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KYUNG HEE UNIVERSITY

Abstract

Department of Computer Science and Engineering

Doctor of Philosophy

Towards Image Semantic Segmentation and Classification using Bracket-style Convolutional

Neural Network and Its Variants

by Hua Cam Hao

Nowadays, thanks to the exponential advancements of computational resources along with the

massive surge of image quantity and quality, deep learning technique, a special branch of Artifi-

cial Intelligence, achieves extraordinary performance in various computer vision tasks comprising

image classification and semantic segmentation. Besides that, in the current era of Industry 4.0,

vision-oriented applications become vastly significant in everyday life, smart healthcare, and in-

dustrial manufacture, to name a few. Accordingly, in the literature, there emerges tremendous re-

searches that introduce deep learning architecture in form of convolutional neural network (CNN)

for tackling the problem of understanding image semantically for the above-mentioned software

products. However, since there are still limitations in the related works of semantic image segmen-

tation and image classification in several specialized domains, this thesis presents a Bracket-style

CNN and its variants to tackle the existing issues, respectively.

Firstly, regarding the problem of semantic image segmentation, which is equivalent to image’s

pixel-level classification, the key mechanism in a predefined deep learning model is to be capa-

ble of coordinating globally contextual information with locally fine details in the input image

for generating optimal segmentation map. But nonetheless, existing work did not exhaustively

exploit middle-level features in the CNN, which carry reasonable balance between fine-grained

and semantic information, to boost the effectiveness of the above-mentioned procedure. Hence,

a Bracket-shaped CNN is proposed to leverage the exploitation of middle-level feature maps in

a tournament by exhaustively pairing adjacent ones through attention embedded combination

modules. Such routine repeats round-by-round until the prediction map of densely enriched
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semantic contexts is finalized. It is worth noting that the approach of combining two neigh-

boring feature maps having different resolutions is defined by adopting a cross-attentional fu-

sion mechanism, namely CAF module. The major objective is to properly fusion semantically

rich information (of the lower-resolution inputs) with finely patterned features (of the higher-

resolution versions) for the outputs. As a consequence, the proposed semantic segmentation

model is trained and evaluated on three well-known datasets, from which competitive perfor-

mance in terms of mean Intersection of Union (compared to novel methods in the literature) is

attained as follows: PASCAL VOC 2012 [20] (83.6%), CamVid [9] (76.4%) and Cityscapes [18]

(78.3%) datasets. Furthermore, the proposed architecture is shown to be flexibly manipulated by

round-wise features aggregation to perform the per-pixel labeling task efficiently on dataset with

heavily class-imbalancing issue such as DRIVE [80], which aims at retinal blood vessel segmenta-

tion, in comparison with the state-of-the-arts. Particularly, Sensitivity, Specificity, Accuracy, and

Area Under the Receiver Operating Characteristics achieve 79.32%, 97.41%, 95.11%, and 97.32%,

respectively.

Secondly, the proposed Bracket-style concept in this thesis can be extended as variants for ef-

fectively classifying image in specialized domains such as Diabetic Retinopathy (DR) grading and

facial expression recognition (FER). Concretely, in such kind of deep learning model, channel-

wise attentional features of semantically-rich (high-level) information are integrated into finely-

patterned (low-level) details in a feedback-like manner, a.k.a. single-mode Bracket-structured

network (sCAB-Net). Accordingly, feature maps of different scales can be amalgamated for ex-

tensively involving spatially-rich representations to the final predictions. From the evaluation

process, impressive benchmark results on the aforementioned areas, wherein spatially-rich fac-

tors play an important role to the decision of image label, are achieved. On the one hand, with

respect to DR recognition, the proposed architecture reaches a remarkable quadratic weighted

kappa of 85.6% on Kaggle DR Detection dataset [47]. On the other hand, about FER, it gains a

mean class accuracy of 79.3% on RAF-DB dataset [58].

In overall, the above-mentioned operational characteristics and experimental achievements

demonstrate a promising capability of the proposed Bracket-style network toward complete im-

age understanding (by either semantic segmentation (pixel-level labeling) or classification (image-

level labeling) performance) for further practical computer perception-based applications.
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Chapter 1

Introduction

1.1 Overview of Deep Learning

Over the last decade, the world has witnessed extraordinary advancements of vision-related tech-

nology that human beings experience in daily life. For instance, image recognition technology is

widely adopted in smart devices from big-tech corporations. End-users can easily search and sort

their pictures based on specific objects without any efforts of tagging from a cat to a rainy scenery

or even abstract actions like hugging, selfie, to name a few. Moreover, several high-tech products

can verbally describe the image’s content for the blind. When a user requests to organize an al-

bum of dog image, the application in use has to determine corresponding species ranging from

Chihuahua to Shiba Inu on any background scenes, and simultaneously excluding similar images

of cat or wolf. Besides that, other areas such as biomedicine, robotics, drone-based monitoring,

and autonomous driving can significantly benefit from such kind of technological growth. In par-

ticular, some intelligent medical platforms are capable of interpreting X-ray, Magnetic Resonance

Imaging, and Computed Tomography in an efficient manner. Lately, several large tech companies

are re-defining the way we travel through the research and development of autonomous driv-

ing cars having the capability of fully scene understanding. The above-mentioned observations

raise an apparent question as follows: How can those softwares and products do such incredible

functions?

All those technologies fundamentally originate from the same root called deep learning, a spe-

cial branch of Artificial Intelligence (AI). Many scientists still prefer calling it in the original name,

which is deep neural network. Practically, it is impossible for developers to manually program

the smart features mentioned above. Instead, they generate algorithm that helps the computer

self-learn from gigabyte or even terabyte of relevant data (e.g. millions of natural images). This
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continuous interaction gradually "train" the computer to be able to automatically recognize the im-

ages according to preset requirements. Similar to the way a baby learns to realize the surrounding

environment after long-term observation and listen to what the adults communicate, the com-

puter can "perceive" the location of a predefined object as well as "understand" the whole context

in an image after numerous training iterations. For instance, how the deep neural network can

recognize a dog in an image is outlined as follows. During the training procedure, the deep model

is provided thousands of animal images to learn the discrimination behind. Initially, a dog image

without any associated label is fed into the network. Then, shallower neural layers have various

responses to different body parts of the dog. Next, deeper layers shall acquire more complicated

details of the dog’s appearance. Afterwards, final neurons of the network can explore the most

discriminated features and abstract representations of the dog in comparison with those of other

animals. At the output, this deep learning model can classify the objects based on representational

features exploited from the training data of diverse perspectives.

The neural network is not a whole new technology since its debut was in 1950s. Accordingly,

significant breakthroughs were made during 1980s and 1990s. However, the major reason why

deep learning technology emerges again in the last 10 years is that the scientists have finally been

capable of utilizing the power of computational resources along with big visual data, which are

fundamental factors leveraging the effectiveness of neural network. The evolution of hardware

has enabled the enormous rise of deep learning. The surge of computing resources not only takes

place on Moore’s Law-based device but also comes from the appearance of 1st-gen Graphical

Processing Unit (GPU) of NVIDIA, which brings in marvelous vision experience for computer

users. Nowadays, besides providing impressive 3D gaming experience, GPU is also employed

to boost the computation speed in biomedicine system, computer vision, financial modeling, etc.

around 20-50% when applying deep learning compared to the conventional Central Processing

Unit (CPU). The second factor, i.e., big visual data from present Internet-of-Thing (IoT) devices,

has been initiated when Internet is born but only reaches peak during this new century. Those two

catalysts have begun a revolution for deep learning. In 2011, the supercomputer Watson of IBM

only applies AI to defeat the best player in Jeopardy game show, and to this end, deep learning has

been additionally integrated for the deployment of more than 30 service groups that this system

offers. In 2012, Google only launches two AI-related projects, and till now, that amount is up to

1000 for enormous frameworks, services and operating system like searching, Gmail, Android,

Translation, Youtube, autonomous driving, etc.
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But nonetheless, deep learning still has remarkable limitations. Firstly, it always requires a

big amount of annotated data for a certain task. This process is time-consuming and demands

powerful computing resources for fast training procedure. Otherwise, the final performance is

not as impressive as expected. Secondly, deep learning still faces difficulties in recognizing very

complex scenarios and vulnerable to adversarial attacks [26]. The primary reason is that the con-

temporary technology is not good enough to make decision in a transparent and logical manner

like human beings. In brief, since deep learning still lies in early phase of its era, those drawbacks

are unavoidable. It should take much more time so that AI system in common is fully equipped

with "realistic senses" like human beings, but the development of AI era is now being leveraged

to move on a super-highway in the next decades.

