
Thesis for the Degree of Doctor of Philosophy

Noisy Training Data Detection:
Incorporating the Knowledge of Unlabeled Data

Donghai Guan

Department of Computer Engineering

Graduate School

Kyung Hee University

Seoul, Korea

August, 2009

Noisy Training Data Detection:

Incorporating the Knowledge of Unlabeled Data

by

Donghai Guan

Supervised by

Prof. Young-Koo Lee, Ph.D.

Department of Computer Engineering

Graduate School

Kyung Hee University

Seoul, Korea

August, 2009

Noisy Training Data Detection:

Incorporating the Knowledge of Unlabeled Data

Donghai Guan

Submitted to
The Faculty of the Graduate School of Computer Engineering

in Partial Fulfillment of the Requirements
of the Degree of

Ph.D.

Thesis Committee:

Professor Chae, Oksam

Professor Chung, Tae-Choong

Professor Kim, Dong-Han

Professor J. d’Auriol, Brian

Professor Lee, Young-Koo

Dedicated to my Family

 i

Acknowledgement

Many different people provided help, support, and input that brought this thesis

to fruition. First and foremost, I would like to express my gratitude to my

supervisor, Prof. Young-Koo Lee, who gave me an opportunity to do this Ph.D

research. He gave me the freedom to try out new ideas and gave me continuous

support during the research.

I particularly appreciate Prof. Sungyoung Lee for his guidance and continue

support throughout my PhD study. I also would like to thank Prof. Brian J.

d’Auriol and Prof. Andrey Gavrilov for their great help on my research.

I am also in debt of my thesis committee whose comments helped me to very

much improve the presentation of the thesis.

Many thanks to all members of Activity Recognition Team, as well as the

Ubiquitous Computing Group and Database Group, for their collaboration and

friendship during my study.

I would like to thank my parents for supporting my decision to continue this

study. I also owe a lot of thanks to my younger sister whose efforts of taking

over my duty in taking care of our parents have helped to keep my mind on this

work.

Last and most importantly, I lovingly thank my sweet fiancée and reliable

research partner, Weiwei Yuan, for her love, patient and support.

Donghai Guan

August 2009,

Seoul, Korea

 ii

Abstract

The classification learning process consists of different steps: building a

training set, training the system, testing its behavior, and finally classifying

unknown objects. The quality of the training data is known to be one of the

most important factors to determine the learning performance. In real

applications, training data are prone to noises for several reasons including

subjectivity, data-entry error, or inadequacy of the information used to label

each object. Noises in training set tend to degrade the learning performance;

handling noisy training data is therefore one of the most important topics in

machine learning.

Noise filtering is a popular technique to handle noises in the training data. It

identifies and removes noises prior to applying the chosen learning algorithm,

so that the noisy data do not influence hypothesis construction. Existing noise

filtering methods like edited nearest neighbor, majority/consensus filtering are

supervised which only rely upon the training data. In this thesis, we present a

new method for noise filtering. Our key idea is to incorporate the knowledge

learned from unlabeled data, which are usually easy to obtain since they do not

need human labeling effort. Our method is straightforward and general. It can

work on any existing noise filtering methods. Existing noise filtering methods

can not utilize unlabeled data directly, so we need the method that can convert

unlabeled data to labeled data. For this purpose, we propose an ensemble-based

semi-supervised learning algorithm to selectively choose and predict labels for

unlabeled data. By incorporating the advantage of ensemble learning, this

algorithm overcomes the intrinsic limitation of the traditional self-training and

co-training algorithm, which require the measure to evaluate the classification

“confidence”.

The k-nearest neighbor algorithm is a type of instance-based learning that is

highly susceptible to noisy instances in the training set due to the high degree of

local sensitivity. Considering its urgent requirement for refined noise filtering

 iii

techniques, we firstly use our method on three well-known instance-based noise

filtering methods: edited nearest neighbor, repeated edited nearest neighbor, and

All k-NN. Experimental results demonstrate that all these three methods can

achieve improved performance by using our method. This experiment proves

the effectiveness of utilizing unlabeled data for instance-based noise filtering

methods.

In essence, our method is general and not limited to instance-based noise

filtering methods. To show its universality, we use our method with

majority/consensus filtering, a well-known general noise filtering method which

can be used with any base learning algorithms. We choose three popular

algorithms as the base learning algorithm of majority/consensus filtering: naïve

Bayes, decision tree, and k-NN. Experimental results indicate that our method

can improve the performance of majority/consensus filtering for all the three

algorithms.

Based on the above instance-based and general noise filtering methods, the

experimental results suggest that our method has the potentiality to provide

improved performance for any noise filtering algorithms and any base learning

algorithms with only marginal modification required.

 iv

Table of Contents

Acknowledgement ...i

Abstract .. ii

Table of Contents...iv

List of Figures ..vi

List of Tables.. vii

Chapter 1 Introduction ..1

1.1 Noise filtering by using unlabeled data..4

1.2 Thesis outline ...5

Chapter 2 Semi-supervised classification ...7

2.1 Introduction to semi-supervised learning...7

2.1.1 Self-training ..9

2.1.2 Co-training..11

2.2 The proposed ensemble-based data labeling function ...12

2.2.1 The performance of ensemble-based data labeling function.........................14

Chapter 3 Semi-supervised classification ...20

3.1 The k-nearest neighbor algorithm..20

3.2 Nearest neighbor editing..22

3.3 Nearest neighbor editing aided by unlabeled data (NNEAUD)27

3.4 Empirical study ..30

3.4.1 Experimental setup ...31

3.4.2 Experimental results: varying the labeled ratio...33

 v

3.4.3 Experimental results: varying the noise ratio..43

3.5 Discussions...54

Chapter 4 General Noise Filtering ..56

4.1 Majority & Consensus filtering..56

4.2 Majority & Consensus filtering aided by unlabeled data.....................................59

4.3 Empirical study ..61

4.3.1 Empirical setup ...61

4.3.2 Experimental results ...63

4.4 Discussions...71

Chapter 5 Conclusion and future work..73

Bibliography..75

List of publications ...79

List of abbreviations...83

 vi

List of Figures

Fig. 1. The position of semi-supervised learning.. 8

Fig. 2. Decision regions of nearest neighbor rule ... 22

Fig. 3. ENN with 1-NN classifier ... 25

Fig. 4. ENN with 1-NN classifier when unlabeled data are available 27

Fig. 5. The effect of unlabeled data for data editing..................................... 28

Fig. 6. (A) standard ENN (B) ENN aided by unlabeled data (processed by the

Oracle) (C) ENN aided by unlabeled data (processed by semi-supervised

classification)... 30

Fig. 7. ENN, RENN, and ANN on k-NN, naïve Bayes, and decision tree

when noise ratio is 10%... 44

Fig. 8. Improvement of ENN+ on ENN.. 52

Fig. 9. Improvement of RENN+ on RENN .. 53

Fig. 10. Improvement of ANN+ on ANN... 53

Fig. 11. MF versus MFAUD when noise ratio is 10% 65

Fig. 12. MF versus MFAUD when noise ratio is 20% 65

Fig. 13. MF versus MFAUD when noise ratio is 30% 66

Fig. 14. MF versus MFAUD when noise ratio is 40% 67

Fig. 15. Summarization of MF versus MFAUD... 67

Fig. 16. CF versus CFAUD when noise ratio is 10% 69

Fig. 17. CF versus CFAUD when noise ratio is 20% 69

Fig. 18. CF versus CFAUD when noise ratio is 30% 70

Fig. 19. CF versus CFAUD when noise ratio is 40% 70

Fig. 20. Summarization of CF versus CFAUD... 71

 vii

List of Tables

Table 1 Typical self-training algorithm.. 10

Table 2 Typical co-training algorithm.. 12

Table 3 Ensemble-based data labeling function ... 13

Table 4 UCI data sets used in the experiments... 15

Table 5 Performance of ensemble-based data labeling function 17

Table 6 Performance of 1-NN based self-training...................................... 18

Table 7 The algorithm of edited nearest neighbor (ENN).......................... 25

Table 8 The algorithm of repeated edited nearest neighbor (RENN)......... 26

Table 9 The algorithm of All k-NN (ANN).. 26

Table 10 The algorithm of ENN aided by unlabeled data 28

Table 11 The algorithm of RENN aided by unlabeled data 29

Table 12 The algorithm of ANN aided by unlabeled data............................ 29

Table 13 Experimental results when labeled ratio is 5%.............................. 35

Table 14 Experimental results when labeled ratio is 10%............................ 36

Table 15 Experimental results when labeled ratio is 15%............................ 37

Table 16 Experimental results when labeled ratio is 20%............................ 38

Table 17 Experimental results when labeled ratio is 30%............................ 39

Table 18 Experimental results when labeled ratio is 40%............................ 40

Table 19 Experimental results when labeled ratio is 50%............................ 41

Table 20 Experimental results summarization when labeled ratio is 5%, 10%,

15%, 20%, 30%, 40%, and 50%.. 42

Table 21 Summarization of ENN, RENN, and ANN on k-NN, naïve Bayes,

and decision tree .. 45

 viii

Table 22 Comparison between NNE and NNEAUD on naïve Bayes when

noise ratio is 40% .. 47

Table 23 Summarization of comparisons between NNE and NNEAUD on

naïve Bayes.. 48

Table 24 Comparison between NNE and NNEAUD on decision tree when

noise ratio is 40% .. 49

Table 25 Summarization of comparisons between NNE and NNEAUD on

decision tree... 50

Table 26 Comparison between NNE and NNEAUD on k-NN when noise

ratio is 40%.. 51

Table 27 Summarization of comparisons between NNE and NNEAUD on k-

NN 52

Table 28 Majority filtering ... 57

Table 29 Consensus filtering .. 58

Table 30 Majority filtering aided by unlabeled data 59

Table 31 Consensus filtering aided by unlabeled data 60

1

Chapter 1

Introduction

Noise detection encompasses aspects of a broad spectrum of technique. Many

techniques employed for detecting noises are fundamentally identical but with

different names such as noise detection, outlier detection, novelty detection,

anomaly detection, deviation detection or exception mining. In this thesis, we

use the name noise detection.

Noise detection is important and it can be used in many applications. This

study involves evaluation of noisy data in the training set.

The goal of an inductive learning algorithm is to form a good generalization

model constructed on the training instances. Generally two main factors

determine the quality of generalization model: (1) the quality of the training

data, and (2) the appropriateness of the biases of the chosen learning algorithm

for the training data. When the learning algorithm is given, the quality of

generalization model mainly depends on the quality of the training data.

Considering that training data usually include noises which tend to degrade the

quality of generalization model, effective noise handling is one of the most

important problems in inductive learning.

In order to minimize the downside of noisy training instances, people mainly

take one of the two approaches: noise tolerance and noise elimination. Noise

tolerance tries to control the negative effect of noisy instances without removing

them, usually by designing robust algorithms that are insensitive to noise. The

typical methods in this category include rule truncation [1] and tree pruning [2].

For example, pruning in decision trees is designed to reduce the chance that the

trees are over fitting to noise in the training data. However, since the classifiers

learned from noisy data have less accuracy, the pruning may have very limited

effect in enhancing the system performance, especially in the situation that the

noise level is relatively high.

2

On the other hand, noise elimination tries to improve the quality of training

data by identifying and eliminating the noisy instances prior to apply the

learning algorithm. For a real world dataset, doing the task “by hand” is

completely out of the question given the amount of person hours involved. A

manual process of noise elimination is also laborious, time consuming, and

prone to errors. Useful and powerful tools that automate or greatly assist in

noise elimination therefore have been developed. One typical method in this

category is to use an ensemble of classifiers and treat the training instance that

is misclassified as the noise. It has been argued by [3] that the noise elimination

is more effective than noise tolerance. In this work, we focus on noise

elimination.

The noisy training instances mainly include two types: attribute noise and

class noise. Attribute noises are the errors introduced in the attribute values of

the instances. Examples of those external errors include (1) erroneous attribute

values, (2) missing or don’t know attribute values, (3) incomplete attributes or

don’t care values. The class noises are also called mislabeled noises since they

are caused by the mislabeling. Class noise can occur for several reasons

including subjectivity, data-entry error, or inadequacy of the information used

to label each object. Subjectivity may arise when observations need to be

ranked in some way such as disease severity or when the information used to

label an object is different from the information to which the learning algorithm

will have access. For example, when labeling pixels in image data, the analyst

typically uses visual input rather than the numeric values of the feature vector

corresponding to the observation. Domains in which experts disagree are natural

places for subjective labeling errors. In other domains, the most frequent type of

error is mistake made during data-entry. A third cause of labeling error arises

when the information used to label each observation is inadequate. For example,

in the medical domain it may not be possible to perform the tests necessary to

guarantee that a diagnosis is 100% accurate. For domains in which labeling

errors occur, an automated method of eliminating or correcting mislabeled

3

observations will improve the predictive accuracy of the classifier formed from

the training data.

Quinlan [4] has comprehensively analyzed the two types of noises and

demonstrated that, for higher levels of noise, removing noise from attribute

information decreases the predictive accuracy of the resulting classifier if the

same attribute noise is present when the classifier is subsequently used.

However, for class noise, the opposite is true: cleaning the training data will

result in a classifier with a higher predictive accuracy. Brodley and Friedl [5][6]

have also illustrated that for class noise levels of less than 40%, removing

mislabeled instances from the training data resulted in higher predictive

accuracy relative to classification accuracies achieved without “cleaning” the

training data. Inspired by their works, our study focuses on identifying and

eliminating class noises (mislabeled instances), which thereby increasing the

classifier’s predictive accuracy.

Up to now, many research efforts have been made on eliminating mislabeled

instances for effective learning. Guyon [7] provided an approach that uses an

information criterion to measure an instance’s typicality; and atypical instances

are then presented to a human expert to determine whether they are mislabeled

instances or exceptions. The noise detection algorithm of Gamberger [8] is

based on the observation that the elimination of noisy examples reduces the

CLCH (Complexity of the Least Complex correct Hypothesis) value of the

training set. They called their noise elimination algorithm the Saturation filter

since it employs the CLCH measure to test whether the training set is saturated.

Brodley and Friedl [5,6] simplified noise elimination as a filtering operation

`where multiple classifiers learned from noisy training data are used to identify

noise, and the noise is characterized as the instances that are incorrectly

classified by the multiple classifiers. Two major filtering methods they

proposed are majority filtering and consensus filtering. In addition, there exists

some noise detection methods specially proposed for nearest neighbor

classifiers. Wilson [9] used a three-nearest neighbor classifier (3-NN) to select

4

instances that then used to form a 1-NN. Aha, Kibler, and Albert [10]

demonstrated that filtering instances based on records of their contribution to

classification accuracy in an instance-based classifier improves the accuracy of

the resulting classifier.

The noise identification process of the existing methods can be represented

by the expression: () (,)R t f t T= , wherein ()f ⋅ denotes the noise identification

function which depends on a particular measure, such as instances typicality [7],

reduction of CLCH [8], number of misclassification [5,6], improvement of

classification accuracy [10] and so on; t denotes one training instance in

training set T ; ()R t denotes the identification & elimination result for instance

t that consists of two values: 0 (eliminate) and 1 (retain). For above methods, no

matter which kind of noise identification function employed, there are always

two parameters with the noise identification function: training set T and the

instance t to be evaluated. In other words, given the noise identification

function, the identification result (eliminate or retain) for a training instance is

only based on the training set and this instance itself.

1.1 Noise filtering by using unlabeled data

Nowadays learning from unlabeled data is a hot topic. Labeled data for machine

learning is often very difficult and expensive to obtain, and thus the ability to

use unlabeled data holds significant promise in terms of vastly expanding the

applicability of learning methods.

Although unlabeled data have been used in many machine learning problems

like classification and regression, their potential utility has not been considered

by existing noise filtering methods. The novelty of our approach therefore is to

make use of unlabeled data to aid the noise filtering in training data. This is in

contrast to the existing noise filtering methods which rely upon only the training

set. Let U denote the unlabeled set and our approach can be expressed

as: () (, ,)R t f t T U= . The advantages of our approach include the use of unlabeled

data that are often convenient to obtain in many applications with only marginal

5

modifications required to existing methods. Another merit of our approach lies

in its wide applicability. It can be used with many various noise detection

methods including all the existing methods mentioned in previous paragraph.

1.2 Thesis outline

Below is a summary of the rest of the thesis:

Chapter 2: Semi-supervised classification. Existing noise filtering methods

cannot utilize unlabeled data directly. One solution is to predict the labels for

unlabeled data by utilizing semi-supervised classification technique. In this

chapter, we provide a review of semi-supervised classification, and describe

some commonly-used semi-supervised classification approaches, such as self-

training and co-training. In addition, we propose an ensemble-based semi-

supervised classification approach to solve the limitations of self-training and

co-training by incorporating the advantage of ensemble learning.

Chapter 3: Instance-based noise filtering aided by unlabeled data. Instance-

based learning like the k-nearest neighbor is susceptible to the noisy training

data due to its high degree of local sensitivity. We firstly use our method with

instance-based noise filtering methods. Three popular instance-based noise

filtering methods are adopted, including edited nearest neighbor, repeated edited

nearest neighbor, and All k-NN. The comparisons between the original methods

and our proposed methods are evaluated through a set of experiments. The

experimental results prove that the performance of instance-based noise filtering

can be improved with the aid of unlabeled instances.

Chapter 4: General noise filtering aided by unlabeled data. In essence, our

method is not specified to any particular noise filtering method and any learning

algorithm. In this chapter, we validate the wide applicability of our method by

using majority/consensus filtering. Majority/consensus filtering are general

noise filtering methods that can be used with any learning algorithms. In the

experiments, we choose three popular learning algorithms: k-nearest neighbor,

naïve Bayes, and decision tree. We test whether our proposed method can

6

improve the performance of majority/consensus filtering based on each of these

three learning algorithms through a comprehensive empirical study. The study

results indicate that our method can improve the performance of

majority/consensus filtering for all the three explored algorithms.

Chapter 5: Conclusions and future work. In this chapter, we summarize the

main contributions of our work and discuss future research directions for the

work presented in this thesis.

