSE is the smaller number.

Table.4.5 shows the percentage results for clustering into 5 groups, 4 groups and 6 groups at

different conditions of noise levels and different source speeds. It is constructed when the Tf =

0.2s and αRL = 0.8, corresponding to Fig.4.15d. Meanwhile, Table.4.6 shows the percentage

results of clustering with the same format as in Table.4.4 and Table.4.5 when the Tf = 0.25s and

αRL = 0.8, corresponding to Fig.4.16d.

From the results, it can be seen that at any speed value, higher noise and higher velocity lead

to higher source positioning error. The higher noise level results in more error in the f-component

positions due to the increased error in the constraint ratios, especially if the f-components have

low magnitude. Meanwhile, higher speeds lengthen the pathtrails, increasing the uncertainty of

positions. Consequently, the error in the f-component positions affects the f-component clustering

results, causing error in the final source position estimations.

The relationships between vj and RMSE can be considered to be positive linear when vj

is high (see Fig.4.15 and Fig.4.16). It is obvious since higher speed sources leave longer path
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Figure 4.15: RMSE error results of source locations under influences of speeds of sources, Gaus-

sian noise and Rayleigh multi-path fading when the time segment is 0.2s.
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Table 4.5: Percentages (%) of resulting clusters when Tf = 0.2s and αRL = 0.8.
SpeedPPPPPPPSNR (km/h)

0 8 16 24 32 40

Percentages of resulting into 5 clusters

∞, (no noise) 91.7 86.3 85.7 85.0 84.9 86.1

40.19 86.8 84.1 81.3 82.1 81.7 83.2

10.05 73.4 75.4 74.0 73.8 74.0 76.6

4.47 58.1 65.1 61.9 66.3 67.0 65.2

2.51 52.5 55.3 58.5 60.3 61.1 58.4

Percentages of resulting into 4 clusters

∞,(no noise) 6.4 9.2 10.8 10.6 10.9 10.0

40.19 11.0 11.9 14.3 13.3 13.8 12.4

10.05 19.5 18.4 18.3 19.3 19.0 17.9

4.47 25.0 23.4 27.4 22.0 21.4 22.8

2.51 24.9 27.0 25.1 23.3 24.9 25.7

Percentages of resulting into 6 clusters

∞,(no noise) 1.9 4.3 3.3 4.2 3.7 3.6

40.19 2.0 3.6 3.7 4.5 4.3 4.2

10.05 5.9 5.1 6.7 5.7 6.4 4.5

4.47 13.1 9.5 8.2 9.7 8.9 9.7

2.51 16.7 13.6 13.0 12.9 10.6 11.7
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Table 4.6: Percentages (%) of resulting clusters when Tf = 0.25s and αRL = 0.8.
SpeedPPPPPPPSNR (km/h)

0 8 16 24 32 40

Percentages of resulting into 5 clusters

∞, (no noise) 94.3 85.3 86.7 87.1 88.4 89.7

39.71 90.2 82.3 86.0 84.8 86.1 87.7

9.93 70.3 75.8 77.5 76.5 78.6 77.7

4.42 60.4 67.3 67.2 68.6 69.2 68.2

2.48 50.1 57.5 59.4 61.0 63.4 65.0

Percentages of resulting into 4 clusters

∞,(no noise) 5.6 13.3 11.8 11 9.1 8.8

39.71 8.8 15.3 12.1 13.2 11.0 9.9

9.93 19.5 18.2 16.1 17.1 14.9 16.3

4.42 21.3 19.8 20.3 21.3 18.4 21.5

2.48 23.2 21.3 22.8 20.5 21.3 20.6

Percentages of resulting into 6 clusters

∞,(no noise) 0.1 1.2 1.3 1.7 2.1 1.4

39.71 1 1.9 1.7 1.4 2.8 2.3

9.93 8.2 5.6 5.6 5.5 5.2 5.7

4.42 14.5 10.6 10.8 8.7 10.4 9.3

2.48 22.6 17.7 14.9 15.7 12.1 10.9
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Figure 4.16: RMSE error results of source locations under influences of speeds of sources, Gaus-