1.2 Image Classification and Semantic Segmentation using Deep Learn-

ing

According to previous section, extensive development of powerful computation and increment of

big visual data has leveraged deep learning in numerous computer vision tasks for further indus-

trial deployment. To this end, Convolutional Neural Network (CNN), one of the most well-known

lines of deep learning technique, has attracted numerous researchers thanks to its significant per-

formance boost in various problems ranging from categorizing overall content [17, 29, 34, 79] to

labeling every single pixel [6, 67, 75] of images. Specifically, the former is basically referred to as

classification issue at image level, which can be applied into human activity recognition [39, 40],

disease progression identification [37], to name a few. Meanwhile, the latter is called semantic

segmentation which takes a further step of doing the same job at pixel level for semantic scene

understanding.

In fact, such per-pixel labeling problem remains an open research area due to the following

reason: the recently rapid development of perception-related applications (e.g., medical image

analysis, augmented reality, computational photography, autonomous driving) requires higher

pixel-wise categorization performance for retrieving more comprehensive knowledge from the

given scenes. For example, segmenting regions of interest semantically from a medical image can

provide valuable information such as tumor density (by pixel level) to the physicians for better

diagnosis and treatment [7]. As a result, a large amount of semantic segmentation models has



Chapter 1. Introduction 4

been proposed and benchmarked with large-scale datasets [9, 18, 20] for being efficiently applied

into the aforementioned technologies.

1.3 Problem Statement

Generally, to tackle such pixel-wise grouping problem, most existing approaches have utilized

CNN primarily designed for classifying images like VGGNet [79], ResNet [29], Xception [17], to

name a few, as the backbone network to exhaustively exploit its powerful feature representation.

In concrete, shallow layers learn finely patterned but weakly semantic features due to partial view

on the original inputs. Oppositely, deep layers acquire feature maps which depict abstract appear-

ance (a.k.a., coarse pattern) but carry semantically rich information due to multiple subsampling

stages and larger field of view on the input images, respectively. In concrete, features learned

at shallow layers are finely patterned but weakly semantic due to partial view on the original

inputs. Oppositely, features acquired at deeper layers depict abstract appearance (a.k.a., coarse

pattern) but carry semantically-rich information due to multiple subsampling stages and larger

field of view on the input images, respectively. In other words, following the feedforward process

of the CNNs, wherein spatial resolution of the learned feature maps gradually decreases while

corresponding channel dimension increases significantly, local details and global contextual infor-

mation are extracted successively. Besides that, since semantic segmentation framework aims to

generate densely labeled output having spatial size same as that of the input, it emerges the fol-

lowing research question: How to design an optimal decoding strategy being able to balancedly combines

local information (finely patterned features) with global context (semantically rich features) extracted from

shallow-to-deep layers of the backbone CNN?

To address this, Fully Convolutional Network (FCN) [67] - the pioneering model of end-to-

end trainable segmentation architecture - utilized skip-connection mechanism to fuse contextual

information captured from middle- to high-level layers. Accordingly, to resolve those drawbacks

as well as take the segmentation performance to new heights, numerous efforts have been made

in the literature. In terms of network topology, there are two major groups, i.e., symmetrically-

[6, 8, 42, 52, 59, 62, 63, 72, 75, 83] and asymmetrically-structured [12, 23, 54, 56, 96–98, 101–103,

105] frameworks as shown in Fig. 1.1a and 1.1b, respectively. In specific, the former reversely

imitates information flow of the feedforward process to retrieve the final output of label values

in stepwise coarse-to-fine manner. It is also worth noting that the newly decoded feature maps
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are usually linked with the corresponding ones in the encoding stage, i.e., backbone CNN, by

skip-fusion or concatenation strategies. Such kind of procedure was proven to enhance the capa-

bility of accurately embedding semantic information into proper instances. It is also worth noting

that feature maps in the encoding stage, i.e., backbone CNNs, are often linked with the corre-

sponding ones by skip-fusion or concatenation strategies during the decoding process in such

kind of approach in order to enhance the capability of accurately embedding semantic informa-

tion into proper instances. Meanwhile, instead of taking into account the encoding flow as well

as stage-wisely extracted feature tensors of interest, the group of asymmetric architecture mainly

incorporates spatial pyramid pooling schemes on the coarsest-resolution feature map of the base

CNN. This strategy can exploit meaningful multi-scale contexts and/or involve simple yet effec-

tive aggregation schemes as previously mentioned to refine newly inferred features for finalizing

the dense prediction map.

Regarding the upsampling strategy, Fig. 1.1a (i.e., symmetrically-structured network group) con-

ceptually shows that only the lowest-resolution feature map inferred from the backbone CNN

is upsampled step-wisely to form into the highest-resolution prediction map. In addition, dur-

ing this progress, all the intermediate upsampled features are refined by counterparts learned at

encoding stage via certain combination mechanisms. Note that the whole structure of this ap-

proach can be also referred to as a U-/Ladder-shaped architecture. Similarly, demonstration of

the asymmetrically-structured network group in Fig. 1.1b delivers the same idea in which the de-

coding process initiates from the coarsest feature map for further spatial pyramid pooling and

upsampling steps. It can be observed from these architectures that feature maps obtained at

middle layers of the backbone CNN are not utilized significantly. Clearly, they just perform a

single role of excluding contextual ambiguities from the corresponding upsampled versions in

the symmetrically-structured group. Meanwhile, they even contribute nothing during the decoding

stage in the asymmetrically-structured group.

1.4 Objectives

Accordingly, motivated by the fact that the middle-level features are not exploited thoroughly in

the existing work, this thesis introduces a Cross-Attentional Bracket-shaped Convolutional Neu-

ral Network, namely CAB-Net, to leverage their contributions to the process of retrieving final

pixel-wise prediction map. In concrete, it is hypothesized that each middle-level feature keeps
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(A) Symmetrically-structured Network

(B) Asymmetrically-structured Network

(C) The proposed Bracket-structured Network

Feature maps of interest acquired from backbone CNNs

Convolution

Combination modules

Identity

Upsampling

Intermediate feature maps inferred during decoding stage

Final pixel-wise prediction map 

Spatial pyramid pooling / dilated convolution

FIGURE 1.1: Conceptual diagrams of (A) symmetrically-structured network, (B)
asymmetrically-structured network, and (C) the proposed Bracket-style network for
semantic segmentation. Spatial and channel dimension of the feature maps are rep-

resented by corresponding perimeter and border thickness, respectively.

a reasonable balance between fine-grained details and semantic information, which is capable of

simultaneously refining pixel-wise context of coarser-resolution feature maps and eliminating am-

biguities existent at finer-resolution versions. Hence, as conceptually depicted in Fig. 1.1c, not only

the coarsest one, every feature map of interest (except for the one with highest spatial dimension)

is now upsampled and then combined with the adjacent higher-resolution version to produce
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finer outputs. Continuously, these newly decoded features repeat the same procedure round-by-

round until shaping the final feature map of finest resolution. Notably, to strengthen the semantic

contexts in the results of the combination between two adjacent feature maps, a cross-attentional

scheme inspired from SENet [34] and SCA-CNN [11] is embedded into the mergers.

Intuitively, given feature maps of different scales extracted along the feedforward process of a

backbone network, i.e., F1,F2,F3,F4, conceptual operations in the symmetrically-structured network

topology (Fig. 1.1a) can be formulated as follows.