7

Chapter 2

Semi-supervised classification

The key idea of this thesis is to improve the performance of existing noise

filtering methods by incorporating the knowledge of unlabeled instances.

Existing noise filtering methods are supervised and can only utilize the

information of labeled instances. How to utilize unlabeled data is therefore the

foremost problem to be considered. Naturally there are two main solutions for

this problem. On the one hand, we can adapt existing noise filtering methods for

using unlabeled data. On the other hand, we may adapt unlabeled instances for

existing noise filtering methods use. In this work, we adopt the latter one as this

is a once for all work. Once the unlabeled data are adapted somehow, they can

be used by any existing noise filtering method.

To adapt unlabeled data, our solution is to predict the labels for them by using

the semi-supervised classification technique, because existing noise filtering

methods can only use the information of labeled instances. In this chapter, we

provide a brief background on semi-supervised classification and review some

common-used semi-supervised classification methods. Followed by, we present

our proposed ensemble-based semi-supervised classification method.

2.1 Introduction to semi-supervised learning

Semi-supervised learning has attracted an increasing amount of interest recently.

It makes use of both labeled and unlabeled data for learning and therefore falls

between unsupervised learning (without any labeled training data) and

supervised learning (with completely labeled training data). Many research

works have found that unlabeled data, when used in conjunction with a small

amount of labeled data, can produce considerable improvement in learning

performances. The main motivation to develop semi-supervised learning is that

in many applications labeled instances are time-consuming and expensive to

8

obtain as they require the efforts of human annotators. For example, obtaining a

single labeled example for protein shape classification, which is one of the

grand challenges of biological and computational science, requires months of

expensive analysis by expert crystallographers.

Fig. 1. The position of semi-supervised learning

Most existing works on semi-supervised learning focus on the classification

task; although, we have noted that unlabeled data have been used to solve other

types of problems, including, for example ensemble learning [11][12],

dimension reduction [13], active learning [14][15], and feature selection

[16][17].

In supervised classification problem we are given as input pairs of variables

1 1(,)X Y … (,)m mX Y where the iX are objects of the type that we want to classify

(for example documents or images) and the iY are the corresponding labels of

the iX (for example if the iX are newspaper articles then the iY might indicate

whether iX is an article about machine learning). The goal is to minimize error

rate on future examples X whose labels are not known. The special case where

iY can only have two possible values is known as binary classification.

Supervised classification problem has been extensively studied in the machine

learning community and several algorithms have been proposed. A few of the

algorithms which gained broader acceptance are naïve Bayes, neural network,

decision trees, k-nearest neighbor, and support vector machines.

9

In the semi-supervised classification problem, in addition to labeled examples

1 1(,)X Y … (,)m mX Y we also receive unlabeled examples 1mX + ,… nX . Thus we

have m labeled examples and n m− unlabeled examples.

Semi-supervised classification began to receive extensive attention in the

early 90s. Some of the algorithms that have been proposed for this problem

include the Expectation-Maximization algorithm proposed by Dempster, Laird

and Rubin [18], the self-training algorithm proposed by Yarowsky [19], the co-

training algorithm proposed by Blum and Mitchell [20], the graph mincut

algorithm proposed by Blum and Chawla [21], and the Gaussian Fields

algorithm proposed by Zhu, Gharamani and Lafferty [22]. The area is still the

subject of a very active research effort. A number of researchers have attempted

to address the question of “Under what circumstances can unlabeled data be

useful” from a theoretical point of view and there also has been great interest

from industrial practitioners who would like to make the best use of their

unlabeled data.

Among the existing semi-supervised classification algorithms, self-training

and co-training are the most popular ones for their straightforwardness and easy

implementation. In addition, both of them consist of the procedure to predict the

labels for unlabeled data. That is the reason for them to be considered here.

Self-training and co-training algorithms are introduced in Chapters 2.1.1 and

2.1.2 respectively.

2.1.1 Self-training

In self-training a classifier is first trained with the small amount of labeled data.

The classifier is then used to classify the unlabeled data. Typically the most

confident unlabeled points, together with their predicted labels, are added to the

training set. The classifier is re-trained and the procedure repeated. Note the

classifier uses its own predictions to teach itself. The procedure is also called

self-teaching. The generative model and EM approach can be viewed as a

special case of “soft” self-training. One can imagine that a classification

10

mistake can reinforce itself. Some algorithms try to avoid this by “unlearn”

unlabeled points if the prediction confidence drops below a threshold. Self-

training has been applied to several natural language processing tasks.

Yarowsky [19] uses self-training for word sense disambiguation, e.g. deciding

whether the word “plant” means a living organism or a factory in a give context.

Riloff et al. [23] uses it to identify subjective nouns. Maeireizo et al. [24]

classify dialogues as “emotional” or “non-emotional” with a procedure

involving two classifiers. Self-training has also been applied to parsing and

machine translation. Rosenberg et al. [25] apply self-training to object detection

systems from images, and show the semi-supervised technique compares

favorably with a state of-the-art detector. Self-training is a wrapper algorithm,

and is hard to analyze in general. However, for specific base learners, there has

been some analyzer’s on convergence. A typical self-training algorithm is

shown in Table 1.

Table 1 Typical self-training algorithm

Algorithm: Typical self-training algorithm
Input: T (training set), U (unlabeled set)
Parameter: B (base learning algorithm)
Output: H (Hypothesis)
(1) (,)U DLT f T U← // new training data
(2) UT T T← ∪
(3) Induce H based on algorithm B and training instancesT
// ()DLf ⋅ is the “data labeling function” that generates new training data UT
 by selectively choosing some unlabeled data and predicting their labels

Data labeling function is the core of self-training algorithm. It is responsible

to choose confident labeling instances. The confidence degree that depends on

the ranking of class membership probabilities is commonly used as the selection

metric that ranks and selects the unlabeled instances for next training of base

learning algorithm. Naïve Bayes is often used as the underlying classifier

because its class membership probability estimates have good ranking

performance.

11

2.1.2 Co-training

Co-training [20] assumes that (1) features can be split into two sets; (2) each

sub-feature set is sufficient to train a good classifier; (3) the two sets are

conditionally independent given the class. Initially two separate classifiers are

trained with the labeled data, on the two sub-feature sets respectively. Each

classifier then classifies the unlabeled data, and ‘teaches’ the other classifier

with the few unlabeled examples (and the predicted labels) they feel most

confident. Each classifier is retrained with the additional training examples

given by the other classifier, and the process repeats. In co-training, unlabeled

data helps by reducing the version space size. In other words, the two classifiers

(or hypotheses) must agree on the much larger unlabeled data as well as the

labeled data. We need the assumption that sub-features are sufficiently good, so

that we can trust the labels by each learner. We need the sub-features to be

conditionally independent so that one classifier’s high confident data points are

iid samples for the other classifier.

Nigam and Ghani [26] perform extensive empirical experiments to compare

co-training with generative mixture models and EM. Their result shows co-

training performs well if the conditional independence assumption indeed holds.

In addition, it is better to probabilistically label the entire unlabeled instances,

instead of a few most confident data points. They name this paradigm co-EM.

Finally, if there is no natural feature split, the authors create artificial split by

randomly break the feature set into two subsets. They show co-training with

artificial feature split still helps, though not as much as before. Balcan and Blum

[27] show that co-training can be quite effective, that in the extreme case only

one labeled point is needed to learn the classifier. Zhou et al. [28] give a co-

training algorithm using Canonical Correlation Analysis which also need only

one labeled point. Dasgupta et al. [29] provide a PAC-style theoretical analysis.

Table 2 is a typical co-training algorithm.

12

Table 2 Typical co-training algorithm

Algorithm: Typical Co-training algorithm
Input: T (training set), U (unlabeled set)
 T is described by two different views 1viewT and 2viewT
Parameter: B (base learning algorithm)
Output: H (Hypothesis)
(1) 1 1(,)U DL viewT f T U← // new training data obtained from view 1
(2) 2 2(,)U DL viewT f T U← // new training data obtained from view 2
(3) 1 2U UT T T T← ∪ ∪
(4) Induce H based on algorithm B and training instances T
// ()DLf ⋅ is the “data labeling function” that generates new training data

UT by selectively choosing some unlabeled data and predicting their
labels

2.2 The proposed ensemble-based data labeling function

Although self-training and co-training are widely used, both of them have some

limitations. For self-training, the classifier requires some measures to evaluate

the “confidence” of unlabeled data. However, it is not easy for many classifiers

like k-nearest neighbor to give this measure. What’s more, even if the classifier

could measure the confidence, its own prediction on label of the unlabeled data

is not reliable. In case of co-training, it lacks generality since it only works for

the data sets which can be represented by two sufficient and independent views.

In addition, the measure of “confidence” is also required. To relieve the

requirement of “confidence” measure, we propose an ensemble-based data

labeling function. The algorithm of this function is shown in Table 3.

As shown in the algorithm, multiple learning algorithms (more than two) are

employed in this data labeling function. Firstly, multiple classifiers will be

trained based on the initial labeled data by these various learning algorithms.

Afterwards these classifiers will classify the unlabeled instances. The instance

(and its predicted label) will be selected only when all these classifiers give the

same classification result (predicted label) on it. Using this mechanism, our

13

proposed data labeling function overcomes the limitation of “confidence-based”

data labeling function employed in traditional self-training and co-training

algorithms. Explicit measure of confidence is not required by our algorithm.

Table 3 Ensemble-based data labeling function

Algorithm: Ensemble-based Data Labeling Function
Input: T (training set), U (unlabeled set)
Parameter: k (number of iterations), y (number of learning algorithms)
 u (number of initially selected unlabeled instances)
 1 2, ,..., yA A A (y kinds of learning algorithms)
Output: UT (selected unlabeled instances fromU with predicted labels)
(1) create 'U by choosing u instances at random from U
(2) UT ←∅
(3) for 1,...,i k= do
(4) '\U U U← , before Unum T← //size of UT when iteration starts
(5) for 1,...,j y= do
(6) induce jH based on instances in T and algorithm jA
(7) end for
(8) for every 't U∈ do
(9) for 1,...,j y= do
(10) () ()j jpl t H t← // predicted label of jH on t
(11) end for
(12) if 1 2() () ,..., ()ypl t pl t pl t= =
(13) then 1()UT t pl t← ∪ , ' ' \U U t←
(14) end for
(15) UT T T← ∪
(16) after Unum T← , after beforenum num numΔ ← − // num. of selected data
(17) if U num≥ Δ
(18) then randomly choose numΔ instances from U to replenish 'U
(19) if 0 U num< < Δ
(20) then choose all instances of U to replenish 'U
(21) if 0U =
(22) then exit;
(23) end for

14

2.2.1 The performance of ensemble-based data labeling function

As shown in Table 1 and 2, data labeling function is the core of self-training

and co-training. Its quality (predictive accuracy on unlabeled data) has heavy

impact on the performance of semi-supervised classification algorithms.

Intuitively the predicted labels of data labeling function, including both

traditional confidence-based and our ensemble-based, are prone to errors.

Although we mainly care for whether noise filtering performance could be

improved with the aid of these self-labeled instances by data labeling function

(in the following chapters), we would like to have the quantitative knowledge

about what is the predictive accuracy of this ensemble-based data labeling

function. Moreover, based on this data labeling function, whether semi-

supervised classification method works. In the experiment, we will test the

performance of our method based on the self-training method based on k-NN

algorithm (1-NN). We choose k-NN as it is a typical method which requires

noise filtering technique since it is sensitive to noises. Regarding to the

ensemble-based data labeling function, three learning algorithms are employed,

including 3-NN, naïve Bayes, and decision tree.

The experiments are based on the benchmark data sets from the Machine

Learning Repository [30]. Information of these data sets is tabulated in Table 4.

These data sets are collected from different real-world applications in various

domains, such as breast cancer (breast) and iris plant database (iris). Note that

“magic” used here is just part of the original one in UCI. Originally, “magic”

has 19020 instances consisting of 2 classes. To reduce the experiment time, we

extract the first 1000 instances from each class. Therefore, 2000 samples are

used here.

15

Table 4 UCI data sets used in the experiments

Data set Attribute Size Class Class distribution
iris 4 150 3 50/50/50
voting 16 435 2 267/168
heart2 13 294 2 188/106
horse 15 368 2 232/136
sonar 60 208 2 111/97
wine 13 178 3 59/71/48
breast 9 1000 2 700/300
yeast 8 1484 10 463/429/244/163/51/44/37/30/20/5
australian 14 690 2 383/307
bupa 6 345 2 145/200
diabetes 8 768 2 500/268
echo 7 131 2 88/43
german 24 1000 2 700/300
glass 9 214 6 70/76/17/13/9/30
magic 10 2000 2 1000/1000
credit 15 690 2 307/383
spect 44 267 2 212/55
wdbc 31 569 2 357/212
ecoli 7 336 8 143/77/52/35/20/5/2/2
ionosphere 34 351 2 225/126
haberm 3 306 2 225/81

Each data set is divided into training set, test set, and unlabeled set. Self-

training algorithm (with our proposed ensemble-based data labeling function)

works on the unlabeled set and outputs the self-labeled training set, which then

combines with the original training set to become an augmented training set.

Afterwards the test set is classified by the supervised learning algorithm (based

on the original training set) and the self-training algorithm (based on augmented

training set) respectively. Classification accuracy is the measure to evaluate the

performance of data labeling function and self-training algorithm.

The detailed process for each data set is as follows:

(1) D is randomly partitioned into two parts: labeled set L and unlabeled set

U .

(2) Ten trials derived from ten-fold cross-validation on L are used to evaluate

the performance of data labeling function and self-training algorithm. At each

trial, 90% of L is firstly selected and it is denoted by T , used as training set.

16

The remaining 10% of L is used as test set to be classified by 1-NN (based on

T) and 1-NN based self-training algorithm (based on T and U). At each trial,

we also calculate the predictive accuracy of ensemble-based data labeling

function on U .

(3) The average classification accuracies of data labeling function and self-

training algorithm are obtained by averaging ten trials’ classification accuracies.

(4) Considering that the partition of data set could influence this average

classification accuracy, we execute the partition five times and get five

classification accuracies (execute step 1-3 five times)

(5) Finally the reported classification accuracy is the further averaged value

of these five values.

Two major parameters are able to influence this experiment. The first

parameter determines data partitioning and it is the ratio between labeled data to

whole data, referred to labeled ratio. It is set to 10% in the experiment. The

second parameter is the number of iterations for ensemble-based data labeling

function. We have performed several experiments varying the iteration number,

including 1, 2, 3, and 4. Referring to the algorithm of ensemble-based data

labeling, one obvious function of iteration number k is: more unlabeled

instances are expected to be selected and added to the training set when k

increases.

Table 5 presents the accuracy of predicted labels (for unlabeled instances) by

ensemble-based data labeling function. This table consists of two parts: 1) the

predictive accuracy of each data set, 2) the average accuracy across all the data

sets.

The observations from Table 5 include: (1) data labeling function cannot

provide noise-free predictive labels (for unlabeled instances). The accuracy

varies for different data sets and different iteration numbers. (2) The predictive

accuracy does not increase when the iteration number increases.

17

Table 6 presents the performance of 1-NN based self-training. It shows that

the performance of 1-NN could be improved by using self-labeled instances

predicted by ensemble-based data labeling function. On average, the

classification accuracy of 1-NN is 72.4%. The performances of 1-NN based

self-training are 73.8%, 74.3%, 74.3%, and 74.9% when iteration number is 1, 2,

3, and 4 respectively.

Table 5 Performance of ensemble-based data labeling function

Iteration times of data labeling function
Dataset

1 2 3 4
iris 0.909 0.920 0.887 0.882
voting 0.964 0.953 0.948 0.952
heart2 0.826 0.804 0.818 0.827
horse 0.806 0.816 0.809 0.793
sonar 0.785 0.804 0.804 0.804
wine 0.953 0.939 0.932 0.872
breast 0.965 0.974 0.965 0.965
yeast 0.688 0.691 0.651 0.653
australian 0.904 0.903 0.893 0.884
bupa 0.611 0.604 0.580 0.575
diabetes 0.795 0.769 0.769 0.768
echo 0.727 0.750 0.750 0.750
german 0.778 0.782 0.765 0.765
glass 0.585 0.546 0.546 0.546
magic 0.832 0.803 0.781 0.778
credit 0.901 0.874 0.870 0.874
spect 0.888 0.818 0.814 0.832
wdbc 0.980 0.975 0.973 0.969
ecoli 0.878 0.851 0.862 0.861
ionosphere 0.903 0.901 0.894 0.894
haberm 0.738 0.754 0.729 0.719
Ave. 0.829 0.821 0.811 0.808

18

Table 6 Performance of 1-NN based self-training

Iteration times of data labeling function
Dataset

1-NN 1 2 3 4
iris 0.750 0.756 0.717 0.744 0.778
voting 0.852 0.885 0.905 0.908 0.918
heart2 0.733 0.789 0.778 0.833 0.756
horse 0.707 0.704 0.700 0.726 0.674
sonar 0.683 0.622 0.589 0.572 0.667
wine 0.989 0.989 0.970 0.985 0.978
breast 0.902 0.914 0.947 0.939 0.943
yeast 0.461 0.474 0.510 0.489 0.506
australian 0.782 0.814 0.814 0.813 0.804
bupa 0.653 0.622 0.642 0.619 0.633
diabetes 0.674 0.693 0.705 0.681 0.712
echo 0.740 0.700 0.820 0.700 0.833
german 0.657 0.677 0.670 0.690 0.660
glass 0.442 0.508 0.483 0.450 0.500
magic 0.708 0.708 0.707 0.732 0.725
credit 0.776 0.797 0.799 0.803 0.797
spect 0.641 0.670 0.624 0.737 0.674
wdbc 0.954 0.968 0.948 0.957 0.948
ecoli 0.675 0.700 0.713 0.678 0.729
ionosphere 0.764 0.735 0.764 0.761 0.731
haberm 0.656 0.773 0.809 0.786 0.759
Ave. 0.724 0.738 0.743 0.743 0.749

The performance of ensemble-based data labeling is preliminarily studied in

this chapter. As shown in Table 5, the predicted labels of unlabeled data by data

labeling function are prone to errors (around 20% are errors). These noisy

instances (unlabeled data with their noisy labels) will be used to help the noise

detection of original training set. We are interested in the question: since these

unlabeled instances cannot get noise-free predicted labels, can they contribute to

19

noise filtering in training set? The following chapters aim to answer this

question.

