
Thesis for the Degree of Doctor of Philosophy 

 
 

 

 

Noisy Training Data Detection:        
Incorporating the Knowledge of Unlabeled Data 

 

 

 

 

 

 

Donghai Guan 
 
 

 

 

 

 

Department of Computer Engineering 

Graduate School 

Kyung Hee University 

Seoul, Korea 

 

August, 2009 



 

 

Noisy Training Data Detection:   

Incorporating the Knowledge of Unlabeled Data 

 

 

 

 

by 

Donghai Guan 
 

 

 

 

Supervised by 

Prof. Young-Koo Lee, Ph.D. 

 

 

 

 

Department of Computer Engineering 

Graduate School 

Kyung Hee University 

Seoul, Korea 

 

August, 2009 



 

 

Noisy Training Data Detection:  

Incorporating the Knowledge of Unlabeled Data 
 
 
 
 

Donghai Guan 
 
 
 

Submitted to 
The Faculty of the Graduate School of Computer Engineering 

in Partial Fulfillment of the Requirements 
of the Degree of 

Ph.D. 
 
 
 
 
 

 
Thesis Committee: 
 
 
 
Professor Chae, Oksam 
 
 
Professor Chung, Tae-Choong 
 
 
Professor Kim, Dong-Han 
 
 
Professor J. d’Auriol, Brian 
 
 
Professor Lee, Young-Koo 
 



 

 

 

 

 

 

Dedicated to my Family



 

 i

Acknowledgement 

Many different people provided help, support, and input that brought this thesis 

to fruition. First and foremost, I would like to express my gratitude to my 

supervisor, Prof. Young-Koo Lee, who gave me an opportunity to do this Ph.D 

research. He gave me the freedom to try out new ideas and gave me continuous 

support during the research.  

I particularly appreciate Prof. Sungyoung Lee for his guidance and continue 

support throughout my PhD study. I also would like to thank Prof. Brian J. 

d’Auriol and Prof. Andrey Gavrilov for their great help on my research.  

I am also in debt of my thesis committee whose comments helped me to very 

much improve the presentation of the thesis.  

Many thanks to all members of Activity Recognition Team, as well as the 

Ubiquitous Computing Group and Database Group, for their collaboration and 

friendship during my study.  

I would like to thank my parents for supporting my decision to continue this 

study. I also owe a lot of thanks to my younger sister whose efforts of taking 

over my duty in taking care of our parents have helped to keep my mind on this 

work.   

Last and most importantly, I lovingly thank my sweet fiancée and reliable 

research partner, Weiwei Yuan, for her love, patient and support. 

 

Donghai Guan 

August 2009, 

Seoul, Korea 



 

 ii

Abstract 

The classification learning process consists of different steps: building a 

training set, training the system, testing its behavior, and finally classifying 

unknown objects. The quality of the training data is known to be one of the 

most important factors to determine the learning performance. In real 

applications, training data are prone to noises for several reasons including 

subjectivity, data-entry error, or inadequacy of the information used to label 

each object. Noises in training set tend to degrade the learning performance; 

handling noisy training data is therefore one of the most important topics in 

machine learning.  

Noise filtering is a popular technique to handle noises in the training data. It 

identifies and removes noises prior to applying the chosen learning algorithm, 

so that the noisy data do not influence hypothesis construction. Existing noise 

filtering methods like edited nearest neighbor, majority/consensus filtering are 

supervised which only rely upon the training data. In this thesis, we present a 

new method for noise filtering. Our key idea is to incorporate the knowledge 

learned from unlabeled data, which are usually easy to obtain since they do not 

need human labeling effort. Our method is straightforward and general. It can 

work on any existing noise filtering methods. Existing noise filtering methods 

can not utilize unlabeled data directly, so we need the method that can convert 

unlabeled data to labeled data. For this purpose, we propose an ensemble-based 

semi-supervised learning algorithm to selectively choose and predict labels for 

unlabeled data. By incorporating the advantage of ensemble learning, this 

algorithm overcomes the intrinsic limitation of the traditional self-training and 

co-training algorithm, which require the measure to evaluate the classification 

“confidence”.  

The k-nearest neighbor algorithm is a type of instance-based learning that is 

highly susceptible to noisy instances in the training set due to the high degree of 

local sensitivity. Considering its urgent requirement for refined noise filtering 
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techniques, we firstly use our method on three well-known instance-based noise 

filtering methods: edited nearest neighbor, repeated edited nearest neighbor, and 

All k-NN. Experimental results demonstrate that all these three methods can 

achieve improved performance by using our method. This experiment proves 

the effectiveness of utilizing unlabeled data for instance-based noise filtering 

methods.  

In essence, our method is general and not limited to instance-based noise 

filtering methods. To show its universality, we use our method with 

majority/consensus filtering, a well-known general noise filtering method which 

can be used with any base learning algorithms. We choose three popular 

algorithms as the base learning algorithm of majority/consensus filtering: naïve 

Bayes, decision tree, and k-NN. Experimental results indicate that our method 

can improve the performance of majority/consensus filtering for all the three 

algorithms.  

Based on the above instance-based and general noise filtering methods, the 

experimental results suggest that our method has the potentiality to provide 

improved performance for any noise filtering algorithms and any base learning 

algorithms with only marginal modification required.  
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Chapter 1 

Introduction 

Noise detection encompasses aspects of a broad spectrum of technique. Many 

techniques employed for detecting noises are fundamentally identical but with 

different names such as noise detection, outlier detection, novelty detection, 

anomaly detection, deviation detection or exception mining. In this thesis, we 

use the name noise detection.  

Noise detection is important and it can be used in many applications. This 

study involves evaluation of noisy data in the training set.  

The goal of an inductive learning algorithm is to form a good generalization 

model constructed on the training instances. Generally two main factors 

determine the quality of generalization model: (1) the quality of the training 

data, and (2) the appropriateness of the biases of the chosen learning algorithm 

for the training data. When the learning algorithm is given, the quality of 

generalization model mainly depends on the quality of the training data. 

Considering that training data usually include noises which tend to degrade the 

quality of generalization model, effective noise handling is one of the most 

important problems in inductive learning.  

In order to minimize the downside of noisy training instances, people mainly 

take one of the two approaches: noise tolerance and noise elimination. Noise 

tolerance tries to control the negative effect of noisy instances without removing 

them, usually by designing robust algorithms that are insensitive to noise. The 

typical methods in this category include rule truncation [1] and tree pruning [2]. 

For example, pruning in decision trees is designed to reduce the chance that the 

trees are over fitting to noise in the training data. However, since the classifiers 

learned from noisy data have less accuracy, the pruning may have very limited 

effect in enhancing the system performance, especially in the situation that the 

noise level is relatively high.  
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On the other hand, noise elimination tries to improve the quality of training 

data by identifying and eliminating the noisy instances prior to apply the 

learning algorithm. For a real world dataset, doing the task “by hand” is 

completely out of the question given the amount of person hours involved. A 

manual process of noise elimination is also laborious, time consuming, and 

prone to errors. Useful and powerful tools that automate or greatly assist in 

noise elimination therefore have been developed. One typical method in this 

category is to use an ensemble of classifiers and treat the training instance that 

is misclassified as the noise. It has been argued by [3] that the noise elimination 

is more effective than noise tolerance. In this work, we focus on noise 

elimination. 

The noisy training instances mainly include two types: attribute noise and 

class noise. Attribute noises are the errors introduced in the attribute values of 

the instances. Examples of those external errors include (1) erroneous attribute 

values, (2) missing or don’t know attribute values, (3) incomplete attributes or 

don’t care values. The class noises are also called mislabeled noises since they 

are caused by the mislabeling. Class noise can occur for several reasons 

including subjectivity, data-entry error, or inadequacy of the information used 

to label each object. Subjectivity may arise when observations need to be 

ranked in some way such as disease severity or when the information used to 

label an object is different from the information to which the learning algorithm 

will have access. For example, when labeling pixels in image data, the analyst 

typically uses visual input rather than the numeric values of the feature vector 

corresponding to the observation. Domains in which experts disagree are natural 

places for subjective labeling errors. In other domains, the most frequent type of 

error is mistake made during data-entry. A third cause of labeling error arises 

when the information used to label each observation is inadequate. For example, 

in the medical domain it may not be possible to perform the tests necessary to 

guarantee that a diagnosis is 100% accurate. For domains in which labeling 

errors occur, an automated method of eliminating or correcting mislabeled 
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observations will improve the predictive accuracy of the classifier formed from 

the training data.   

Quinlan [4] has comprehensively analyzed the two types of noises and 

demonstrated that, for higher levels of noise, removing noise from attribute 

information decreases the predictive accuracy of the resulting classifier if the 

same attribute noise is present when the classifier is subsequently used. 

However, for class noise, the opposite is true: cleaning the training data will 

result in a classifier with a higher predictive accuracy. Brodley and Friedl [5][6] 

have also illustrated that for class noise levels of less than 40%, removing 

mislabeled instances from the training data resulted in higher predictive 

accuracy relative to classification accuracies achieved without “cleaning” the 

training data. Inspired by their works, our study focuses on identifying and 

eliminating class noises (mislabeled instances), which thereby increasing the 

classifier’s predictive accuracy.  

Up to now, many research efforts have been made on eliminating mislabeled 

instances for effective learning. Guyon [7] provided an approach that uses an 

information criterion to measure an instance’s typicality; and atypical instances 

are then presented to a human expert to determine whether they are mislabeled 

instances or exceptions. The noise detection algorithm of Gamberger [8] is 

based on the observation that the elimination of noisy examples reduces the 

CLCH (Complexity of the Least Complex correct Hypothesis) value of the 

training set. They called their noise elimination algorithm the Saturation filter 

since it employs the CLCH measure to test whether the training set is saturated. 

Brodley and Friedl [5,6] simplified noise elimination as a filtering operation 

`where multiple classifiers learned from noisy training data are used to identify 

noise, and the noise is characterized as the instances that are incorrectly 

classified by the multiple classifiers. Two major filtering methods they 

proposed are majority filtering and consensus filtering. In addition, there exists 

some noise detection methods specially proposed for nearest neighbor 

classifiers. Wilson [9] used a three-nearest neighbor classifier (3-NN) to select 
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instances that then used to form a 1-NN. Aha, Kibler, and Albert [10] 

demonstrated that filtering instances based on records of their contribution to 

classification accuracy in an instance-based classifier improves the accuracy of 

the resulting classifier. 

The noise identification process of the existing methods can be represented 

by the expression: ( ) ( , )R t f t T= , wherein ( )f ⋅  denotes the noise identification 

function which depends on a particular measure, such as instances typicality [7], 

reduction of CLCH [8], number of misclassification [5,6], improvement of 

classification accuracy [10] and so on; t denotes one training instance in 

training set T ; ( )R t denotes the identification & elimination result for instance 

t that consists of two values: 0 (eliminate) and 1 (retain). For above methods, no 

matter which kind of noise identification function employed, there are always 

two parameters with the noise identification function: training set T and the 

instance t to be evaluated. In other words, given the noise identification 

function, the identification result (eliminate or retain) for a training instance is 

only based on the training set and this instance itself.  

1.1 Noise filtering by using unlabeled data 

Nowadays learning from unlabeled data is a hot topic. Labeled data for machine 

learning is often very difficult and expensive to obtain, and thus the ability to 

use unlabeled data holds significant promise in terms of vastly expanding the 

applicability of learning methods.  

Although unlabeled data have been used in many machine learning problems 

like classification and regression, their potential utility has not been considered 

by existing noise filtering methods. The novelty of our approach therefore is to 

make use of unlabeled data to aid the noise filtering in training data. This is in 

contrast to the existing noise filtering methods which rely upon only the training 

set. Let U  denote the unlabeled set and our approach can be expressed 

as: ( ) ( , , )R t f t T U= . The advantages of our approach include the use of unlabeled 

data that are often convenient to obtain in many applications with only marginal 
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modifications required to existing methods. Another merit of our approach lies 

in its wide applicability. It can be used with many various noise detection 

methods including all the existing methods mentioned in previous paragraph. 

1.2 Thesis outline 

Below is a summary of the rest of the thesis: 

Chapter 2: Semi-supervised classification. Existing noise filtering methods 

cannot utilize unlabeled data directly. One solution is to predict the labels for 

unlabeled data by utilizing semi-supervised classification technique. In this 

chapter, we provide a review of semi-supervised classification, and describe 

some commonly-used semi-supervised classification approaches, such as self-

training and co-training. In addition, we propose an ensemble-based semi-

supervised classification approach to solve the limitations of self-training and 

co-training by incorporating the advantage of ensemble learning.  

Chapter 3: Instance-based noise filtering aided by unlabeled data. Instance-

based learning like the k-nearest neighbor is susceptible to the noisy training 

data due to its high degree of local sensitivity. We firstly use our method with 

instance-based noise filtering methods. Three popular instance-based noise 

filtering methods are adopted, including edited nearest neighbor, repeated edited 

nearest neighbor, and All k-NN. The comparisons between the original methods 

and our proposed methods are evaluated through a set of experiments. The 

experimental results prove that the performance of instance-based noise filtering 

can be improved with the aid of unlabeled instances. 

Chapter 4: General noise filtering aided by unlabeled data. In essence, our 

method is not specified to any particular noise filtering method and any learning 

algorithm. In this chapter, we validate the wide applicability of our method by 

using majority/consensus filtering. Majority/consensus filtering are general 

noise filtering methods that can be used with any learning algorithms. In the 

experiments, we choose three popular learning algorithms: k-nearest neighbor, 

naïve Bayes, and decision tree. We test whether our proposed method can 
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improve the performance of majority/consensus filtering based on each of these 

three learning algorithms through a comprehensive empirical study. The study 

results indicate that our method can improve the performance of 

majority/consensus filtering for all the three explored algorithms.   

Chapter 5: Conclusions and future work. In this chapter, we summarize the 

main contributions of our work and discuss future research directions for the 

work presented in this thesis. 
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Chapter 2 

Semi-supervised classification 

The key idea of this thesis is to improve the performance of existing noise 

filtering methods by incorporating the knowledge of unlabeled instances. 

Existing noise filtering methods are supervised and can only utilize the 

information of labeled instances. How to utilize unlabeled data is therefore the 

foremost problem to be considered. Naturally there are two main solutions for 

this problem. On the one hand, we can adapt existing noise filtering methods for 

using unlabeled data. On the other hand, we may adapt unlabeled instances for 

existing noise filtering methods use. In this work, we adopt the latter one as this 

is a once for all work. Once the unlabeled data are adapted somehow, they can 

be used by any existing noise filtering method. 

To adapt unlabeled data, our solution is to predict the labels for them by using 

the semi-supervised classification technique, because existing noise filtering 

methods can only use the information of labeled instances. In this chapter, we 

provide a brief background on semi-supervised classification and review some 

common-used semi-supervised classification methods. Followed by, we present 

our proposed ensemble-based semi-supervised classification method.  

2.1 Introduction to semi-supervised learning 

Semi-supervised learning has attracted an increasing amount of interest recently. 

It makes use of both labeled and unlabeled data for learning and therefore falls 

between unsupervised learning (without any labeled training data) and 

supervised learning (with completely labeled training data). Many research 

works have found that unlabeled data, when used in conjunction with a small 

amount of labeled data, can produce considerable improvement in learning 

performances. The main motivation to develop semi-supervised learning is that 

in many applications labeled instances are time-consuming and expensive to 
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obtain as they require the efforts of human annotators. For example, obtaining a 

single labeled example for protein shape classification, which is one of the 

grand challenges of biological and computational science, requires months of 

expensive analysis by expert crystallographers. 

 

Fig. 1. The position of semi-supervised learning 

Most existing works on semi-supervised learning focus on the classification 

task; although, we have noted that unlabeled data have been used to solve other 

types of problems, including, for example ensemble learning [11][12], 

dimension reduction [13], active learning [14][15], and feature selection 

[16][17].  

In supervised classification problem we are given as input pairs of variables 

1 1( , )X Y … ( , )m mX Y  where the iX are objects of the type that we want to classify 

(for example documents or images) and the iY are the corresponding labels of 

the iX  (for example if the iX are newspaper articles then the iY  might indicate 

whether iX  is an article about machine learning). The goal is to minimize error 

rate on future examples X whose labels are not known. The special case where 

iY  can only have two possible values is known as binary classification. 