F4→3 = C(U×2(F4),F3)

F4→3→2 = C(U×2(F4→3),F2)

F4→3→2→1 = C(U×2(F4→3→2),F1)

Fseg = So f tmax(F4→3→2→1)

(1.1)

where C indicates predefined combination module between feature maps of different resolution;

U×s represents the operation of upsampling the considered feature map by s times; and Fseg de-

notes the output segmentation map. Meanwhile, the corresponding operations in symmetrically-

structured network counterpart (Fig. 1.1b) are given as below.

F4→3 = U×2(F4)

F4→2 = U×4(F4)

F4→1 = U×8(F4)

Fseg = So f tmax(C(F4,F4→3,F4→2,F4→1))

(1.2)

Obviously, these abstract formulations show that the contributions of the middle-level features,

which possess well-defined balance between finely-patterned details and semantically contextual

information, are exploited appropriately for the finalization of pixel-wise segmentation map as

mentioned above. Meanwhile, exhaustive utilization of those feature maps can be attained in the
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proposed Bracket-style decoding scheme (Fig. 1.1c) as demonstrated by the following equation.

F4→3 = C(U×2(F4),F3)

F3→2 = C(U×2(F3),F2)

F2→1 = C(U×2(F2),F1)

F4→3→2 = C(U×2(F4→3),F3→2)

F3→2→1 = C(U×2(F3→2),F2→1)

F4→3→2→1 = C(U×2(F4→3→2),F3→2→1)

Fseg = So f tmax(F4→3→2→1)

(1.3)

It can be realized that the middle-scale feature maps F2, F3, and F3→2 are exploited intensively

in the proposed idea, instead of only once in the symmetrically-structured design or even not being

considered during the decoding process as in the symmetrically-structured counterpart. Specifically,

they play both roles of semantically-richer representation (corresponding to lower-resolution in-

put) and finer-grained representation (corresponding to higher-resolution input) in the involved

combination modules. As a consequence, their contributions to the proposed hierarchical process

of generating segmentation results can be leveraged more comprehensively, which is expected to

further improve the segmentation accuracy compared with the existing network concepts.

Furthermore, the concept of Bracket-style CNN can be extended to tackle the image classifica-

tion problem in several specialized domains such as Diabetic Retinopathy (DR) grading or Facial

Expression Recognition (FER), wherein the result is inferred from the combination of various spa-

tially rich details (e.g., structural biomarkers for the former topic or facial muscles regarding the

latter) in the original image. This can be briefly explained as follows: since sequentially down-

sampling process along the feedforward path in the CNN vanishes various spatial structures of

the image, only relying on the deepest (lowest-resolution) features for the final classifier as in

Fig. 1.2a may yield misleading predictions. Based on these observations, a Single-mode Cross-

Attentional Bracket-style CNN (sCAB-Net) is proposed to leverage the learnable integration of

channel-wise attention at multi-level features in a pretrained CNN as conceptually illustrated in

Fig. 1.2b, which allows reaching superior recognition performance in a cost-effective way. In par-

ticular, feature maps of predefined levels chosen from the backbone CNN are employed to firstly

extract their channel-wisely attentional representations. Then, the obtained vectorized results are

combined in a single-round Bracket-structured mechanism, of which the cross-scale outcomes are
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(A) Conventional CNN

(B) Variant of Bracket-style CNN

Feature maps of interest acquired from backbone CNNs

Convolution

Combination modules

Identity
Attentional features extractor

Element-wise multiplication
Intermediate feature maps inferred during decoding stage

Final feature vector

Spatial pooling Fully connected layer

FIGURE 1.2: Conceptual diagrams of (A) conventional CNN and (B) the variant of
Bracket-style CNN for image classification. Spatial and channel dimension of the
feature maps are represented by corresponding perimeter and border thickness, re-

spectively. Color view is recommended for the best visualization.

subsequently adopted for recalibrating the semantic context in those feature maps. Afterwards,

the refined features of different resolutions are aggregated via globally spatial pooling layers fol-

lowed by a concatenation module to construct the final feature vector, which is more robust than

that of the conventional CNN.

Briefly, given that informative features are channel-wisely encoded from shallow to deep lay-

ers, smooth integration of such semantically-rich (high-level) details into the finer-grained (low-

level) patterns by attentional extractors (which are motivated from [34]) in a Bracket-style reversed
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manner is taken into account. In specific, the attachment of Channel-wisely Cross-Attentional

(CCA) stream into the backbone CNN facilitates spatial representations of important DR-oriented

factors (for the DR detection domain) as well as facial modalities (for the FER domain), which

are comprehensively refined by semantic context of higher-level features ahead, to be compre-

hensively involved in the final prediction of given supervised classes. Obviously, such effective

aggregation scheme of various semantic information from the multi-level feature maps in a CNN

is the fundamental key for recognizing corresponding DR severity level or facial emotion label

more accurately.

1.5 Major Contributions

Based on the aforementioned problem statement and objective, main contributions of this thesis

are summarized as follows:

• A Bracket-shaped CNN is proposed to leverage the exploitation of middle-level feature

maps by exhaustively pairing adjacent ones through attention embedded combination mod-

ules. Such routine repeats round-by-round until the final prediction map of densely enriched

semantic contexts is retrieved.

• An effective approach of combining two neighboring feature maps having different resolu-

tions is defined by adopting a cross-attentional fusion mechanism, namely CAF module. The

major objective is to properly fusion semantically rich information (of the lower-resolution

inputs) with finely patterned features (of the higher-resolution versions) for the outputs.

• The proposed semantic segmentation model is trained and evaluated on well-known se-

mantic segmentation datasets including PASCAL VOC 2012 [20], CamVid [9], Cityscapes

[18], and MS-COCO [64], on which the performance is competitive with well-known deep

learning models in the literature.

• The proposed architecture can be flexibly manipulated by round-wise features aggregation

to perform the per-pixel labeling task efficiently on dataset with heavily class-imbalancing

issue such as DRIVE [80], which aims at retinal blood vessel segmentation, in comparison

with the state-of-the-arts.

• The proposed concept can be extended as a variant tackling the image classification problem,

wherein channel-wise attentional features of semantically-rich (high-level) information are
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integrated into finely-patterned (low-level) details in a feedback-like manner, a.k.a. single-

mode Bracket-structured network (sCAB-Net). Accordingly, feature maps of different scales

can be amalgamated for extensively involving spatially-rich representations to the final pre-

dictions.

• The proposed Bracket-style network variant for image classification achieves impressive

benchmark results on specialized domains, wherein spatially-rich factors play an impor-

tant role to the decision of image label, like DR recognition (Kaggle DR Detection dataset

[47]) as well as FER (RAF-DB dataset [58]).

• In overall, the above-mentioned points demonstrate a promising capability of the proposed

Bracket-style network toward complete image understanding (by either semantic segmen-

tation (pixel-level labeling) or classification (image-level labeling) performance) for further

practical computer vision-oriented applications.

1.6 Thesis Organization

For convenience, chapters of this thesis are organized as follows:

• Chapter 1 - Introduction: this chapter firstly delivers the overview of deep learning, the

core AI-based approach applied in this thesis. Then, brief description of image classification

and semantic using that technique is given. Afterwards, problem statement based on the

existing issues in those topics is expressed in details. Subsequently, corresponding objectives

followed by major contributions of this thesis are elaborated.

• Chapter 2 - Related Work: since the main scope of this research is semantic image seg-

mentation, existing works related to this problem are focused. Concretely, approaches in

two different lines, i.e., symmetrically-structured and asymmetrically-structured networks, are

respectively reviewed and discussed.