20

Chapter 3

Semi-supervised classification

Instance-based learning techniques work essentially by keeping typical attribute

examples for each class. Instance-based learning algorithms in general have

three characteristics:

 A similarity function. This tells the algorithm how close together two

instances are. Although this sounds easy, there is a great deal of

complexity in choosing the similarity function, especially in situations

where some of the inputs are enumerated. For example, if you were

trying to match people, and one attribute was hair color, what does

distance mean in the context of hair color?

 A “typical instance” selection function. This tells the algorithm which

of the instances to keep as examples. How do you know which

instances are “typical” and which are atypical?

 A classification function. This function is the one that when given a

new case, decides how it relates to the learned cases. For example, this

function might be the instance to which it is closest in location.

The k-nearest neighbor (k-NN) algorithm is a typical instance-based learning.

We will introduce some background knowledge of k-NN, and then present

some k-NN related noise filtering techniques.

3.1 The k-nearest neighbor algorithm

The k-nearest neighbor is generally considered as a good classifier. It has a

number of advantages, including:

 It can easily be implemented and it is conceptually simple.

 Its behavior is asymptotically optimal [31].

21

 Its expected error is bounded [32].

Here, we briefly explain some features of these three advantages. Firstly we

highlight its easiness of implementation and its conceptual simplicity. Imagine

that two new fruits are first shown to someone. Then, when another unknown

piece of fruit is presented, the individual will try to classify the new one by

comparing it to the firstly shown pieces. So, the idea behind algorithms based

on proximity is as follows. The classification of a new item x could be estimate

based on the already known classifications of the elements sufficiently near to x ,

because observations that are close to each other will have a high probability to

belong to the same class.

Let 1 1 2 2{ , } {(,), (,),..., (,)}n nX x x xθ θ θΘ = be a training set with n instances 1{ }n
i ix =

and their labels 1{ }n
i iθ = . Let x be a new sample with an unknown class label.

Assume (', ') { , }x Xθ ∈ Θ is the nearest instance to the sample x . Then, the NN

rule would be:
1..

() ' (, ') min (,)NN ii n
x d x x d x xδ θ

=
= ⇔ =

Considering the asymptotic optimal behavior of the NN rule, we must say

that, in addition to its conceptual simplicity, the NN rule has a good behavior

when applied to non-trial problems. In fact, the k-NN rule is asymptotically

optimal in the Bayes sense [33]. In other words, the k-NN rule performs as well

as any other possible classifier, provided that there is an arbitrary large number

of representative prototypes available and the volume of the k-neighborhood of

x is arbitrarily close to zero for all x .

Given that the above conditions are fulfilled, the NN rule expected error is

never worse than twice the Bayes error rate. In this sense, at least half of the

classification information in an infinite data set resides in the nearest

neighborhoods.

22

Fig. 2. Decision regions of nearest neighbor rule

The decision rule of nearest neighbor determines that the decision regions of

nearest neighbor are the cells. As shown in Fig. 2, each cell contains one sample,

and every location within that cell is closer to that sample than to any other

samples. Every query point will be assigned the classification of the sample

within that cell.

Although nearest neighbor (and k-NN) has many advantages. However, due

to this kind of decision region, nearest neighbor has high degree of local

sensitivity, which makes it highly susceptible to noisy training instances. For

example, if a point in Fig. 2 is mislabeled, then the points to be classified will

be misclassified if they are located in the cell of that mislabeled point.

Nearest neighbor editing techniques have been proposed to deal with the

mislabeled instances. We will introduce them in the following parts.

3.2 Nearest neighbor editing

Nearest neighbor editing is the step in charge of increasing the accuracy of

predictions, when there is a great amount of noise in the training data. A basic

editing algorithm removes noisy instances, as well as close border cases,

eliminating a possible overlap between the regions from different classes and

leaving smoother decision boundaries. Wilson introduced the first editing

23

method [9]. Briefly, the k-NN rule is used to estimate the class of each example

in the training set followed by removing those examples whose true class labels

do not agree with the ones judged by the k-NN rule.

Many researchers have addressed the problem of editing by proposing

alternative schemes. Some representative works are introduced here. Tomek

[34] proposed to apply the idea of the Wilson’s algorithm repeated until no

more instances can be removed. Tomek also proposed the All k-NN editing

scheme. It uses a set of the l-NN rules, with l ranging from 1 to k. In general,

both algorithms achieve a higher storage reduction than the Wilson’s editing,

but similar in the classification accuracy. They are however higher at the

computational efforts.

The generalized editing [35] consists of removing some “suspicious”

instances from the training set and also changing the class labels of some of

them. Its purpose is to cope with all types of imperfections of the training

instances (mislabeled, noisy and atypical cases). Recently, the generalized

editing and Wilson’s algorithm have been jointly used for the depuration

method [36].

In the case of editing algorithms based on the leaving-one-out error estimate

(the Wilson’s scheme and its relatives), the statistical independence between

test and training instances cannot be assumed because their functions are

interchanged. In order to achieve this statistical independence, classification of

instances can be performed in a hold-out manner. Thus, the Holdout editing

[37] consists of randomly partitioning the initial training set into 2b > blocks of

instances, 1, ,... bB B and then eliminating cases from each block using only two

independent blocks at the same time. [37] also introduced the Multiedit

algorithm, which basically corresponds to an iterative version of the Holdout

scheme using the 1-NN rule.

A genetic algorithm [38] was also applied to define an edited set for the NN

rule. Two different criteria were employed as the fitness function: the apparent

error rate and a criterion based on the certainty of the classification. The

24

empirical results show that the latter criterion led to a subset of the initial

training set that provides higher classification accuracy in comparison to the

whole original set, with random selection and with the Wilson’s technique.

The work [39] presented an editing algorithm based on proximity graphs,

such as the Gabriel graph and the relative neighborhood graph. The first one

computes the corresponding graph structure and then eliminates instances

incorrectly classified by its graph neighbors. On the other hand, a combined

editing-condensing scheme was also introduced to remove internal instances as

well as border cases by using the concept of graph neighbors.

The rationale of the k-NN editing rule proposed by [40] is very similar to that

of the Wilson’s scheme. In this method, the condition for an instance x to be

included in the edited set is that all the k nearest neighbors must be from the

class to which x belongs. Accordingly, this condition is much more severe than

that in Wilson’s algorithm and, as a consequence, the number of instances in the

resulting edited set is equal to or less than in the Wilson’s edited set.

The ACC filtering technique introduced by [41] tries to find centre instance

of compact regions by considering the classification performance of each

example in the training set. Each training instance is classified by its nearest

neighbor. If it is correctly classified, then classification accuracy of its nearest

neighborhood will be increased. After processing all the training instances, the

algorithm discards examples with the accuracy lower than a certain threshold.

As center instances are usually neighbours of other instances from the same

class, they generally gain a high accuracy, thus are being retained by ACC.

Among all above works, we consider the Wilson editing (i.e. edited nearest

neighbor (ENN)), repeated nearest neighbor (RENN), and All k-NN (ANN)

algorithms due to their wide-spread and more popular usage in the literature.

ENN is the base of the other two algorithms. It removes all instances which

have been misclassified by the k-NN rule from the training set. Fig. 3 shows the

effect of ENN. In this figure, the hollow rounds and the solid rounds represent

25

instances which belong to two different classes. The left part shows a

hypothesis training set where misclassified instances using the 1-NN rule are

marked with dotted circles around them. The right part shows the reduced

training set after applying ENN.

Fig. 3. ENN with 1-NN classifier

The idea of ENN relies on the fact that one can optimally eliminate outliers

and possible overlap among classes from a given training set so the training of

the corresponding classifier becomes easier in practice. In fact, it has been

shown by Penrod and Wagner [42] that the accuracy of the ENN classifier

converges to Bayes error as the number of instances approaches infinity. Table

7 gives the ENN algorithm.

Table 7 The algorithm of edited nearest neighbor (ENN)

1. Let eT T= //T is the original training set, and eT is the edited set
2. For each i ex T∈ , do:

Discard ix from eT if it is misclassified using the k-NN rule

with prototypes in \{ }e iT x

RENN applies the ENN algorithm repeatedly until all remaining instances

have a majority of their neighbors with the same class, which continue to widen

26

the gap between classes and smooth the decision boundary of ENN. The RENN

algorithm is shown in Table 8.

Table 8 The algorithm of repeated edited nearest neighbor (RENN)

1. Let eT T= //T is the original training set, and eT is the edited set
REPEAT
2. At iteration t , for each t

i ex T∈ (edited set at iteration t), do
Discard ix from t

eT if it is misclassified using the k-NN rule with prototypes
in \{ }t

e iT x ;

UNTIL 1t t
e eT T −= // t

eT and 1t
eT − denote the edited data set of T at iteration t and

1t − respectively

The ANN algorithm is similar with the iterative ENN with the only exception

that the value k is increased after each iteration. Its algorithm is given in Table

9.

Table 9 The algorithm of All k-NN (ANN)

1. Let eT T= //T is the original training set, and is the edited set
2. For each i ex T∈ , do:

2.1 set 1m =
2.2 while 1m k< + do:

2.2.1 Discard ix from eT if it is misclassified using the m-NN rule with prototypes
in \{ }e iT x , go to Step 2.
2.2.2 Set 1m m= +

The common factor in all the three data editing methods discussed above is

that they edit each instance based on the voting of other instances in the training

set. In many applications, as the matter of fact, it is common that the size of the

unlabeled data set is greater than that of the labeled data set (e.g. mainly due to

the fact that unlabeled data do not require human labeling effort, and are easy to

obtain).

In Fig. 4, “× ” represents unlabeled instance. Existing data editing methods,

such as ENN, do not consider these unlabeled data and they edit the training set

27

as if the unlabeled data do not exist. The editing result is shown in the right part

of Fig. 4.

Fig. 4. ENN with 1-NN classifier when unlabeled data are available

3.3 Nearest neighbor editing aided by unlabeled data

(NNEAUD)

Our intuitive idea is to extend the searching scope of neighbors from the

training set to the whole data set which includes both the training set and the

unlabeled set. Considering that the labels of unlabeled data are not available, in

order to utilize unlabeled data, the first phase therefore is to predict the labels

for them. Then the second phase is to utilize this augmented set in data editing.

The first phase employs the ensemble-based data labeling function introduced

in Chapter 2.

The nearest neighbors of a training instance obtained from a search of the

training set and those from the whole set might be different. The variation of

nearest neighbors might lead to a changing of editing result. The effect of our

method is illustrated in Fig. 5. Let T denote the training set and UT denote the

unlabeled set with their predicted labels from ensemble-based data labeling

function. Traditionally, when editing T using ENN with 1-NN rule, instance

1x will be retained since its nearest neighbor in T has the same label with it.

28

Instance 2x will be removed since its nearest neighbor in T has different label

with it. However, when aided by UT , the editing results of 1x and 2x are changed.

Now 1x will be removed as its nearest neighbor searched from the whole data

set is in UT which has the different label with 1x . In contrast, 2x will be retained

as its nearest neighbor based on the whole data set is from UT which has the

same label with it.

Fig. 5. The effect of unlabeled data for data editing

Now the variants of ENN, RENN, and ANN in the case of using unlabeled

data to aid data editing on T are considered. Without changing the data editing

rules much, ENN, RENN, and ANN can use UT easily as shown in Tables 10,

11, and 12. Tables 10 through 12 show two different usages of UT . In Tables 10

and 12, UT is used to optimize the editing performance of T while UT is never

edited. In Table 11, UT and T are edited together. But as shown in Step 3 of

Table 7, e eT T T= ∩ , the final edited data are only extracted from T . Therefore,

all the three methods regard unlabeled data as the activator of data editing

which will not be included in the final edited set.

Table 10 The algorithm of ENN aided by unlabeled data

1. Let eT T=
2. For each i ex T∈ , do:

 Discard ix from eT if it is misclassified using the k-NN rule with prototypes in

(\{ })e i UT x T∪

29

Table 11 The algorithm of RENN aided by unlabeled data

1. Let e UT T T= ∪
REPEAT
2. At iteration t , for each t

i ex T∈ (edited set at iteration t), do
-- Discard ix from t

eT if it is misclassified using the k-NN rule with prototypes in
\{ }t

e iT x
UNTIL (1t t

e eT T −= , t
eT and 1t

eT − denote the edited data set of T at iteration t and
1t − respectively)

3. e eT T T= ∩

Table 12 The algorithm of ANN aided by unlabeled data

1. Let eT T= (T is the original training set, and eT will be the edited set)
2. For each i ex T∈ , do:

2.1 set 1m =
2.2 while 1m k< + do:

 2.2.1 Discard ix from eT if it is misclassified using the m-NN rule with
prototypes in (\{ })e i UT x T∪ , go to Step 2.

 2.2.2 Set 1m m= +

Although ensemble-based data labeling function could predict the labels for

unlabeled data, as shown in the experiments in Chapter 2, the predicted labels

may include some errors. The erroneous labels could potentially degrade the

editing performance. Considering the following three cases (Fig. 6) based on the

ENN algorithm:

Case A: Traditional ENN. The edited data set is denoted by ()e aT .

Case B: Assume that an oracle who can predict labels for the unlabeled set

U correctly exists. Then this idealistic noise-free labeled data set, denoted by

idealT , is used to aid the editing on T . The edited data set is denoted by ()e bT .

Case C: Our proposed ensemble-based data labeling function is used to

predict labels for the unlabeled set U and then this realistically obtained, but

possibly noisy labeled data set, denoted by realisticT , is used to aid the editing on

T . The edited data set is denoted by ()e cT .

30

Fig. 6. (A) standard ENN (B) ENN aided by unlabeled data (processed by the

Oracle) (C) ENN aided by unlabeled data (processed by semi-supervised

classification)

It is expected that the editing performance of case B is the best since idealT is

noise free which provides reliable extra information to aid the editing process.

Heuristically, the functions of realisticT are two-fold. On one hand, the noise-free

instances in realisticT could improve the editing performance as idealT . On the other

hand, the noisy instances in realisticT could degrade the editing performance.

Therefore, the comparison between case A and case C is significant. The

success of our proposed method (case C) depends on the comparison between

the positive effects and the negative effects generated by realisticT . The

comparison between case A and case C will be validated in next section.

3.4 Empirical study

The objective of the empirical study is to validate the benefit of our method

compared with existing methods in the instance-based noise filtering.

31

3.4.1 Experimental setup

Three data editing techniques are used and tested on the benchmark data sets

from the Machine Learning Database Repository. These methods are Wilson’s

edited nearest neighbor (ENN), Tomek’s Repeated ENN (RENN), and All k-

NN (ANN). Aided by unlabeled data, their variants are represented by ENN+,

RENN+, and ANN+ respectively.

Information of the data sets used in the experiment is tabulated in Table 4.

Each data set is divided into training set and test set. Data editing method works

on the training set and generates the edited training set. Then, the test set is

classified by the edited training set with the k-NN algorithm. Classification

accuracy is the measure to evaluate the performance of data editing methods,

where

No. of correct classifications on testing instancesclassification accuracy=
No. of testing instances

When two data editing methods are applied to the same data set with the

same k-NN algorithm, higher classification accuracy means that the data editing

performance is better. To obtain the classification accuracy, each data set D is

processed as follows:

(1) Data set D is randomly partitioned into two parts: labeled set L and

unlabeled set U .

(2) Ten trials derived from ten-fold cross-validation on L are used to evaluate

the performance of editing methods. At each trial, 90% of L is firstly selected

and it is denoted by tempT . Most data sets here are experimental data sets where

the ratio between noisy data to the whole data might be small. However, the

performance of noise filtering need to be evaluated on the noisy data sets. To

this end, we artificially generate some noises in tempT by selecting some instances

at random and then changing their labels. The number of selected instances, that

is the number of generated noises, is based on the defined noise ratio, which is

32

the ratio between noisy data to the data in tempT . Let T denote the data after

adding noises in tempT . T is used as training set and it will be edited by the

various editing methods as mentioned above. The remaining 10% of L is used

as test set to evaluate the performance of various edited sets of T .

(3) The average classification performance is obtained by averaging ten trials’

results.

(4) Considering that the partition of data set could influence this average

classification result, we execute the partition five times and get five

classification values (execute step 1-3 five times).

(5) Finally the report classification result is the further averaged value of these

five values.

In this experiment, ensemble-based data selection method is configured as

follows. Three classifiers are generated by: 3-nearest neighbor, naïve Bayes,

and decision tree respectively. Initially, the size of 'U , u is equal to the size of

labeled set, namely u L= . Iteration number k is 2. In addition to the

parameters in this semi-supervised classification method, there are other three

major parameters which can influence the experiment. The first parameter

determines data partitioning (step 1 of above experiment flow) and it is the ratio

between labeled data to whole data, referred to labeled ratio. The second

parameter determines nearest neighbor editing. Refer to the nearest neighbor

editing methods, k-NN algorithm is the base of them. Therefore, different

choice of nearest neighbor number k can influence the experiment. 3-NN is the

most popular setting in nearest neighbor editing and it is adopted. The third

parameter determines the noise level in the training set T and it is noise ratio

(step 2 of above experiment flow). Considering that the data sets obtained from

the real applications might have different labeled ratios and noise levels, we

have performed several experiments varying these two values to make the

experiments comprehensively.

33

3.4.2 Experimental results: varying the labeled ratio

The objectives of experiments in this part are two-fold: (1) testing whether our

proposed method works well under different labeled ratios, and (2) whether

there is any relationship between the labeled ratio and the performance of our

method. In this part, noise ratio is 0 (i.e. we do not add any noises in the training

set). Note that this does not mean that there are no any noises in the training set.

The training set from UCI datasets unavoidable includes some noises. The

labeled ratios are varied including 5%, 10%, 15%, 20%, 30%, 40%, and 50%.