sian noise and Rayleigh multi-path fading when the time segment is 0.25s.
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trails. In addition, Rayleigh multi-path fading caused by high vj affects the accuracy less than that

caused by low vj (compare the sub-figures). The accuracy of estimated f-component positions

decreases when the source velocities increase, leading to the increased error in the source location

estimations. On the other hand, when the SNR is high and vj is low, the accuracy decreases

rapidly because of Rayleigh multi-path fading. In the case where SNR = 2.5 and αRL = 0.8,

the RMSE error is up to around 1.8m (see Fig.4.15d and Fig.4.16d). An f-component at a low

vj produces noise in a narrow and condensed Doppler shift range on the frequency domain. As a

result, at the same level of Rayleigh noise, the received energy of an f-component through the line-

of-sight path is corrupted more by a narrow shift range than by a wide shift range, causing poor

accuracy at low vj when there exists Rayleigh fading. Meanwhile, when vj is high, the energy of

Rayleigh fading noise is spread wider and thinner on the frequency domain and less affects the

line-of-sight f-component. The fading noise can also be partly filtered by the Gaussian filtering

stage. Therefore, Rayleigh fading noise in high vj cases does not affect the accuracy as much as it

does when vj is low. Generally, the results in Fig.4.15 and Fig.4.16 show that the more Rayleigh

fading noise contributes to the total noise level, the worse result the system achieves especially if

the source speeds are low.

One can easily notice that the system could not give the ideal result when there is no noise

(SNR = ∞). The f-component location errors are caused by a limited time segment of a frame

which produces unavoidable spectral leakage. In addition, there exists the influence of the second

original source, whose f-components appear and contribute interference all over the frequency

domain, to other sources’ f-components. As a consequence, the errors in final estimations are un-

avoidable. Nevertheless, when the noise level increases quickly, the system can tolerate the noise

well with little error increment. The estimation error increases an amount of 0.6m in average when

the SNR decreases 16 times from around 40 to 2.5. Comparing sub-figures by pair from Fig.4.15

and Fig.4.16, we can see that a bigger time segment Tf improves the accuracy when vj is low

(including the ideal case). However, it decreases the accuracy if vj is high. Obviously, although
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bigger Tf reduces the spectral leakage which leads to better estimations, this improvement cannot

compensate the increased error when the path trails are longer, producing high error results when

vj is high (> 30km/h).

Table.4.5 and Table.4.6 show that f-component clustering relied on f-component locations is

closely associated with the estimation accuracy. An incorrect number of clusters is caused by

missing f-component locations due to noise filtering or by using too poor the f-component posi-

tion estimations. Higher percentage of grouping into exactly 5 clusters increases the estimation

accuracy. Contrariwise, this percentage decreases at high levels of noise and high source speeds.

Comparing Table.4.4 and Table.4.5 both of which result from the same Tf of 0.2s, one can

see that the higher is the contribution of Rayleigh fading noise to the same level of total noise, the

worse is the f-component clustering result. This is consistent with the above analysis of Rayleigh

fading influence on the RMSE. Meanwhile, comparing Table.4.5 and Table.4.6 shows that in most

of the cases, longer monitoring time reveals higher clustering accuracy and the percentage of

clustering into 5 groups is higher. This is because most f-components of vehicle and motor sources

appear in the low frequency range, so a longer time segment helps separate the f-components

more clearly and decrease the spectral leakage. However, increased Tf makes the final estimation

results at high source speeds not as good as those at low source speeds (see Fig.4.15 and Fig.4.16)

since the path trails at high vj are longer. This reflects the uncertainty law between time and

frequency: low frequency needs a long observation time to be indicated. Obviously, there is a

trade-off between f-component separation and the path trail length when Tf varies.