• Chapter 3 - Proposed Methodology: this chapter sequentially provides the relevant pre-

liminaries such as overview of CNN and its constituents, corresponding modeling process,

as well as configurations and hyperparameter settings for the training procedure. Next, in-

depth description of the proposed Bracket-shaped CNN is given. Finally, Cross-Attentional

Fusion module, the core component of the segmentation-based Bracket-shaped architecture,

is characterized extensively.
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• Chapter 4 - Experiments on Natural Image Segmentation: in this chapter, the proposed

methodology is comprehensively evaluated on well-known semantic segmentation datasets

to demonstrate its effectiveness for vision-related applications like object localization, au-

tonomous driving, so on. At first, background of the benchmark datasets is introduced.

Then, details of training configurations are mentioned. Afterwards, ablation study plus

comparison with the state-of-the-art approaches followed by relevant analyses are inten-

sively discussed.

• Chapter 5 - Bracket-style Network Variant for Medical Image Segmentation: This chapter

aims at the first expandable capability of the proposed Bracket-structured deep learning

model, i.e., for medical image segmentation. Particularly, domain overview, descriptions

of the variant for retinal blood vessel segmentation subject to the heavily class-imbalancing

issue, details of evaluated datasets, training configurations, and analyses of experimental

results are in-turn delivered in this chapter.

• Chapter 6 - Bracket-style Network Variant for Image Classification: This chapter aims at

the second expandable capability of the proposed Bracket-style concept, i.e., for effective im-

age classification in specialized domains such as DR grading and FER. Similar to the outline

of previous chapter, domain overview, descriptions of the variant, and details related to the

conducted experiments in those research topics are covered.

• Chapter 7 - Conclusions and Future Direction: This chapter summarizes all the research

outcomes comprising findings and contributions of the proposed methodology for various

vision-oriented tasks like pixel-wise segmentation and image classification. Furthermore,

limitations and future direction are included for the ultimate objective of complete image

understanding with high effectiveness and efficiency.
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Chapter 2

Related Work

2.1 Symmetrically-structured Networks

Models belonging to this group mainly follow the framework of symmetric encoder-decoder. Con-

ceptually, backbone CNNs pre-trained on large-scale dataset for classification are often utilized as

the encoder for gradually extracting from local to global features. Subsequently, the decoder is

constructed in layer-wise reversed manner based on the encoder’s inherent architecture to pro-

gressively integrate semantic contexts into local details in the final per-pixel segmentation map.

It is obvious that involving extracted features at the encoding stage to the upsampling process at

the decoder can significantly boost the pixel-wise labeling performance.

Typically, SegNet [6] made use of max pooling indices from pooling layers at the backbone

VGG-Net [79] to directly locate pixels of lower-resolution feature maps in the corresponding up-

sampled versions. Then, the convolution layers with specific settings same as the counterparts at

the encoder are subsequently applied. This strategy enables important features to be sustained

throughout the network but clearly ruins the correlation between neighboring pixels.

Meanwhile, for the purpose of maintaining localization precision while being able to learn

meaningful contextual information, various combination styles between corresponding feature

maps at the decoder and encoder in the upsampling process were introduced. They can be ei-

ther simple concatenation technique as in U-Net [75] or specialized modules as in G-FRNet [42]

and GFF [59]. U-Net [75] concatenates the above-mentioned feature maps along channel dimen-

sion prior to other manipulations in the decoding process. Another impressive model named

G-FRNet [42] introduced Gate Unit (based on element-wise multiplication) followed by Gated

Refinement Unit (based on concatenation) to modulate encoded features for generating densely

labeled output. Furthermore, a Gated Fully Fusion architecture [59] is proposed to enable the
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learning of selectively important features in dense manner. These schemes are shown to yield

promising performance in many benchmarks but require high footprint for training due to large

depth-sized tensors. Accordingly, Tian et al. [83] defined an efficiently data-dependent upsam-

pling scheme to reduce the necessity of exhaustively involving high-dimensional features in the

backbone CNN during the decoding process.

On the other hand, instead of concatenation, Feature Pyramid Network [63], SwiftNetRN-

18 [72] and LDN [52] introduced a Lateral Connection Module (LCM), wherein an upsampled fea-

ture map is element-wisely added to the corresponding version extracted from the encoder before

being fed into learnable convolution filters. This module is executed step-by-step until forming the

final prediction map. Also based on the core of pixel-wise summation, Bilinski et al. [8] proposed

the scheme of Dense Decoder Shortcut Connections (containing Encoder Adaptation, Fusion, and

Semantic Feature Generation modules) to enhance meaningful contexts captured from features at

multiple scales. Similarly, RefineNet [62] further took into account additional refinement units

(consisting of Residual Convolution Unit and Chained Residual Pooling) to comfort the training

process and acquire global contextual information accurately.

2.2 Asymmetrically-structured Networks

Deep learning models categorized into this group contain a specialized upsampling strategy for

aggregating contextual information from multiple strides without involving multi-level feature

maps of the encoder.

In particular, a line of work such as ParseNet [66], HistNet [104], HolisticNet [33] incorpo-

rated an auxiliary network stream to capture global context more efficiently in addition to the

main stream of semantic segmentation. Such kind of two-stream learning approach can generate

the pixel-wise prediction map without local ambiguities and unexpected noises thanks to refine-

ment from the additional stream. Besides that, attaching Recurrent Neural Network (RNN) to the

pretrained CNN is an alternative way since the RNN can robustly represent the dependencies of

pixel-level information with respect to global context through an evolutionary process of learn-

ing from hidden states. In concrete, RLS [54] presented the series of densely horizontal-vertical

sweeping and level set method, respectively, for such evolutionary learning strategy. As a result,

objects’ appearance achieves better consistency while their distinction from one another becomes

more explicit in the final segmentation map.
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Concurrently, there is another suggestion that equipping each neuron with a larger field of

view on lower-level feature maps enables the semantically rich information to be captured more

effectively without sacrificing spatial resolution abundantly. Thus, recently proposed models like

DeepLab [12], FSSNet [102], DenseASPP [96], PSPNet [103], and SSPP-ES [105] utilized dilated

(atrous) convolution layers, which have larger receptive field but similar amount of trainable

weights compared to those of the original versions. Subsequently, aggregating the extracted fea-

tures learned from various dilation rates, so-called spatial pyramid mechanism, is the key factor

earning impressive segmentation performance in these networks. In concrete, Chen et al. pro-

posed DeepLab [12] with the utilization of Atrous Spatial Pyramid Pooling (ASPP), i.e., con-

currently applied convolution having rates of 6, 12, 18, 24, along with conditional random field

to efficiently recognize objects from multi-scale viewpoints and precisely localize corresponding

boundaries, respectively. Besides that, FSSNet [102] was introduced with the same mechanism but

offering faster processing by the proposed blocks of factorized convolutional layers along with un-

pooling technique in [6]. Recently, DenseASPP [96] leveraged the scheme of ASPP by the idea of

densely concatenating the coarsest feature map of the backbone network with outputs of earlier

dilated convolution layers. Then the results are fed into the next layer having higher dilation rate.

This iterative procedure facilitates the usage of layers having much higher dilated rate without

detriment when it is required to capture enormous FOV in high-resolution images. However,

given that the capability of dilated convolution remains several shortages in effectively capturing

multi-scale contextual information, Meanwhile, PSPNet [103] additionally introduced Pyramid

Pooling module. Particularly, average pooling layers with different stride and size settings are

applied onto the final feature map learned from dilated convolution layers in the backbone CNN.

Then, the retrieved outputs are concatenated before being fed into the convolution layer followed

by bilinear upsampling operator for the inference of final segmentation map.