Supervised classification problem has been extensively studied in the machine 

learning community and several algorithms have been proposed. A few of the 

algorithms which gained broader acceptance are naïve Bayes, neural network, 

decision trees, k-nearest neighbor, and support vector machines.  
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In the semi-supervised classification problem, in addition to labeled examples 

1 1( , )X Y … ( , )m mX Y  we also receive unlabeled examples 1mX + ,… nX . Thus we 

have m  labeled examples and n m− unlabeled examples. 

Semi-supervised classification began to receive extensive attention in the 

early 90s. Some of the algorithms that have been proposed for this problem 

include the Expectation-Maximization algorithm proposed by Dempster, Laird 

and Rubin [18], the self-training algorithm proposed by Yarowsky [19], the co-

training algorithm proposed by Blum and Mitchell [20], the graph mincut 

algorithm proposed by Blum and Chawla [21], and the Gaussian Fields 

algorithm proposed by Zhu, Gharamani and Lafferty [22]. The area is still the 

subject of a very active research effort. A number of researchers have attempted 

to address the question of “Under what circumstances can unlabeled data be 

useful” from a theoretical point of view and there also has been great interest 

from industrial practitioners who would like to make the best use of their 

unlabeled data.  

Among the existing semi-supervised classification algorithms, self-training 

and co-training are the most popular ones for their straightforwardness and easy 

implementation. In addition, both of them consist of the procedure to predict the 

labels for unlabeled data. That is the reason for them to be considered here. 

Self-training and co-training algorithms are introduced in Chapters 2.1.1 and 

2.1.2 respectively.  

2.1.1 Self-training 

In self-training a classifier is first trained with the small amount of labeled data. 

The classifier is then used to classify the unlabeled data. Typically the most 

confident unlabeled points, together with their predicted labels, are added to the 

training set. The classifier is re-trained and the procedure repeated. Note the 

classifier uses its own predictions to teach itself. The procedure is also called 

self-teaching. The generative model and EM approach can be viewed as a 

special case of “soft” self-training. One can imagine that a classification 
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mistake can reinforce itself. Some algorithms try to avoid this by “unlearn” 

unlabeled points if the prediction confidence drops below a threshold. Self-

training has been applied to several natural language processing tasks. 

Yarowsky [19] uses self-training for word sense disambiguation, e.g. deciding 

whether the word “plant” means a living organism or a factory in a give context. 

Riloff et al. [23] uses it to identify subjective nouns. Maeireizo et al. [24] 

classify dialogues as “emotional” or “non-emotional” with a procedure 

involving two classifiers. Self-training has also been applied to parsing and 

machine translation. Rosenberg et al. [25] apply self-training to object detection 

systems from images, and show the semi-supervised technique compares 

favorably with a state of-the-art detector. Self-training is a wrapper algorithm, 

and is hard to analyze in general. However, for specific base learners, there has 

been some analyzer’s on convergence. A typical self-training algorithm is 

shown in Table 1.  

Table 1 Typical self-training algorithm 

Algorithm: Typical self-training algorithm 
Input: T  (training set), U (unlabeled set) 
Parameter: B  (base learning algorithm) 
Output: H  (Hypothesis) 
(1) ( , )U DLT f T U←  // new training data 
(2) UT T T← ∪  
(3) Induce H based on algorithm B and training instancesT  
// ( )DLf ⋅  is the “data labeling function” that generates new training data UT  
   by selectively choosing some unlabeled data and predicting their labels 

 

Data labeling function is the core of self-training algorithm. It is responsible 

to choose confident labeling instances. The confidence degree that depends on 

the ranking of class membership probabilities is commonly used as the selection 

metric that ranks and selects the unlabeled instances for next training of base 

learning algorithm. Naïve Bayes is often used as the underlying classifier 

because its class membership probability estimates have good ranking 

performance. 
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2.1.2 Co-training 

Co-training [20] assumes that (1) features can be split into two sets; (2) each 

sub-feature set is sufficient to train a good classifier; (3) the two sets are 

conditionally independent given the class. Initially two separate classifiers are 

trained with the labeled data, on the two sub-feature sets respectively. Each 

classifier then classifies the unlabeled data, and ‘teaches’ the other classifier 

with the few unlabeled examples (and the predicted labels) they feel most 

confident. Each classifier is retrained with the additional training examples 

given by the other classifier, and the process repeats. In co-training, unlabeled 

data helps by reducing the version space size. In other words, the two classifiers 

(or hypotheses) must agree on the much larger unlabeled data as well as the 

labeled data. We need the assumption that sub-features are sufficiently good, so 

that we can trust the labels by each learner. We need the sub-features to be 

conditionally independent so that one classifier’s high confident data points are 

iid samples for the other classifier.  

Nigam and Ghani [26] perform extensive empirical experiments to compare 

co-training with generative mixture models and EM. Their result shows co-

training performs well if the conditional independence assumption indeed holds. 

In addition, it is better to probabilistically label the entire unlabeled instances, 

instead of a few most confident data points. They name this paradigm co-EM. 

Finally, if there is no natural feature split, the authors create artificial split by 

randomly break the feature set into two subsets. They show co-training with 

artificial feature split still helps, though not as much as before. Balcan and Blum 

[27] show that co-training can be quite effective, that in the extreme case only 

one labeled point is needed to learn the classifier. Zhou et al. [28] give a co-

training algorithm using Canonical Correlation Analysis which also need only 

one labeled point. Dasgupta et al. [29] provide a PAC-style theoretical analysis. 

Table 2 is a typical co-training algorithm. 
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Table 2 Typical co-training algorithm  

Algorithm: Typical Co-training algorithm 
Input: T  (training set), U (unlabeled set) 
           T  is described by two different views 1viewT  and 2viewT  
Parameter: B  (base learning algorithm) 
Output: H  (Hypothesis) 
(1) 1 1( , )U DL viewT f T U←  // new training data obtained from view 1 
(2) 2 2( , )U DL viewT f T U←  // new training data obtained from view 2 
(3) 1 2U UT T T T← ∪ ∪  
(4) Induce H based on algorithm B and training instances T  
// ( )DLf ⋅  is the “data labeling function” that generates new training data 

UT  by selectively choosing some unlabeled data and predicting their 
labels 
 

2.2 The proposed ensemble-based data labeling function 

Although self-training and co-training are widely used, both of them have some 

limitations. For self-training, the classifier requires some measures to evaluate 

the “confidence” of unlabeled data. However, it is not easy for many classifiers 

like k-nearest neighbor to give this measure. What’s more, even if the classifier 

could measure the confidence, its own prediction on label of the unlabeled data 

is not reliable. In case of co-training, it lacks generality since it only works for 

the data sets which can be represented by two sufficient and independent views. 

In addition, the measure of “confidence” is also required. To relieve the 

requirement of “confidence” measure, we propose an ensemble-based data 

labeling function. The algorithm of this function is shown in Table 3. 

As shown in the algorithm, multiple learning algorithms (more than two) are 

employed in this data labeling function. Firstly, multiple classifiers will be 

trained based on the initial labeled data by these various learning algorithms. 

Afterwards these classifiers will classify the unlabeled instances. The instance 

(and its predicted label) will be selected only when all these classifiers give the 

same classification result (predicted label) on it. Using this mechanism, our 
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proposed data labeling function overcomes the limitation of “confidence-based” 

data labeling function employed in traditional self-training and co-training 

algorithms. Explicit measure of confidence is not required by our algorithm.  

Table 3 Ensemble-based data labeling function  

Algorithm: Ensemble-based Data Labeling Function 
Input: T  (training set), U (unlabeled set) 
Parameter: k (number of iterations), y (number of learning algorithms) 
           u (number of initially selected unlabeled instances) 
          1 2, ,..., yA A A ( y kinds of learning algorithms) 
Output: UT (selected unlabeled instances fromU with predicted labels) 
(1) create 'U by choosing u instances at random from U  
(2) UT ←∅  
(3) for 1,...,i k=  do 
(4)   '\U U U← , before Unum T←  //size of UT when iteration starts 
(5)   for 1,...,j y=  do 
(6)      induce jH based on instances in T and algorithm jA  
(7)    end for 
(8)   for every 't U∈ do 
(9)     for 1,...,j y= do 
(10)       ( ) ( )j jpl t H t←  // predicted label of jH on t  
(11)      end for 
(12)        if 1 2( ) ( ) ,..., ( )ypl t pl t pl t= =  
(13)      then 1( )UT t pl t← ∪ , ' ' \U U t←  
(14)   end for 
(15)   UT T T← ∪  
(16)   after Unum T← , after beforenum num numΔ ← − // num. of selected data 
(17)   if U num≥ Δ  
(18)   then randomly choose numΔ instances from U to replenish 'U  
(19)     if 0 U num< < Δ  
(20)   then choose all instances of U to replenish 'U  
(21)   if 0U =  
(22)   then exit; 
(23) end for 
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2.2.1 The performance of ensemble-based data labeling function 

As shown in Table 1 and 2, data labeling function is the core of self-training 

and co-training. Its quality (predictive accuracy on unlabeled data) has heavy 

impact on the performance of semi-supervised classification algorithms. 

Intuitively the predicted labels of data labeling function, including both 

traditional confidence-based and our ensemble-based, are prone to errors. 

Although we mainly care for whether noise filtering performance could be 

improved with the aid of these self-labeled instances by data labeling function 

(in the following chapters), we would like to have the quantitative knowledge 

about what is the predictive accuracy of this ensemble-based data labeling 

function. Moreover, based on this data labeling function, whether semi-

supervised classification method works. In the experiment, we will test the 

performance of our method based on the self-training method based on k-NN 

algorithm (1-NN). We choose k-NN as it is a typical method which requires 

noise filtering technique since it is sensitive to noises. Regarding to the 

ensemble-based data labeling function, three learning algorithms are employed, 

including 3-NN, naïve Bayes, and decision tree.  

The experiments are based on the benchmark data sets from the Machine 

Learning Repository [30]. Information of these data sets is tabulated in Table 4. 

These data sets are collected from different real-world applications in various 

domains, such as breast cancer (breast) and iris plant database (iris). Note that 

“magic” used here is just part of the original one in UCI. Originally, “magic” 

has 19020 instances consisting of 2 classes. To reduce the experiment time, we 

extract the first 1000 instances from each class. Therefore, 2000 samples are 

used here.  
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Table 4 UCI data sets used in the experiments 

Data set Attribute Size Class Class distribution 
iris 4 150 3 50/50/50 
voting 16 435 2 267/168 
heart2 13 294 2 188/106 
horse 15 368 2 232/136 
sonar 60 208 2 111/97 
wine 13 178 3 59/71/48 
breast 9 1000 2 700/300 
yeast 8 1484 10 463/429/244/163/51/44/37/30/20/5 
australian 14 690 2 383/307 
bupa 6 345 2 145/200 
diabetes 8 768 2 500/268 
echo 7 131 2 88/43 
german 24 1000 2 700/300 
glass 9 214 6 70/76/17/13/9/30 
magic 10 2000 2 1000/1000 
credit 15 690 2 307/383 
spect 44 267 2 212/55 
wdbc 31 569 2 357/212 
ecoli 7 336 8 143/77/52/35/20/5/2/2 
ionosphere 34 351 2 225/126 
haberm 3 306 2 225/81 

Each data set is divided into training set, test set, and unlabeled set. Self-

training algorithm (with our proposed ensemble-based data labeling function) 

works on the unlabeled set and outputs the self-labeled training set, which then 

combines with the original training set to become an augmented training set. 

Afterwards the test set is classified by the supervised learning algorithm (based 

on the original training set) and the self-training algorithm (based on augmented 

training set) respectively. Classification accuracy is the measure to evaluate the 

performance of data labeling function and self-training algorithm.  

The detailed process for each data set is as follows: 

(1) D  is randomly partitioned into two parts: labeled set L  and unlabeled set 

U .  

(2) Ten trials derived from ten-fold cross-validation on L are used to evaluate 

the performance of data labeling function and self-training algorithm. At each 

trial, 90% of L is firstly selected and it is denoted by T , used as training set. 
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The remaining 10% of L is used as test set to be classified by 1-NN (based on 

T ) and 1-NN based self-training algorithm (based on T and U ).  At each trial, 

we also calculate the predictive accuracy of ensemble-based data labeling 

function on U . 

(3) The average classification accuracies of data labeling function and self-

training algorithm are obtained by averaging ten trials’ classification accuracies. 

(4) Considering that the partition of data set could influence this average 

classification accuracy, we execute the partition five times and get five 

classification accuracies (execute step 1-3 five times) 

(5) Finally the reported classification accuracy is the further averaged value 

of these five values.  

Two major parameters are able to influence this experiment. The first 

parameter determines data partitioning and it is the ratio between labeled data to 

whole data, referred to labeled ratio. It is set to 10% in the experiment. The 

second parameter is the number of iterations for ensemble-based data labeling 

function. We have performed several experiments varying the iteration number, 

including 1, 2, 3, and 4. Referring to the algorithm of ensemble-based data 

labeling, one obvious function of iteration number k is: more unlabeled 

instances are expected to be selected and added to the training set when k  

increases.  

Table 5 presents the accuracy of predicted labels (for unlabeled instances) by 

ensemble-based data labeling function. This table consists of two parts: 1) the 

predictive accuracy of each data set, 2) the average accuracy across all the data 

sets.  

The observations from Table 5 include: (1) data labeling function cannot 

provide noise-free predictive labels (for unlabeled instances). The accuracy 

varies for different data sets and different iteration numbers. (2) The predictive 

accuracy does not increase when the iteration number increases.  



 

17 

Table 6 presents the performance of 1-NN based self-training. It shows that 

the performance of 1-NN could be improved by using self-labeled instances 

predicted by ensemble-based data labeling function. On average, the 

classification accuracy of 1-NN is 72.4%. The performances of 1-NN based 

self-training are 73.8%, 74.3%, 74.3%, and 74.9% when iteration number is 1, 2, 

3, and 4 respectively.  

Table 5 Performance of ensemble-based data labeling function  

Iteration times of data labeling function 
Dataset 

1 2 3 4 
iris 0.909 0.920 0.887 0.882 
voting 0.964 0.953 0.948 0.952 
heart2 0.826 0.804 0.818 0.827 
horse 0.806 0.816 0.809 0.793 
sonar 0.785 0.804 0.804 0.804 
wine 0.953 0.939 0.932 0.872 
breast 0.965 0.974 0.965 0.965 
yeast 0.688 0.691 0.651 0.653 
australian 0.904 0.903 0.893 0.884 
bupa 0.611 0.604 0.580 0.575 
diabetes 0.795 0.769 0.769 0.768 
echo 0.727 0.750 0.750 0.750 
german 0.778 0.782 0.765 0.765 
glass 0.585 0.546 0.546 0.546 
magic 0.832 0.803 0.781 0.778 
credit 0.901 0.874 0.870 0.874 
spect 0.888 0.818 0.814 0.832 
wdbc 0.980 0.975 0.973 0.969 
ecoli 0.878 0.851 0.862 0.861 
ionosphere 0.903 0.901 0.894 0.894 
haberm 0.738 0.754 0.729 0.719 
Ave. 0.829 0.821 0.811 0.808 
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Table 6 Performance of 1-NN based self-training  

Iteration times of data labeling function 
Dataset 

1-NN 1 2 3 4 
iris 0.750 0.756 0.717 0.744 0.778 
voting 0.852 0.885 0.905 0.908 0.918 
heart2 0.733 0.789 0.778 0.833 0.756 
horse 0.707 0.704 0.700 0.726 0.674 
sonar 0.683 0.622 0.589 0.572 0.667 
wine 0.989 0.989 0.970 0.985 0.978 
breast 0.902 0.914 0.947 0.939 0.943 
yeast 0.461 0.474 0.510 0.489 0.506 
australian 0.782 0.814 0.814 0.813 0.804 
bupa 0.653 0.622 0.642 0.619 0.633 
diabetes 0.674 0.693 0.705 0.681 0.712 
echo 0.740 0.700 0.820 0.700 0.833 
german 0.657 0.677 0.670 0.690 0.660 
glass 0.442 0.508 0.483 0.450 0.500 
magic 0.708 0.708 0.707 0.732 0.725 
credit 0.776 0.797 0.799 0.803 0.797 
spect 0.641 0.670 0.624 0.737 0.674 
wdbc 0.954 0.968 0.948 0.957 0.948 
ecoli 0.675 0.700 0.713 0.678 0.729 
ionosphere 0.764 0.735 0.764 0.761 0.731 
haberm 0.656 0.773 0.809 0.786 0.759 
Ave. 0.724 0.738 0.743 0.743 0.749 

 

The performance of ensemble-based data labeling is preliminarily studied in 

this chapter. As shown in Table 5, the predicted labels of unlabeled data by data 

labeling function are prone to errors (around 20% are errors). These noisy 

instances (unlabeled data with their noisy labels) will be used to help the noise 

detection of original training set. We are interested in the question: since these 

unlabeled instances cannot get noise-free predicted labels, can they contribute to 
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noise filtering in training set? The following chapters aim to answer this 

question. 
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Chapter 3 

Semi-supervised classification 

Instance-based learning techniques work essentially by keeping typical attribute 

examples for each class. Instance-based learning algorithms in general have 

three characteristics: 

 A similarity function. This tells the algorithm how close together two 

instances are. Although this sounds easy, there is a great deal of 

complexity in choosing the similarity function, especially in situations 

where some of the inputs are enumerated. For example, if you were 

trying to match people, and one attribute was hair color, what does 

distance mean in the context of hair color? 