Table 13 shows the results when labeled ratio is 5%. In each cell, the value

without bracket represents the classification accuracy. In addition, we also give

the data retention rate that is below the accuracy and in brackets. Data retention

rate is defined as

No. of labeled instances after editingdata retention rate=
No. of training instances

This rate captures the contribution of unlabeled data for training data (labeled

data) editing. The main purpose of data editing is to improve the classification

accuracy. Therefore, in the experiment, classification accuracy is the only

measure to evaluate the editing performance. However, if two data editing

methods give the same classification accuracy, the one with smaller data

retention rate is more attractive as it has smaller number of training data leading

to higher classification speed.

In Table 13 and the following results in this part, “Ave.” denotes the average

classification accuracy across all data sets. “B/W” denotes the number of data

sets for which our method is statistically better or worse than the original

method. “S.B/W” denotes the number of data sets for which our method is

significantly better (threshold is 2%) or worse than the original method. In each

row, the better accuracy of each pair (ENN & ENN+, RENN & RENN+, ANN

& ANN+) is shown in bold. The significant better accuracy is shown in bold

with underline.

34

Several observations can be made from the results in this table. As we expect,

our methods defeat the original data editing methods on average. For example,

the classification accuracy comparison between ENN+ and ENN is 0.743/0.709.

“B/W” is 18/2. “S.B/W” is 11/0. In addition, the accuracies of ENN+ and

ANN+ are similar and better than RENN+. If considering retention rate, ANN+

is better than ENN+.

For nine of the data sets explored, using data editing methods can improve

the classification accuracy of k-NN. However, for other twelve data sets, the

data editing methods generate a negative effect. These data sets are iris, vote,

heart2, horse, wine, etc. One important observation is that our proposed

methods can significantly reduce the negative effect for those data sets. For

instance, for eight of these twelve data sets (iris, vote, heart2, horse, breast,

yeast, glass, and ionosphere), ENN+ significantly improves the performance of

ENN.

As well, Table 14 through 19 show the experiment results when labeled ratio

is 10%, 15%, 20%, 30%, 40%, and 50%.

35

Table 13 Experimental results when labeled ratio is 5%

Dataset KNN ENN ENN+ RENN RENN+ ANN ANN+
iris 0.893 0.800

(87.6%)
0.895
(95.1%)

0.763
(82.5%)

0.893
(94.4%)

0.780
(85.4%)

0.895
(94.7%)

vote 0.832 0.743
(80.5%)

0.838
(88.1%)

0.733
(76.9%)

0.848
(87.3%)

0.742
(77.2%)

0.832
(85.6%)

heart2 0.752 0.742
(78.2%)

0.775
(83.9%)

0.737
(75.3%)

0.775
(82.5%)

0.742
(71.4%)

0.765
(80.5%)

horse 0.730 0.679
(80.1%)

0.739
(85.1%)

0.646
(74.3%)

0.729
(83.6%)

0.679
(71.4%)

0.760
(79.6%)

sonar 0.617 0.733
(66.0%)

0.733
(72.4%)

0.733
(66.0%)

0.733
(72.4%)

0.733
(46.5%)

0.733
(65.7%)

wine 0.815 0.781
(57.4%)

0.767
(62.3%)

0.641
(52.7%)

0.752
(57.6%)

0.741
(51.6%)

0.800
(53.5%)

breast 0.952 0.935
(93.6%)

0.957
(95.6%)

0.930
(93.1%)

0.957
(95.4%)

0.930
(92.1%)

0.957
(95.1%)

yeast 0.438 0.423
(41.0%)

0.503
(52.4%)

0.376
(31.0%)

0.482
(46.9%)

0.418
(32.2%)

0.494
(45.2%)

australian 0.800 0.802
(82.2%)

0.835
(86.3%)

0.810
(80.0%)

0.833
(85.6%)

0.790
(75.7%)

0.826
(82.7%)

bupa 0.574 0.567
(58.8%)

0.574
(67.2%)

0.527
(47.0%)

0.584
(58.6%)

0.567
(49.8%)

0.574
(59.3%)

diabetes 0.703 0.736
(73.1%)

0.763
(78.0%)

0.711
(68.3%)

0.746
(75.3%)

0.744
(64.0%)

0.767
(72.9%)

echo 0.632 0.752
(65.1%)

0.756
(75.7%)

0.752
(63.7%)

0.752
(70.2%)

0.752
(55.4%)

0.748
(64.3%)

german 0.627 0.707
(67.6%)

0.720
(73.9%)

0.733
(62.6%)

0.720
(71.3%)

0.707
(60.4%)

0.720
(69.0%)

glass 0.602 0.441
(52.4%)

0.526
(60.2%)

0.365
(41.5%)

0.480
(52.7%)

0.435
(47.2%)

0.516
(55.2%)

magic 0.682 0.675
(63.8%)

0.691
(68.4%)

0.638
(55.6%)

0.667
(62.6%)

0.670
(53.1%)

0.691
(61.2%)

credit 0.716 0.728
(77.0%)

0.747
(80.9%)

0.730
(74.3%)

0.748
(80.0%)

0.720
(68.5%)

0.741
(75.3%)

spect 0.674 0.740
(74.6%)

0.758
(80.4%)

0.772
(69.6%)

0.800
(77.8%)

0.782
(63.3%)

0.766
(73.1%)

wdbc 0.890 0.893
(90.2%)

0.905
(92.6%)

0.868
(87.1%)

0.910
(92.3%)

0.898
(87.8%)

0.904
(91.2%)

ecoli 0.735 0.718
(68.8%)

0.715
(74.6%)

0.670
(67.6%)

0.715
(72.7%)

0.698
(61.7%)

0.715
(70.9%)

ionosphere 0.778 0.670
(73.6%)

0.734
(75.6%)

0.689
(63.3%)

0.744
(70.9%)

0.689
(69.0%)

0.753
(73.0%)

haberm 0.612 0.630
(66.6%)

0.675
(75.0%)

0.627
(61.9%)

0.668
(72.1%)

0.640
(55.9%)

0.667
(67.0%)

Ave. 0.717 0.709
(71.3%)

0.743
(77.1%)

0.688
(66.4%)

0.740
(74.4%)

0.708
(63.8%)

0.744
(72.1%)

B/W 2/18 1/18 2/18
S.B/W 0/11 0/17 0/14

36

Table 14 Experimental results when labeled ratio is 10%

Dataset KNN ENN ENN+ RENN RENN+ ANN ANN+
iris 0.893 0.800

(87.6%)
0.895
(95.1%)

0.763
(82.5%)

0.893
(94.4%)

0.780
(85.4%)

0.895
(94.7%)

vote 0.905 0.890
(89.4%)

0.907
(90.8%)

0.849
(87.5%)

0.902
(89.7%)

0.881
(85.1%)

0.913
(88.1%)

heart2 0.743 0.793
(79.0%)

0.827
(83.1%)

0.803
(77.0%)

0.823
(82.3%)

0.797
(72.4%)

0.820
(79.5%)

horse 0.727 0.756
(85.9%)

0.774
(87.6%)

0.733
(84.0%)

0.771
(86.8%)

0.738
(77.2%)

0.764
(82.0%)

sonar 0.700 0.543
(61.4%)

0.643
(71.5%)

0.533
(51.0%)

0.630
(64.8%)

0.558
(53.5%)

0.652
(66.8%)

wine 0.815 0.781
(57.4%)

0.767
(62.3%)

0.641
(52.7%)

0.752
(57.6%)

0.741
(51.6%)

0.800
(53.5%)

breast 0.893 0.917
(93.0%)

0.992
(94.2%)

0.917
(92.2%)

0.919
(94.0%)

0.921
(89.4%)

0.923
(92.6%)

yeast 0.504 0.552
(50.8%)

0.565
(56.9%)

0.516
(42.0%)

0.549
(51.2%)

0.548
(40.9%)

0.545
(48.6%)

australian 0.747 0.791
(81.5%)

0.807
(85.5%)

0.792
(80.6%)

0.807
(84.6%)

0.785
(74.3%)

0.807
(80.2%)

bupa 0.583 0.563
(56.4%)

0.596
(61.6%)

0.546
(48.0%)

0.583
(55.8%)

0.546
(44.4%)

0.602
(53.6%)

diabetes 0.698 0.681
(69.2%)

0.708
(76.0%)

0.666
(62.3%)

0.703
(72.6%)

0.688
(60.3%)

0.714
(70.2%)

echo 0.632 0.752
(65.1%)

0.756
(71.7%)

0.752
(63.7%)

0.752
(70.2%)

0.752
(55.4%)

0.748
(64.3%)

german 0.634 0.670
(65.0%)

0.676
(69.6%)

0.674
(59.6%)

0.678
(66.8%)

0.668
(54.1%)

0.666
(62.5%)

glass 0.602 0.441
(52.4%)

0.526
(60.2%)

0.365
(41.5%)

0.480
(52.7%)

0.435
(47.2%)

0.516
(55.2%)

magic 0.706 0.719
(67.4%)

0.716
(70.8%)

0.695
(60.5%)

0.696
(65.6%)

0.718
(57.7%)

0.709
(64.3%)

credit 0.798 0.824
(82.9%)

0.829
(86.1%)

0.828
(81.4%)

0.831
(85.4%)

0.814
(76.6%)

0.828
(82.2%)

spect 0.703 0.751
(74.9%)

0.753
(79.8%)

0.757
(67.4%)

0.724
(74.4%)

0.753
(63.3%)

0.748
(72.4%)

wdbc 0.931 0.928
(92.9%)

0.931
(94.8%)

0.923
(91.6%)

0.931
(94.5%)

0.925
(91.0%)

0.930
(94.2%)

ecoli 0.778 0.679
(74.8%)

0.766
(80.2%)

0.620
(70.3%)

0.757
(77.7%)

0.644
(68.7%)

0.751
(76.1%)

ionosphere 0.754 0.726
(75.1%)

0.735
(76.6%)

0.698
(69.1%)

0.718
(72.6%)

0.716
(73.3%)

0.729
(75.5%)

haberm 0.615 0.627
(64.9%)

0.691
(71.3%)

0.636
(58.2%)

0.687
(68.7%)

0.636
(54.1%)

0.674
(64.8%)

Ave. 0.731 0.723
(72.7%)

0.752
(77.4%)

0.700
(67.8%)

0.742
(74.4%)

0.716
(65.5%)

0.749
(72.4%)

B/W 2/19 1/19 5/16
S.B/W 0/8 1/12 0/12

37

Table 15 Experimental results when labeled ratio is 15%

Dataset KNN ENN ENN+ RENN RENN+ ANN ANN+
iris 0.860 0.830

(90.9%)
0.870
(94.9%)

0.732
(85.6%)

0.875
(94.5%)

0.832
(86.5%)

0.878
(93.6%)

vote 0.863 0.842
(88.0%)

0.849
(89.2%)

0.837
(85.9%)

0.841
(87.6%)

0.852
(81.7%)

0.852
(85.6%)

heart2 0.803 0.844
(82.7%)

0.841
(84.8%)

0.846
(81.1%)

0.841
(82.9%)

0.838
(75.7%)

0.839
(81.9%)

horse 0.703 0.744
(82.3%)

0.760
(83.9%)

0.744
(81.2%)

0.756
(83.2%)

0.764
(73.8%)

0.772
(77.9%)

sonar 0.703 0.581
(61.8%)

0.649
(70.0%)

0.589
(52.5%)

0.639
(63.7%)

0.567
(53.8%)

0.661
(64.4%)

wine 0.914 0.802
(68.9%)

0.889
(70.5%)

0.752
(66.5%)

0.836
(66.9%)

0.772
(61.7%)

0.855
(63.9%)

breast 0.948 0.953
(95.3%)

0.957
(95.7%)

0.951
(94.3%)

0.957
(95.3%)

0.949
(93.6%)

0.955
(94.7%)

yeast 0.521 0.570
(49.4%)

0.581
(58.4%)

0.554
(43.3%)

0.565
(53.9%)

0.556
(40.3%)

0.577
(51.3%)

australian 0.763 0.818
(81.1%)

0.822
(84.1%)

0.820
(79.8%)

0.826
(82.9%)

0.818
(73.9%)

0.820
(79.7%)

bupa 0.599 0.569
(62.1%)

0.621
(68.0%)

0.556
(53.1%)

0.606
(61.4%)

0.567
(50.8%)

0.625
(58.9%)

diabetes 0.671 0.706
(70.8%)

0.736
(76.8%)

0.693
(65.8%)

0.722
(74.1%)

0.705
(60.5%)

0.734
(70.9%)

echo 0.615 0.705
(67.1%)

0.715
(72.7%)

0.685
(61.9%)

0.705
(69.6%)

0.700
(55.6%)

0.705
(66.2%)

german 0.637 0.666
(67.5%)

0.687
(70.6%)

0.686
(62.4%)

0.697
(67.2%)

0.675
(56.3%)

0.683
(61.9%)

glass 0.602 0.441
(52.4%)

0.526
(60.2%)

0.365
(41.5%)

0.480
(52.7%)

0.435
(47.2%)

0.516
(55.2%)

magic 0.729 0.738
(69.6%)

0.736
(72.2%)

0.729
(63.2%)

0.710
(67.6%)

0.744
(58.9%)

0.734
(66.0%)

credit 0.789 0.824
(83.7%)

0.831
(85.9%)

0.821
(82.8%)

0.830
(85.3%)

0.820
(76.5%)

0.831
(82.2%)

spect 0.688 0.709
(72.3%)

0.688
(78.0%)

0.710
(64.2%)

0.671
(71.7%)

0.691
(63.7%)

0.697
(70.8%)

wdbc 0.936 0.932
(94.5%)

0.933
(94.6%)

0.935
(93.2%)

0.934
(93.9%)

0.929
(92.1%)

0.936
(93.3%)

ecoli 0.730 0.734
(75.6%)

0.779
(82.6%)

0.687
(71.9%)

0.769
(81.2%)

0.730
(70.6%)

0.795
(79.3%)

ionosphere 0.752 0.716
(73.8%)

0.735
(74.5%)

0.677
(67.7%)

0.723
(72.7%)

0.712
(70.5%)

0.728
(72.6%)

haberm 0.645 0.710
(68.8%)

0.730
(74.8%)

0.688
(63.0%)

0.729
(72.8%)

0.700
(57.8%)

0.724
(68.6%)

Ave. 0.737 0.735
(74.2%)

0.759
(78.2%)

0.717
(69.6%)

0.748
(75.3%)

0.731
(66.7%)

0.758
(73.3%)

B/W 3/18 4/17 1/19
S.B/W 1/9 1/9 0/9

38

Table 16 Experimental results when labeled ratio is 20%

Dataset KNN ENN ENN+ RENN RENN+ ANN ANN+
iris 0.927 0.900

(92.3%)
0.880
(96.0%)

0.893
(90.6%)

0.874
(95.8%)

0.887
(89.0%)

0.880
(95.7%)

vote 0.907 0.910
(92.6%)

0.917
(92.3%)

0.908
(90.2%)

0.914
(91.1%)

0.912
(90.0%)

0.915
(90.6%)

heart2 0.739 0.793
(76.4%)

0.796
(80.4%)

0.795
(75.5%)

0.796
(79.8%)

0.804
(70.0%)

0.793
(76.7%)

horse 0.730 0.776
(83.9%)

0.771
(87.4%)

0.783
(82.1%)

0.766
(86.6%)

0.777
(77.6%)

0.775
(82.7%)

sonar 0.722 0.695
(62.2%)

0.728
(16.6%)

0.643
(52.1%)

0.698
(51.3%)

0.702
(54.1%)

0.708
(48.1%)

wine 0.944 0.862
(65.6%)

0.940
(69.6%)

0.769
(60.9%)

0.907
(64.4%)

0.827
(58.9%)

0.902
(64.6%)

breast 0.941 0.959
(95.3%)

0.959
(96.4%)

0.954
(94.1%)

0.959
(95.7%)

0.957
(93.3%)

0.959
(95.3%)

yeast 0.532 0.566
(53.2%)

0.597
(59.7%)

0.566
(46.7%)

0.589
(57.0%)

0.560
(44.2%)

0.595
(52.2%)

australian 0.800 0.832
(84.0%)

0.842
(85.2%)

0.833
(82.9%)

0.847
(84.3%)

0.839
(78.2%)

0.849
(81.4%)

bupa 0.504 0.576
(60.8%)

0.579
(66.2%)

0.596
(51.7%)

0.595
(61.8%)

0.573
(49.3%)

0.611
(57.8%)

diabetes 0.705 0.732
(71.9%)

0.740
(76.3%)

0.696
(66.3%)

0.731
(73.9%)

0.716
(63.7%)

0.730
(71.4%)

echo 0.611 0.638
(62.1%)

0.646
(68.1%)

0.624
(52.4%)

0.640
(62.8%)

0.638
(50.0%)

0.648
(59.0%)

german 0.684 0.697
(65.1%)

0.701
(69.7%)

0.700
(61.1%)

0.703
(66.1%)

0.693
(54.9%)

0.703
(62.1%)

glass 0.580 0.494
(54.1%)

0.551
(58.7%)

0.474
(46.1%)

0.519
(53.8%)

0.484
(49.5%)

0.536
(54.2%)

magic 0.735 0.740
(70.9%)

0.737
(73.7%)

0.734
(64.7%)

0.731
(69.5%)

0.745
(61.5%)

0.742
(67.6%)

credit 0.763 0.802
(83.3%)

0.823
(85.1%)

0.805
(81.7%)

0.824
(84.1%)

0.795
(74.8%)

0.813
(79.6%)

spect 0.707 0.735
(73.7%)

0.729
(75.0%)

0.729
(68.5%)

0.717
(70.4%)

0.759
(62.6%)

0.761
(65.8%)

wdbc 0.964 0.950
(96.0%)

0.957
(97.0%)

0.939
(94.9%)

0.957
(96.6%)

0.950
(95.0%)

0.956
(96.2%)

ecoli 0.787 0.804
(81.2%)

0.821
(86.0%)

0.770
(78.3%)

0.821
(85.0%)

0.808
(74.4%)

0.828
(82.9%)

ionosphere 0.820 0.776
(80.8%)

0.776
(81.4%)

0.744
(76.4%)

0.761
(78.8%)