On the other hand, to avoid facing the complicated padding issue caused by the dilated con-

volution, a depth-wisely attentional mechanism in PAN [56], EncNet [101], BiSeNet [98], and

DFN [97] is additionally exploited along with their hybrid architectures for emphasizing seman-

tically richer information in higher-level feature maps onto responses of the lower-level counter-

parts. In specific, PAN [56] introduced a Global Attention Upsample module, wherein average

spatial-based pooling is applied to the features acquired at high-level layers of the encoder. Sub-

sequently, the obtained weight vectors are employed to guide semantically rich information to

proper locations in the final prediction map. Furthermore, Zhang et al. [101] took advantages of
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dilation approach as well as attention scheme to design an EncNet, which is composed of (i) a

backbone CNN with dilated convolutions for extracting features and (ii) a Context Encoding for

embedding semantic details back into the encoded features, to accurately classify every pixel. Be-

sides that, a similar two-stream approach called BiSeNet [98] is introduced in the literature. It

consists of cost-efficient Feature Fusion and Attention Refinement Modules in the main and auxil-

iary context paths, respectively, for the improvement of both accuracy and inference speed. Mean-

while, DFN [97] was proposed to enhance consistent appearance of segmented objects, for which

Channel Attention Blocks were designed to re-weight feature responses of the finer-resolution

maps by semantically richer context in the adjacent coarser ones. Furthermore, DANet [23] ap-

plied both spatial- and channel-based attention schemes onto the deepest-level feature map in

parallel, of which the outputs are summed for subsequent learning layers followed by a final

softmax classifier.

In this study, for jointly learning valuable information from the adjacent feature maps, not

only the channel-wisely but also the spatially attentional blocks are adopted to seamlessly com-

bine semantically rich context with finely patterned features while ensuring an effective training

process. Notably, this work utilizes the two types of attention mechanism in crossing manner for

the connections between all-level features along the decoding stage, which is different from the

aforementioned DANet [23].
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Chapter 3

Proposed Methodology

This chapter describes details of the proposed CAB-Net, with corresponding demonstration in

Fig. 3.13, for semantic segmentation as follows. Firstly, preliminaries related to convolutional

neural networks for computer vision tasks like image classification and semantic segmentation are

delivered. Then, the decoding process of Bracket-shaped structure for generating the pixel-wise

prediction map is elaborated. Afterwards, a thorough explanation of the proposed combination

module for two adjacent feature maps of interest is given.

3.1 Preliminaries

3.1.1 Overview of Convolutional Neural Network

Convolutional Neural Networks (CNNs) have been firstly introduced for classifying image-based

digits at the end of last century by LeCun et al. [55] and emerged tremendously in computer vision

starting from this decade. The promotion of such cornerstone comes from the huge advancement

in parallel computing ability of GPUs. Basically, given an input image, a CNN plays the role of

manifold complex transformations that extract and select informative features for a predefined

domain task like classification. Accordingly, the optimization procedure in terms of backpropaga-

tion can be executed more rapidly by GPUs in comparison with CPUs.

In general, a vanilla CNN is constructed by sequential stacks of layers which are either linearly

learnable (e.g., Convolution, Fully Connected layers) or non-linear transformations (e.g., activation

functions, max/average pooling). Specifically, basis component of the CNN is Convolution layer

followed by a predefined Non-linear Activation function. The former component is defined as con-

volution filters/kernels having a pre-specified spatial size while the depth dimension identical

to that of the input image or output of preceding layer. All the elements within a kernel refer to
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FIGURE 3.1: Basis architecture of Convolutional Neural Network.

as trainable parameters (weights). Such fixed-sized operator slides through the given input hori-

zontally and vertically to observe its partial regions, so-called receptive field, in stepwise manner.

Consequently, each entry of the output map is the weighted sum between a kernel and those in the

receptive field of the input. Note that such weight-sharing characteristic explains the robustness

of CNN against well-known manipulations like scaling, translations. Then, the latter component,

i.e., Non-linear Activation function, is involved to rescale the inferred output’s responses in a pre-

defined range (for usage of Sigmoid or Tanh) or zero out the negative ones (Rectified Linear Unit

(ReLU)). The key idea behind is to enhance the representational complexity of the learned fea-

tures. During feedforward process of the CNN, Max/Average Pooling layers are usually embedded

to decrease the feature resolution for easing computational burden while maintaining core repre-

sentations. This layer family has similar operating principle to that of the convolution kernel but

without learnable weights. Concretely, each output response is the maximum or average value of

the input’s entries within a pre-specified receptive field. Finally, Fully Connected layers are applied

at the end of the CNN to exhaustively exploit high-level correlations between responses of the

flatten feature maps. Afterwards, Softmax layer shall handle the finalized features corresponding

to the given training categories in classification problem.
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With the selected deep learning model such as CNN, one need to design the corresponding

architecture by heuristics, which is a very important remark. In particular, number of layers in the

CNN needs to be determined, it could be 50 or 100 layers. Besides that, number of convolution

filters per layer need to be defined as well, it could be 64 or 128, etc. Briefly, the above-mentioned

architectural designs are of problem-dependent heuristics. Clearly, each CNN model shall com-

prise parameters to extract input’s features. Hence, the parameter initialization method needs to

be decided as well. For instance, it could be arbitrarily random or follows Gaussian rule. Those

model’s parameters should be quantified properly by a so-called loss function. Thus, a proper loss

function, which can be cross-entropy or mean square-error, should be determined. In addition,

overfitting issue may occur during the training procedure. Therefore, a regularization scheme

is another concern to avoid this issue by either increasing dataset size or involving regulariza-

tion loss. Finally, in order to achieve the ultimate training objective, which is the optimization of

model’s parameters, a proper optimizer should be well-defined. For instance, existing optimizers

popular in the literature are gradient descent or Adam [51].

More operational details of Convolution, Non-linear Activation, Pooling, Fully Connected, and Soft-

max (Classification) layers, which are fundamental constituent of a vanilla CNN, are respectively

delivered in the following sub-sections:

Convolutional layer

Fundamentally, a Convolutional layer is used to analyze the structural details of input images

through cross-correlation operations [100] as follows. In each of this layer type, an input tensor

is connected to predefined convolution kernels to produce corresponding output tensor, so-called

feature maps. As an example illustrated in Fig. 3.2, given an input with size of 3 × 3 × 1 and

the convolution kernel having size of 2× 2 with associated weights (learnable parameters), the

corresponding output can be attained by the following operational steps. Initially, the kernel is

applied onto the 2× 2 areas of the input’s top-left corner. Then, its parameters are multiplied by

corresponding values of the input in that receptive field, of which all the results are subsequently

summed up for the inference of a scalar value at the relative position in the output tensor. In par-

ticular, at step 0 in Fig. 3.2, it can be observed that the computation of 1× 3+ 2× 2+ 6× 0+ 5× 1

yields 12 in the output. Next, the convolution kernel slides horizontally to the right to ‘see’ the

next receptive field in the input, from which another linear combination is performed as shown in
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step 1 in Fig. 3.2 (wherein 16 is result of 2× 3 + 3× 2 + 5× 0 + 4× 1). After reaching the right-

most side of the input tensor, the kernel takes a downward stride (step size) and repeats another

left-to-right sliding procedure with the aforementioned computation strategy as depicted in steps

2 and 3 in Fig. 3.2.
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FIGURE 3.2: Example operations of convolution in a Convolutional Neural Net-
work, wherein the output is obtained by the linear combinations between weights
(parameters) of convolution kernel and corresponding values within the receptive
field (area contemporarily covered by the kernel) in the input. Step 0: 1 × 3 +
2 × 2 + 6 × 0 + 5 × 1 = 12. Step 1: 2 × 3 + 3 × 2 + 5 × 0 + 4 × 1 = 16. Step 2:

6× 3 + 5× 2 + 7× 0 + 8× 1 = 36. Step 3: 5× 3 + 4× 2 + 8× 0 + 9× 1 = 32.