 A “typical instance” selection function. This tells the algorithm which 

of the instances to keep as examples. How do you know which 

instances are “typical” and which are atypical? 

 A classification function. This function is the one that when given a 

new case, decides how it relates to the learned cases. For example, this 

function might be the instance to which it is closest in location. 

The k-nearest neighbor (k-NN) algorithm is a typical instance-based learning. 

We will introduce some background knowledge of k-NN, and then present 

some k-NN related noise filtering techniques.  

3.1 The k-nearest neighbor algorithm 

The k-nearest neighbor is generally considered as a good classifier. It has a 

number of advantages, including:  

 It can easily be implemented and it is conceptually simple. 

 Its behavior is asymptotically optimal [31]. 
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 Its expected error is bounded [32]. 

Here, we briefly explain some features of these three advantages. Firstly we 

highlight its easiness of implementation and its conceptual simplicity. Imagine 

that two new fruits are first shown to someone. Then, when another unknown 

piece of fruit is presented, the individual will try to classify the new one by 

comparing it to the firstly shown pieces. So, the idea behind algorithms based 

on proximity is as follows. The classification of a new item x could be estimate 

based on the already known classifications of the elements sufficiently near to x , 

because observations that are close to each other will have a high probability to 

belong to the same class.  

Let 1 1 2 2{ , } {( , ), ( , ),..., ( , )}n nX x x xθ θ θΘ = be a training set with n instances 1{ }n
i ix =  

and their labels 1{ }n
i iθ = . Let x be a new sample with an unknown class label. 

Assume ( ', ') { , }x Xθ ∈ Θ is the nearest instance to the sample x . Then, the NN 

rule would be: 
1..

( ) ' ( , ') min ( , )NN ii n
x d x x d x xδ θ

=
= ⇔ =  

Considering the asymptotic optimal behavior of the NN rule, we must say 

that, in addition to its conceptual simplicity, the NN rule has a good behavior 

when applied to non-trial problems. In fact, the k-NN rule is asymptotically 

optimal in the Bayes sense [33]. In other words, the k-NN rule performs as well 

as any other possible classifier, provided that there is an arbitrary large number 

of representative prototypes available and the volume of the k-neighborhood of 

x  is arbitrarily close to zero for all x .  

Given that the above conditions are fulfilled, the NN rule expected error is 

never worse than twice the Bayes error rate. In this sense, at least half of the 

classification information in an infinite data set resides in the nearest 

neighborhoods.  
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Fig. 2. Decision regions of nearest neighbor rule 

The decision rule of nearest neighbor determines that the decision regions of 

nearest neighbor are the cells. As shown in Fig. 2, each cell contains one sample, 

and every location within that cell is closer to that sample than to any other 

samples. Every query point will be assigned the classification of the sample 

within that cell.  

Although nearest neighbor (and k-NN) has many advantages. However, due 

to this kind of decision region, nearest neighbor has high degree of local 

sensitivity, which makes it highly susceptible to noisy training instances. For 

example, if a point in Fig. 2 is mislabeled, then the points to be classified will 

be misclassified if they are located in the cell of that mislabeled point.  

Nearest neighbor editing techniques have been proposed to deal with the 

mislabeled instances. We will introduce them in the following parts.  

3.2 Nearest neighbor editing 

Nearest neighbor editing is the step in charge of increasing the accuracy of 

predictions, when there is a great amount of noise in the training data. A basic 

editing algorithm removes noisy instances, as well as close border cases, 

eliminating a possible overlap between the regions from different classes and 

leaving smoother decision boundaries. Wilson introduced the first editing 
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method [9]. Briefly, the k-NN rule is used to estimate the class of each example 

in the training set followed by removing those examples whose true class labels 

do not agree with the ones judged by the k-NN rule.  

Many researchers have addressed the problem of editing by proposing 

alternative schemes. Some representative works are introduced here. Tomek 

[34] proposed to apply the idea of the Wilson’s algorithm repeated until no 

more instances can be removed. Tomek also proposed the All k-NN editing 

scheme. It uses a set of the l-NN rules, with l ranging from 1 to k. In general, 

both algorithms achieve a higher storage reduction than the Wilson’s editing, 

but similar in the classification accuracy. They are however higher at the 

computational efforts.  

The generalized editing [35] consists of removing some “suspicious” 

instances from the training set and also changing the class labels of some of 

them. Its purpose is to cope with all types of imperfections of the training 

instances (mislabeled, noisy and atypical cases). Recently, the generalized 

editing and Wilson’s algorithm have been jointly used for the depuration 

method [36].  

In the case of editing algorithms based on the leaving-one-out error estimate 

(the Wilson’s scheme and its relatives), the statistical independence between 

test and training instances cannot be assumed because their functions are 

interchanged. In order to achieve this statistical independence, classification of 

instances can be performed in a hold-out manner. Thus, the Holdout editing 

[37] consists of randomly partitioning the initial training set into 2b > blocks of 

instances, 1, ,... bB B  and then eliminating cases from each block using only two 

independent blocks at the same time. [37] also introduced the Multiedit 

algorithm, which basically corresponds to an iterative version of the Holdout 

scheme using the 1-NN rule.  

A genetic algorithm [38] was also applied to define an edited set for the NN 

rule. Two different criteria were employed as the fitness function: the apparent 

error rate and a criterion based on the certainty of the classification. The 
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empirical results show that the latter criterion led to a subset of the initial 

training set that provides higher classification accuracy in comparison to the 

whole original set, with random selection and with the Wilson’s technique.  

The work [39] presented an editing algorithm based on proximity graphs, 

such as the Gabriel graph and the relative neighborhood graph. The first one 

computes the corresponding graph structure and then eliminates instances 

incorrectly classified by its graph neighbors. On the other hand, a combined 

editing-condensing scheme was also introduced to remove internal instances as 

well as border cases by using the concept of graph neighbors.  

The rationale of the k-NN editing rule proposed by [40] is very similar to that 

of the Wilson’s scheme. In this method, the condition for an instance x to be 

included in the edited set is that all the k nearest neighbors must be from the 

class to which x belongs. Accordingly, this condition is much more severe than 

that in Wilson’s algorithm and, as a consequence, the number of instances in the 

resulting edited set is equal to or less than in the Wilson’s edited set.  

The ACC filtering technique introduced by [41] tries to find centre instance 

of compact regions by considering the classification performance of each 

example in the training set. Each training instance is classified by its nearest 

neighbor. If it is correctly classified, then classification accuracy of its nearest 

neighborhood will be increased. After processing all the training instances, the 

algorithm discards examples with the accuracy lower than a certain threshold. 

As center instances are usually neighbours of other instances from the same 

class, they generally gain a high accuracy, thus are being retained by ACC.  

Among all above works, we consider the Wilson editing (i.e. edited nearest 

neighbor (ENN)), repeated nearest neighbor (RENN), and All k-NN (ANN) 

algorithms due to their wide-spread and more popular usage in the literature.  

ENN is the base of the other two algorithms. It removes all instances which 

have been misclassified by the k-NN rule from the training set. Fig. 3 shows the 

effect of ENN. In this figure, the hollow rounds and the solid rounds represent 
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instances which belong to two different classes. The left part shows a 

hypothesis training set where misclassified instances using the 1-NN rule are 

marked with dotted circles around them. The right part shows the reduced 

training set after applying ENN.  

 

Fig. 3. ENN with 1-NN classifier 

The idea of ENN relies on the fact that one can optimally eliminate outliers 

and possible overlap among classes from a given training set so the training of 

the corresponding classifier becomes easier in practice. In fact, it has been 

shown by Penrod and Wagner [42] that the accuracy of the ENN classifier 

converges to Bayes error as the number of instances approaches infinity. Table 

7 gives the ENN algorithm.  

Table 7 The algorithm of edited nearest neighbor (ENN) 

1. Let eT T= //T is the original training set, and eT is the edited set 
2. For each i ex T∈ , do: 

Discard ix from eT if it is misclassified using the k-NN rule  

with prototypes in \{ }e iT x  

 

RENN applies the ENN algorithm repeatedly until all remaining instances 

have a majority of their neighbors with the same class, which continue to widen 
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the gap between classes and smooth the decision boundary of ENN. The RENN 

algorithm is shown in Table 8.  

Table 8 The algorithm of repeated edited nearest neighbor (RENN) 

1. Let eT T=  //T is the original training set, and eT is the edited set  
REPEAT 
2. At iteration t , for each t

i ex T∈ (edited set at iteration t ), do 
Discard ix from t

eT if it is misclassified using the k-NN rule with prototypes 
in \{ }t

e iT x ; 

UNTIL 1t t
e eT T −=  // t

eT and 1t
eT − denote the edited data set of T at iteration t and 

1t −  respectively 

 

The ANN algorithm is similar with the iterative ENN with the only exception 

that the value k is increased after each iteration. Its algorithm is given in Table 

9. 

Table 9 The algorithm of All k-NN (ANN) 

1. Let eT T=  //T is the original training set, and is the edited set 
2. For each i ex T∈ , do: 

2.1 set 1m =  
2.2 while 1m k< +  do: 

2.2.1 Discard ix from eT if it is misclassified using the m-NN rule with prototypes 
in \{ }e iT x , go to Step 2. 
2.2.2 Set 1m m= +  

 

The common factor in all the three data editing methods discussed above is 

that they edit each instance based on the voting of other instances in the training 

set. In many applications, as the matter of fact, it is common that the size of the 

unlabeled data set is greater than that of the labeled data set (e.g. mainly due to 

the fact that unlabeled data do not require human labeling effort, and are easy to 

obtain).  

In Fig. 4, “× ” represents unlabeled instance. Existing data editing methods, 

such as ENN, do not consider these unlabeled data and they edit the training set 
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as if the unlabeled data do not exist. The editing result is shown in the right part 

of Fig. 4.  

 

Fig. 4. ENN with 1-NN classifier when unlabeled data are available 

3.3 Nearest neighbor editing aided by unlabeled data 

(NNEAUD) 

Our intuitive idea is to extend the searching scope of neighbors from the 

training set to the whole data set which includes both the training set and the 

unlabeled set. Considering that the labels of unlabeled data are not available, in 

order to utilize unlabeled data, the first phase therefore is to predict the labels 

for them. Then the second phase is to utilize this augmented set in data editing.  

The first phase employs the ensemble-based data labeling function introduced 

in Chapter 2.  

The nearest neighbors of a training instance obtained from a search of the 

training set and those from the whole set might be different. The variation of 

nearest neighbors might lead to a changing of editing result. The effect of our 

method is illustrated in Fig. 5. Let T  denote the training set and UT denote the 

unlabeled set with their predicted labels from ensemble-based data labeling 

function. Traditionally, when editing T using ENN with 1-NN rule, instance 

1x will be retained since its nearest neighbor in T has the same label with it. 
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Instance 2x will be removed since its nearest neighbor in T has different label 

with it. However, when aided by UT , the editing results of 1x and 2x are changed. 

Now 1x will be removed as its nearest neighbor searched from the whole data 

set is in UT which has the different label with 1x . In contrast, 2x will be retained 

as its nearest neighbor based on the whole data set is from UT which has the 

same label with it.  

 

Fig. 5. The effect of unlabeled data for data editing 

Now the variants of ENN, RENN, and ANN in the case of using unlabeled 

data to aid data editing on T  are considered. Without changing the data editing 

rules much, ENN, RENN, and ANN can use UT  easily as shown in Tables 10, 

11, and 12. Tables 10 through 12 show two different usages of UT . In Tables 10 

and 12, UT is used to optimize the editing performance of T while UT is never 

edited. In Table 11, UT and T are edited together. But as shown in Step 3 of 

Table 7, e eT T T= ∩ , the final edited data are only extracted from T . Therefore, 

all the three methods regard unlabeled data as the activator of data editing 

which will not be included in the final edited set.  

Table 10 The algorithm of ENN aided by unlabeled data 

1. Let eT T=  
2. For each i ex T∈ , do: 

  Discard ix from eT if it is misclassified using the k-NN rule with prototypes in 

( \{ })e i UT x T∪  
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Table 11 The algorithm of RENN aided by unlabeled data 

1. Let e UT T T= ∪  
REPEAT 
2. At iteration t , for each t

i ex T∈ (edited set at iteration t ), do 
-- Discard ix from t

eT if it is misclassified using the k-NN rule with prototypes in 
\{ }t

e iT x  
UNTIL ( 1t t

e eT T −= , t
eT and 1t

eT − denote the edited data set of T at iteration t and 
1t −  respectively) 

3. e eT T T= ∩  

Table 12 The algorithm of ANN aided by unlabeled data 

1. Let eT T= (T is the original training set, and eT will be the edited set) 
2. For each i ex T∈ , do: 

2.1 set 1m =  
2.2 while 1m k< +  do: 

   2.2.1 Discard ix from eT if it is misclassified using the m-NN rule with 
prototypes in ( \{ })e i UT x T∪ , go to Step 2. 

   2.2.2 Set 1m m= +  

 

Although ensemble-based data labeling function could predict the labels for 

unlabeled data, as shown in the experiments in Chapter 2, the predicted labels 

may include some errors. The erroneous labels could potentially degrade the 

editing performance. Considering the following three cases (Fig. 6) based on the 

ENN algorithm: 

Case A: Traditional ENN. The edited data set is denoted by ( )e aT . 

Case B: Assume that an oracle who can predict labels for the unlabeled set 

U correctly exists. Then this idealistic noise-free labeled data set, denoted by 

idealT , is used to aid the editing on T . The edited data set is denoted by ( )e bT . 

Case C: Our proposed ensemble-based data labeling function is used to 

predict labels for the unlabeled set U and then this realistically obtained, but 

possibly noisy labeled data set, denoted by realisticT , is used to aid the editing on 

T . The edited data set is denoted by ( )e cT . 
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Fig. 6. (A) standard ENN (B) ENN aided by unlabeled data (processed by the 

Oracle) (C) ENN aided by unlabeled data (processed by semi-supervised 

classification) 

It is expected that the editing performance of case B is the best since idealT is 

noise free which provides reliable extra information to aid the editing process. 

Heuristically, the functions of realisticT are two-fold. On one hand, the noise-free 

instances in realisticT could improve the editing performance as idealT . On the other 

hand, the noisy instances in realisticT could degrade the editing performance. 

Therefore, the comparison between case A and case C is significant. The 

success of our proposed method (case C) depends on the comparison between 

the positive effects and the negative effects generated by realisticT . The 

comparison between case A and case C will be validated in next section. 