0.776
(78.6%)

0.776
(79.9%)

haberm 0.679 0.733
(72.6%)

0.760
(77.0%)

0.747
(67.1%)

0.750
(75.2%)

0.737
(62.8%)

0.757
(72.4%)

Ave. 0.751 0.760
(75.2%)

0.774
(76.1%)

0.748
(70.7%)

0.767
(73.2%)

0.759
(68.2%)

0.773
(71.1%)

B/W 4/15 5/16 4/16
S.B/W 0/6 0/6 0/6

39

Table 17 Experimental results when labeled ratio is 30%

Dataset KNN ENN ENN+ RENN RENN+ ANN ANN+
iris 0.917 0.919

(93.1%)
0.917
(97.4%)

0.909
(92.0%)

0.917
(97.3%)

0.919
(92.8%)

0.922
(97.1%)

vote 0.919 0.920
(93.8%)

0.923
(94.3%)

0.917
(91.2%)

0.912
(93.3%)

0.920
(90.5%)

0.922
(92.3%)

heart2 0.754 0.779
(79.7%)

0.795
(83.4%)

0.789
(77.7%)

0.804
(82.8%)

0.784
(73.0%)

0.804
(79.8%)

horse 0.760 0.805
(84.9%)

0.813
(86.2%)

0.814
(82.7%)

0.820
(85.7%)

0.806
(77.6%)

0.807
(82.7%)

sonar 0.742 0.669
(65.2%)

0.711
(69.4%)

0.656
(58.5%)

0.694
(63.2%)

0.687
(58.5%)

0.728
(63.2%)

wine 0.933 0.889
(63.9%)

0.911
(69.2%)

0.809
(59.5%)

0.889
(63.9%)

0.867
(57.6%)

0.904
(63.7%)

breast 0.959 0.968
(96.5%)

0.968
(97.0%)

0.966
(95.7%)

0.966
(96.7%)

0.967
(94.9%)

0.966
(96.3%)

yeast 0.534 0.578
(52.7%)

0.578
(59.4%)

0.586
(47.1%)

0.577
(56.1%)

0.574
(42.9%)

0.574
(52.1%)

australian 0.801 0.838
(84.5%)

0.840
(85.6%)

0.838
(82.9%)

0.842
(84.5%)

0.842
(78.2%)

0.837
(82.1%)

bupa 0.606 0.605
(61.4%)

0.608
(63.4%)

0.596
(53.6%)

0.584
(57.5%)

0.596
(50.3%)

0.603
(54.6%)

diabetes 0.661 0.690
(69.8%)

0.721
(76.3%)

0.694
(63.8%)

0.726
(73.7%)

0.702
(60.1%)

0.722
(70.4%)

echo 0.620 0.640
(59.9%)

0.670
(67.3%)

0.640
(51.7%)

0.670
(63.1%)

0.665
(46.8%)

0.695
(57.4%)

german 0.644 0.683
(63.9%)

0.689
(67.6%)

0.678
(58.5%)

0.685
(64.7%)

0.679
(52.9%)

0.690
(59.6%)

glass 0.669 0.624
(59.4%)

0.641
(63.9%)

0.594
(53.6%)

0.597
(59.3%)

0.609
(55.6%)

0.648
(60.8%)

magic 0.723 0.737
(70.7%)

0.732
(73.0%)

0.735
(65.2%)

0.717
(68.7%)

0.735
(61.4%)

0.732
(67.1%)

credit 0.782 0.837
(83.3%)

0.842
(85.6%)

0.834
(82.3%)

0.845
(84.9%)

0.831
(75.1%)

0.842
(81.0%)

spect 0.739 0.758
(76.1%)

0.727
(75.7%)

0.718
(71.1%)

0.721
(69.8%)

0.748
(65.2%)

0.726
(68.6%)

wdbc 0.949 0.949
(95.5%)

0.959
(97.0%)

0.948
(96.8%)

0.958
(96.5%)

0.951
(93.6%)

0.960
(95.6%)

ecoli 0.779 0.807
(81.8%)

0.827
(86.7%)

0.766
(77.8%)

0.815
(85.6%)

0.791
(74.3%)

0.819
(82.4%)

ionosphere 0.833 0.784
(81.2%)

0.804
(82.5%)

0.758
(75.1%)

0.800
(80.6%)

0.788
(78.9%)

0.811
(80.7%)

haberm 0.645 0.701
(70.0%)

0.737
(75.4%)

0.735
(64.9%)

0.741
(74.8%)

0.713
(59.3%)

0.734
(68.0%)

Ave. 0.760 0.770
(75.5%)

0.782
(78.9%)

0.761
(71.4%)

0.775
(76.3%)

0.770
(68.6%)

0.783
(74.1%)

B/W 3/16 4/16 4/16
S.B/W 1/7 0/6 1/8

40

Table 18 Experimental results when labeled ratio is 40%

Dataset KNN ENN ENN+ RENN RENN+ ANN ANN+
iris 0.933 0.930

(95.4%)
0.937
(96.4%)

0.930
(95.2%)

0.937
(96.0%)

0.937
(93.5%)

0.940
(95.6%)

vote 0.902 0.904
(91.9%)

0.903
(92.2%)

0.903
(90.0%)

0.894
(91.3%)

0.913
(88.9%)

0.906
(90.2%)

heart2 0.769 0.807
(77.4%)

0.815
(80.2%)

0.817
(75.1%)

0.815
(78.9%)

0.808
(71.7%)

0.819
(76.6%)

horse 0.752 0.785
(82.6%)

0.786
(84.8%)

0.785
(80.6%)

0.783
(86.5%)

0.787
(75.8%)

0.790
(79.1%)

sonar 0.810 0.700
(70.8%)

0.738
(77.4%)

0.670
(64.2%)

0.715
(73.5%)

0.696
(64.1%)

0.734
(74.4%)

wine 0.950 0.940
(66.2%)

0.925
(70.3%)

0.917
(62.8%)

0.922
(65.5%)

0.933
(61.4%)

0.925
(66.5%)

breast 0.955 0.969
(96.7%)

0.968
(97.5%)

0.968
(96.2%)

0.968
(97.1%)

0.969
(95.6%)

0.968
(96.8%)

yeast 0.528 0.582
(53.1%)

0.600
(59.9%)

0.597
(47.5%)

0.603
(57.9%)

0.592
(44.2%)

0.603
(53.2%)

australian 0.797 0.851
(82.5%)

0.849
(85.5%)

0.853
(81.7%)

0.848
(84.0%)

0.852
(76.4%)

0.852
(80.9%)

bupa 0.599 0.615
(61.5%)

0.627
(62.1%)

0.621
(53.8%)

0.613
(56.7%)

0.608
(49.6%)

0.617
(53.5%)

diabetes 0.706 0.727
(72.3%)

0.746
(77.2%)

0.729
(67.0%)

0.741
(74.4%)

0.724
(64.3%)

0.747
(71.7%)

echo 0.617 0.666
(66.1%)

0.681
(69.0%)

0.671
(59.4%)

0.698
(63.9%)

0.686
(55.8%)

0.689
(60.4%)

german 0.657 0.704
(67.1%)

0.713
(71.2%)

0.704
(62.7%)

0.713
(68.4%)

0.705
(57.3%)

0.711
(63.3%)

glass 0.652 0.554
(56.2%)

0.600
(61.1%)

0.550
(49.4%)

0.577
(56.1%)

0.561
(51.7%)

0.596
(56.8%)

magic 0.736 0.757
(73.1%)

0.750
(74.8%)

0.751
(67.4%)

0.738
(71.6%)

0.750
(64.1%)

0.748
(69.2%)

credit 0.804 0.856
(85.3%)

0.855
(87.0%)

0.853
(84.0%)

0.857
(86.0%)

0.858
(78.8%)

0.863
(83.1%)

spect 0.709 0.756
(75.4%)

0.725
(76.6%)

0.778
(69.4%)

0.697
(70.8%)

0.760
(65.2%)

0.722
(69.5%)

wdbc 0.941 0.952
(95.4%)

0.953
(95.8%)

0.947
(94.6%)

0.952
(95.3%)

0.953
(93.1%)

0.951
(93.9%)

ecoli 0.803 0.820
(83.8%)

0.852
(88.3%)

0.818
(81.4%)

0.853
(86.9%)

0.813
(77.1%)

0.851
(84.2%)

ionosphere 0.857 0.825
(83.9%)

0.834
(84.4%)

0.817
(80.5%)

0.825
(83.3%)

0.824
(81.9%)

0.834
(82.5%)

haberm 0.697 0.732
(72.9%)

0.761
(76.4%)

0.764
(69.1%)

0.772
(73.3%)

0.740
(64.2%)

0.763
(71.5%)

Ave. 0.770 0.783
(76.7%)

0.791
(79.4%)

0.783
(73.0%)

0.787
(77.0%)

0.784
(78.4%)

0.792
(79.2%)

B/W 7/14 7/13 6/14
S.B/W 1/4 1/4 1/5

41

Table 19 Experimental results when labeled ratio is 50%

Dataset KNN ENN ENN+ RENN RENN+ ANN ANN+
iris 0.936 0.935

(95.3%)
0.944
(96.6%)

0.935
(94.9%)

0.944
(96.6%)

0.941
(94.5%)

0.946
(96.4%)

vote 0.923 0.924
(92.4%)

0.922
(93.0%)

0.919
(91.0%)

0.918
(92.2%)

0.921
(90.7%)

0.919
(91.6%)

heart2 0.790 0.773
(78.7%)

0.781
(80.3%)

0.771
(75.9%)

0.776
(77.8%)

0.775
(72.8%)

0.784
(75.8%)

horse 0.755 0.785
(82.5%)

0.795
(83.2%)

0.795
(80.5%)

0.798
(85.5%)

0.784
(74.2%)

0.792
(77.3%)

sonar 0.811 0.738
(75.4%)

0.780
(80.4%)

0.705
(70.9%)

0.766
(78.2%)

0.722
(72.1%)

0.774
(77.9%)

wine 0.929 0.902
(66.8%)

0.920
(71.5%)

0.851
(62.3%)

0.923
(68.4%)

0.901
(61.0%)

0.914
(66.7%)

breast 0.958 0.962
(97.0%)

0.963
(97.4%)

0.962
(96.5%)

0.962
(97.0%)

0.964
(95.4%)

0.962
(96.4%)

yeast 0.567 0.593
(52.0%)

0.597
(56.9%)

0.597
(46.3%)

0.602
(54.0%)

0.595
(43.1%)

0.598
(49.9%)

australian 0.793 0.848
(84.2%)

0.846
(85.5%)

0.848
(83.3%)

0.845
(84.7%)

0.845
(76.9%)

0.842
(80.3%)

bupa 0.598 0.628
(65.3%)

0.627
(67.3%)

0.636
(59.6%)

0.633
(62.9%)

0.612
(51.7%)

0.632
(55.4%)

diabetes 0.693 0.716
(70.8%)

0.734
(76.1%)

0.712
(65.4%)

0.729
(72.6%)

0.717
(61.9%)

0.729
(69.8%)

echo 0.600 0.672
(64.1%)

0.688
(68.9%)

0.648
(54.1%)

0.692
(65.4%)

0.663
(51.7%)

0.692
(57.8%)

german 0.658 0.694
(66.5%)

0.702
(68.3%)

0.698
(61.0%)

0.696
(64.4%)

0.699
(56.6%)

0.707
(60.5%)

glass 0.690 0.622
(63.3%)

0.655
(66.2%)

0.607
(58.0%)

0.637
(60.6%)

0.623
(57.1%)

0.665
(61.0%)

magic 0.741 0.752
(72.3%)

0.747
(74.0%)

0.746
(67.4%)

0.737
(69.9%)

0.752
(63.4%)

0.748
(66.9%)

credit 0.778 0.831
(83.1%)

0.840
(84.8%)

0.836
(81.6%)

0.841
(83.5%)

0.827
(75.8%)

0.832
(79.7%)

spect 0.699 0.707
(70.6%)

0.686
(73.4%)

0.719
(65.6%)

0.699
(66.0%)

0.709
(61.1%)

0.687
(65.5%)

wdbc 0.942 0.948
(95.4%)

0.950
(95.8%)

0.943
(94.4%)

0.948
(95.5%)

0.950
(93.5%)

0.951
(94.2%)

ecoli 0.805 0.825
(82.7%)

0.842
(86.7%)

0.826
(80.3%)

0.839
(85.6%)

0.831
(76.4%)

0.843
(82.7%)

ionosphere 0.840 0.818
(83.7%)

0.822
(84.5%)

0.801
(81.2%)

0.825
(83.7%)

0.814
(80.6%)

0.822
(82.1%)

haberm 0.640 0.718
(67.9%)

0.735
(72.8%)

0.730
(64.9%)

0.746
(77.1%)

0.727
(56.5%)

0.737
(63.6%)

Ave. 0.769 0.781
(76.7%)

0.790
(79.2%)

0.775
(73.0%)

0.788
(77.2%)

0.780
(69.9%)

0.789
(73.9%)

B/W 5/16 6/14 5/16
S.B/W 1/2 1/5 1/4

42

Table 20 Experimental results summarization when labeled ratio is 5%, 10%,

15%, 20%, 30%, 40%, and 50%

 labeled ratio
 5% 10% 15% 20% 30% 40% 50%

Accu.

0.743
0.709
(0.034)

0.752
0.723
(0.029)

0.759
0.735
(0.024)

0.774
0.760
(0.014)

0.782
0.770
(0.012)

0.791
0.783
(0.008)

0.790
0.781
(0.009)

B/W 18/2
(16)

19/2
(17)

18/3
(15)

15/4
(11)

16/3
(13)

14/7
(7)

16/5
(11)

ENN+
&
ENN

S.B/W 11/0
(11)

8/0
(8)

9/1
(8)

6/0
(6)

7/1
(6)

4/1
(3)

2/1
(1)

Accu. 0.740
0.688
(0.052)

0.742
0.700
(0.042)

0.748
0.717
(0.031)

0.767
0.748
(0.019)

0.775
0.761
(0.014)

0.787
0.783
(0.004)

0.788
0.775
(0.013)

B/W 18/1
(17)

19/1
(18)

17/4
(13)

16/5
(11)

16/4
(12)

13/7
(6)

14/6
(8)

RENN+
&
RENN

S.B/W 17/0
(17)

12/1
(11)

9/1
(8)

6/0
(6)

6/0
(6)

4/1
(3)

5/1
(4)

Accu. 0.744
0.708
(0.036)

0.749
0.716
(0.033)

0.758
0.731
(0.027)

0.773
0.759
(0.014)

0.783
0.770
(0.013)

0.792
0.784
(0.008)

0.789
0.780
(0.009)

B/W 18/2
(16)

16/5
(11)

19/1
(18)

16/4
(12)

16/4
(12)

14/6
(8)

16/5
(11)

ANN+
&
ANN

S.B/W 14/0
(14)

12/0
(12)

9/0
(9)

6/0
(6)

8/1
(7)

5/1
(4)

4/1
(3)

We summarize the results from different labeled ratios in Table 20. In this

Table, only classification accuracy is considered and data retention ratio is

neglected. In each cell, not only the performance comparison, but the degree of

improvement is shown in brackets. The greatest improvement among different

labeled ratios is shown in bold.

From the experimental results, we obtain the similar observations as before.

These experiments further validate the superiority of our methods since they

work well for different labeled ratios.

There is another useful result shown in experiments. In the case that labeled

ratio is 5%, 10%, or 15%, greater improvement will be achieved by unlabeled

data compared to 20%, 30%, 40%, and 50%. That is to say, unlabeled data will

give more remarkable improvement for data editing in case that labeled ratio is

43

small (labeled data number is small). Existing work on data editing [43] shows

that the small set-size editing failure mainly stem for the inability of the nearest

neighbor instances to achieve sufficiently reliable estimates for this instance.

Using unlabeled data seems to be promising to solve this intrinsic limitation of

data editing.

3.4.3 Experimental results: varying the noise ratio

In this part, we will fix the labeled ratio to 50% and vary the noise ratio

including 10%, 20%, 30%, and 40%.

Nearest neighbor editing (NNE) is originally proposed to increase the

generality ability of k-nearest neighbor by removing noisy training instances.

Attracted by its straightforwardness and good performance, we intend to

explore whether nearest neighbor editing can be used with other machine

learning algorithms. We choose naïve Bayes and decision tree in the

experiments.

In addition to this motivation, there are other two objectives for this

experiment: 1) test whether our method works well under different noise ratios,

and 2) whether there is any relationship between the noise ratio and the

performance of our method.

The differences of experimental setup with the experiments in Section 3.4.2

include: 1) the number of iteration for ensemble-based data labeling function is

3, and 2) we use classification error rate to evaluate the performance of our

method.

No. of incorrect classifications on testing instancesclassification error rate=
No. of testing instances

The experiments can be divided into two parts:

Experiment A: the noise ratios are 10%, 20%, 30%, and 40%. The

objective of Experiment A is to test whether traditional NNE methods can

44

improve the classification performance of 1-NN, naïve Bayes, and decision

tree under different noise ratios.

Experiment B: the noise ratios are 10%, 20%, 30%, and 40%. The

objective of Experiment B is to test whether our proposed method can

outperform traditional nearest neighbor editing under different noise ratios

when applied to 1-NN, naïve Bayes, and decision tree.

Experiment A: Fig. 7 shows the detailed result when noise ratio is 10%. The

values in this table and following tables represent the classification error rates.

The result in Fig. 7 includes three parts: 1) the classification error rates of each

classification algorithm (including both before and after applying nearest

neighbor editing methods) on each data set, 2) the average classification error

rates of each algorithm (including both before and after applying nearest

neighbor editing methods) across all the data sets, and 3) the improvement of

each NNE method acting on each classification algorithm with respect to the

reduction of the average classification error.

Fig. 7. ENN, RENN, and ANN on k-NN, naïve Bayes, and decision tree when

noise ratio is 10%

45

An important observation obtained from this table is that NNE methods can

improve the performance not only for k-NN, but also for naïve Bayes and

decision tree. In detail, the average improvements of ENN, RENN, and ANN on

k-NN are 19.8%, 19.1%, and 19.1% respectively. The average improvements of

ENN, RENN, and ANN on naïve Bayes are 6.9%, 2.8%, and 5.7% respectively.