It can be realized that the resolution of the output is smaller than that of the input. As a CNN

regularly consists of numerous Convolution layers, such kind of spatial loss can be accumulated

and becomes significant at later part of the deep network, which may hamper the capability of

image’s feature extraction. Accordingly, in order to avoid the size difference issue between output

and input, padding certain values around the input’s boundary is the most appropriate solution

to enlarge the effective spatial dimension of the input. The choice of padded values can be zero

(most common), one, or replications of those locating at the input’s boundary. As presented in Fig.
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3.3, padding of 0’s around the input’s boundary is firstly executed as demonstrated by the dashed-

line units. Then, similar to the process depicted in Fig. 3.2, the output is obtained by the linear

combinations between weights (parameters) of the 3× 3 convolution kernel and corresponding

values within the receptive field (area contemporarily covered by the kernel) in the input without

any losses of spatial size. Moreover, using padding allows the boundary features to be properly

involved during such computation procedure.
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FIGURE 3.3: Example operations of convolution with zeros padding in a Convolu-
tional Neural Network. Padding of 0’s around the input’s boundary is firstly exe-
cuted as demonstrated by the dashed-line units. Then, similar to Fig. 3.2, the output
is obtained by the linear combinations between weights (parameters) of convolution
kernel and corresponding values within the receptive field (area contemporarily cov-

ered by the kernel) in the input.

Besides that, there are usual cases where output size needs to be reduced for reducing tensor

footprint and improving computational efficiency while padding is in use, the convolution kernel

should be shifted by larger stride (i.e., ignoring several intermediate points in the input tensor).

In the above-mentioned examples, the stride is set at 1 as default. Meanwhile, as exhibited in Fig.

3.4, the stride is set at 2 in both horizontal and vertical dimensions. Consequently, the sequential

steps of cross-correlation with 3× 3 kernel and zero padding still can yield the output with spatial

size of 2× 2 in comparison with that of the input (3× 3).

Formally, the spatial size of the Convolutional layer’s output can be determined as follows

O =
I − K + 2P

S
+ 1 (3.1)

where O and I are spatial size (height and width) of the output and input tensors, respectively;

K stands for the convolution kernel size; P indicates the number of padded rows or columns;

and S is the value of stride. In general, given an input tensor of size HI ×WI × CI , employing

N convolution kernels, each of which must be of size K × K × CI , shall infer an output tensor

of size Ho ×Wo × N. Note that CI = 1 and N = 1 in the above examples for the simplicity

of demonstration. On the other hand, Ho and Wo depend on the configurations of kernel size
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FIGURE 3.4: Example operations of convolution with zeros paddding and stride of
2 in a Convolutional Neural Network. Padding of 0’s around the input’s boundary
is firstly executed as demonstrated by the dashed-line units. Then, similar to Fig.
3.2, the output is obtained by the linear combinations between weights (parameters)
of convolution kernel and corresponding values within the receptive field (area con-
temporarily covered by the kernel) in the input. Remarkably, both horizontal and
vertical sliding step size (stride) of the convolution kernel are 2 (instead of 1 as in

Fig. 3.2 and Fig. 3.3).

K, padding P, and stride S as defined in (3.1). Furthermore, all elements in the output can be

optionally added to another type of learnable parameters, so-called bias, to make the whole model

generalize better.

In terms of operational principles, it can be realized such Convolutional layer possesses two ma-

jor properties, i.e., local connectivity and translation invariance [100]. The former implies that the

linear combination between the input tensor and the convolution kernel’s weights occurs at patch-

wise manner. The latter means that all those patches (receptive fields) inside the input tensor are

processed by the same computation strategy with parameter-sharing scheme until yielding the
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corresponding output feature map. Accordingly, such mechanism brings in the benefits of train-

ing cost reduction (compared with the conventional multi-layer perceptron technique) as well as

robustness against variations of objects’ viewpoint and scale in the considered image.

Non-linear Activation layer

The operations in Convolutional layer are basically linear transformations. Thus, non-linear func-

tions are highly necessary to strengthen the whole model’s capability of representing very com-

plex and diverse distributions in the image data. For that purpose, the layer of Non-linear Acti-

vation function is always coupled with the Convolutional layer to non-linearly transform a neuron

(a.k.a. feature’s response or element) in the feature maps of multiple extraction levels. To this end,

Rectified Linear Unit (ReLU) and Sigmoid are the most popular type of activation function used in

the CNN. Note that there are still other variants such as Tanh, ELU, to name a few, in the literature

but they are beyond the scope of this thesis.
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FIGURE 3.5: Graphical representation of Rectified Linear Unit activation function.

On the one hand, ReLU is widely adopted in the novel CNN thanks to its operational simplicity

and effectiveness in numerous recognition tasks. Given a neuron x, the ReLU activation is defined

as the function returning the maximum value between x and 0

ReLU(x) = max(x, 0) (3.2)

In other words, ReLU only retains the positive elements and sets 0 for the negative counterparts.

Remarkably, since the derivative of the ReLU function is quite straightforward, i.e., either it sim-

ply let the argument pass through or it vanishes [100], the optimization by backpropagation pro-

cedure becomes easier and can avoid the conventional issue of vanishing gradient. The graphical
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representation of this activation function is shown in Fig. 3.5.
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FIGURE 3.6: Graphical representation of Sigmoid activation function.

On the other hand, Sigmoid, an old-school activation function, is still an essential choice for spe-

cialized designs (e.g., attention mechanism [34]) in a CNN thanks to its expressiveness of feature’s

importance as well as smooth and differentiable properties for model optimization. Fundamen-

tally, Sigmoid squashes the feature’s entries belonging to R into outputs within the range of (0, 1)

by the following equation

Sigmoid(x) =
1

1 + e−x (3.3)

The graphical representation of this activation function is illustrated in Fig. 3.6, from which it can

observed that the Sigmoid activates linearly when the input’s values are around zero and saturates

when the absolute of those are large. This facilitates the utilization of Sigmoid in vastly expressing

the informative features while weakening the less meaningful ones during feedforward process of

SENet [34], as well as yielding confidence scores for the final classifier in the conventional CNN.

Pooling layer

Normally, the neural elements in shallow layers have significant impacts on those at deeper coun-

terparts through multiple Convolutional followed by Non-linear Activation layers of learning se-

mantic information from various receptive fields. During such feedforward process in the CNN,

it is desired that feature dimension is reduced for computational efficiency while the contextual

information is effectively amalgamated at late layers. Therefore, Pooling layer is introduced in

the literature to represent the feature maps compactly while retaining multi-level semantic details

across the preceding layers. This layer family performs the similar operational principle to that
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of the Convolutional layer, wherein a kernel (with predefined size and stride of 2) slides horizon-

tally and then vertically on the input tensor to calculate values of corresponding output elements.

However, the major difference is that the Pooling layer does not have any learnable parameters.

Instead, its kernel continually specifies a local region in which the input’s entries are employed

to return either maximum or average values for the corresponding elements in the output tensor

until the all of input’s entries are covered. The former is defined as Max Pooling (see Fig. 3.7) while

the latter is referred to as Average Pooling (see Fig. 3.8) layers. It is worth noting that the stride is

always set at 2 such that the output’s resolution is reduced by half (compared with that of the

input tensor).
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FIGURE 3.7: Graphical representation of Max Pooling layer with 2× 2 kernel.
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FIGURE 3.8: Graphical representation of Average Pooling layer with 2× 2 kernel.

In general, given an input tensor of size HI ×WI × CI , employing CI pooling kernels, each of

which has size of K × K and stride of 2, shall infer an output tensor of size HI
2 ×

WI
2 × CI . Note

that HI = WI = 4, CI = 1, and K = 2 in Fig. 3.7 and Fig. 3.8 for the simplicity of demonstration.

As default, the Pooling layers mentioned in this section aim to manipulate the spatial dimension

for mitigating the tensor footprint as well as the sensitivity of the CNN with respect to objects’

location in the input image. Furthermore, the similar procedure can be applied to reduce the

channel dimension of intermediate feature maps, which is called Global Pooling, for the advanced

spatial attention mechanism in CNN [11] (more details are described in Section 3.3).
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Fully Connected layer

In the conventional CNN, the Fully Connected (FC) layer is often deployed at the end of its architec-

ture to finalize class-oriented scores of the high-level context encoded along the depth dimension

of the coarse feature maps. Fundamentally, the working principle of this layer type is similar to

the Convolutional layer with kernel of size 1× 1, wherein linear combination between the input

vector (or flattened tensor) and learnable parameters (weights and bias) for inferencing the en-

coded output. As demonstrated in Fig. 3.9, given the input tensor of size 2 × 2 × 1, of which

the flattened version has size of 4× 1, using the FC layer with hidden size of 3 shall produce the

output representation of that size. In specific, the computation processes are performed as follows

8×−1 + 6×−1 + 9×−1 + 4×−1 = −27 + 20 = −7

8× 0 + 6× 0 + 9× 0 + 4× 0 = 0 + 2 = 2

8× 2 + 6× 2 + 9× 2 + 4× 2 = 54 + (−48) = 6

(3.4)
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FIGURE 3.9: Example operations of Fully Connected layer in a Convolutional Neural
Network, wherein the output is obtained by the linear combinations between train-

able parameters (weights with bias) and all of the input’s elements.