3.4 Empirical study 

The objective of the empirical study is to validate the benefit of our method 

compared with existing methods in the instance-based noise filtering.  



 

31 

3.4.1 Experimental setup 

Three data editing techniques are used and tested on the benchmark data sets 

from the Machine Learning Database Repository. These methods are Wilson’s 

edited nearest neighbor (ENN), Tomek’s Repeated ENN (RENN), and All k-

NN (ANN). Aided by unlabeled data, their variants are represented by ENN+, 

RENN+, and ANN+ respectively.  

Information of the data sets used in the experiment is tabulated in Table 4. 

Each data set is divided into training set and test set. Data editing method works 

on the training set and generates the edited training set. Then, the test set is 

classified by the edited training set with the k-NN algorithm. Classification 

accuracy is the measure to evaluate the performance of data editing methods, 

where  

No. of correct classifications on testing instancesclassification accuracy=
No. of testing instances

 

When two data editing methods are applied to the same data set with the 

same k-NN algorithm, higher classification accuracy means that the data editing 

performance is better. To obtain the classification accuracy, each data set D is 

processed as follows: 

(1) Data set D is randomly partitioned into two parts: labeled set L and 

unlabeled set U .  

(2) Ten trials derived from ten-fold cross-validation on L are used to evaluate 

the performance of editing methods. At each trial, 90% of L is firstly selected 

and it is denoted by tempT . Most data sets here are experimental data sets where 

the ratio between noisy data to the whole data might be small. However, the 

performance of noise filtering need to be evaluated on the noisy data sets. To 

this end, we artificially generate some noises in tempT by selecting some instances 

at random and then changing their labels. The number of selected instances, that 

is the number of generated noises, is based on the defined noise ratio, which is 
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the ratio between noisy data to the data in tempT . Let T denote the data after 

adding noises in tempT . T is used as training set and it will be edited by the 

various editing methods as mentioned above. The remaining 10% of L is used 

as test set to evaluate the performance of various edited sets of  T . 

(3) The average classification performance is obtained by averaging ten trials’ 

results.  

(4) Considering that the partition of data set could influence this average 

classification result, we execute the partition five times and get five 

classification values (execute step 1-3 five times). 

(5) Finally the report classification result is the further averaged value of these 

five values.  

In this experiment, ensemble-based data selection method is configured as 

follows. Three classifiers are generated by: 3-nearest neighbor, naïve Bayes, 

and decision tree respectively. Initially, the size of 'U , u is equal to the size of 

labeled set, namely u L= . Iteration number k is 2. In addition to the 

parameters in this semi-supervised classification method, there are other three 

major parameters which can influence the experiment. The first parameter 

determines data partitioning (step 1 of above experiment flow) and it is the ratio 

between labeled data to whole data, referred to labeled ratio. The second 

parameter determines nearest neighbor editing. Refer to the nearest neighbor 

editing methods, k-NN algorithm is the base of them. Therefore, different 

choice of nearest neighbor number k can influence the experiment. 3-NN is the 

most popular setting in nearest neighbor editing and it is adopted. The third 

parameter determines the noise level in the training set T  and it is noise ratio 

(step 2 of above experiment flow). Considering that the data sets obtained from 

the real applications might have different labeled ratios and noise levels, we 

have performed several experiments varying these two values to make the 

experiments comprehensively.  
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3.4.2 Experimental results: varying the labeled ratio 

The objectives of experiments in this part are two-fold: (1) testing whether our 

proposed method works well under different labeled ratios, and (2) whether 

there is any relationship between the labeled ratio and the performance of our 

method. In this part, noise ratio is 0 (i.e. we do not add any noises in the training 

set). Note that this does not mean that there are no any noises in the training set. 

The training set from UCI datasets unavoidable includes some noises. The 

labeled ratios are varied including 5%, 10%, 15%, 20%, 30%, 40%, and 50%. 

Table 13 shows the results when labeled ratio is 5%. In each cell, the value 

without bracket represents the classification accuracy. In addition, we also give 

the data retention rate that is below the accuracy and in brackets. Data retention 

rate is defined as 

No. of labeled instances after editingdata retention rate=
No. of training instances

 

This rate captures the contribution of unlabeled data for training data (labeled 

data) editing. The main purpose of data editing is to improve the classification 

accuracy. Therefore, in the experiment, classification accuracy is the only 

measure to evaluate the editing performance. However, if two data editing 

methods give the same classification accuracy, the one with smaller data 

retention rate is more attractive as it has smaller number of training data leading 

to higher classification speed.  

In Table 13 and the following results in this part, “Ave.” denotes the average 

classification accuracy across all data sets. “B/W” denotes the number of data 

sets for which our method is statistically better or worse than the original 

method. “S.B/W” denotes the number of data sets for which our method is 

significantly better (threshold is 2%) or worse than the original method. In each 

row, the better accuracy of each pair (ENN & ENN+, RENN & RENN+, ANN 

& ANN+) is shown in bold. The significant better accuracy is shown in bold 

with underline.  
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Several observations can be made from the results in this table. As we expect, 

our methods defeat the original data editing methods on average. For example, 

the classification accuracy comparison between ENN+ and ENN is 0.743/0.709. 

“B/W” is 18/2. “S.B/W” is 11/0. In addition, the accuracies of ENN+ and 

ANN+ are similar and better than RENN+. If considering retention rate, ANN+ 

is better than ENN+. 

For nine of the data sets explored, using data editing methods can improve 

the classification accuracy of k-NN. However, for other twelve data sets, the 

data editing methods generate a negative effect. These data sets are iris, vote, 

heart2, horse, wine, etc. One important observation is that our proposed 

methods can significantly reduce the negative effect for those data sets. For 

instance, for eight of these twelve data sets (iris, vote, heart2, horse, breast, 

yeast, glass, and ionosphere), ENN+ significantly improves the performance of 

ENN.   

As well, Table 14 through 19 show the experiment results when labeled ratio 

is 10%, 15%, 20%, 30%, 40%, and 50%.  
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Table 13 Experimental results when labeled ratio is 5% 

Dataset KNN ENN ENN+ RENN RENN+ ANN ANN+ 
iris 0.893 0.800 

(87.6%) 
0.895 
(95.1%)

0.763 
(82.5%)

0.893 
(94.4%)

0.780 
(85.4%) 

0.895 
(94.7%) 

vote 0.832 0.743 
(80.5%) 

0.838 
(88.1%)

0.733 
(76.9%)

0.848 
(87.3%)

0.742 
(77.2%) 

0.832 
(85.6%) 

heart2 0.752 0.742 
(78.2%) 

0.775 
(83.9%)

0.737 
(75.3%)

0.775 
(82.5%)

0.742 
(71.4%) 

0.765 
(80.5%) 

horse 0.730 0.679 
(80.1%) 

0.739 
(85.1%)

0.646 
(74.3%)

0.729 
(83.6%)

0.679 
(71.4%) 

0.760 
(79.6%) 

sonar 0.617 0.733 
(66.0%) 

0.733 
(72.4%)

0.733 
(66.0%)

0.733 
(72.4%)

0.733 
(46.5%) 

0.733 
(65.7%) 

wine 0.815 0.781 
(57.4%) 

0.767 
(62.3%)

0.641 
(52.7%)

0.752 
(57.6%)

0.741 
(51.6%) 

0.800 
(53.5%) 

breast 0.952 0.935 
(93.6%) 

0.957 
(95.6%)

0.930 
(93.1%)

0.957 
(95.4%)

0.930 
(92.1%) 

0.957 
(95.1%) 

yeast 0.438 0.423 
(41.0%) 

0.503 
(52.4%)

0.376 
(31.0%)

0.482 
(46.9%)

0.418 
(32.2%) 

0.494 
(45.2%) 

australian 0.800 0.802 
(82.2%) 

0.835 
(86.3%)

0.810 
(80.0%)

0.833 
(85.6%)

0.790 
(75.7%) 

0.826 
(82.7%) 

bupa 0.574 0.567 
(58.8%) 

0.574 
(67.2%)

0.527 
(47.0%)

0.584 
(58.6%)

0.567 
(49.8%) 

0.574 
(59.3%) 

diabetes 0.703 0.736 
(73.1%) 

0.763 
(78.0%)

0.711 
(68.3%)

0.746 
(75.3%)

0.744 
(64.0%) 

0.767 
(72.9%) 

echo 0.632 0.752 
(65.1%) 

0.756 
(75.7%)

0.752 
(63.7%)

0.752 
(70.2%)

0.752 
(55.4%) 

0.748 
(64.3%) 

german 0.627 0.707 
(67.6%) 

0.720 
(73.9%)

0.733 
(62.6%)

0.720 
(71.3%)

0.707 
(60.4%) 

0.720 
(69.0%) 

glass 0.602 0.441 
(52.4%) 

0.526 
(60.2%)

0.365 
(41.5%)

0.480 
(52.7%)

0.435 
(47.2%) 

0.516 
(55.2%) 

magic 0.682 0.675 
(63.8%) 

0.691 
(68.4%)

0.638 
(55.6%)

0.667 
(62.6%)

0.670 
(53.1%) 

0.691 
(61.2%) 

credit 0.716 0.728 
(77.0%) 

0.747 
(80.9%)

0.730 
(74.3%)

0.748 
(80.0%)

0.720 
(68.5%) 

0.741 
(75.3%) 

spect 0.674 0.740 
(74.6%) 

0.758 
(80.4%)

0.772 
(69.6%)

0.800 
(77.8%)

0.782 
(63.3%) 

0.766 
(73.1%) 

wdbc 0.890 0.893 
(90.2%) 

0.905 
(92.6%)

0.868 
(87.1%)

0.910 
(92.3%)

0.898 
(87.8%) 

0.904 
(91.2%) 

ecoli 0.735 0.718 
(68.8%) 

0.715 
(74.6%)

0.670 
(67.6%)

0.715 
(72.7%)

0.698 
(61.7%) 

0.715 
(70.9%) 

ionosphere 0.778 0.670 
(73.6%) 

0.734 
(75.6%)

0.689 
(63.3%)

0.744 
(70.9%)

0.689 
(69.0%) 

0.753 
(73.0%) 

haberm 0.612 0.630 
(66.6%) 

0.675 
(75.0%)

0.627 
(61.9%)

0.668 
(72.1%)

0.640 
(55.9%) 

0.667 
(67.0%) 

Ave. 0.717 0.709 
(71.3%) 

0.743 
(77.1%)

0.688 
(66.4%)

0.740 
(74.4%)

0.708 
(63.8%) 

0.744 
(72.1%) 

B/W  2/18 1/18 2/18 
S.B/W  0/11 0/17 0/14 
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Table 14 Experimental results when labeled ratio is 10% 

Dataset KNN ENN ENN+ RENN RENN+ ANN ANN+ 
iris 0.893 0.800 

(87.6%) 
0.895 
(95.1%)

0.763 
(82.5%)

0.893 
(94.4%)

0.780 
(85.4%) 

0.895 
(94.7%) 

vote 0.905 0.890 
(89.4%) 

0.907 
(90.8%)

0.849 
(87.5%)

0.902 
(89.7%)

0.881 
(85.1%) 

0.913 
(88.1%) 

heart2 0.743 0.793 
(79.0%) 

0.827 
(83.1%)

0.803 
(77.0%)

0.823 
(82.3%)

0.797 
(72.4%) 

0.820 
(79.5%) 

horse 0.727 0.756 
(85.9%) 

0.774 
(87.6%)

0.733 
(84.0%)

0.771 
(86.8%)

0.738 
(77.2%) 

0.764 
(82.0%) 

sonar 0.700 0.543 
(61.4%) 

0.643 
(71.5%)

0.533 
(51.0%)

0.630 
(64.8%)

0.558 
(53.5%) 

0.652 
(66.8%) 

wine 0.815 0.781 
(57.4%) 

0.767 
(62.3%)

0.641 
(52.7%)

0.752 
(57.6%)

0.741 
(51.6%) 

0.800 
(53.5%) 

breast 0.893 0.917 
(93.0%) 

0.992 
(94.2%)

0.917 
(92.2%)

0.919 
(94.0%)

0.921 
(89.4%) 

0.923 
(92.6%) 

yeast 0.504 0.552 
(50.8%) 

0.565 
(56.9%)

0.516 
(42.0%)

0.549 
(51.2%)

0.548 
(40.9%) 

0.545 
(48.6%) 

australian 0.747 0.791 
(81.5%) 

0.807 
(85.5%)

0.792 
(80.6%)

0.807 
(84.6%)

0.785 
(74.3%) 

0.807 
(80.2%) 

bupa 0.583 0.563 
(56.4%) 

0.596 
(61.6%)

0.546 
(48.0%)

0.583 
(55.8%)

0.546 
(44.4%) 

0.602 
(53.6%) 

diabetes 0.698 0.681 
(69.2%) 

0.708 
(76.0%)

0.666 
(62.3%)

0.703 
(72.6%)

0.688 
(60.3%) 

0.714 
(70.2%) 

echo 0.632 0.752 
(65.1%) 

0.756 
(71.7%)

0.752 
(63.7%)

0.752 
(70.2%)

0.752 
(55.4%) 

0.748 
(64.3%) 

german 0.634 0.670 
(65.0%) 

0.676 
(69.6%)

0.674 
(59.6%)

0.678 
(66.8%)

0.668 
(54.1%) 

0.666 
(62.5%) 

glass 0.602 0.441 
(52.4%) 

0.526 
(60.2%)

0.365 
(41.5%)

0.480 
(52.7%)

0.435 
(47.2%) 

0.516 
(55.2%) 

magic 0.706 0.719 
(67.4%) 

0.716 
(70.8%)

0.695 
(60.5%)

0.696 
(65.6%)

0.718 
(57.7%) 

0.709 
(64.3%) 

credit 0.798 0.824 
(82.9%) 

0.829 
(86.1%)

0.828 
(81.4%)

0.831 
(85.4%)

0.814 
(76.6%) 

0.828 
(82.2%) 

spect 0.703 0.751 
(74.9%) 

0.753 
(79.8%)

0.757 
(67.4%)

0.724 
(74.4%)

0.753 
(63.3%) 

0.748 
(72.4%) 

wdbc 0.931 0.928 
(92.9%) 

0.931 
(94.8%)

0.923 
(91.6%)

0.931 
(94.5%)

0.925 
(91.0%) 

0.930 
(94.2%) 

ecoli 0.778 0.679 
(74.8%) 

0.766 
(80.2%)

0.620 
(70.3%)

0.757 
(77.7%)

0.644 
(68.7%) 

0.751 
(76.1%) 

ionosphere 0.754 0.726 
(75.1%) 

0.735 
(76.6%)

0.698 
(69.1%)

0.718 
(72.6%)

0.716 
(73.3%) 

0.729 
(75.5%) 

haberm 0.615 0.627 
(64.9%) 

0.691 
(71.3%)

0.636 
(58.2%)

0.687 
(68.7%)

0.636 
(54.1%) 

0.674 
(64.8%) 

Ave. 0.731 0.723 
(72.7%) 

0.752 
(77.4%)

0.700 
(67.8%)

0.742 
(74.4%)

0.716 
(65.5%) 

0.749 
(72.4%) 

B/W  2/19 1/19 5/16 
S.B/W  0/8 1/12 0/12 
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Table 15 Experimental results when labeled ratio is 15% 

Dataset KNN ENN ENN+ RENN RENN+ ANN ANN+ 
iris 0.860 0.830 

(90.9%) 
0.870 
(94.9%)

0.732 
(85.6%)

0.875 
(94.5%)

0.832 
(86.5%) 

0.878 
(93.6%) 

vote 0.863 0.842 
(88.0%) 

0.849 
(89.2%)

0.837 
(85.9%)

0.841 
(87.6%)

0.852 
(81.7%) 

0.852 
(85.6%) 

heart2 0.803 0.844 
(82.7%) 

0.841 
(84.8%)

0.846 
(81.1%)

0.841 
(82.9%)

0.838 
(75.7%) 

0.839 
(81.9%) 

horse 0.703 0.744 
(82.3%) 

0.760 
(83.9%)

0.744 
(81.2%)

0.756 
(83.2%)

0.764 
(73.8%) 