Their average improvements on decision tree are 6.7%, 2.1%, and 5.0%

respectively.

Rather than presenting the experimental results for every noise ratio with

details, afterwards Table 21 summarizes the results under four different noise

ratios. Table 21 includes three parts: 1) the average classification error rates of

each algorithm under each noise ratio across all the data sets, 2) the further

average classification error rates of each algorithm across four noise ratios, and

3) the improvement of each nearest neighbor editing method acting on each

classification algorithm with respect to the reduction of the average

classification error.

Table 21 Summarization of ENN, RENN, and ANN on k-NN, naïve Bayes, and

decision tree

k-NN (kNN) Naïve Bayes (NB) Decision Tree (DT)
Alg.

noise
ratio

kNN ENN RENN ANN NB ENN RENN ANN DT ENN RENN ANN

10% 0.283 0.227 0.229 0.229 0.247 0.23 0.24 0.233 0.238 0.222 0.233 0.226

20% 0.334 0.247 0.243 0.245 0.256 0.241 0.247 0.242 0.275 0.243 0.246 0.245

30% 0.382 0.295 0.284 0.292 0.285 0.265 0.272 0.273 0.326 0.283 0.281 0.291

40% 0.439 0.366 0.353 0.371 0.318 0.312 0.317 0.318 0.395 0.36 0.349 0.366

Ave. 0.359 0.284 0.277 0.284 0.276 0.262 0.268 0.266 0.308 0.277 0.277 0.282

Imp. 20.9% 22.8% 20.9% 5.1% 2.9% 3.6% 10.1% 10.1% 8.4%

This table shows that with any of the noise ratios, all the three NNE methods

could improve the performance of k-NN, naïve Bayes, and decision tree.

46

Therefore, NNE methods could improve the performance of these classification

algorithms consistently and robustly. Finally by averaging the classification

error rates of four noise ratios, we find that the improvements of ENN, RENN,

and ANN on k-NN are 20.9%, 22.8%, and 20.9% respectively; on naïve Bayes

are 5.1%, 2.9%, and 3.6% respectively; on decision tree are 10.1%, 10.1%, and

8.4% respectively. In addition to this, Table 9 indicates that without noise

removing, among the three classifiers, on average naïve Bayes has the lowest

classification error (0.276). Next is decision tree (0.308), k-NN has the highest

classification error (0.359). For all the three NNE methods, they have the best

improvement on k-NN; next is decision tree; then naïve Bayes.

Experiment B: The benefit of existing NNE methods on k-NN, naïve Bayes,

and decision tree has been tested by Experiment A. In this part, we aim to

evaluate whether our proposed method could defeat the original NNE and has

better improvement on the three classifiers. Rather than presenting the result for

every noise ratios with details, we present the result when noise ratio is 40% for

analyzing purpose. In addition, the results for all the noise ratios are

summarized. The experimental results in this part are presented according to the

classification algorithms (B1) naïve Bayes, (B2) decision tree, (B3) k-nearest

neighbor.

(B1) Naïve Bayes. Table 22 shows the comparison between NNE and

NNEAUD on naïve Bayes when noise ratio is 40%.

It indicates across all the data sets, on average, NNEAUD-based methods can

significantly improve the performance of traditional NNE methods. For

example, the average improvement of ENN+ on ENN is 18.3%

Table 23 summarizes the results of NNE and NNEAUD on naïve Bayes

under four different noise ratios. It shows that NNEAUD methods could

consistently improve the performance of NNE methods on almost all the noise

ratios (with the only exception: ENN+ has no improvement on ENN under

noise ratio is 10%). This suggests that our propose NNEAUD can be used as an

effective noise removing method for naïve Bayes.

47

Table 22 Comparison between NNE and NNEAUD on naïve Bayes when noise

ratio is 40%

Nearest neighbor editing on naïve Bayes, 40%

Dataset ENN ENN+ RENN RENN+ ANN ANN+

iris 0.182 0.072 0.179 0.065 0.199 0.07
vote 0.13 0.112 0.139 0.111 0.147 0.107
heart2 0.278 0.214 0.292 0.224 0.276 0.22
horse 0.326 0.235 0.314 0.217 0.332 0.236
sonar 0.463 0.383 0.458 0.361 0.451 0.359
wine 0.22 0.133 0.309 0.15 0.281 0.165
breast 0.044 0.038 0.052 0.052 0.046 0.039
yeast 0.435 0.405 0.44 0.402 0.449 0.403
australian 0.247 0.202 0.236 0.188 0.256 0.193
bupa 0.494 0.484 0.478 0.46 0.481 0.48
diabetes 0.338 0.272 0.35 0.268 0.338 0.276
echo 0.417 0.303 0.402 0.308 0.425 0.322
german 0.36 0.295 0.363 0.292 0.361 0.295
glass 0.541 0.498 0.588 0.518 0.569 0.499
magic 0.35 0.357 0.348 0.357 0.348 0.356
credit 0.272 0.208 0.26 0.2 0.289 0.204
spect 0.455 0.405 0.375 0.317 0.409 0.369
wdbc 0.112 0.068 0.107 0.064 0.124 0.069
ecoli 0.312 0.209 0.303 0.191 0.3 0.219
ionos 0.27 0.218 0.346 0.212 0.283 0.202
Ave. 0.312 0.255 0.317 0.248 0.318 0.254
Imp. 18.3% 21.8% 20.1%

48

Table 23 Summarization of comparisons between NNE and NNEAUD on naïve

Bayes

Naïve Bayes

 ENN ENN+ Imp. RENN RENN+ Imp. ANN ANN+ Imp.

10% 0.230 0.230 0% 0.238 0.230 3.4% 0.233 0.232 0.4%

20% 0.241 0.233 3.3% 0.247 0.230 6.9% 0.242 0.230 5.0%

30% 0.265 0.241 9.1% 0.272 0.239 12.1% 0.273 0.242 11.4%

40% 0.312 0.255 18.3% 0.317 0.248 21.8% 0.318 0.254 20.1%

Ave. 0.262 0.240 7.7% 0.269 0.237 11.1% 0.267 0.240 9.2%

(B2) Decision tree. Table 24 shows the comparison between NNE and

NNEAUD on decision tree when noise ratio is 40%.

Table 25 shows the summarization of comparisons on decision tree. These

two tables demonstrate that no matter what noise ratio, NNEAUD methods

always outperform NNE methods. Averaged across all the four noise ratios, the

improvement of ENN+ on ENN is 14.8%; the improvement of RENN+ on

RENN is 15.7%; the improvement of ANN+ on ANN is 16.1%. This

observation suggests that NNEAUD is capable to effectively remove noises in

the training set for decision tree.

49

Table 24 Comparison between NNE and NNEAUD on decision tree when noise

ratio is 40%

Nearest neighbor editing on decision tree, 40%

Dataset ENN ENN+ RENN RENN+ ANN ANN+

iris 0.196 0.073 0.205 0.065 0.216 0.079
vote 0.276 0.151 0.238 0.096 0.284 0.151
heart2 0.343 0.231 0.32 0.216 0.352 0.247
horse 0.354 0.208 0.326 0.182 0.342 0.209
sonar 0.467 0.403 0.452 0.405 0.449 0.383
wine 0.335 0.244 0.408 0.28 0.372 0.242
breast 0.206 0.095 0.189 0.071 0.232 0.096
yeast 0.453 0.412 0.442 0.409 0.465 0.405
australian 0.323 0.167 0.305 0.172 0.328 0.172
bupa 0.462 0.402 0.435 0.39 0.458 0.403
diabetes 0.385 0.285 0.374 0.275 0.37 0.271
echo 0.44 0.328 0.403 0.328 0.41 0.325
german 0.419 0.309 0.39 0.301 0.411 0.308
glass 0.507 0.469 0.559 0.5 0.55 0.494
magic 0.356 0.295 0.361 0.304 0.351 0.289
credit 0.363 0.185 0.308 0.151 0.349 0.176
spect 0.399 0.311 0.367 0.318 0.419 0.318
wdbc 0.269 0.112 0.235 0.08 0.292 0.112
ecoli 0.308 0.208 0.312 0.207 0.327 0.227
ionos 0.348 0.202 0.345 0.189 0.346 0.197
Ave. 0.36 0.254 0.349 0.247 0.366 0.255
Imp. 29.4% 29.2% 30.3%

50

Table 25 Summarization of comparisons between NNE and NNEAUD on

decision tree

Decision tree

 ENN ENN+ Imp. RENN RENN+ Imp. ANN ANN+ Imp.

10% 0.222 0.212 4.5% 0.233 0.216 7.3% 0.226 0.212 6.2%

20% 0.243 0.225 7.4% 0.246 0.226 8.1% 0.245 0.225 8.2%

30% 0.283 0.232 18.0% 0.281 0.230 18.1% 0.291 0.233 19.9%

40% 0.360 0.254 29.4% 0.349 0.247 29.2% 0.366 0.255 30.3%

Ave. 0.277 0.231 14.8% 0.277 0.230 15.7% 0.282 0.231 16.1%

(B3) The k-nearest neighbor algorithm. Table 26 shows the comparison

between NNE and NNEAUD on k-nearest neighbor when noise ratio is 40%.

Table 27 shows the summarization of comparison on k-NN. Same with

previous experiments, we find that NNEAUD can consistently defeat NNE on

k-NN.

51

Table 26 Comparison between NNE and NNEAUD on k-NN when noise ratio is

40%

Nearest neighbor editing on k-NN, 40%

Dataset ENN ENN+ RENN RENN+ ANN ANN+

iris 0.184 0.082 0.17 0.067 0.176 0.073
vote 0.296 0.214 0.264 0.184 0.285 0.198
heart2 0.325 0.228 0.327 0.218 0.348 0.219
horse 0.374 0.264 0.34 0.235 0.378 0.268
sonar 0.436 0.33 0.451 0.327 0.444 0.343
wine 0.235 0.137 0.277 0.152 0.257 0.123
breast 0.273 0.162 0.213 0.122 0.279 0.147
yeast 0.468 0.426 0.448 0.413 0.471 0.42
australian 0.36 0.204 0.334 0.182 0.363 0.209
bupa 0.48 0.461 0.477 0.445 0.499 0.455
diabetes 0.417 0.313 0.4 0.285 0.418 0.312
echo 0.465 0.372 0.413 0.31 0.45 0.35
german 0.41 0.335 0.388 0.311 0.413 0.326
glass 0.513 0.483 0.568 0.499 0.554 0.479
magic 0.389 0.318 0.374 0.313 0.387 0.314
credit 0.361 0.207 0.322 0.181 0.364 0.203
spect 0.427 0.344 0.424 0.356 0.402 0.349
wdbc 0.296 0.114 0.245 0.066 0.289 0.101
ecoli 0.257 0.179 0.265 0.172 0.268 0.181
ionos 0.362 0.219 0.356 0.197 0.378 0.231
Ave. 0.366 0.27 0.353 0.252 0.371 0.265
Imp. 26.2% 28.6% 28.6%

52

Table 27 Summarization of comparisons between NNE and NNEAUD on k-NN

k-NN

 ENN ENN+ Imp. RENN RENN+ Imp. ANN ANN+ Imp.

10% 0.227 0.215 5.3% 0.229 0.217 5.2% 0.229 0.217 5.2%

20% 0.247 0.220 10.9% 0.243 0.219 9.9% 0.245 0.218 11.0%

30% 0.295 0.239 19.0% 0.284 0.232 18.3% 0.292 0.238 18.5%

40% 0.366 0.270 26.2% 0.353 0.252 28.6% 0.371 0.265 28.6%

Ave. 0.284 0.236 15.4% 0.277 0.230 15.5% 0.284 0.235 15.8%

There is another useful result shown in the experiments. Figure 8 shows the

relationship between noise ratio and improvement of ENN+ acting on ENN. We

find that for all the three classifiers, the improvement increases in direct

proportion to the noise ratio. Similarly, Figure 9 shows the improvement of

RENN+ acting on RENN increases in direct proportion to the noise ratio. Figure

10 shows the improvement of ANN+ acting on ANN also increases in direct

proportion to the noise ratio.

Improvement of ENN+ on ENN

0%

5%

10%

15%

20%

25%

30%

35%

10% 20% 30% 40%

Noise ratio

Im
p
ro

ve
m

e
n

Naïve Bayes

Decision Tree

k-NN

Fig. 8. Improvement of ENN+ on ENN

53

Improvement of RENN+ on RENN

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

10% 20% 30% 40%

Noise ratio

Im
p
ro

ve
m

e
n

Naïve Bayes

Decision Tree

k-NN

Fig. 9. Improvement of RENN+ on RENN

Improvement of ANN+ on ANN

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

10% 20% 30% 40%

Noise ratio

Im
p
ro

ve
m

e
n

Naïve Bayes

Decision Tree

k-NN

Fig. 10. Improvement of ANN+ on ANN

Experiments summarization: Experiment A and B indicate that by using

nearest neighbor editing methods, the classification performance of k-NN, naïve

Bayes, and decision tree can be improved. This suggests that although nearest

neighbor editing is originally proposed for k-NN, it is not limited to k-NN. It

also has the ability to effectively remove the noises for naïve Bayes and

decision tree. In other words, nearest neighbor editing has the capability to

serve as a general noise removing method. Moreover, by using unlabeled data,

54

we develop NNEAUD methodology. Based on this novel methodology, the

variants of edited nearest neighbor, repeated edited nearest neighbor, and All k-

NN are devised. Experimental results show that all the three variants

significantly outperform the original approaches. This means NNEAUD is more

competent than NNE with respect to removing noises for k-NN, naïve Bayes,

and decision tree. Moreover, the superiority of NNEAUD is more remarkable

when noise ratio in the training data is greater.

3.5 Discussions

The experiments in this Chapter show that our method can improve the

performance of instance-based noise filtering methods.

Suppose x is a noisy instance in the original training set T ; ax is the actual

label of x ; gx is the given label of x in the training set; 'T is the augmented data

set ('T T⊆); R is the k nearest neighbors of x in T (the distance is calculated

based on the Euclidean distance of two feature vectors); 'R is the k nearest

neighbors of x in 'T . Let us consider a two-class classification problem

wherein ax =+, gx =-.

ENN can identify x as noise if the label predicted by R is different with that

of gx . Therefore, the probability that ENN could identify x as noise is:

(| ,)T a gP R x x= + = + = − .

 Using unlabeled data, the probability that ENN could identify x as noise is:

'
'(| ,)a gT

P R x x= + = + = − . If the elements in R are same with that in 'R , then

these two probabilities are also same. It means unlabeled data has no any effect

on noise detection on x . If the elements in R are different with that in 'R , then

one or some neighbors which are closer to x are found in 'T . When the number

of samples is very large, it is reasonable to assume that 'x is sufficiently close to

x that the label of x and 'x are same. Therefore it is reasonable to assume that:

55

'
'(| ,) (| ,)a g T a gT

P R x x P R x x= + = + = − ≥ = + = + = − (inequation 1)

Above hypothesis is established when the new added training data are noise-

free. When the points ' '\{ }R R R∩ are noisy, it is possible that:

'
'(| ,) (| ,)a g T a gT

P R x x P R x x= + = + = − ≤ = + = + = − (inequation 2)

Based on the theory in [44], the performance of the classifier is expected to

be improved if enough noisy training data are added. In [44], m is the sample

size; η is the noise rate in the training set; ε is the classification error; c is a

constant under which that 2(1 2)
c

m
ε

η
=

−
. Let 1ε and 2ε denote the

classification error based on the original training set and the augmented training

set respectively; 1η and 2η denote the noise rates of the original training set and

the augmented training set; 1m and 2m denote the original training set size and

the augmented training set size. In the worst case that 2 1η η> , if the sample

number in 2 1\m m are big enough, still 2 1ε ε> . This proved that the probability

of inequation 1 holds is greater than that of inequation 2 holds. The positive

effect of our method on average can defeat the negative effect.

56

Chapter 4

General Noise Filtering

We have proved that our method is effective in instance-based noise filtering

methods. We further prove that our method is general and not limited to any

noise filtering methods in this chapter. There are many methods for general

identifying and eliminating mislabeled training instances. Herein, we consider

Brodley’s majority filtering (MF) and consensus filtering (CF) due to their

wide-spread and popular use in the literature.

4.1 Majority & Consensus filtering

The general idea of MF and CF is as follows: they employ ensemble classifier

to detect mislabeled instances by constructing a set of base-level classifiers and

then using their classifications to identify mislabeled instances. The general

approach is to tag an instance as mislabeled if x of the m base-level classifiers

cannot classify it correctly. MF tags an instance as mislabeled if more than half

of the m base level classifiers classify it incorrectly. CF requires that all base-

level classifiers must fail to classify an instance as the class given by its training

label for it to be eliminated from the training data.

The reason to employ ensemble classifiers in MF and CF is that ensemble

classifier has better performance than each base-level classifier on a dataset if

two conditions hold: (1) the probability of a correct classification by each

individual classifier is greater than 0.5, and (2) the errors in predictions of the

base-level classifiers are independent.

As Shown in Table 28, majority filtering begins with n equal-sized disjoint

subsets of the training set E (step 1) and the empty output set A of detected

noisy examples (step 2). The main loop (steps 3-16) is repeated for each

training subset iE . In step 4, subset iE is formed which includes all examples

57

from E except those in iE , which then is used as the input an arbitrary

inductive learning algorithm that induces a hypothesis (a classifier) jH (step 6).

Those examples from iE for which majority of the hypotheses do not give the

correct classification are added to A as potentially noisy examples (step 14).