Now we consider the harsh conditions, when data collected from high speed sources under se-

rious noise and when low speed sources move in the setting where Rayleigh fading noise accounts

for most of the total noise. Although the percentage of clustering into 5 groups is quite low (in

the worse case, only 50.1%), the percentage of clustering results for all 4, 5 and 6 groups are very

high. Table.4.7 displays the high values of total percentage of clustering for 4, 5 and 6 groups in

three critical conditions in this simulation set (the least is 94.1%, see Table.4.7), indicating that
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Table 4.7: Total percentages (%) of clustering 4 groups, 5 groups and 6 groups
SpeedPPPPPPPSNR (km/h)

0 8 16 24 32 40

Tf = 0.2s; αRL = 0.2

∞, (no noise) 100.0 100.0 99.7 99.8 99.9 99.9

39.71 100.0 100.0 99.8 99.7 99.7 99.5

9.93 99.4 98.7 98.9 99.4 99.5 99.0

4.42 99.5 98.8 98.9 98.6 97.9 98.5

2.48 98.3 98.7 98.4 98.3 97.6 98.6

Tf = 0.2s; αRL = 0.8

∞,(no noise) 100.0 99.8 99.8 99.8 99.5 99.7

39.71 99.8 99.6 99.3 99.9 99.8 99.8

9.93 98.8 98.9 99.0 98.8 99.4 99.0

4.42 96.2 98.0 97.5 98.0 97.3 97.7

2.48 94.1 95.9 96.6 96.5 96.6 95.8

Tf = 0.25s; αRL = 0.8

∞,(no noise) 100.0 99.8 99.8 99.8 99.6 99.9

39.71 100.0 99.5 99.8 99.4 99.9 99.9

9.93 98.0 99.6 99.2 99.1 98.7 99.7

4.42 96.2 97.7 98.3 98.6 98.0 99.0

2.48 95.9 96.5 97.1 97.2 96.8 96.5
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a good inference mechanism module can be used in conjunction with this positioning system to

combine the information of cluster number and the relationships between f-components and clus-

ters. The continuous combination over time can better clustering results, measure the velocities

of the sources and refine the position estimations by predicting their next positions. This module,

however, requires much effort in both analysis and design, and is beyond the scope of this thesis.

4.2.4 System demonstration with real data and comparison to other works

In this section, we conduct an experiment to demonstrate the system’s performance with the real

data and present some related problems when dealing with real-world data. We deployed 4 mi-

crophone sensors, which are marked as M1, M2, M3 and M4, at a segment of a four-lane road

as depicted in Fig.4.19. Their coordinates are set as in Fig.4.20 and the coordinate system is or-

ganized so that the third sensor M3 is at the origin of the system. Four sensors are at the points

of the rectangle (0,0),(30,0),(30,17.4) and (0,17.4). Fig.4.17 is an example of a real collected data

while Fig.4.18 is the Fourier properties of a segment of 1000 samples extracted from the collected

data example. We try to record the sound data with four pairs of microphone and laptop at the

same time and the recorded programs are performed in Matlab environment. In this experiment,

we choose only one good data set for demonstrating the system’s performance and the data in

Fig.4.17 is actually the chosen one caused by two moving sources whose frequencies are most

independent.

Fig.4.20 is an example when the system tries to find the positions of two sources (a car and

a motobike) within a frame of 1000 samples, (sampling frequency Fs = 32000Hz). The micro-

phone sensors are plotted with red triangles. The contour is for objective function representation

in 2-D space. In this demonstration, we use simple negative gradient method in order to highlight

the system’s performance to find the positions that compromises all the constrains. Final estimated

positions are marked with the text ’t1’.