0.772 
(77.9%) 

sonar 0.703 0.581 
(61.8%) 

0.649 
(70.0%)

0.589 
(52.5%)

0.639 
(63.7%)

0.567 
(53.8%) 

0.661 
(64.4%) 

wine 0.914 0.802 
(68.9%) 

0.889 
(70.5%)

0.752 
(66.5%)

0.836 
(66.9%)

0.772 
(61.7%) 

0.855 
(63.9%) 

breast 0.948 0.953 
(95.3%) 

0.957 
(95.7%)

0.951 
(94.3%)

0.957 
(95.3%)

0.949 
(93.6%) 

0.955 
(94.7%) 

yeast 0.521 0.570 
(49.4%) 

0.581 
(58.4%)

0.554 
(43.3%)

0.565 
(53.9%)

0.556 
(40.3%) 

0.577 
(51.3%) 

australian 0.763 0.818 
(81.1%) 

0.822 
(84.1%)

0.820 
(79.8%)

0.826 
(82.9%)

0.818 
(73.9%) 

0.820 
(79.7%) 

bupa 0.599 0.569 
(62.1%) 

0.621 
(68.0%)

0.556 
(53.1%)

0.606 
(61.4%)

0.567 
(50.8%) 

0.625 
(58.9%) 

diabetes 0.671 0.706 
(70.8%) 

0.736 
(76.8%)

0.693 
(65.8%)

0.722 
(74.1%)

0.705 
(60.5%) 

0.734 
(70.9%) 

echo 0.615 0.705 
(67.1%) 

0.715 
(72.7%)

0.685 
(61.9%)

0.705 
(69.6%)

0.700 
(55.6%) 

0.705 
(66.2%) 

german 0.637 0.666 
(67.5%) 

0.687 
(70.6%)

0.686 
(62.4%)

0.697 
(67.2%)

0.675 
(56.3%) 

0.683 
(61.9%) 

glass 0.602 0.441 
(52.4%) 

0.526 
(60.2%)

0.365 
(41.5%)

0.480 
(52.7%)

0.435 
(47.2%) 

0.516 
(55.2%) 

magic 0.729 0.738 
(69.6%) 

0.736 
(72.2%)

0.729 
(63.2%)

0.710 
(67.6%)

0.744 
(58.9%) 

0.734 
(66.0%) 

credit 0.789 0.824 
(83.7%) 

0.831 
(85.9%)

0.821 
(82.8%)

0.830 
(85.3%)

0.820 
(76.5%) 

0.831 
(82.2%) 

spect 0.688 0.709 
(72.3%) 

0.688 
(78.0%)

0.710 
(64.2%)

0.671 
(71.7%)

0.691 
(63.7%) 

0.697 
(70.8%) 

wdbc 0.936 0.932 
(94.5%) 

0.933 
(94.6%)

0.935 
(93.2%)

0.934 
(93.9%)

0.929 
(92.1%) 

0.936 
(93.3%) 

ecoli 0.730 0.734 
(75.6%) 

0.779 
(82.6%)

0.687 
(71.9%)

0.769 
(81.2%)

0.730 
(70.6%) 

0.795 
(79.3%) 

ionosphere 0.752 0.716 
(73.8%) 

0.735 
(74.5%)

0.677 
(67.7%)

0.723 
(72.7%)

0.712 
(70.5%) 

0.728 
(72.6%) 

haberm 0.645 0.710 
(68.8%) 

0.730 
(74.8%)

0.688 
(63.0%)

0.729 
(72.8%)

0.700 
(57.8%) 

0.724 
(68.6%) 

Ave. 0.737 0.735 
(74.2%) 

0.759 
(78.2%)

0.717 
(69.6%)

0.748 
(75.3%)

0.731 
(66.7%) 

0.758 
(73.3%) 

B/W  3/18 4/17 1/19 
S.B/W  1/9 1/9 0/9 
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Table 16 Experimental results when labeled ratio is 20% 

Dataset KNN ENN ENN+ RENN RENN+ ANN ANN+ 
iris 0.927 0.900 

(92.3%) 
0.880 
(96.0%)

0.893 
(90.6%)

0.874 
(95.8%)

0.887 
(89.0%) 

0.880 
(95.7%) 

vote 0.907 0.910 
(92.6%) 

0.917 
(92.3%)

0.908 
(90.2%)

0.914 
(91.1%)

0.912 
(90.0%) 

0.915 
(90.6%) 

heart2 0.739 0.793 
(76.4%) 

0.796 
(80.4%)

0.795 
(75.5%)

0.796 
(79.8%)

0.804 
(70.0%) 

0.793 
(76.7%) 

horse 0.730 0.776 
(83.9%) 

0.771 
(87.4%)

0.783 
(82.1%)

0.766 
(86.6%)

0.777 
(77.6%) 

0.775 
(82.7%) 

sonar 0.722 0.695 
(62.2%) 

0.728 
(16.6%)

0.643 
(52.1%)

0.698 
(51.3%)

0.702 
(54.1%) 

0.708 
(48.1%) 

wine 0.944 0.862 
(65.6%) 

0.940 
(69.6%)

0.769 
(60.9%)

0.907 
(64.4%)

0.827 
(58.9%) 

0.902 
(64.6%) 

breast 0.941 0.959 
(95.3%) 

0.959 
(96.4%)

0.954 
(94.1%)

0.959 
(95.7%)

0.957 
(93.3%) 

0.959 
(95.3%) 

yeast 0.532 0.566 
(53.2%) 

0.597 
(59.7%)

0.566 
(46.7%)

0.589 
(57.0%)

0.560 
(44.2%) 

0.595 
(52.2%) 

australian 0.800 0.832 
(84.0%) 

0.842 
(85.2%)

0.833 
(82.9%)

0.847 
(84.3%)

0.839 
(78.2%) 

0.849 
(81.4%) 

bupa 0.504 0.576 
(60.8%) 

0.579 
(66.2%)

0.596 
(51.7%)

0.595 
(61.8%)

0.573 
(49.3%) 

0.611 
(57.8%) 

diabetes 0.705 0.732 
(71.9%) 

0.740 
(76.3%)

0.696 
(66.3%)

0.731 
(73.9%)

0.716 
(63.7%) 

0.730 
(71.4%) 

echo 0.611 0.638 
(62.1%) 

0.646 
(68.1%)

0.624 
(52.4%)

0.640 
(62.8%)

0.638 
(50.0%) 

0.648 
(59.0%) 

german 0.684 0.697 
(65.1%) 

0.701 
(69.7%)

0.700 
(61.1%)

0.703 
(66.1%)

0.693 
(54.9%) 

0.703 
(62.1%) 

glass 0.580 0.494 
(54.1%) 

0.551 
(58.7%)

0.474 
(46.1%)

0.519 
(53.8%)

0.484 
(49.5%) 

0.536 
(54.2%) 

magic 0.735 0.740 
(70.9%) 

0.737 
(73.7%)

0.734 
(64.7%)

0.731 
(69.5%)

0.745 
(61.5%) 

0.742 
(67.6%) 

credit 0.763 0.802 
(83.3%) 

0.823 
(85.1%)

0.805 
(81.7%)

0.824 
(84.1%)

0.795 
(74.8%) 

0.813 
(79.6%) 

spect 0.707 0.735 
(73.7%) 

0.729 
(75.0%)

0.729 
(68.5%)

0.717 
(70.4%)

0.759 
(62.6%) 

0.761 
(65.8%) 

wdbc 0.964 0.950 
(96.0%) 

0.957 
(97.0%)

0.939 
(94.9%)

0.957 
(96.6%)

0.950 
(95.0%) 

0.956 
(96.2%) 

ecoli 0.787 0.804 
(81.2%) 

0.821 
(86.0%)

0.770 
(78.3%)

0.821 
(85.0%)

0.808 
(74.4%) 

0.828 
(82.9%) 

ionosphere 0.820 0.776 
(80.8%) 

0.776 
(81.4%)

0.744 
(76.4%)

0.761 
(78.8%)

0.776 
(78.6%) 

0.776 
(79.9%) 

haberm 0.679 0.733 
(72.6%) 

0.760 
(77.0%)

0.747 
(67.1%)

0.750 
(75.2%)

0.737 
(62.8%) 

0.757 
(72.4%) 

Ave. 0.751 0.760 
(75.2%) 

0.774 
(76.1%)

0.748 
(70.7%)

0.767 
(73.2%)

0.759 
(68.2%) 

0.773 
(71.1%) 

B/W  4/15 5/16 4/16 
S.B/W  0/6 0/6 0/6 
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Table 17 Experimental results when labeled ratio is 30% 

Dataset KNN ENN ENN+ RENN RENN+ ANN ANN+ 
iris 0.917 0.919 

(93.1%) 
0.917 
(97.4%)

0.909 
(92.0%)

0.917 
(97.3%)

0.919 
(92.8%) 

0.922 
(97.1%) 

vote 0.919 0.920 
(93.8%) 

0.923 
(94.3%)

0.917 
(91.2%)

0.912 
(93.3%)

0.920 
(90.5%) 

0.922 
(92.3%) 

heart2 0.754 0.779 
(79.7%) 

0.795 
(83.4%)

0.789 
(77.7%)

0.804 
(82.8%)

0.784 
(73.0%) 

0.804 
(79.8%) 

horse 0.760 0.805 
(84.9%) 

0.813 
(86.2%)

0.814 
(82.7%)

0.820 
(85.7%)

0.806 
(77.6%) 

0.807 
(82.7%) 

sonar 0.742 0.669 
(65.2%) 

0.711 
(69.4%)

0.656 
(58.5%)

0.694 
(63.2%)

0.687 
(58.5%) 

0.728 
(63.2%) 

wine 0.933 0.889 
(63.9%) 

0.911 
(69.2%)

0.809 
(59.5%)

0.889 
(63.9%)

0.867 
(57.6%) 

0.904 
(63.7%) 

breast 0.959 0.968 
(96.5%) 

0.968 
(97.0%)

0.966 
(95.7%)

0.966 
(96.7%)

0.967 
(94.9%) 

0.966 
(96.3%) 

yeast 0.534 0.578 
(52.7%) 

0.578 
(59.4%)

0.586 
(47.1%)

0.577 
(56.1%)

0.574 
(42.9%) 

0.574 
(52.1%) 

australian 0.801 0.838 
(84.5%) 

0.840 
(85.6%)

0.838 
(82.9%)

0.842 
(84.5%)

0.842 
(78.2%) 

0.837 
(82.1%) 

bupa 0.606 0.605 
(61.4%) 

0.608 
(63.4%)

0.596 
(53.6%)

0.584 
(57.5%)

0.596 
(50.3%) 

0.603 
(54.6%) 

diabetes 0.661 0.690 
(69.8%) 

0.721 
(76.3%)

0.694 
(63.8%)

0.726 
(73.7%)

0.702 
(60.1%) 

0.722 
(70.4%) 

echo 0.620 0.640 
(59.9%) 

0.670 
(67.3%)

0.640 
(51.7%)

0.670 
(63.1%)

0.665 
(46.8%) 

0.695 
(57.4%) 

german 0.644 0.683 
(63.9%) 

0.689 
(67.6%)

0.678 
(58.5%)

0.685 
(64.7%)

0.679 
(52.9%) 

0.690 
(59.6%) 

glass 0.669 0.624 
(59.4%) 

0.641 
(63.9%)

0.594 
(53.6%)

0.597 
(59.3%)

0.609 
(55.6%) 

0.648 
(60.8%) 

magic 0.723 0.737 
(70.7%) 

0.732 
(73.0%)

0.735 
(65.2%)

0.717 
(68.7%)

0.735 
(61.4%) 

0.732 
(67.1%) 

credit 0.782 0.837 
(83.3%) 

0.842 
(85.6%)

0.834 
(82.3%)

0.845 
(84.9%)

0.831 
(75.1%) 

0.842 
(81.0%) 

spect 0.739 0.758 
(76.1%) 

0.727 
(75.7%)

0.718 
(71.1%)

0.721 
(69.8%)

0.748 
(65.2%) 

0.726 
(68.6%) 

wdbc 0.949 0.949 
(95.5%) 

0.959 
(97.0%)

0.948 
(96.8%)

0.958 
(96.5%)

0.951 
(93.6%) 

0.960 
(95.6%) 

ecoli 0.779 0.807 
(81.8%) 

0.827 
(86.7%)

0.766 
(77.8%)

0.815 
(85.6%)

0.791 
(74.3%) 

0.819 
(82.4%) 

ionosphere 0.833 0.784 
(81.2%) 

0.804 
(82.5%)

0.758 
(75.1%)

0.800 
(80.6%)

0.788 
(78.9%) 

0.811 
(80.7%) 

haberm 0.645 0.701 
(70.0%) 

0.737 
(75.4%)

0.735 
(64.9%)

0.741 
(74.8%)

0.713 
(59.3%) 

0.734 
(68.0%) 

Ave. 0.760 0.770 
(75.5%) 

0.782 
(78.9%)

0.761 
(71.4%)

0.775 
(76.3%)

0.770 
(68.6%) 

0.783 
(74.1%) 

B/W  3/16 4/16 4/16 
S.B/W  1/7 0/6 1/8 
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Table 18 Experimental results when labeled ratio is 40% 

Dataset KNN ENN ENN+ RENN RENN+ ANN ANN+ 
iris 0.933 0.930 

(95.4%) 
0.937 
(96.4%)

0.930 
(95.2%)

0.937 
(96.0%)

0.937 
(93.5%) 

0.940 
(95.6%) 

vote 0.902 0.904 
(91.9%) 

0.903 
(92.2%)

0.903 
(90.0%)

0.894 
(91.3%)

0.913 
(88.9%) 

0.906 
(90.2%) 

heart2 0.769 0.807 
(77.4%) 

0.815 
(80.2%)

0.817 
(75.1%)

0.815 
(78.9%)

0.808 
(71.7%) 

0.819 
(76.6%) 

horse 0.752 0.785 
(82.6%) 

0.786 
(84.8%)

0.785 
(80.6%)

0.783 
(86.5%)

0.787 
(75.8%) 

0.790 
(79.1%) 

sonar 0.810 0.700 
(70.8%) 

0.738 
(77.4%)

0.670 
(64.2%)

0.715 
(73.5%)

0.696 
(64.1%) 

0.734 
(74.4%) 

wine 0.950 0.940 
(66.2%) 

0.925 
(70.3%)

0.917 
(62.8%)

0.922 
(65.5%)

0.933 
(61.4%) 

0.925 
(66.5%) 

breast 0.955 0.969 
(96.7%) 

0.968 
(97.5%)

0.968 
(96.2%)

0.968 
(97.1%)

0.969 
(95.6%) 

0.968 
(96.8%) 

yeast 0.528 0.582 
(53.1%) 

0.600 
(59.9%)

0.597 
(47.5%)

0.603 
(57.9%)

0.592 
(44.2%) 

0.603 
(53.2%) 

australian 0.797 0.851 
(82.5%) 

0.849 
(85.5%)

0.853 
(81.7%)

0.848 
(84.0%)

0.852 
(76.4%) 

0.852 
(80.9%) 

bupa 0.599 0.615 
(61.5%) 

0.627 
(62.1%)

0.621 
(53.8%)

0.613 
(56.7%)

0.608 
(49.6%) 

0.617 
(53.5%) 

diabetes 0.706 0.727 
(72.3%) 

0.746 
(77.2%)

0.729 
(67.0%)

0.741 
(74.4%)

0.724 
(64.3%) 

0.747 
(71.7%) 

echo 0.617 0.666 
(66.1%) 

0.681 
(69.0%)

0.671 
(59.4%)

0.698 
(63.9%)

0.686 
(55.8%) 

0.689 
(60.4%) 

german 0.657 0.704 
(67.1%) 

0.713 
(71.2%)

0.704 
(62.7%)

0.713 
(68.4%)

0.705 
(57.3%) 

0.711 
(63.3%) 

glass 0.652 0.554 
(56.2%) 

0.600 
(61.1%)

0.550 
(49.4%)

0.577 
(56.1%)

0.561 
(51.7%) 

0.596 
(56.8%) 

magic 0.736 0.757 
(73.1%) 

0.750 
(74.8%)