Generally, feeding an input of size Rn into the FC layer with trainable parameters of size m

shall yield the output of size Rm. It is worth noting that the final FC layer in a CNN always has

size equivalent to the number of supervised labels (a.k.a. classes or categories) in certain training

datasets.
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Softmax (Classification) layer

As the final stage of a CNN, the classifier aims to interpret the logit produced by previous learning

layers in terms of probabilities, from which the label index having highest value is the ultimate

classification output. For that purpose, it needs to ensure that all the prediction scores are non-

negative and their sum equals to 1 (which should also be applicable to new data obtained in the

future). In addition, the classifier is required to be adopted as a differentiable objective function

during the training procedure so that the model can accurately estimate the computed probabil-

ities. Notably, for all circumstances, when the recognition probability is 0.5 should indicate that

half of the considered samples are classified correctly. Such kind of procedure is also called as

calibration mechanism.

The Softmax function, which is invented by the social scientist R. Duncan Luce for solving

the problem of Choice Models in 1959 [100], satisfies all the above-mentioned requirements of an

appropriate Classification layer in the CNN. In order that the logit are interpreted as non-negative

values with sum of 1 while the differentiability is still valid, each element in the logit (of which

its size equivalent to the number of supervised labels) is firstly exponentiated (for abiding by the

non-negativity condition) and then divided by the sum of all elements (according to the sum-of-1

condition) as follows

ŷ =

{
ŷi = So f tmax(oi) =

eoi
C
∑

j=1
eoj
| i = 1, . . . , C

}
(3.5)

where C is the number of training classes; ŷ ∈ RC stands for the output of Softmax layer; and

o ∈ RC denotes the output of the last FC layer (a.k.a. logit). On the one hand, during the train-

ing phase, ŷ is utilized in a predefined objective (loss) function, which is detailedly described in

the next sub-section, to quantify the compatibility of the CNN’s parameters with respect to the

ground-truth labels. On the other hand, during the validation/testing/real-time execution phase,

the element having highest probability score in ŷ is used to indicate the label classified by the

model.

3.1.2 Modeling of Convolutional Neural Network

Once the CNN is completely constructed, the next stage is to train it using a labeled dataset for

a predefined computer vision task. The term "train" here means the procedure of exploring the
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optimal CNN’s parameters to perform the target task as much effectively as possible.

In order to achieve this goal, there are four essential components in a training flow of a classi-

fication CNN as manifested in Fig. 3.10: (i) Training dataset (comprising images associated with

ground-truth labels); (ii) pre-built CNN; (iii) Loss function; and Regularizer, and (iv) Optimizer.

Given an input image fed into the pre-constructed CNN (consisting of sequential stacks of the

aforementioned Convolutional, Non-linear Activation, and Pooling layers), the obtained output is

prediction scores (which is resulted from the last Fully Connected layers followed by the Softmax

function). Then, the ground-truth label corresponding to the image and the prediction scores are

employed as the input of the Loss function with regularization scheme for the calculation of loss

value, which is used for assessing the quality of current CNN’s parameters in terms of recognition

accuracy. Note that the larger the loss value is, the worse the parameters are. Hence, an Optimizer

is defined for minimizing that loss value with respect to those learnable parameters to automat-

ically calculate more optimal values through backpropagation mechanism and update them into

the CNN. Such kind of procedure repeats until a predefined stop condition (e.g., maximum train-

ing iterations/epochs, convergence threshold of loss value or classification accuracy on validation

dataset) is met.
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FIGURE 3.10: Abstract training flow of a CNN for image classification.
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FIGURE 3.11: Abstract training flow of a CNN for semantic image segmentation.

The constituents and process of training a semantic segmentation CNN are similar to that of

the classification version as illustrated in Fig. 3.11. The basis difference stays in the CNN itself,

wherein additional or modified layers are attached to a backbone CNN with excluded FC and
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Softmax layers (which is primarily designed for the classification problem) to decode features by

embedding global into local contextual information. As a consequence, the ultimate output is

the pixel-wise prediction map instead of the image-level recognition scores. Correspondingly, the

target for the model to learn from is pixel-wise labeled map.

3.1.3 Configurations and Hyperparameter Settings for Training Process
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Batch n-1Batch n Batch 1...
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FIGURE 3.12: Configurations and hyperparameter settings for training procedure.
Black arrows represent the training phase while the blue ones indicate the signify

the validation phase.

The previous sub-section abstractly introduces the training flow and operational components

for a CNN regarding the classification or semantic segmentation task. To this end, more details of

related configurations as well as hyperparameter settings during the training agenda as demon-

strated in Fig. 3.12 are delivered.

Initially, the training set is split into n batches, each of which contains a predefined number of

images and corresponding ground-truth labels. It is worth noting the batch size (i.e., the number

of images with labels per batch) should be configured based on the available capacity of the GPU

in use. Then, each time feeding one batch into the deep model is counted as one training iteration.

After n iterations, the model can learn from all training data, which marks the completion of

one epoch. Therefore, the number of training epochs should be defined appropriately so that the
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trained CNN can reach optimal convergence, i.e., its performance on unseen data (validation and

test set) is maximized.

About the deep model, assume that its architecture was end-to-end constructed in prior, the

initialization of the its learnable parameters is considerable due to the noticeable impact on net-

work learning efficiency. There are different strategies to be adopted such as random assignment,

Xavier’s method [25], He’s approach [30], to name a few.

After the intensively computational process in the deep learning model finishes, a Loss func-

tion is designed to receives the output scores of Softmax layer and ground-truth labels for eval-

uating the quality of contemporary predictions. According to the previous section, the Softmax

function returns a vector ŷ = [ŷ1, ŷ2, . . . , ŷC] which indicates the condition probabilities of each

predicted class. In order to verify whether the estimation is compatible with the expected out-

come, the probability at which the network predicts the ground-truth class is expressed by

P(Y|X) =
C

∏
i=1

P(yi|xi) (3.6)

which is equivalent to

− log P(Y|X) =
C

∑
i=1
− log P(yi|xi) = −

C

∑
i=1

yi log ŷi (3.7)

hence, maximizing P(Y|X), which means minimizing − log P(Y|X), can benefit the classification

performance. This leads to the definition of log-likelihood Loss function as below

L =
n

∑
m=1

lm =
n

∑
m=1
− log P(Ym|Xm) =

n

∑
m=1

(
−

C

∑
i=1

yi log ŷi

)
(3.8)

where n is the batch size as mentioned earlier. The Loss function is literally called Cross-entropy

or Softmax Loss. Here, it is employed by considering ŷ as a discrete probability distribution and

y as the one-hot vector. Thus, the sum of indices i will vanishes to form into one unique value.

Since all ŷi are probabilities, their log is always smaller than 0. Accordingly, the Loss function is

not decreased more in the case that y is correctly predicted with absolute certainty, i.e., P(y|x) = 1

corresponding to the actual label. However, such kind of circumstance is usually impossible be-

cause of the following two aspects. Firstly, wrong labeling might exist in the training dataset.