The final result of the estimation is displayed in Fig.4.21 where the black circle dots represent



CHAPTER 4. EXPERIMENT RESULTS AND DISCUSSIONS 96

0 0.5 1 1.5 2 2.5

x 10
5

−0.5

0

0.5

0 0.5 1 1.5 2 2.5

x 10
5

−2

0

2

0 0.5 1 1.5 2 2.5

x 10
5

−5

0

5

0 0.5 1 1.5 2 2.5

x 10
5

−2

0

2

Figure 4.17: A calibrated data set example.
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the estimated positions and the dashed blue lines link the actual positions of a source to its time-

corresponding estimated positions. It can be seen that the accuracy is low with the real world data

where the RMSE of the estimated position is 10.42metres.

There are several important observations that would be useful for applying the positioning

system to deal with real-world problems which makes low accuracy:

(i) Calibration data for power gain must be done because the power gain at different micro-

phones are different, not to mention the different related hardware and softwares of the computer

like sound cards and drivers.

(ii) Calibration must be considered carefully on frequency domain because each microphone

has its own frequency response characteristics. That means for different frequency, the amplitude

gain responses are also different. This kind of calibration is difficult to manage automatically.

(iii) Environment noise is not an ideal Gaussian noise. Noise level at high frequency is low

and vice versa. That means the noise is mainly made by the moving sources themselves. It is

because the sound signals emitted by the sources are at low band of frequency. As a consequence,

noise removing is performed at low frequency band. If the system is designed in the way that

the sensors do the DFT, then they just need to calculate the DFT for a small range of frequency

based on prior statistical information. This implies that the computation load on the sensors will

decrease significantly (less than 100 instead of 1000).

(iv) The dominant frequencies of a moving source is not composed of several separated f-

components but usually a group of nearby f-components. Therefore, in this experiment, we do not

let the system automatically decide the dominant f-components with the sliding window but let it

choose the groups of nearby f-components. Moreover, the collected data is not from independent

sources which violates the assumption mentioned in Chapter 3. This leads to the high error in the

final result.

(v) Based on the experiment data, we also realize that same kind of moving sources can be

regarded as independent sources, e.g. two motobikes at two very different speeds. It is because
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Figure 4.19: Monitoring area, microphones setting (M1, M2, M3, M4) and real position estimation

with hit time points.
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of two sources at a time point. The contour is for illustrating the optimum position based on the

objective function.
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the motor of the motobike spinning at higher speed would emit higher frequency sound, even with

the sound of the exhausted gas. Contrariwise, two different vehicles of different kinds can be high

correlated, or not independent. That means the system can position several vehicles of a same

kind as long as the collected data is the combinations of independent sources, of course with the

time delay and Doppler effect.

(vi) For this real-world problem, we can reduce the positioning result error by forcing the

position of the moving source to the nearest ’reasonable’ position. In other words, if an estimated

position is not in the road, then we set it to the nearest position which belongs to the roads. In this

case, the mean absolute error would be reduced to 9.53 metres (RMSE decreases to 9.99 metres).

(vii) Although the accuracy is not very good, however, the tendency of moving of the sources

can be still recognized. Therefore, we emphasize again that if an intelligent inference stage is used

after this positioning system, then the error would be reduced considerably.

Based on the real-world data and the related result. We construct a table which is for compari-

son among our proposed method and some other works. In this table, the conditions, the common

parameters and the accuracy are presented. This table shows that our proposed method has good

performance and many advantages with both simulated data and real data. It works in a distributed

manner and is able to deal with moving source with Doppler effect while the others could not. The

number of detected objects can be very high if the sources are independent (5 is the number in

the simulation). Meanwhile, the number of microphone sensors is low, the least necessary for the

positioning task to work is 3 microphones (each sensor has 1 isotropic microphone). For both sim-

ulation and real data experiment, we used only 4 isotropic sensors. Moreover, for other methods,

the sensors must be carefully deployed and the direction of the sensors must be set up and known

in advance because the detected angle at a sensor is just the relative difference of the direction of

arrival and the direction of the sensor. Therefore, without sensor direction, the detected angle is

meaningless. The longest range of detection belongs to towed array techniques while all the rest

are short, around less than 30m. It is because towed array is used under water where the signal
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Figure 4.21: Monitoring area, microphones setting (M1, M2, M3, M4) and final result of position-

ing task at 5 consecutive time points. Dashed lines represent the 2-dimension errors.
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Table 4.8: Summary table of comparison to other works