0.751 
(67.4%)

0.738 
(71.6%)

0.750 
(64.1%) 

0.748 
(69.2%) 

credit 0.804 0.856 
(85.3%) 

0.855 
(87.0%)

0.853 
(84.0%)

0.857 
(86.0%)

0.858 
(78.8%) 

0.863 
(83.1%) 

spect 0.709 0.756 
(75.4%) 

0.725 
(76.6%)

0.778 
(69.4%)

0.697 
(70.8%)

0.760 
(65.2%) 

0.722 
(69.5%) 

wdbc 0.941 0.952 
(95.4%) 

0.953 
(95.8%)

0.947 
(94.6%)

0.952 
(95.3%)

0.953 
(93.1%) 

0.951 
(93.9%) 

ecoli 0.803 0.820 
(83.8%) 

0.852 
(88.3%)

0.818 
(81.4%)

0.853 
(86.9%)

0.813 
(77.1%) 

0.851 
(84.2%) 

ionosphere 0.857 0.825 
(83.9%) 

0.834 
(84.4%)

0.817 
(80.5%)

0.825 
(83.3%)

0.824 
(81.9%) 

0.834 
(82.5%) 

haberm 0.697 0.732 
(72.9%) 

0.761 
(76.4%)

0.764 
(69.1%)

0.772 
(73.3%)

0.740 
(64.2%) 

0.763 
(71.5%) 

Ave. 0.770 0.783 
(76.7%) 

0.791 
(79.4%)

0.783 
(73.0%)

0.787 
(77.0%)

0.784 
(78.4%) 

0.792 
(79.2%) 

B/W  7/14 7/13 6/14 
S.B/W  1/4 1/4 1/5 
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Table 19 Experimental results when labeled ratio is 50% 

Dataset KNN ENN ENN+ RENN RENN+ ANN ANN+ 
iris 0.936 0.935 

(95.3%) 
0.944 
(96.6%)

0.935 
(94.9%)

0.944 
(96.6%)

0.941 
(94.5%) 

0.946 
(96.4%) 

vote 0.923 0.924 
(92.4%) 

0.922 
(93.0%)

0.919 
(91.0%)

0.918 
(92.2%)

0.921 
(90.7%) 

0.919 
(91.6%) 

heart2 0.790 0.773 
(78.7%) 

0.781 
(80.3%)

0.771 
(75.9%)

0.776 
(77.8%)

0.775 
(72.8%) 

0.784 
(75.8%) 

horse 0.755 0.785 
(82.5%) 

0.795 
(83.2%)

0.795 
(80.5%)

0.798 
(85.5%)

0.784 
(74.2%) 

0.792 
(77.3%) 

sonar 0.811 0.738 
(75.4%) 

0.780 
(80.4%)

0.705 
(70.9%)

0.766 
(78.2%)

0.722 
(72.1%) 

0.774 
(77.9%) 

wine 0.929 0.902 
(66.8%) 

0.920 
(71.5%)

0.851 
(62.3%)

0.923 
(68.4%)

0.901 
(61.0%) 

0.914 
(66.7%) 

breast 0.958 0.962 
(97.0%) 

0.963 
(97.4%)

0.962 
(96.5%)

0.962 
(97.0%)

0.964 
(95.4%) 

0.962 
(96.4%) 

yeast 0.567 0.593 
(52.0%) 

0.597 
(56.9%)

0.597 
(46.3%)

0.602 
(54.0%)

0.595 
(43.1%) 

0.598 
(49.9%) 

australian 0.793 0.848 
(84.2%) 

0.846 
(85.5%)

0.848 
(83.3%)

0.845 
(84.7%)

0.845 
(76.9%) 

0.842 
(80.3%) 

bupa 0.598 0.628 
(65.3%) 

0.627 
(67.3%)

0.636 
(59.6%)

0.633 
(62.9%)

0.612 
(51.7%) 

0.632 
(55.4%) 

diabetes 0.693 0.716 
(70.8%) 

0.734 
(76.1%)

0.712 
(65.4%)

0.729 
(72.6%)

0.717 
(61.9%) 

0.729 
(69.8%) 

echo 0.600 0.672 
(64.1%) 

0.688 
(68.9%)

0.648 
(54.1%)

0.692 
(65.4%)

0.663 
(51.7%) 

0.692 
(57.8%) 

german 0.658 0.694 
(66.5%) 

0.702 
(68.3%)

0.698 
(61.0%)

0.696 
(64.4%)

0.699 
(56.6%) 

0.707 
(60.5%) 

glass 0.690 0.622 
(63.3%) 

0.655 
(66.2%)

0.607 
(58.0%)

0.637 
(60.6%)

0.623 
(57.1%) 

0.665 
(61.0%) 

magic 0.741 0.752 
(72.3%) 

0.747 
(74.0%)

0.746 
(67.4%)

0.737 
(69.9%)

0.752 
(63.4%) 

0.748 
(66.9%) 

credit 0.778 0.831 
(83.1%) 

0.840 
(84.8%)

0.836 
(81.6%)

0.841 
(83.5%)

0.827 
(75.8%) 

0.832 
(79.7%) 

spect 0.699 0.707 
(70.6%) 

0.686 
(73.4%)

0.719 
(65.6%)

0.699 
(66.0%)

0.709 
(61.1%) 

0.687 
(65.5%) 

wdbc 0.942 0.948 
(95.4%) 

0.950 
(95.8%)

0.943 
(94.4%)

0.948 
(95.5%)

0.950 
(93.5%) 

0.951 
(94.2%) 

ecoli 0.805 0.825 
(82.7%) 

0.842 
(86.7%)

0.826 
(80.3%)

0.839 
(85.6%)

0.831 
(76.4%) 

0.843 
(82.7%) 

ionosphere 0.840 0.818 
(83.7%) 

0.822 
(84.5%)

0.801 
(81.2%)

0.825 
(83.7%)

0.814 
(80.6%) 

0.822 
(82.1%) 

haberm 0.640 0.718 
(67.9%) 

0.735 
(72.8%)

0.730 
(64.9%)

0.746 
(77.1%)

0.727 
(56.5%) 

0.737 
(63.6%) 

Ave. 0.769 0.781 
(76.7%) 

0.790 
(79.2%)

0.775 
(73.0%)

0.788 
(77.2%)

0.780 
(69.9%) 

0.789 
(73.9%) 

B/W  5/16 6/14 5/16 
S.B/W  1/2 1/5 1/4 
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Table 20 Experimental results summarization when labeled ratio is 5%, 10%, 

15%, 20%, 30%, 40%, and 50% 

  labeled ratio 
  5% 10% 15% 20% 30% 40% 50% 

Accu.
 

0.743 
0.709 
(0.034)

0.752 
0.723 
(0.029)

0.759 
0.735 
(0.024)

0.774 
0.760 
(0.014)

0.782 
0.770 
(0.012)

0.791 
0.783 
(0.008) 

0.790 
0.781 
(0.009) 

B/W 18/2 
(16) 

19/2 
(17) 

18/3 
(15) 

15/4 
(11) 

16/3 
(13) 

14/7 
(7) 

16/5 
(11) 

ENN+  
& 
ENN 

S.B/W 11/0 
(11) 

8/0 
(8) 

9/1 
(8) 

6/0 
(6) 

7/1 
(6) 

4/1 
(3) 

2/1 
(1) 

Accu. 0.740 
0.688 
(0.052)

0.742 
0.700 
(0.042)

0.748 
0.717 
(0.031)

0.767 
0.748 
(0.019)

0.775 
0.761 
(0.014)

0.787 
0.783 
(0.004) 

0.788 
0.775 
(0.013) 

B/W 18/1 
(17) 

19/1 
(18) 

17/4 
(13) 

16/5 
(11) 

16/4 
(12) 

13/7 
(6) 

14/6 
(8) 

RENN+ 
& 
RENN 

S.B/W 17/0 
(17) 

12/1 
(11) 

9/1 
(8) 

6/0 
(6) 

6/0 
(6) 

4/1 
(3) 

5/1 
(4) 

Accu. 0.744 
0.708 
(0.036)

0.749 
0.716 
(0.033)

0.758 
0.731 
(0.027)

0.773 
0.759 
(0.014)

0.783 
0.770 
(0.013)

0.792 
0.784 
(0.008) 

0.789 
0.780 
(0.009) 

B/W 18/2 
(16) 

16/5 
(11) 

19/1 
(18) 

16/4 
(12) 

16/4 
(12) 

14/6 
(8) 

16/5 
(11) 

ANN+ 
& 
ANN 

S.B/W 14/0 
(14) 

12/0 
(12) 

9/0 
(9) 

6/0 
(6) 

8/1 
(7) 

5/1 
(4) 

4/1 
(3) 

 

We summarize the results from different labeled ratios in Table 20. In this 

Table, only classification accuracy is considered and data retention ratio is 

neglected. In each cell, not only the performance comparison, but the degree of 

improvement is shown in brackets. The greatest improvement among different 

labeled ratios is shown in bold.  

From the experimental results, we obtain the similar observations as before. 

These experiments further validate the superiority of our methods since they 

work well for different labeled ratios.  

There is another useful result shown in experiments. In the case that labeled 

ratio is 5%, 10%, or 15%, greater improvement will be achieved by unlabeled 

data compared to 20%, 30%, 40%, and 50%. That is to say, unlabeled data will 

give more remarkable improvement for data editing in case that labeled ratio is 
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small (labeled data number is small). Existing work on data editing [43] shows 

that the small set-size editing failure mainly stem for the inability of the nearest 

neighbor instances to achieve sufficiently reliable estimates for this instance. 

Using unlabeled data seems to be promising to solve this intrinsic limitation of 

data editing.  

3.4.3 Experimental results: varying the noise ratio 

In this part, we will fix the labeled ratio to 50% and vary the noise ratio 

including 10%, 20%, 30%, and 40%.  

Nearest neighbor editing (NNE) is originally proposed to increase the 

generality ability of k-nearest neighbor by removing noisy training instances. 

Attracted by its straightforwardness and good performance, we intend to 

explore whether nearest neighbor editing can be used with other machine 

learning algorithms. We choose naïve Bayes and decision tree in the 

experiments.  

In addition to this motivation, there are other two objectives for this 

experiment: 1) test whether our method works well under different noise ratios, 

and 2) whether there is any relationship between the noise ratio and the 

performance of our method.  

The differences of experimental setup with the experiments in Section 3.4.2 

include: 1) the number of iteration for ensemble-based data labeling function is 

3, and 2) we use classification error rate to evaluate the performance of our 

method. 

No. of incorrect classifications on testing instancesclassification error rate=
No. of testing instances

 

The experiments can be divided into two parts: 

Experiment A: the noise ratios are 10%, 20%, 30%, and 40%. The 

objective of Experiment A is to test whether traditional NNE methods can 
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improve the classification performance of 1-NN, naïve Bayes, and decision 

tree under different noise ratios. 

Experiment B: the noise ratios are 10%, 20%, 30%, and 40%. The 

objective of Experiment B is to test whether our proposed method can 

outperform traditional nearest neighbor editing under different noise ratios 

when applied to 1-NN, naïve Bayes, and decision tree.  

Experiment A: Fig. 7 shows the detailed result when noise ratio is 10%. The 

values in this table and following tables represent the classification error rates. 

The result in Fig. 7 includes three parts: 1) the classification error rates of each 

classification algorithm (including both before and after applying nearest 

neighbor editing methods) on each data set, 2) the average classification error 

rates of each algorithm (including both before and after applying nearest 

neighbor editing methods) across all the data sets, and 3) the improvement of 

each NNE method acting on each classification algorithm with respect to the 

reduction of the average classification error.  

 

Fig. 7. ENN, RENN, and ANN on k-NN, naïve Bayes, and decision tree when 

noise ratio is 10% 
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An important observation obtained from this table is that NNE methods can 

improve the performance not only for k-NN, but also for naïve Bayes and 

decision tree. In detail, the average improvements of ENN, RENN, and ANN on 

k-NN are 19.8%, 19.1%, and 19.1% respectively. The average improvements of 

ENN, RENN, and ANN on naïve Bayes are 6.9%, 2.8%, and 5.7% respectively. 

Their average improvements on decision tree are 6.7%, 2.1%, and 5.0% 

respectively.  

Rather than presenting the experimental results for every noise ratio with 

details, afterwards Table 21 summarizes the results under four different noise 

ratios. Table 21 includes three parts: 1) the average classification error rates of 

each algorithm under each noise ratio across all the data sets, 2) the further 

average classification error rates of each algorithm across four noise ratios, and 

3) the improvement of each nearest neighbor editing method acting on each 

classification algorithm with respect to the reduction of the average 

classification error.  

Table 21 Summarization of ENN, RENN, and ANN on k-NN, naïve Bayes, and 

decision tree 

k-NN (kNN) Naïve Bayes (NB) Decision Tree (DT) 
Alg. 

 
noise 
ratio 

kNN ENN RENN ANN NB ENN RENN ANN DT ENN RENN ANN 

10% 0.283 0.227 0.229 0.229 0.247 0.23 0.24 0.233 0.238 0.222 0.233 0.226 

20% 0.334 0.247 0.243 0.245 0.256 0.241 0.247 0.242 0.275 0.243 0.246 0.245 

30% 0.382 0.295 0.284 0.292 0.285 0.265 0.272 0.273 0.326 0.283 0.281 0.291 

40% 0.439 0.366 0.353 0.371 0.318 0.312 0.317 0.318 0.395 0.36 0.349 0.366 

Ave. 0.359 0.284 0.277 0.284 0.276 0.262 0.268 0.266 0.308 0.277 0.277 0.282 

Imp.   20.9% 22.8% 20.9%  5.1% 2.9% 3.6%  10.1% 10.1% 8.4% 

 

This table shows that with any of the noise ratios, all the three NNE methods 

could improve the performance of k-NN, naïve Bayes, and decision tree. 
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Therefore, NNE methods could improve the performance of these classification 

algorithms consistently and robustly. Finally by averaging the classification 

error rates of four noise ratios, we find that the improvements of ENN, RENN, 

and ANN on k-NN are 20.9%, 22.8%, and 20.9% respectively; on naïve Bayes 

are 5.1%, 2.9%, and 3.6% respectively; on decision tree are 10.1%, 10.1%, and 

8.4% respectively. In addition to this, Table 9 indicates that without noise 

removing, among the three classifiers, on average naïve Bayes has the lowest 

classification error (0.276). Next is decision tree (0.308), k-NN has the highest 

classification error (0.359). For all the three NNE methods, they have the best 

improvement on k-NN; next is decision tree; then naïve Bayes.  

Experiment B: The benefit of existing NNE methods on k-NN, naïve Bayes, 

and decision tree has been tested by Experiment A. In this part, we aim to 

evaluate whether our proposed method could defeat the original NNE and has 

better improvement on the three classifiers. Rather than presenting the result for 

every noise ratios with details, we present the result when noise ratio is 40% for 

analyzing purpose. In addition, the results for all the noise ratios are 

summarized. The experimental results in this part are presented according to the 

classification algorithms (B1) naïve Bayes, (B2) decision tree, (B3) k-nearest 

neighbor.  

(B1) Naïve Bayes. Table 22 shows the comparison between NNE and 

NNEAUD on naïve Bayes when noise ratio is 40%.  