Table 28 Majority filtering

Algorithm: MajorityFiltering (MF)
Input: E (training set)
Parameter: n (number of subsets), y (number of learning algorithms)

1 2, ,..., yA A A (y kinds of learning algorithms)
Output: A (detected noisy subset of E)
(1) form n disjoint almost equally sized subsets of iE , where i iE E∪ =
(2) A ←∅
(3) for 1,...,i n= do
(4) form \t iE E E←
(5) for 1,...j y= do
(6) induce jH based on examples in tE and jA
(7) end for
(8) for every ie E∈ do
(9) 0ErrorCounter ← // the num. of classifiers which misclassify e
(10) for 1,...,j y= do
(11) if jH incorrectly classifies e
(12) then 1ErrorCounter ErrorCounter← +
(13) end for
(14) if / 2ErrorCounter y> , then { }A A e← ∪
(15) end for
(16) end for

Consensus filtering algorithm is shown in Table 29. Its difference with MF is

at step 14. In CF, the example in iE is regarded as noisy example only when all

the hypotheses incorrectly classify it. Compared with MF, CF is more

conservative due to the severer condition for noise identification, which results

in fewer instances being eliminated from the training set. The drawback of CF

is the added risk in retaining bad data.

58

Table 29 Consensus filtering

Algorithm: ConsensusFiltering (CF)
Input: E (training set)
Parameter: n (number of subsets), y (number of learning algorithms)

1 2, ,..., yA A A (y kinds of learning algorithms)
Output: A (detected noisy subset of E)
(1) form n disjoint almost equally sized subsets of iE , where i iE E∪ =
(2) A ←∅
(3) for 1,...,i n= do
(4) form \t iE E E←
(5) for 1,...j y= do
(6) induce jH based on examples in tE and jA
(7) end for
(8) for every ie E∈ do
(9) 0ErrorCounter ← // the num. of classifiers which misclassify e
(10) for 1,...,j y= do
(11) if jH incorrectly classifies e
(12) then 1ErrorCounter ErrorCounter← +
(13) end for
(14) if ErrorCounter y= , then { }A A e← ∪
(15) end for
(16) end for

Both majority filtering and consensus filtering employ multiple classifiers to

detect the noisy instances through n-cross-validation. In cross i , subset i is

extracted and checked. The combination of other subsets is used as training data

to construct a set of classifiers based on the learning algorithms, which further

classify the instances in subset i to detect the noises. The reliability of these

classifiers therefore is crucial and the noise detection performance is expected

to improve when the classification accuracies of these classifiers are increased.

Our approach is to utilize the unlabeled data to increase the classification

accuracies of these classifiers.

59

4.2 Majority & Consensus filtering aided by unlabeled

data

As the learning algorithms in MF and CF are supervised, in order to utilize

unlabeled data, the first phase therefore is to predict the labels for them. Then

the second phase is to employ the unlabeled data with predicted labels to

augment the classifiers’ predictive ability, thereby improving the performance

of noise detection.

The work in the first phase is based on our proposed ensemble-based data

labeling function which can be referred to Chapter 2.

Table 30 Majority filtering aided by unlabeled data

Algorithm: Majority Filtering with the Aid of Unlabeled Data (MFAUD)
Input: E (training set), U (unlabeled set)
Parameter: n (number of subsets), y (number of learning algorithms)

1 2, ,..., yA A A (y kinds of learning algorithms)
Output: A (detected noisy subset of E)
(1) form n disjoint almost equally sized subsets of iE , where i iE E∪ =
(2) A ←∅
(3) for 1,...,i n= do
(4) form \t iE E E←
(5) 1 2(, , , , , ,...,)U t yT En co training E U k u A A A= − −
(6) t t UE E T← ∪
(7) for 1,...j y= do
(8) induce jH based on examples in tE and jA
(9) end for
(10) for every ie E∈ do
(11) 0ErrorCounter ← // the num. of classifiers which misclassify e
(12) for 1,...,j y= do
(13) if jH incorrectly classifies e
(14) then 1ErrorCounter ErrorCounter← +
(15) end for
(16) if / 2ErrorCounter y> , then { }A A e← ∪
(17) end for
(18) end for

60

Table 31 Consensus filtering aided by unlabeled data

Algorithm: Consensus Filtering with the Aid of Unlabeled Data (CFAUD)
Input: E (training set), U (unlabeled set)
Parameter: n (number of subsets), y (number of learning algorithms)

1 2, ,..., yA A A (y kinds of learning algorithms)
Output: A (detected noisy subset of E)
(1) form n disjoint almost equally sized subsets of iE , where i iE E∪ =
(2) A ←∅
(3) for 1,...,i n= do
(4) form \t iE E E←
(5) 1 2(, , , , , ,...,)U t yT En co training E U k u A A A= − −
(6) t t UE E T← ∪
(7) for 1,...j y= do
(8) induce jH based on examples in tE and jA
(9) end for
(10) for every ie E∈ do
(11) 0ErrorCounter ← // the num. of classifiers which misclassify e
(12) for 1,...,j y= do
(13) if jH incorrectly classifies e
(14) then 1ErrorCounter ErrorCounter← +
(15) end for
(16) if ErrorCounter y= , then { }A A e← ∪
(17) end for
(18) end for

Let UT denote the output of phase 1, which includes the selected unlabeled

instances and their predicted labels. In this part, the variants of majority filtering

and consensus filtering are devised that use UT to aid the noise detection in

training data T . As shown in the above Tables, UT is utilized by our proposed

MFAUD and CFAUD with only marginal modifications on MF and CF are

required.

Always keep it mind that there is no free lunch and it is actually risky to use

unlabeled data. We shouldn’t take for granted that the using of unlabeled data

can definitely improve the performance of noise detection in training set. The

reason is as follows: although semi-supervised method including our ensemble-

61

based data labeling function can predict the labels for some selected unlabeled

data, the predicted labels are not noise-free (refer to Chapter 2). The unlabeled

instances with correctly predicted labels tend to improve the noise detection

performance, yet the noisy labels from prediction could potentially degrade the

classifiers’ predictive accuracies, which further leads to the performance

degradation of noise detection in training set. With this caveat in mind, we now

proceed to an empirical evaluation.

4.3 Empirical study

The main objective of the empirical study is to assess the benefit of unlabeled

data for noise detection in training data. Chapter 4.3.1 explains the experimental

setup. Afterwards Chapter 4.3.2 presents the experimental results.

4.3.1 Empirical setup

Existing MF, CF, and our proposed MFAUD, CFAUD are tested on the

benchmark datasets from the Machine Learning Database Repository.

Information of these data sets is tabulated in Table 4. Each data set is divided

into training set and test set. Noise detection method works on the training set

and outputs the filtered training set. Afterwards the test set is classified by the

classifiers which are trained on the various filtered training sets. Classification

error rate is the measure to evaluate the performance of each noise detection

method on the classifier, where

No. of incorrect classifications on testing instancesclassification error rate=
No. of testing instances

When two noise detection methods are applied to the same data set with the

same learning algorithm, lower classification error rate indicates that the noise

detection performance is better. To obtain the classification error rate, each data

set D is processed as follows:

(1) D is randomly partitioned into two parts: labeled set L and unlabeled set

U .

62

(2) Ten trials derived from ten-fold cross-validation on L are used to evaluate

the performance of each noise detection method. At each trial, 90% of L is

firstly selected and it is denoted by tempT . Most data sets here are experimental

data sets where the ratio between noisy data to the whole data might be very

small. However, the performance of noise removing method need to be

evaluated on the noisy data sets. To this end, we artificially generate some

noises in tempT by selecting some instances at random and then incorrectly

changing their labels. The number of selected instances, that is the number of

generated noises, is based the defined noise ratio, which is the ratio between

noisy data to the data in tempT . Let T denote the data after adding noises in tempT .

T is used as training data and it will be processed by MF, CF, MFAUD, and

CFAUD respectively. The remaining 10% of L is used as test set to be

classified by the algorithms that are trained on each filtered set of T .

(3) The average classification error rates of each algorithm with different

noise filtering methods are obtained by averaging ten trials’ error rates.

(4) Considering that the partition of data set could influence this average

classification error rate, we execute the partition five times and get five

classification error rates (execute step 1-3 five times).

(5) Finally the reported error rates of each algorithm with different noise

filtering methods are the further averaged value of these five values.

In this experiment, the four noise detection methods (MF, CF, MFAUD, and

CFAUD) follow the same configuration which is as follows: n , that is the

number of subsets, is set to 5; y , that is the number of learning algorithms, is

set to 3; A1, A2, and A3, representing three learning algorithms, refer to k-

nearest neighbor, naïve Bayes, and decision tree. The additional parameters in

MFAUD and CFAUD are for ensemble-based data labeling function and

configured as follows: k , that is the number of iterations, is set to 4; u , that is

the number of initially selected unlabeled instances, is equal to the number of

training data.

63

In addition to the parameters in the noise detection methods, there are two

major parameters in above experiment flow which can influence the experiment.

The first parameter determines data partitioning (step 1 of above experiment

flow) and it is the ratio between labeled data to the whole data, referred to

labeled ratio. In the experiment, labeled ratio is set to 0.5. The second and most

important parameter determines the noise level in the training set T and it is the

noise ratio (step 2 of above experiment flow). Considering that the data sets

obtained from the real application might have different noise levels, we have

performed several experiments varying the noise ratio to make the experiments

comprehensively. The experiments include two parts:

Experiment A: The noise ratios include 10%, 20%, 30%, and 40%. The

experiments here show the comparisons between MF and MFAUD under

different noise ratios. The objective is to test whether unlabeled data are able to

improve the performance of MF.

Experiment B: The noise ratios include 10%, 20%, 30%, and 40%. The

experiments in B show the comparisons between CF and CFAUD under

different noise ratios and the objective is to test whether unlabeled data are able

to improve the performance of CF.

4.3.2 Experimental results

Experiment A: MF versus MFAUD. The experiments in this part include the

comparisons between MF and MFAUD under four different noise ratios.

In Fig. 11 we show the classification error for each data set of the classifiers

formed by each of the three algorithms using no filter (None), majority filtering

(MF), and majority filtering aided by unlabeled data (MFAUD) when noise

ratio is 10%. The second last row reports the average classification error across

all the data sets of above classifiers. The last row reports the average

improvement of MFAUD over MF with respect to reduction of classification

error when they are used by each of the three algorithms. Fig. 11 shows for each

of the three algorithms, on average its performance with noise filtering is better

64

than that without noise filtering. Moreover MFAUD is better than MF for each

of the algorithms. Concretely, for 1-NN, the improvement of MFAUD over MF

is 4.5%; for naïve Bayes, the improvement is 1.3%; for decision tree, the

improvement is 4.0%.

As well, Fig. 12, 13, and 14 show the classification results when noise ratio is

20%, 30%, and 40%. Among them, we analyze Fig. 14 for analyzing purpose.

Fig. 14 reports the comparison between MF and MFAUD when noise ratio is

40%. It shows similar result trend as Fig. 11 that both MF and MFAUD could

improve the performance of all the three algorithms, and that MFAUD

outperforms MF. Note that the improvement of MFAUD over MF is

significantly increased when noise ratio increases from 10% to 40%. Concretely,

when noise ratio is 10%, the improvement is less than 5%; the improvement

however reaches to more than 20% when noise ratio is 40%.

Fig. 15 summarizes the comparisons between MF and MFAUD under four

different noise ratios. As shown in this table, MFAUD outperforms MF for each

of the three algorithms under different noise ratios. In addition, for each of the

algorithm, the improvement of MFAUD over MF is in direct proportion to the

noise ratio. For example, for 1-NN, the improvement of MFAUD over MF is

4.5%when noise ratio is 10%, while the improvement is significantly increased

to 25.6% when noise ratio is 40%. Averaged on the four noise ratios, for 1-NN,

the improvement of MFAUD on MF is 13.4%; for naïve Bayes, the

improvement of MFAUD on MF is 6.0%; for decision tree, the improvement of

MFAUD on MF is 13.7%.

65

Fig. 11. MF versus MFAUD when noise ratio is 10%

Fig. 12. MF versus MFAUD when noise ratio is 20%

66

Fig. 13. MF versus MFAUD when noise ratio is 30%

67

Fig. 14. MF versus MFAUD when noise ratio is 40%

Fig. 15. Summarization of MF versus MFAUD

68

 Experiment B: CF versus CFAUD. In Fig. 16 we show the classification

error for each data set of the classifiers formed by each of the three algorithms

testing using no filter (None), consensus filtering (CF), and consensus filtering

aided by unlabeled data (CFAUD) when noise ratio is 10%. As shown in this

table, both CF and CFAUD can provide improvement on the three algorithms.

When CF and CFAUD are compared, we find that CFAUD defeats CF.

However, the improvement of CFAUD over CF is not very remarkable and

limited in 6%.

Fig. 17 to 19 show the experimental results when noise ratio is 20%, 30%,

and 40% respectively. Here we choose Fig. 19 for analyzing.

Fig. 19 reports the classification comparison between CF and CFAUD when

noise ratio is 40%. Under this noise ratio, all of the three algorithms achieve

improved classification performance when using CF or CFAUD. Moreover,

CFAUD significantly outperforms CF and its improvement over CF is much

greater than that when noise ratio is 10%.

Fig. 20 shows the summarization of CFAUD versus CF under for different

noise ratios from 10% to 40%. This table indicates that CFAUD can provide

consistent improvement on each of the three algorithms under each of the four

noise ratios. In addition, for each of the three algorithms, the improvement of

CFAUD over CF increases as the noise ratio increases. When comparing the

three algorithms without noise filtering, naïve Bayes gives the best

classification. When comparing the three algorithms with noise filtering, on

average decision tree with CFAUD gives the best classification performance.

Experiments summarization: The results in Experiment A and B show that

MFAUD and CFAUD could consistently improve MF and CF under different

noise ratios. In other words, the mislabeled instances detection performance

could achieve consistent improvement with the aid of unlabeled data.

69

Fig. 16. CF versus CFAUD when noise ratio is 10%

Fig. 17. CF versus CFAUD when noise ratio is 20%

70

Fig. 18. CF versus CFAUD when noise ratio is 30%

Fig. 19. CF versus CFAUD when noise ratio is 40%

71

Fig. 20. Summarization of CF versus CFAUD

4.4 Discussions

The experiments in this Chapter show that our method can improve the

performance of majority and consensus filtering methods.

Recall the discussion in Chapter 2, using unlabeled data is not free because

their predicted labels are prone to noises. On one hand, the unlabeled data with

correctly predicted labels tend to improve the classification accuracy of

ensemble classifiers, thereby updating the performance of mislabeled instances

detection. On the other hand, the unlabeled data with incorrectly predicted

labels tend to degrade the performance of mislabeled instances detection. The

experimental results show that the positive effect of using unlabeled data

defeats its negative effect. One possible explanation is that: both MF and CF

employ n-cross-validation method for noise detection. For each cross, all the

72

data except this cross are used to train ensemble classifiers based on different

learning algorithms and then these constructed ensemble classifiers classify the

data in this cross to detect noises. This process determines that the performance

of noise detection is expected to improve when the predictive accuracy of

ensemble classifiers increase. Existing works on semi-supervised learning have

shown that the predictive accuracy of each classifier (also ensemble classifiers)

can be improved by using unlabeled data. Based on PAC theory [44], although

there might be some noisy predicted labels for unlabeled data, the negative

effect of them could be compensated if the amount of newly labeled examples is

sufficient.

Above discussion also explains the reason why our method works well for

instance-based noise filtering methods in Chapter 3. In essence, the instance-

based noise filtering methods also employ the “n-cross-validation” method for

noise detection, in which, the number n is the number of training instances in

their methods.

73

Chapter 5

Conclusion and future work

In this thesis, we present a novel noise filtering methodology which

incorporates the knowledge of unlabeled data. This is in contrast with existing

noise filtering methods that are usually supervised and can only utilize the

knowledge of training instances. To utilize unlabeled instances, we propose an

ensemble-based semi-supervised classification method to predict the labels for

some selected unlabeled instances.

To test the performance of our method, we firstly use it on three instance-

based noise filtering methods: edited nearest neighbor, repeated edited nearest

neighbor, and All k-NN. A set of experiments prove the superiority of our

method that all these three methods can achieve improved performance when

using our method.

Afterwards, to show the generality of our method, we also use it on the

general noise filtering methods: majority filtering and consensus filtering. Three

popular algorithms are adopted, including k-NN, naïve Bayes, and decision tree.

The experimental results show that by using our method, majority/consensus

filtering can be improved for all of these three methods.

This study indicates that the performance of traditional supervised noise

filtering methods could be boosted with the aid of unlabeled instances.

 Noise filtering is one of the techniques for noise handling. One of our future

works is to consider using unlabeled data in other noise handling techniques,

including, for example noise tolerance and noise correction.

In addition, although we claim that our method can be used to improve the

performance of noise filtering; currently five noise filtering methods are tested.

74

We will test the performance of our method on other noise filtering techniques

in the future.

Noise handling including noise filtering aims to refine the training data to

improve the learning performance. Another future work is to use unlabeled data

in other techniques with the aim of refining training data. The techniques we are

interested include feature selection and valuable training data selection.

Finally, the usage of unlabeled data in current work is by predicting the labels

for them. In the future, we will try to extract some other type of information

from unlabeled data, such as density information, partition information, and so

on.

75

Bibliography
[1] J. Mingers, “An Empirical Comparison of Pruning Methods for Decision Tree Induction,”

Machine Learning, vol. 4, Nov. 1989, pp. 227-243.

[2] J.R. Quinlan, C4.5: programs for machine learning, Morgan Kaufmann Publishers Inc.,
1993.

[3] D. Gamberger, N. Lavrac, and S. Dzeroski, “NOISE - DETECTION - AND -
ELIMINATION - IN - DATA - PREPROCESSING: EXPERIMENTS - IN - MEDICAL -
DOMAINS - PB - Taylor & Francis,” Applied Artificial Intelligence, vol. 14, 2000, p.
205.

[4] J.R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, Mar. 1986, pp. 81-
106.

[5] C.E. Brodley and M.A. Friedl, “Identifying and eliminating mislabeled training instances,”
IN AAAI/IAAI, vol. 1, 1996, pp. 799--805.

[6] C.E. Brodley, P. Uiversity, M.A. Friedl, B. Uiversity, and B.P. Edu, “Identifying
Mislabeled Training Data,” JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH,
vol. 11, 1999, pp. 131--167.

[7] I. Guyon, N. Matic, and V. Vapnik, “Discovering informative patterns and data cleaning,”
Advances in knowledge discovery and data mining, American Association for Artificial
Intelligence, 1996, pp. 181-203.