Proposed method Binaural Towed array Array of [105]

[23][68] [29][40][48] sensor for DoA

Independent Yes Yes - -

requirement

Distributed Yes No No No

Moving source Possible impossible impossible[40][48] impossible

/w Doppler effect possible[29]

Environment Air/Water Air Water Air/Water

Number depend on 2 in [23] 1 1

of objects ratio in (3.20) 3 in [68]

Sensor kind isotropic mono array of array of (≥ 20)x1 array of (≥ 2)x(≥ 2)

microphone microphones microphones microphones

Necessary number ≥ 3 ≥ 4 ≥ 20 ≥ 8

of microphones

Methodology f-component DoA (angle DoA (angle DoA (angle

energy ratio detection) detection) detection)

Flexibility of position: Yes position: No position: No position: No

deploying angle: Yes angle: No angle: No angle: No

Range of Short Short Long Short

detection < 35m < 30m < 1km < 30m

Accuracy for 9.54m/(30mx18m) - 3 ∼ 150/360 [29]

real data 22.80/3600 - (dual active tow) 100/180

(Error) (SourceNum=2) (SourceNum=1) (SourceNum=1)

Accuracy for 1.8m/(12mx12m)

simulated data ≃ 12.20/3600 130/1800 [68] 230/1800 [48] -

(Error) (SNR=3.97dB) (SNR=40dB) (SNR=11.86dB)

(Mic-Num=4) (Mic-Num=4) (Mic-Num=20)

(SourceNum=5) (SourceNum=3) (SourceNum=1)
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can propagate faster and less being absorbed than in the air. Moreover, the number of sensors in

towed array is very large which helps the system to record data from far. In order to compare on

accuracy (see the last two lines of Table.4.8), we interpret the error from meter unit to degree unit

which appear all most of the other works since DoA scheme is used. The results show that for the

real data, the method in [105] which tries to localize the sound source in a conference hall (one at a

time) gives very good result (worst error is 100/3600) while the proposed method give the error of

22.80/3600. However, it should be noted that AMOP works with moving source where Doppler

effect exists and the microphone sensors are isotropic. For simulated data, the interpreted result

is 12.20/3600 while the binaural methods gives 130/1800 and towed array gives 230/1800. That

means the direction of arriving angle is determined by our method while the others still have the

ambiguity of arriving directions. Moreover, the SNR in our simulation is lowest when considering

all worst cases of all approaches. The number of sources is also more in our simulation than in the

others. Obviously, our method outperforms the others which try to locate the acoustic sources.



Chapter 5

Conclusions

Object localization is one of the most important applications of WSNs. This work thoroughly con-

siders the problem in two sub-problems: sensor localization and object localization. Sensor local-

ization is actually the first stage that provides prerequisite information about sensor locations since

only given this information, object localization could be performed. Sensor localization problems

in WSNs include numerous challenges for network designers in terms of accuracy, low-cost com-

putation, low-cost communication, distributed ability, scalability, etc. In this thesis, we introduced

a new method, the Push-pull Estimation, which has many advantages that localization solvers aim

at. With the range measurements to its reference nodes and the current estimated distances, each

normal node models the differences to forces and then moves under the effect of these forces. The

algorithm relies mainly on geometry and is not based on available mathematical methods, such

as MLE, MDS, Particle Filter, etc. As a result, we have to pay more attention to analyzing and

proving most of PPE’s characteristics as well as its related problems. Simulation experiments do

not only confirm the above analysis, but also show that PPE is a robust distributed algorithm with

very simple calculations and a low communication cost. This cost can even be reduced consider-

ably with an insignificant accuracy trade-off by increasing the cycle request number. Furthermore,

the method has a flexibility to deal with different unbiased distributions of measurement error,
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especially when the error depends on the actual distance or when the error has a log-normal distri-

bution. If the measurement error is unbiased and is proportional to the actual range, PPE’s result

is better than that of the popular successive refinement representatives MLE and dwMDS. With

the log-normal distribution of the measurement interfered by noise, PPE is far better than dwDMS

in terms of computational cost and accuracy. It is also more robust than MLE, particularly if the

power error has a large variance, even when MLE uses its raw estimation as the input. Moreover,