It indicates across all the data sets, on average, NNEAUD-based methods can 

significantly improve the performance of traditional NNE methods. For 

example, the average improvement of ENN+ on ENN is 18.3% 

Table 23 summarizes the results of NNE and NNEAUD on naïve Bayes 

under four different noise ratios. It shows that NNEAUD methods could 

consistently improve the performance of NNE methods on almost all the noise 

ratios (with the only exception: ENN+ has no improvement on ENN under 

noise ratio is 10%). This suggests that our propose NNEAUD can be used as an 

effective noise removing method for naïve Bayes.  
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Table 22 Comparison between NNE and NNEAUD on naïve Bayes when noise 

ratio is 40% 

Nearest neighbor editing on naïve Bayes, 40% 

Dataset ENN ENN+ RENN RENN+ ANN ANN+ 

iris 0.182 0.072 0.179 0.065 0.199 0.07 
vote 0.13 0.112 0.139 0.111 0.147 0.107 
heart2 0.278 0.214 0.292 0.224 0.276 0.22 
horse 0.326 0.235 0.314 0.217 0.332 0.236 
sonar 0.463 0.383 0.458 0.361 0.451 0.359 
wine 0.22 0.133 0.309 0.15 0.281 0.165 
breast 0.044 0.038 0.052 0.052 0.046 0.039 
yeast 0.435 0.405 0.44 0.402 0.449 0.403 
australian 0.247 0.202 0.236 0.188 0.256 0.193 
bupa 0.494 0.484 0.478 0.46 0.481 0.48 
diabetes 0.338 0.272 0.35 0.268 0.338 0.276 
echo 0.417 0.303 0.402 0.308 0.425 0.322 
german 0.36 0.295 0.363 0.292 0.361 0.295 
glass 0.541 0.498 0.588 0.518 0.569 0.499 
magic 0.35 0.357 0.348 0.357 0.348 0.356 
credit 0.272 0.208 0.26 0.2 0.289 0.204 
spect 0.455 0.405 0.375 0.317 0.409 0.369 
wdbc 0.112 0.068 0.107 0.064 0.124 0.069 
ecoli 0.312 0.209 0.303 0.191 0.3 0.219 
ionos 0.27 0.218 0.346 0.212 0.283 0.202 
Ave.  0.312 0.255 0.317 0.248 0.318 0.254 
Imp.  18.3% 21.8% 20.1% 
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Table 23 Summarization of comparisons between NNE and NNEAUD on naïve 

Bayes 

Naïve Bayes  

 ENN ENN+ Imp. RENN RENN+ Imp. ANN ANN+ Imp. 

10% 0.230 0.230 0% 0.238 0.230 3.4% 0.233 0.232 0.4% 

20% 0.241 0.233 3.3% 0.247 0.230 6.9% 0.242 0.230 5.0% 

30% 0.265 0.241 9.1% 0.272 0.239 12.1% 0.273 0.242 11.4% 

40% 0.312 0.255 18.3% 0.317 0.248 21.8% 0.318 0.254 20.1% 

Ave.  0.262 0.240 7.7% 0.269 0.237 11.1% 0.267 0.240 9.2% 

 

(B2) Decision tree. Table 24 shows the comparison between NNE and 

NNEAUD on decision tree when noise ratio is 40%.  

Table 25 shows the summarization of comparisons on decision tree. These 

two tables demonstrate that no matter what noise ratio, NNEAUD methods 

always outperform NNE methods. Averaged across all the four noise ratios, the 

improvement of ENN+ on ENN is 14.8%; the improvement of RENN+ on 

RENN is 15.7%; the improvement of ANN+ on ANN is 16.1%. This 

observation suggests that NNEAUD is capable to effectively remove noises in 

the training set for decision tree.  
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Table 24 Comparison between NNE and NNEAUD on decision tree when noise 

ratio is 40% 

Nearest neighbor editing on decision tree, 40% 

Dataset ENN ENN+ RENN RENN+ ANN ANN+ 

iris 0.196 0.073 0.205 0.065 0.216 0.079 
vote 0.276 0.151 0.238 0.096 0.284 0.151 
heart2 0.343 0.231 0.32 0.216 0.352 0.247 
horse 0.354 0.208 0.326 0.182 0.342 0.209 
sonar 0.467 0.403 0.452 0.405 0.449 0.383 
wine 0.335 0.244 0.408 0.28 0.372 0.242 
breast 0.206 0.095 0.189 0.071 0.232 0.096 
yeast 0.453 0.412 0.442 0.409 0.465 0.405 
australian 0.323 0.167 0.305 0.172 0.328 0.172 
bupa 0.462 0.402 0.435 0.39 0.458 0.403 
diabetes 0.385 0.285 0.374 0.275 0.37 0.271 
echo 0.44 0.328 0.403 0.328 0.41 0.325 
german 0.419 0.309 0.39 0.301 0.411 0.308 
glass 0.507 0.469 0.559 0.5 0.55 0.494 
magic 0.356 0.295 0.361 0.304 0.351 0.289 
credit 0.363 0.185 0.308 0.151 0.349 0.176 
spect 0.399 0.311 0.367 0.318 0.419 0.318 
wdbc 0.269 0.112 0.235 0.08 0.292 0.112 
ecoli 0.308 0.208 0.312 0.207 0.327 0.227 
ionos 0.348 0.202 0.345 0.189 0.346 0.197 
Ave.  0.36 0.254 0.349 0.247 0.366 0.255 
Imp.  29.4% 29.2% 30.3% 
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Table 25 Summarization of comparisons between NNE and NNEAUD on 

decision tree 

Decision tree 

 ENN ENN+ Imp. RENN RENN+ Imp. ANN ANN+ Imp. 

10% 0.222 0.212 4.5% 0.233 0.216 7.3% 0.226 0.212 6.2% 

20% 0.243 0.225 7.4% 0.246 0.226 8.1% 0.245 0.225 8.2% 

30% 0.283 0.232 18.0% 0.281 0.230 18.1% 0.291 0.233 19.9% 

40% 0.360 0.254 29.4% 0.349 0.247 29.2% 0.366 0.255 30.3% 

Ave.  0.277 0.231 14.8% 0.277 0.230 15.7% 0.282 0.231 16.1% 

 

(B3) The k-nearest neighbor algorithm. Table 26 shows the comparison 

between NNE and NNEAUD on k-nearest neighbor when noise ratio is 40%. 

Table 27 shows the summarization of comparison on k-NN. Same with 

previous experiments, we find that NNEAUD can consistently defeat NNE on 

k-NN. 
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Table 26 Comparison between NNE and NNEAUD on k-NN when noise ratio is 

40% 

Nearest neighbor editing on k-NN, 40% 

Dataset ENN ENN+ RENN RENN+ ANN ANN+ 

iris 0.184 0.082 0.17 0.067 0.176 0.073 
vote 0.296 0.214 0.264 0.184 0.285 0.198 
heart2 0.325 0.228 0.327 0.218 0.348 0.219 
horse 0.374 0.264 0.34 0.235 0.378 0.268 
sonar 0.436 0.33 0.451 0.327 0.444 0.343 
wine 0.235 0.137 0.277 0.152 0.257 0.123 
breast 0.273 0.162 0.213 0.122 0.279 0.147 
yeast 0.468 0.426 0.448 0.413 0.471 0.42 
australian 0.36 0.204 0.334 0.182 0.363 0.209 
bupa 0.48 0.461 0.477 0.445 0.499 0.455 
diabetes 0.417 0.313 0.4 0.285 0.418 0.312 
echo 0.465 0.372 0.413 0.31 0.45 0.35 
german 0.41 0.335 0.388 0.311 0.413 0.326 
glass 0.513 0.483 0.568 0.499 0.554 0.479 
magic 0.389 0.318 0.374 0.313 0.387 0.314 
credit 0.361 0.207 0.322 0.181 0.364 0.203 
spect 0.427 0.344 0.424 0.356 0.402 0.349 
wdbc 0.296 0.114 0.245 0.066 0.289 0.101 
ecoli 0.257 0.179 0.265 0.172 0.268 0.181 
ionos 0.362 0.219 0.356 0.197 0.378 0.231 
Ave.  0.366 0.27 0.353 0.252 0.371 0.265 
Imp.  26.2% 28.6% 28.6% 
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Table 27 Summarization of comparisons between NNE and NNEAUD on k-NN 

k-NN 

 ENN ENN+ Imp. RENN RENN+ Imp. ANN ANN+ Imp. 

10% 0.227 0.215 5.3% 0.229 0.217 5.2% 0.229 0.217 5.2% 

20% 0.247 0.220 10.9% 0.243 0.219 9.9% 0.245 0.218 11.0% 

30% 0.295 0.239 19.0% 0.284 0.232 18.3% 0.292 0.238 18.5% 

40% 0.366 0.270 26.2% 0.353 0.252 28.6% 0.371 0.265 28.6% 

Ave.  0.284 0.236 15.4% 0.277 0.230 15.5% 0.284 0.235 15.8% 

 

There is another useful result shown in the experiments. Figure 8 shows the 

relationship between noise ratio and improvement of ENN+ acting on ENN. We 

find that for all the three classifiers, the improvement increases in direct 

proportion to the noise ratio. Similarly, Figure 9 shows the improvement of 

RENN+ acting on RENN increases in direct proportion to the noise ratio. Figure 

10 shows the improvement of ANN+ acting on ANN also increases in direct 

proportion to the noise ratio.  
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Fig. 8. Improvement of ENN+ on ENN 
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Improvement of RENN+ on RENN
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Fig. 9. Improvement of RENN+ on RENN 

Improvement of ANN+ on ANN
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Fig. 10. Improvement of ANN+ on ANN 

Experiments summarization: Experiment A and B indicate that by using 

nearest neighbor editing methods, the classification performance of k-NN, naïve 

Bayes, and decision tree can be improved. This suggests that although nearest 

neighbor editing is originally proposed for k-NN, it is not limited to k-NN. It 

also has the ability to effectively remove the noises for naïve Bayes and 

decision tree. In other words, nearest neighbor editing has the capability to 

serve as a general noise removing method. Moreover, by using unlabeled data, 
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we develop NNEAUD methodology. Based on this novel methodology, the 

variants of edited nearest neighbor, repeated edited nearest neighbor, and All k-

NN are devised. Experimental results show that all the three variants 

significantly outperform the original approaches. This means NNEAUD is more 

competent than NNE with respect to removing noises for k-NN, naïve Bayes, 

and decision tree. Moreover, the superiority of NNEAUD is more remarkable 

when noise ratio in the training data is greater.  

3.5 Discussions 

The experiments in this Chapter show that our method can improve the 

performance of instance-based noise filtering methods.  

Suppose x is a noisy instance in the original training set T ; ax is the actual 

label of x ; gx is the given label of x in the training set; 'T  is the augmented data 

set ( 'T T⊆ ); R  is the k nearest neighbors of x in T (the distance is calculated 

based on the Euclidean distance of two feature vectors); 'R  is the k nearest 

neighbors of x  in 'T . Let us consider a two-class classification problem 

wherein ax =+, gx =-.  

ENN can identify x  as noise if the label predicted by R  is different with that 

of gx . Therefore, the probability that ENN could identify x  as noise is: 

( | , )T a gP R x x= + = + = − .  

   Using unlabeled data, the probability that ENN could identify x  as noise is: 

'
'( | , )a gT

P R x x= + = + = − . If the elements in R are same with that in 'R , then 

these two probabilities are also same. It means unlabeled data has no any effect 

on noise detection on x . If the elements in R are different with that in 'R , then 

one or some neighbors which are closer to x are found in 'T . When the number 

of samples is very large, it is reasonable to assume that 'x is sufficiently close to 

x that the label of x and 'x are same. Therefore it is reasonable to assume that: 
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'
'( | , ) ( | , )a g T a gT

P R x x P R x x= + = + = − ≥ = + = + = −  (inequation 1) 

Above hypothesis is established when the new added training data are noise-

free. When the points ' '\{ }R R R∩ are noisy, it is possible that: 

'
'( | , ) ( | , )a g T a gT

P R x x P R x x= + = + = − ≤ = + = + = −  (inequation 2) 

Based on the theory in [44], the performance of the classifier is expected to 

be improved if enough noisy training data are added. In [44], m  is the sample 

size; η  is the noise rate in the training set; ε is the classification error; c  is a 

constant under which that 2(1 2 )
c

m
ε

η
=

−
.  Let 1ε  and 2ε denote the 

classification error based on the original training set and the augmented training 

set respectively; 1η and 2η  denote the noise rates of the original training set and 

the augmented training set; 1m and 2m  denote the original training set size and 

the augmented training set size. In the worst case that 2 1η η> , if the sample 

number in 2 1\m m  are big enough, still 2 1ε ε> . This proved that the probability 

of inequation 1 holds is greater than that of inequation 2 holds. The positive 

effect of our method on average can defeat the negative effect.  
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Chapter 4 

General Noise Filtering  

We have proved that our method is effective in instance-based noise filtering 

methods. We further prove that our method is general and not limited to any 

noise filtering methods in this chapter. There are many methods for general 

identifying and eliminating mislabeled training instances. Herein, we consider 

Brodley’s majority filtering (MF) and consensus filtering (CF) due to their 

wide-spread and popular use in the literature.  

4.1 Majority & Consensus filtering 

The general idea of MF and CF is as follows: they employ ensemble classifier 

to detect mislabeled instances by constructing a set of base-level classifiers and 

then using their classifications to identify mislabeled instances. The general 

approach is to tag an instance as mislabeled if x  of the m base-level classifiers 

cannot classify it correctly. MF tags an instance as mislabeled if more than half 

of the m  base level classifiers classify it incorrectly. CF requires that all base-

level classifiers must fail to classify an instance as the class given by its training 

label for it to be eliminated from the training data.  

The reason to employ ensemble classifiers in MF and CF is that ensemble 

classifier has better performance than each base-level classifier on a dataset if 

two conditions hold: (1) the probability of a correct classification by each 

individual classifier is greater than 0.5, and (2) the errors in predictions of the 

base-level classifiers are independent.  

As Shown in Table 28, majority filtering begins with n  equal-sized disjoint 

subsets of the training set E  (step 1) and the empty output set A  of detected 

noisy examples (step 2). The main loop (steps 3-16) is repeated for each 

training subset iE . In step 4, subset iE is formed which includes all examples 
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from E  except those in iE , which then is used as the input an arbitrary 

inductive learning algorithm that induces a hypothesis ( a classifier ) jH (step 6). 

Those examples from iE for which majority of the hypotheses do not give the 

correct classification are added to A as potentially noisy examples (step 14).  

Table 28 Majority filtering 

Algorithm: MajorityFiltering (MF) 
Input: E  (training set) 
Parameter: n (number of subsets), y (number of learning algorithms) 

1 2, ,..., yA A A ( y kinds of learning algorithms) 
Output: A (detected noisy subset of E ) 
(1) form n disjoint almost equally sized subsets of iE , where i iE E∪ =  
(2) A ←∅  
(3) for 1,...,i n=  do 
(4)   form \t iE E E←  
(5)   for 1,...j y=  do 
(6)     induce jH based on examples in tE and jA  
(7)    end for 
(8)   for every ie E∈ do 
(9)     0ErrorCounter ←  // the num. of classifiers which misclassify e 
(10)     for 1,...,j y= do 
(11)       if jH incorrectly classifies e  
(12)       then 1ErrorCounter ErrorCounter← +  
(13)     end for 
(14)     if / 2ErrorCounter y> , then { }A A e← ∪  
(15)   end for 
(16) end for 

 

Consensus filtering algorithm is shown in Table 29. Its difference with MF is 

at step 14. In CF, the example in iE is regarded as noisy example only when all 

the hypotheses incorrectly classify it. Compared with MF, CF is more 

conservative due to the severer condition for noise identification, which results 

in fewer instances being eliminated from the training set. The drawback of CF 

is the added risk in retaining bad data.  
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Table 29 Consensus filtering 

Algorithm: ConsensusFiltering (CF) 
Input: E  (training set) 
Parameter: n (number of subsets), y (number of learning algorithms) 

1 2, ,..., yA A A ( y kinds of learning algorithms) 
Output: A (detected noisy subset of E ) 
(1) form n disjoint almost equally sized subsets of iE , where i iE E∪ =  
(2) A ←∅  
(3) for 1,...,i n=  do 
(4)   form \t iE E E←  
(5)   for 1,...j y=  do 
(6)     induce jH based on examples in tE and jA  
(7)    end for 
(8)   for every ie E∈ do 
(9)     0ErrorCounter ← // the num. of classifiers which misclassify e 
(10)     for 1,...,j y= do 
(11)       if jH incorrectly classifies e  
(12)       then 1ErrorCounter ErrorCounter← +  
(13)     end for 
(14)     if ErrorCounter y= , then { }A A e← ∪  
(15)   end for 
(16) end for 

 

Both majority filtering and consensus filtering employ multiple classifiers to 

detect the noisy instances through n-cross-validation. In cross i , subset i is 

extracted and checked. The combination of other subsets is used as training data 

to construct a set of classifiers based on the learning algorithms, which further 

classify the instances in subset i to detect the noises. The reliability of these 

classifiers therefore is crucial and the noise detection performance is expected 

to improve when the classification accuracies of these classifiers are increased. 