[8] D. Gamberger, N. Lavrac, and C. Groselj, “Experiments with Noise Filtering in a Medical
Domain,” Proceedings of the Sixteenth International Conference on Machine Learning,
Morgan Kaufmann Publishers Inc., 1999, pp. 143-151.

[9] D.L. Wilson, “Asymptotic Properties of Nearest Neighbor Rules Using Edited Data,”
Systems, Man and Cybernetics, IEEE Transactions on, vol. 2, 1972, pp. 408-421.

[10] D.W. Aha, D. Kibler, and M.K. Albert, “Instance-Based Learning Algorithms,” Mach.
Learn., vol. 6, 1991, pp. 37-66.

[11] K.P. Bennett, A. Demiriz, and R. Maclin, “Exploiting unlabeled data in ensemble
methods,” Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, Edmonton, Alberta, Canada: ACM, 2002, pp. 289-

76

296.

[12] X. Zhu and Y. Yang, “A lazy bagging approach to classification,” Pattern Recogn., vol.
41, 2008, pp. 2980-2992.

[13] Y. Song, F. Nie, C. Zhang, and S. Xiang, “A unified framework for semi-supervised
dimensionality reduction,” Pattern Recognition, vol. 41, Sep. 2008, pp. 2789-2799.

[14] J. Cheng and K. Wang, “Active learning for image retrieval with Co-SVM,” Pattern
Recognition, vol. 40, Jan. 2007, pp. 330-334.

[15] C. Constantinopoulos and A. Likas, “Semi-supervised and active learning with the
probabilistic RBF classifier,” Neurocomput., vol. 71, 2008, pp. 2489-2498.

[16] J. Handl and J. Knowles, “Semi-supervised feature selection via multiobjective
optimization,” Neural Networks, 2006. IJCNN '06. International Joint Conference on,
2006, pp. 3319-3326.

[17] J. Zhao, K. Lu, and X. He, “Locality sensitive semi-supervised feature selection,”
Neurocomputing, vol. 71, Jun. 2008, pp. 1842-1849.

[18] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum likelihood from incomplete data
via the EM algorithm,” JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B,
vol. 39, 1977, pp. 1--38.

[19] D. Yarowsky, “Unsupervised word sense disambiguation rivaling supervised methods,” IN
PROCEEDINGS OF THE 33RD ANNUAL MEETING OF THE ASSOCIATION FOR
COMPUTATIONAL LINGUISTICS, 1995, pp. 189--196.

[20] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with co-training,”
Proceedings of the eleventh annual conference on Computational learning theory,
Madison, Wisconsin, United States: ACM, 1998, pp. 92-100.

[21] A. Blum and S. Chawla, “Learning from Labeled and Unlabeled Data using Graph
Mincuts,” Proceedings of the Eighteenth International Conference on Machine Learning,
Morgan Kaufmann Publishers Inc., 2001, pp. 19-26.

[22] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using Gaussian fields
and harmonic functions,” IN ICML, 2003, pp. 912--919.

[23] E. Riloff, J. Wiebe, and T. Wilson, “Learning subjective nouns using
extraction pattern bootstrapping,” Proceedings of the seventh conference on

77

Natural language learning at HLT-NAACL 2003 - Volume 4, Edmonton,
Canada: Association for Computational Linguistics, 2003, pp. 25-32.

[24] B. Maeireizo, D. Litman, and R. Hwa, “Co-training for predicting emotions
with spoken dialogue data,” Proceedings of the ACL 2004 on Interactive
poster and demonstration sessions, Barcelona, Spain: Association for
Computational Linguistics, 2004, p. 28.

[25] C. Rosenberg, M. Hebert, and H. Schneiderman, “Semi-Supervised Self-
Training of Object Detection Models,” Application of Computer Vision, 2005.
WACV/MOTIONS '05 Volume 1. Seventh IEEE Workshops on, 2005, pp. 29-
36.

[26] K. Nigam and R. Ghani, “Analyzing the effectiveness and applicability of co-
training,” Proceedings of the ninth international conference on Information
and knowledge management, McLean, Virginia, United States: ACM, 2000,
pp. 86-93.

[27] Balcan, M.F., Blum, A. An augmented pac model for semi-supervised learning.
Semi-supervised learning, MIT Press. (2006)

[28] Zhou, Z.H., Zhan, D.C., and Yang, Q. Semi-supervised learning with very few
labeled training examples. 22nd AAAI conference on Artificial Intelligence.
(2007)

[29] Dasgupta, S., Littman, M.L., and McAllester, D. PAC generalization bounds
for co-training. (2001)

[30] UCI KDD Archieve, http://kdd.ics.uci.edu

[31] T.M. Cover and P.E. Hart, Nearest neighbor pattern recognition, IEEE Trans.
on Information Theory 13 no. 1 (1967) 21-27.

[32] R.O. Duda, P.E. Hart and D.G. Stork, Pattern Classification, 2nd ed. (John
Wiley & Sons, Inc., 2001)

[33] B.V. Dasarathy, Nearest Neighbor (NN) Norms: NN Pattern Classification
Techniques, IEEE Computer Society Press (Los Alamitos, CA, 1991)

[34] “An Experiment with the Edited Nearest-Neighbor Rule,” Systems, Man and
Cybernetics, IEEE Transactions on, vol. 6, 1976, pp. 448-452.

[35] J. Koplowitz and T.A. Brown, “On the relation of performance to editing in

78

nearest neighbor rules,” Pattern Recognition, vol. 13, 1981, pp. 251-255.

[36] R. Barandela and E. Gasca, “Decontamination of Training Samples for
Supervised Pattern Recognition Methods,” Advances in Pattern Recognition,
2000, pp. 621-630.

[37] P.A. Devijver, J. Kittler, Pattern Recognition: a Statistical Approach, (Prentice
Hall, Englewood Cliffs, N.J. 1982)

[38] J.S. Sánchez, F. Pla, and F.J. Ferri, “Prototype selection for the nearest
neighbour rule through proximity graphs,” Pattern Recogn. Lett., vol. 18,
1997, pp. 507-513.

[39] L.I. Kuncheva, “Editing for the k-nearest neighbors rule by a genetic
algorithm,” Pattern Recognition Letters, vol. 16, Aug. 1995, pp. 809-814.

[40] K. Hattori and M. Takahashi, “A new edited k-nearest neighbor rule in the
pattern classification problem,” Pattern Recognition, vol. 33, Mar. 2000, pp.
521-528.

[41] C. Keung and W. Lam, “Prototype Generation Based on Instance Filtering and
Averaging,” Proceedings of the 4th Pacific-Asia Conference on Knowledge
Discovery and Data Mining, Current Issues and New Applications, Springer-
Verlag, 2000, pp. 142-152.

[42] “Another Look at the Edited Nearest Neighbor Rule,” Systems, Man and
Cybernetics, IEEE Transactions on, vol. 7, 1977, pp. 92-94.

[43] F. Ferri and E. Vidal, “Small sample size effects in the use of editing
techniques,” Pattern Recognition, 1992. Vol.II. Conference B: Pattern
Recognition Methodology and Systems, Proceedings., 11th IAPR International
Conference on, 1992, pp. 607-610.

[44] D. Angluin and P. Laird, “Learning from noisy examples,” Machine Learning,
vol. 2, Apr. 1988, pp. 343-370.

79

List of publications

Journals

[1] Donghai Guan, Weiwei Yuan, Young-Koo Lee, Andrey Gavrilov, and
Sungyoung Lee. Improving Supervised Learning Performance by Using
Fuzzy Clustering Method to Select Training Data. Journal of Intelligent &
Fuzzy Systems, Vol 19, pp. 321-334, 2008. (SCIE)

[2] Donghai Guan, Weiwei Yuan, Young-Koo Lee, and Sungyoung lee. Nearest
Neighbor Editing Aided by Unlabeled Data. Information Sciences, Vol 179,
Issue 13, pp. 2273-2282, 2009. (SCI, impact factor 3.095)

Conferences (25)
[1] Donghai Guan, Yong-Koo Han, Young-Koo Lee, Sungyoung Lee and

Chongkug Park, "Refining Classifier from Unsampled Data", Proceedings of
2009 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2009),
Korea, (accepted), August, 2009

[2] Donghai Guan, Young-Koo Lee and Sungyoung Lee, "Activity Recognition
with the Aid of Unlabeled Samples", Proceedings of the 3rd International
Conference on Ubiquitous Information Management and Communication
(ICUIMC’09), Korea, pp.720-724, January, 2009

[3] Donghai Guan, Weiwei Yuan, Young-Koo Lee, and Sungyoung Lee, “Training
data selection based on Fuzzy C-means”, Proc. of Fuzz-IEEE (WCCI2008),
Hong Kong, China. ISBN: 978-1-4244-1818-3, pp. 761-765.

[4] Donghai Guan, Weiwei Yuan, Young-Koo Lee, and Sungyoung Lee, “Semi-
supervised Nearest Neighbor Editing”, Proc. of IJCNN-IEEE (WCCI2008),
Hong Kong, China. ISBN: 978-1-4244-1820-6, pp. 1183-1187.

[5] Weiwei Yuan, Donghai Guan, and Sungyoung Lee, “Trust Management for
Ubiquitous Healthcare,” Parallel and Distributed Processing with Applications,
2008. ISPA '08. International Symposium on, 2008, pp. 63-70.

[6] Donghai Guan, Weiwei Yuan, Sungyoung Lee and Young-Koo Lee, “Context
Selection and Reasoning in Ubiquitous Computing”, The 2007 International

80

Conference on Intelligent Pervasive Computing (IPC-07), October 11th ~ 13th,
2007, in Jeju Island, Korea, ISBN: 978-0-7695-3006-0, pp. 184-187

[7] Donghai Guan, Weiwei Yuan, Seong Jin Cho, Andrey Gavrilov, Young-Koo
Lee, Sungyoung Lee:, "Devising an Information Gain-based Reasoning Engine
for Context-aware Ubiquitous Computing Middleware", Proc. of International
Conference on Ubiquitous Intelligence and Computing (UIC 2007, LNCS),
Hong Kong, China, July, 2007. ISBN: 978-3-540-73548-9, pp. 849-857

[8] Donghai Guan, Andrey V. Gavrilov, Weiwei Yuan, Young-Koo Lee and
Sungyoung Lee, "A Novel Hybrid Neural Network for Data Clustering", The
2007 International Conference on Machine Learning, Models, Technologies
and Applications, WorldComp 2007, June 25-28, Las Vegas, USA. ISBN 1-
60132-027-2. pp. 284-288

[9] Donghai Guan, Weiwei Yuan, Young-Koo Lee, Andrey Gavrilov and
Sungyoung Lee, "Combining Multi-layer Perceptron and K-means for Data
Clustering with Background Knowledge", The 2007 International Conference
on Intelligent Computing (ICIC2007, Springer), August 21-24, Qingdao, China.
ISSN 1865-0929 (Print) 1865-0937 (Online). pp. 1220-1226

[10] Donghai Guan, Weiwei Yuan, Young-Koo Lee, Andrey Gavrilov and
Sungyoung Lee, "Data Selection Based on Fuzzy Clustering", The 12th
International Conference on Fuzzy Theory & Technology (JCIS 2007), July
18-24, USA. DOI No: 10.1142/9789812709677_0174, Source:
INFORMATION SCIENCES 2007, pp 1231-1237.

[11] Donghai Guan, Weiwei Yuan, Young-Koo Lee, Andrey Gavrilov and
Sungyoung Lee, “Activity Recognition Based on Semi-supervised Learning”,
The 13th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, August 21-24, 2007, Korea. ISSN:
1533-2306.ISBN: 978-0-7695-2975-2.pp. 469-475

[12] Donghai Guan, Andrey Gavrilov, Weiwei Yuan, Sungyoung Lee and Young-
Koo Lee, "Data Clustering Using Hybrid Neural Network", the 27th KIPS
Spring Conference, Korea. pp. 457-458.

[13] Weiwei Yuan, Donghai Guan, Sungyoung Lee, and Heejo Lee, “Using
Reputation System in Ubiquitous Healthcare”, The 9th IEEE International
Conference on e-Health Networking, Application & Services (Healthcom
2007), Taipei, June 19-22, 2007. ISBN: 1-4244-0942-x, pp 182-186.

81

[14] Weiwei Yuan, Donghai Guan, Sungyoung Lee, and Young-Koo Lee, “The
Role of Trust in Ubiquitous Healthcare”, the 9th IEEE International
Conference on e-Health Networking, Application & Services (Healthcom
2007), Taipei, June 19-22, 2007. ISBN: 1-4244-0942-x, pp 312-315.

[15] Weiwei Yuan, Donghai Guan, Sungyoung Lee and Young-Koo Lee, “A
Reputation System based on Computing with Words”, International Wireless
Communications and Mobile Computing Conference 2007 (IWCMC 2007),
August 12-16, 2007, Honolulu, Hawaii. ISBN:978-1-59593-695-0. pp, 132-
137

[16] Weiwei Yuan, Donghai Guan, Sungyoung Lee, “The Role of Reputation in
Ubiquitous Healthcare System”, the 27th KIPS Spring Conference, Korea. pp.
847-848.

[17] Weiwei Yuan, Donghai Guan, Sungyoung Lee and Heejo Lee, “Bayesian
Memory-Based Reputation System”, International Mobile Multimedia
Communications Conference (MobiMedia 2007), ISBN:978-963-06-2670-5,
Article No. 9.

[18] Donghai Guan, Qing Li, Sungyoung Lee and Young-Koo Lee, "A Context-
aware Music Recommendation Agent in Smart Office", The Second
International Conference on Natural Computation (ICNC'06) and the Third
International Conference on Fuzzy Systems and Knowledge Discovery
(FSKD'06), Xi'an, China, ISBN: 978-3-540-45916-3, ISSN: 0302-9743, LNCS
4223, pp. 1201-1204, http://www.icnc-fskd2006.org, September 24-28, 2006

[19] Donghai Guan, Weiwei Yuan, Andrey Gavrilov, Young-Koo Lee, Sungyoung
Lee and Sang Man Han, "Using Fuzzy Decision Tree to Handle Uncertainty in
Context Deduction", LNAI, SCIE. 2006 International Conference on
Intelligent Computing, ISBN: 978-3-540-37274-5, ISSN: 0302-9743, LNAI
4114, pp. 63-72.

[20] Donghai Guan, Weiwei Yuan, Mohammad A. U. Khan, Young-Koo Lee,
Sungyoung Lee and Sangman Han, "Utilizing a Hierarchical Method to Deal
with Uncertainty in Context-aware Systems", LNAI, SCIE. 2006 International
Conference on Intelligent Computing, ISBN: 978-3-540-37255-4, ISSN: 0170-
8643, LNCIS 344, pp. 741-746.

[21] Weiwei Yuan, Donghai Guan, Sungyoung Lee, and Youngkoo Lee, “A
Context-Based Architecture for Reliable Trust Model in Ubiquitous

82

Environments”, The 14th IEEE International Conference on Networks
(ICON2006), Singapore, Sep 13-15, 2006. ISBN: 0-7803-9746-0, pp236-240.

[22] Weiwei Yuan, Donghai Guan, Le Xuan Hung, Sungyoung Lee, and Youngkoo
Lee, “A Trust Model with Dynamic Decision Making For Ubiquitous
Environments”, The 14th IEEE International Conference on Networks
(ICON2006), Singapore, Sep 13-15, 2006. ISBN: 0-7803-9746-0, pp230-235.

[23] Weiwei Yuan, Donghai Guan, Sungyoung Lee, and Youngkoo Lee, "A
Dynamic Trust Model Based on Naive Bayes Classifier for Ubiquitous
Environments", LNCS, SCIE. The 2006 International Conference on High
Performance Computing and Communications (HPCC-06). LNCS 4208, ISBN
3-540-39368-4, pp.562-571.

[24] Weiwei Yuan, Donghai Guan, Sungyoung Lee and Youngkoo Lee, “Finding
Reliable Recommendations for Trust Model”, LNCS, SCIE. The 7th
International Conference on Web Information Systems Engineering (WISE
2006). LNCS 4255, ISBN 3-540-48105-2. pp 375-386.

[25] Weiwei Yuan, Donghai Guan, Sungyoung Lee, Young-Koo Lee, and Heejo
Lee, “Filtering out Unfair Recommendations for Trust Model in Ubiquitous
Environments”, LNCS, Second International Conference on Information
Systems Security (ICISS 2006) 17-21 December 2006, Kolkata, India. LNCS
4332, ISBN 3-540-68962-1, pp 357-360.

83

List of abbreviations

SSL Semi-supervised Learning

ENN Edited Nearest Neighbor

RENN Repeated Edited Nearest Neighbor

ANN All k-NN

NNE Nearest Neighbor Editing

ENN+ Edited Nearest Neighbor Aided by Unlabeled Data

RENN+ Repeated Edited Nearest Neighbor Aided by Unlabeled Data

ANN+ All k-NN Aided by Unlabeled Data

MF Majority Filtering

CF Consensus Filtering

MFAUD Majority Filtering Aided by Unlabeled Data

CFAUD Consensus Filtering Aided by Unlabeled Data

k-NN The k-Nearest Neighbor Algorithm

NB Naïve Bayes

DT Decision Tree

	1.1 Noise filtering by using unlabeled data
	1.2 Thesis outline
	2.1 Introduction to semi-supervised learning
	2.1.1 Self-training
	2.1.2 Co-training

	2.2 The proposed ensemble-based data labeling function
	2.2.1 The performance of ensemble-based data labeling function

	3.1 The k-nearest neighbor algorithm
	3.2 Nearest neighbor editing
	3.3 Nearest neighbor editing aided by unlabeled data (NNEAUD)
	3.4 Empirical study
	3.4.1 Experimental setup
	3.4.2 Experimental results: varying the labeled ratio
	3.4.3 Experimental results: varying the noise ratio

	3.5 Discussions
	4.1 Majority & Consensus filtering
	4.2 Majority & Consensus filtering aided by unlabeled data
	4.3 Empirical study
	4.3.1 Empirical setup
	4.3.2 Experimental results

	4.4 Discussions