PPE needs neither a complex calculation for these initial data nor final corrections like the re-

scaling Procrustes algorithm to improve result accuracy, thus the calculation and communication

are reduced and simpler. Therefore, PPE is a very good localization candidate to WSN designers.

For the purpose of object localization, this work introduces a distributed system for independent

acoustic source positioning in parallelism of data-and-process decomposition. The information

for separation is the ratios of f-component energy values received at the sensors. In order to ob-

tain these ratios, the received signals are first segmented into frames and transformed to frequency

frames with DFT transformation at the sensors. The Gaussian noise filtering and compressing also

take place at the sensors before the preprocessed data is sent to the base computer. At the base,

after decompressed, the data is used for f-component clustering, or determining the segments that

contain the different f-components. All of the relative distance ratios are computed in order to es-

tablish an objective function for each f-component. Minimizing these objective functions reveals

the location estimations of the f-components. A d-min clustering approach is used to group close

f-component positions and to compute the final source locations. The simulations in this work

have been made as realistic as possible with the coexistence of Doppler effect and Rayleigh multi-

path fading to illustrate how the system solves the problem of multiple moving source positioning.

The results show that the method gives high accuracy and requires a very low communication cost

for a large data set. The proposed system can be considered as the acoustic source localization de-

sign for the future generation of WSNs since it needs sensors with high computing ability in order

to perform DFT on a long segment of data. However, powerful computing ability is not crucial
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because using the feedback from the base, the sensors only perform the full DFT once and then

focus on calculating DFT at bins in several frequency segments containing major f-components.

The system is actually more useful than just positioning multiple independent acoustic sources. It

can also provide characteristics of the acoustic sources which can be utilized for further position

estimation refinement and for recognition or classification since most acoustic features are related

to the frequency domain. As the task of continuously positioning and refining the estimations of

source locations requires much effort in both analysis and simulation, we let it be our next work

in future.



Appendix A: Main parameters

Main parameters for Push-pull Estimation analyses

i, j, k : nodes’ names, also used as the index related to the nodes.

i0, k0 : actual position of node i, node k.

N,n,m : total number of nodes, number of normal nodes and number of anchors respectively,

N = n+m.

xi : true position of node i, xi ∈ R2.

x̃i : current estimated position of node i, x̃i ∈ R2.

dij : actual distance from xi to xj .

d̃ij : current calculated distance from x̃i to x̃j .

δij : measured distance, or measurement from node i to node j which is estimated by the

network and serves as the input for PPE algorithm.

p : index of PPE’s phases; p = 1, 2 or 3.
−→
fij

(p) : individual force caused by j on i.
−→
fij

(1),
−→
fij

(2), and
−→
fij

(3) are defined in equations

(2.6), (2.7), and (2.8) respectively.
−→eij : unit vector pointing the direction from x̃i to x̃j . −→eij = 1

d̃ij
(x̃j − x̃i).

−→
Fi

(p) : the mean-force, defined in (2.4).

Mi
(p) : number of node i’s related nodes. Mi

(1) is number of i’s related beacons, Mi
(2) is
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number of both i’s related beacons and i’s neighbors, and Mi
(3) = Mi

(2).

α(p) : movement rate.

Lij : variable defined in (2.10) to unify the form of
−→
fij

(p) for statement iii)’s proof.

J , K : center points of sub-areas.

(ui, vi), (uj , vj): positions of node i and node j in the coordinate system uOv.