Our approach is to utilize the unlabeled data to increase the classification 

accuracies of these classifiers.  
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4.2 Majority & Consensus filtering aided by unlabeled 

data 

As the learning algorithms in MF and CF are supervised, in order to utilize 

unlabeled data, the first phase therefore is to predict the labels for them. Then 

the second phase is to employ the unlabeled data with predicted labels to 

augment the classifiers’ predictive ability, thereby improving the performance 

of noise detection.  

The work in the first phase is based on our proposed ensemble-based data 

labeling function which can be referred to Chapter 2.  

Table 30 Majority filtering aided by unlabeled data 

Algorithm: Majority Filtering with the Aid of Unlabeled Data (MFAUD) 
Input: E  (training set), U (unlabeled set) 
Parameter: n (number of subsets), y (number of learning algorithms) 

1 2, ,..., yA A A ( y kinds of learning algorithms) 
Output: A (detected noisy subset of E ) 
(1) form n disjoint almost equally sized subsets of iE , where i iE E∪ =  
(2) A ←∅  
(3) for 1,...,i n=  do 
(4)   form \t iE E E←  
(5)   1 2( , , , , , ,..., )U t yT En co training E U k u A A A= − −  
(6)   t t UE E T← ∪  
(7)   for 1,...j y=  do 
(8)     induce jH based on examples in tE and jA  
(9)    end for 
(10)   for every ie E∈ do 
(11)     0ErrorCounter ← // the num. of classifiers which misclassify e 
(12)     for 1,...,j y= do 
(13)       if jH incorrectly classifies e  
(14)       then 1ErrorCounter ErrorCounter← +  
(15)     end for 
(16)     if / 2ErrorCounter y> , then { }A A e← ∪  
(17)   end for 
(18) end for 
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Table 31 Consensus filtering aided by unlabeled data 

Algorithm: Consensus Filtering with the Aid of Unlabeled Data (CFAUD) 
Input: E  (training set), U (unlabeled set) 
Parameter: n (number of subsets), y (number of learning algorithms) 

1 2, ,..., yA A A ( y kinds of learning algorithms) 
Output: A (detected noisy subset of E ) 
(1) form n disjoint almost equally sized subsets of iE , where i iE E∪ =  
(2) A ←∅  
(3) for 1,...,i n=  do 
(4)   form \t iE E E←  
(5)   1 2( , , , , , ,..., )U t yT En co training E U k u A A A= − −  
(6)   t t UE E T← ∪  
(7)   for 1,...j y=  do 
(8)     induce jH based on examples in tE and jA  
(9)    end for 
(10)   for every ie E∈ do 
(11)     0ErrorCounter ← // the num. of classifiers which misclassify e 
(12)     for 1,...,j y= do 
(13)       if jH incorrectly classifies e  
(14)       then 1ErrorCounter ErrorCounter← +  
(15)     end for 
(16)     if ErrorCounter y= , then { }A A e← ∪  
(17)   end for 
(18) end for 

 

Let UT denote the output of phase 1, which includes the selected unlabeled 

instances and their predicted labels. In this part, the variants of majority filtering 

and consensus filtering are devised that use UT to aid the noise detection in 

training data T . As shown in the above Tables, UT is utilized by our proposed 

MFAUD and CFAUD with only marginal modifications on MF and CF are 

required.  

Always keep it mind that there is no free lunch and it is actually risky to use 

unlabeled data. We shouldn’t take for granted that the using of unlabeled data 

can definitely improve the performance of noise detection in training set. The 

reason is as follows: although semi-supervised method including our ensemble-
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based data labeling function can predict the labels for some selected unlabeled 

data, the predicted labels are not noise-free (refer to Chapter 2). The unlabeled 

instances with correctly predicted labels tend to improve the noise detection 

performance, yet the noisy labels from prediction could potentially degrade the 

classifiers’ predictive accuracies, which further leads to the performance 

degradation of noise detection in training set. With this caveat in mind, we now 

proceed to an empirical evaluation.  

4.3 Empirical study 

The main objective of the empirical study is to assess the benefit of unlabeled 

data for noise detection in training data. Chapter 4.3.1 explains the experimental 

setup. Afterwards Chapter 4.3.2 presents the experimental results.  

4.3.1 Empirical setup 

Existing MF, CF, and our proposed MFAUD, CFAUD are tested on the 

benchmark datasets from the Machine Learning Database Repository. 

Information of these data sets is tabulated in Table 4. Each data set is divided 

into training set and test set. Noise detection method works on the training set 

and outputs the filtered training set. Afterwards the test set is classified by the 

classifiers which are trained on the various filtered training sets. Classification 

error rate is the measure to evaluate the performance of each noise detection 

method on the classifier, where  

No. of incorrect classifications on testing instancesclassification error rate=
No. of testing instances

 

When two noise detection methods are applied to the same data set with the 

same learning algorithm, lower classification error rate indicates that the noise 

detection performance is better. To obtain the classification error rate, each data 

set D is processed as follows:  

(1) D is randomly partitioned into two parts: labeled set L and unlabeled set 

U . 
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(2) Ten trials derived from ten-fold cross-validation on L are used to evaluate 

the performance of each noise detection method. At each trial, 90% of L is 

firstly selected and it is denoted by tempT . Most data sets here are experimental 

data sets where the ratio between noisy data to the whole data might be very 

small. However, the performance of noise removing method need to be 

evaluated on the noisy data sets. To this end, we artificially generate some 

noises in tempT by selecting some instances at random and then incorrectly 

changing their labels. The number of selected instances, that is the number of 

generated noises, is based the defined noise ratio, which is the ratio between 

noisy data to the data in tempT . Let T denote the data after adding noises in tempT . 

T is used as training data and it will be processed by MF, CF, MFAUD, and 

CFAUD respectively. The remaining 10% of L is used as test set to be 

classified by the algorithms that are trained on each filtered set of T .  

(3) The average classification error rates of each algorithm with different 

noise filtering methods are obtained by averaging ten trials’ error rates. 

(4) Considering that the partition of data set could influence this average 

classification error rate, we execute the partition five times and get five 

classification error rates (execute step 1-3 five times). 

(5) Finally the reported error rates of each algorithm with different noise 

filtering methods are the further averaged value of these five values.  

In this experiment, the four noise detection methods (MF, CF, MFAUD, and 

CFAUD) follow the same configuration which is as follows: n , that is the 

number of subsets, is set to 5; y , that is the number of learning algorithms, is 

set to 3; A1, A2, and A3, representing three learning algorithms, refer to k-

nearest neighbor, naïve Bayes, and decision tree. The additional parameters in 

MFAUD and CFAUD are for ensemble-based data labeling function and 

configured as follows: k , that is the number of iterations, is set to 4; u , that is 

the number of initially selected unlabeled instances, is equal to the number of 

training data.  
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In addition to the parameters in the noise detection methods, there are two 

major parameters in above experiment flow which can influence the experiment. 

The first parameter determines data partitioning (step 1 of above experiment 

flow) and it is the ratio between labeled data to the whole data, referred to 

labeled ratio. In the experiment, labeled ratio is set to 0.5. The second and most 

important parameter determines the noise level in the training set T and it is the 

noise ratio (step 2 of above experiment flow). Considering that the data sets 

obtained from the real application might have different noise levels, we have 

performed several experiments varying the noise ratio to make the experiments 

comprehensively. The experiments include two parts:  

Experiment A: The noise ratios include 10%, 20%, 30%, and 40%. The 

experiments here show the comparisons between MF and MFAUD under 

different noise ratios. The objective is to test whether unlabeled data are able to 

improve the performance of MF.  

Experiment B: The noise ratios include 10%, 20%, 30%, and 40%. The 

experiments in B show the comparisons between CF and CFAUD under 

different noise ratios and the objective is to test whether unlabeled data are able 

to improve the performance of CF.  

4.3.2 Experimental results 

Experiment A: MF versus MFAUD. The experiments in this part include the 

comparisons between MF and MFAUD under four different noise ratios.  

In Fig. 11 we show the classification error for each data set of the classifiers 

formed by each of the three algorithms using no filter (None), majority filtering 

(MF), and majority filtering aided by unlabeled data (MFAUD) when noise 

ratio is 10%. The second last row reports the average classification error across 

all the data sets of above classifiers. The last row reports the average 

improvement of MFAUD over MF with respect to reduction of classification 

error when they are used by each of the three algorithms. Fig. 11 shows for each 

of the three algorithms, on average its performance with noise filtering is better 
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than that without noise filtering. Moreover MFAUD is better than MF for each 

of the algorithms. Concretely, for 1-NN, the improvement of MFAUD over MF 

is 4.5%; for naïve Bayes, the improvement is 1.3%; for decision tree, the 

improvement is 4.0%.  

As well, Fig. 12, 13, and 14 show the classification results when noise ratio is 

20%, 30%, and 40%. Among them, we analyze Fig. 14 for analyzing purpose.  

Fig. 14 reports the comparison between MF and MFAUD when noise ratio is 

40%. It shows similar result trend as Fig. 11 that both MF and MFAUD could 

improve the performance of all the three algorithms, and that MFAUD 

outperforms MF. Note that the improvement of MFAUD over MF is 

significantly increased when noise ratio increases from 10% to 40%. Concretely, 

when noise ratio is 10%, the improvement is less than 5%; the improvement 

however reaches to more than 20% when noise ratio is 40%.  

Fig. 15 summarizes the comparisons between MF and MFAUD under four 

different noise ratios. As shown in this table, MFAUD outperforms MF for each 

of the three algorithms under different noise ratios. In addition, for each of the 

algorithm, the improvement of MFAUD over MF is in direct proportion to the 

noise ratio. For example, for 1-NN, the improvement of MFAUD over MF is 

4.5%when noise ratio is 10%, while the improvement is significantly increased 

to 25.6% when noise ratio is 40%. Averaged on the four noise ratios, for 1-NN, 

the improvement of MFAUD on MF is 13.4%; for naïve Bayes, the 

improvement of MFAUD on MF is 6.0%; for decision tree, the improvement of 

MFAUD on MF is 13.7%.  
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Fig. 11. MF versus MFAUD when noise ratio is 10% 

 

Fig. 12. MF versus MFAUD when noise ratio is 20% 
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Fig. 13. MF versus MFAUD when noise ratio is 30% 

 

 

 



 

67 

 

Fig. 14. MF versus MFAUD when noise ratio is 40% 

 

Fig. 15. Summarization of MF versus MFAUD 
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 Experiment B: CF versus CFAUD. In Fig. 16 we show the classification 

error for each data set of the classifiers formed by each of the three algorithms 

testing using no filter (None), consensus filtering (CF), and consensus filtering 

aided by unlabeled data (CFAUD) when noise ratio is 10%. As shown in this 

table, both CF and CFAUD can provide improvement on the three algorithms. 

When CF and CFAUD are compared, we find that CFAUD defeats CF. 

However, the improvement of CFAUD over CF is not very remarkable and 

limited in 6%.  

Fig. 17 to 19 show the experimental results when noise ratio is 20%, 30%, 

and 40% respectively. Here we choose Fig. 19 for analyzing.  

Fig. 19 reports the classification comparison between CF and CFAUD when 

noise ratio is 40%. Under this noise ratio, all of the three algorithms achieve 

improved classification performance when using CF or CFAUD. Moreover, 

CFAUD significantly outperforms CF and its improvement over CF is much 

greater than that when noise ratio is 10%. 

Fig. 20 shows the summarization of CFAUD versus CF under for different 

noise ratios from 10% to 40%. This table indicates that CFAUD can provide 

consistent improvement on each of the three algorithms under each of the four 

noise ratios. In addition, for each of the three algorithms, the improvement of 

CFAUD over CF increases as the noise ratio increases. When comparing the 

three algorithms without noise filtering, naïve Bayes gives the best 

classification. When comparing the three algorithms with noise filtering, on 

average decision tree with CFAUD gives the best classification performance. 

Experiments summarization: The results in Experiment A and B show that 

MFAUD and CFAUD could consistently improve MF and CF under different 

noise ratios. In other words, the mislabeled instances detection performance 

could achieve consistent improvement with the aid of unlabeled data.  
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Fig. 16. CF versus CFAUD when noise ratio is 10% 

 
Fig. 17. CF versus CFAUD when noise ratio is 20% 
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Fig. 18. CF versus CFAUD when noise ratio is 30% 

 

Fig. 19. CF versus CFAUD when noise ratio is 40% 
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Fig. 20. Summarization of CF versus CFAUD 

4.4 Discussions 

The experiments in this Chapter show that our method can improve the 

performance of majority and consensus filtering methods.  

Recall the discussion in Chapter 2, using unlabeled data is not free because 

their predicted labels are prone to noises. On one hand, the unlabeled data with 

correctly predicted labels tend to improve the classification accuracy of 

ensemble classifiers, thereby updating the performance of mislabeled instances 

detection. On the other hand, the unlabeled data with incorrectly predicted 

labels tend to degrade the performance of mislabeled instances detection. The 

experimental results show that the positive effect of using unlabeled data 

defeats its negative effect. One possible explanation is that: both MF and CF 

employ n-cross-validation method for noise detection. For each cross, all the 
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data except this cross are used to train ensemble classifiers based on different 

learning algorithms and then these constructed ensemble classifiers classify the 

data in this cross to detect noises. This process determines that the performance 

of noise detection is expected to improve when the predictive accuracy of 

ensemble classifiers increase. Existing works on semi-supervised learning have 

shown that the predictive accuracy of each classifier (also ensemble classifiers) 

can be improved by using unlabeled data. Based on PAC theory [44], although 

there might be some noisy predicted labels for unlabeled data, the negative 

effect of them could be compensated if the amount of newly labeled examples is 

sufficient.  

Above discussion also explains the reason why our method works well for 

instance-based noise filtering methods in Chapter 3. In essence, the instance-

based noise filtering methods also employ the “n-cross-validation” method for 

noise detection, in which, the number n is the number of training instances in 

their methods.  
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Chapter 5 

Conclusion and future work 

In this thesis, we present a novel noise filtering methodology which 

incorporates the knowledge of unlabeled data. This is in contrast with existing 

noise filtering methods that are usually supervised and can only utilize the 

knowledge of training instances. To utilize unlabeled instances, we propose an 

ensemble-based semi-supervised classification method to predict the labels for 

some selected unlabeled instances.  

To test the performance of our method, we firstly use it on three instance-

based noise filtering methods: edited nearest neighbor, repeated edited nearest 

neighbor, and All k-NN. A set of experiments prove the superiority of our 

method that all these three methods can achieve improved performance when 

using our method.  

Afterwards, to show the generality of our method, we also use it on the 

general noise filtering methods: majority filtering and consensus filtering. Three 

popular algorithms are adopted, including k-NN, naïve Bayes, and decision tree. 

The experimental results show that by using our method, majority/consensus 

filtering can be improved for all of these three methods.  

This study indicates that the performance of traditional supervised noise 

filtering methods could be boosted with the aid of unlabeled instances.  

 Noise filtering is one of the techniques for noise handling. One of our future 

works is to consider using unlabeled data in other noise handling techniques, 

including, for example noise tolerance and noise correction.  

In addition, although we claim that our method can be used to improve the 

performance of noise filtering; currently five noise filtering methods are tested. 
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We will test the performance of our method on other noise filtering techniques 

in the future.    

Noise handling including noise filtering aims to refine the training data to 

improve the learning performance. Another future work is to use unlabeled data 

in other techniques with the aim of refining training data. The techniques we are 

interested include feature selection and valuable training data selection. 

Finally, the usage of unlabeled data in current work is by predicting the labels 

for them. In the future, we will try to extract some other type of information 

from unlabeled data, such as density information, partition information, and so 

on.  
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CFAUD Consensus Filtering Aided by Unlabeled Data 

k-NN  The k-Nearest Neighbor Algorithm 

NB  Naïve Bayes 

DT  Decision Tree 
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