(∆Fu,∆Fv) : coordinate of
−−→
∆Fi in the coordinate system uOv.

−→
Fi : variable replacing

−→
Fi

(p) in statement i)’s proof.

Pij , Pnoise : received power (dB) and error power (dB) at i respectively when j transmits.

g(.) : de-biasing function.

k(p), k(p)max : iteration counting variable and it maximum value at phase p.

Main parameters for Multiple Moving Object Positioning analyses

Q : number of location-known sensors

si(t) : signals of source j

M : number of the sources to be located

xi(t) : received signal at sensor i

xi(tn) : discrete form of xi(t) on the time domain resulted from sampling.

aij : amplitude gain of the signal from source j measured at sensor i

τij(t) : immediate propagation time of signal from source j to sensor i.

vc, vj : velocity of acoustic propagation and velocity of source j.

dij(t) : immediate distance from sensor i to source j.

fi, fij : a specific f-component of source j and its shifted version at sensor i.

Xi(ω), Si(ω) : STFT forms of xi(t) and si(t).

Xi(ωk), Si(ωk) : discrete Fourier transformation (DFT) forms of xi(tn) and si(tn).
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rilz : distance constrain, the ratio of distance from source z to sensor l and from source z to

sensor i.

Xi(ω
(m)
k ) : a segment of Xi(ω), particularly in (ωa, ωb) on Fourier domain.

Fj : objective function that needs to be minimized so that the position of a dominant f-

component belonging to source j can be obtained.

p(m) : position of a dominant f-component, p(m) ∈ R2

w(m) : the weight represented by the mean value of the f-component’s energies at the sensors.



Appendix B: Conjugate Gradient

Optimization Method

Conjugate Gradient Optimization is used to find the optimal points of a function in stead of the

simple negative gradient descent method. Negative gradient descent is one of first-order optimiza-

tion approaches. It makes a jump in the searching space along the direction that gives the steepest

change of the function. Meanwhile, conjugate gradient optimization is a second-order optimiza-

tion. It regards the surface of the function around the current considered point to be quadratic

and make the jumps to the optimal point. The speed of convergence is faster than the negative

conjugate and as the trade-off, the second order of derivative must be computed.

Assume that we want to find the solution of minimizing a function f . The local area of

the considering point x has the approximation of a quadratic function (just like Quasi-Newton

method):

1

2
xTHx+ bTx (B.1)

where H is the Hessen matrix representing the differential relations, H is symmetric positive defi-

nite. The unique solution of this minimization is the unique solution of
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Hx+ b = 0 (B.2)

Then the Conjugate Gradient Algorithm is in details as following [91]:

1. g0 ← Hx0 + b

2. d0 ← −g0

3. for k = 0, ..., n− 1 do

αk ← −
gTk dk
dTk Hdk

xk+1 ← xk + αkdk

gk+1 ← Hxk+1 + b

βk ←
gTk+1Hdk

dTk Hdk

dk+1 ← −gk+1 + βkdk

4. Return xn

Algorithm 6: Conjugate gradient algorithm

In order to overcome the sophistication of calculating the second-order derivative of function

f(x), another method extended from conjugate gradient has been introduced by Fletcher and

Reeves. This approach only need the first-order derivative combining with any simple line search

method. Its details are presented below [91]:
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1. Start at some x0

2. d0 ← −∇f (x0)

3. for k = 0, ..., n− 1 do

αk = argmin
αk

g (α) = argmin
αk

f (xk + αdk)

xk+1 ← xk + αkdk

βk ← ∥∇f(xk+1)∥2

∥∇f(xk)∥2

dk+1 ← −∇f (xk+1) + βkdk

4. x0 ← xn

5. go back to step 2 until satisfied with the results.

Algorithm 7: Fletcher-Reeves

When considering the convergent speed, the number of loops for calculating x is equal to

second-order Newton optimization. However, it does not require the Hessen H . Therefore, this is

regarded to be an intermediate method between negative gradient descent and Newton’s method.
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