Secondly, the learned features in the CNN are not robust enough for the perfect discrimination
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between the supervised classes. The coordination of the Loss L with the aforementioned Soft-

max function can be represented as follows. Replacing ŷi in (3.8) by its equivalence in (3.5) and

provided that
C
∑

i=1
yi = 1 (based on Softmax’s definition) give

lm = −
C

∑
i=1

yi log ŷi

= −
C

∑
i=1

yi log
eoi

C
∑

j=1
eoj


= −

C

∑
i=1

(
yi(oi − log

C

∑
j=1

eoj)

)

= −
C

∑
i=1

yioi +
C

∑
i=1

(
yi log

C

∑
j=1

eoj

)

= −
C

∑
i=1

yioi + log
C

∑
j=1

eoj

= log
C

∑
j=1

eoj −
C

∑
i=1

yioi

(3.9)

Subsequently, the partial derivative of lm with respect to the logit oi is represented by

∂lm

∂oi
=

eoi

C
∑

j=1
eoj

− yi = So f tmax(oi)− yi = P(y = i|x)− yi (3.10)

It can be realized that the derivative is equivalent to the difference between the probability of

the actual label predicted by the model (which is signified by the softmax function) and that ac-

tual (ground-truth) label itself (which is encoded as one-hot vector format). Notably, this Cross-

entropy (or Softmax) Loss can be considered as the most popular objective function in the classifi-

cation problem using deep learning.

Furthermore, in the conventional training system, the total Loss functionL also includes an L2-

norm regularization term for combating the overfitting issue. Note that this challenge is referred

to as the poor generalization capability of the CNN, which is basically caused by the fact the CNN

is too complex while the number of training data is quite small. Besides that, since the complexity

of a model is can be assessed by its squared norm of the trainable weights ||W||2, which can be
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minimized together with the Loss L in (3.8). Consequently, we have

Ltotal = L+ λLReg = L+ λ||W||2 (3.11)

where the hyperparameter λ denotes the regularization strength and should be non-negative. The

higher value the λ is set, the stronger constraint is applied onto the amplitude of the squared norm.

Remarkably, the fact that L2-norm can significantly penalize the large components in the weights

set is the most prominent reason for its utilization against the overfitting problem. This leads to the

circumstance where the network is directed to learn uniformly distributed weights for extracting

deep features throughout its architecture. In addition, according to the objective of minimizing the

weights’ values to approach 0 as mentioned before, L2-norm is sometimes referred to as weight

decay strategy, in which the Optimizer tries to not only figure out optimal parameters’ values

but also continuously decay the weights to simplify the CNN’s complexity during the training

progress.

Intuitively, gradient of a function with respect to certain parameters (variables) signifies the

orientation along which the increasing rate of those function’s parameters is largest. Accordingly,

negative gradient of the considered function indicates the opposite direction, i.e. maximum de-

creasing rate of the parameters. Hence, gradient can be used as an indicator of minimizing the

Ltotal . In neural network, backpropagation is the unique technique to compute the gradient with

respect to the learnable parameters. Briefly, this methodology performs gradient computation

through the network in reverse route, i.e., from the last to the first layer of the architecture, us-

ing the chain rule in calculus. The intermediate variables (i.e., partial derivatives) required in the

procedure of calculating the gradient with respect to the parameters of interest is exhaustively

employed. For instance, based on the feedforward equations (3.8) and (3.11), we have

∂Ltotal

∂Wp
=

∂Ltotal

∂L
∂L

∂Wp
+

∂Ltotal

∂LReg

∂LReg

∂Wp
=

∂L
∂Wp

+ 2λWp (3.12)

Likewise, along with the formulation computed in (3.10), the gradient ∂L
∂Wp

can be then be ex-

panded based on the network architecture as follows

∂L
∂Wp

=
∂L
∂o

∂o
∂Wp

= (So f tmax(o)− y)
∂o

∂Wp+1

∂Wp+1

∂Wp
= . . . (3.13)
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where Wp is referred to as the learnable weights at layer p. Note that the bias parameters B are

not involved in the above equations for simplicity of demonstration.

Algorithm 1: Modeling process for a deep learning architecture
Input : training and validation Images with corresponding Ground-truth labels
Output: optimal Model’s parameters
Hyperparameters:
Number of training epochs E;
Batch size;
Regularization strength λ;
Learning rate α;
Learning rate decay schedule;
Miscellaneous:
Number of training iterations per epoch: n = Number of training Images / Batch size;
Number of validation iterations v = Number of validation Images / Batch size;
Model architecture ;
Loss function Ltotal ;
Optimizer;
begin

best accuracy = 0 ;
Initialize Model’s parameters;
for e = 0 : E do

%Training phase
Perform Learning rate decay schedule at eth epoch;
for i = 0 : n do

logits = Model(ith training Image batch);
loss = Ltotal(logits, Groudn-truth labels, λ, current Model’s parameters);
gradient of loss = Backpropagation(loss);
updated parameters = Optimizer(gradient of loss, α);
Model← updated parameters;

end
%Validation phase
validation accuracy = 0;
for i = 0 : v do

logits = Model(validation Image batch);
predicted labels = argmax(logits);
validation accuracy += Evaluator(predicted labels, Groundt-truth labels);

end
average validation accuracy = validation accuracy / v;
if average validation accuracy > best accuracy then

best accuracy = average validation accuracy;
Save current optimal Model’s parameters;

end
end

end

After the backpropagation activity completes, the predefined Optimizer is activated to find

the optimal parameters (based on which the Loss function Ltotal reaches global minimum) and
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update them in the deep learning model. However, it is worth noting that global minimum is

nearly impossible to attain for neural network family because its complex transformations formed

into a non-convex function. Instead, the deep learning architecture is usually optimized at local

minimum, at which the final performance is evaluated by the recognition accuracy on validation

phase (as expressed by blue arrows in Fig. 3.12). Generally, te core concept of exploring the highly

qualified parameters follows the mechanism of Stochastic Gradient Descent (SGD) as below

Wnew
p = Wcurrent

p − α
∂Ltotal

∂Wcurrent
p

(3.14)

where the minus sign is used to turn the gradient into negative for the purpose of minimization

as mentioned earlier; α means the learning rate, which defines how magnitude of step size that

the Optimizer should take to search for the newer parameter set that brings in better recognition

performance. Notably, it is preferred that the learning rate be gradually reduced from the begin-

ning to the end of the training process. The higher values help the network quickly scrutinize the

most reasonable parameters while avoiding unexpected local minimum. Meanwhile, the lower

counterparts allows the network to carefully inspect the best parameter state when the learn-

ing progress becomes much more stable and saturated at later epochs. Otherwise, the training

progress shall last much longer to reach convergence condition and the trend of loss minimiza-

tion tends to be error-prone and unstable. Thus, in practical use case, a heuristic configuration of

hyperparameter called learning rate decay is additionally involved for the above-mentioned pur-

pose of gaining high training efficiency. Recently, there are novel optimization algorithms such as

Adam [51] which can automatically decide various learning rates for parameters at different lay-

ers in the deep model during the course of training. In summary, the generic process of modeling

a deep learning architecture is presented in Algorithm 1 as another comprehensive perspective.

3.2 Bracket-shaped Convolutional Neural Network

It is worth noting that the proposed Bracket-shaped decoder can be easily fitted to any classification-

based CNNs. In this work, ResNet-101 [29] pretrained with ImageNet dataset [76] is employed as

the default backbone CNN (encoder) of the proposed architecture in Fig. 3.13 to extract meaning-

ful features from the inputs. Accordingly, four encoded feature maps of specialized convolution

blocks are taken into account for the Bracket-shaped decoder. Note that spatial resolution of these
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features is reduced by half (i.e., they have strides of 4, 8, 16, and 32, respectively) while their

channel dimension gets significantly deeper after each convolution block along the feedforward

process. To be convenient, the selected features are respectively named convmap-1 (with spatial

size having stride of 4 compared to that of the original input and depth of d1), convmap-2 (8 and

d2), convmap-3 (16 and d3), and convmap-4 (32 and d4) as manifested in Fig. 3.13.

Conv. block-1

Conv. block-2

Conv. block-3

Conv. block-4

convmap-1

convmap-2

convmap-3

convmap-4

Round 1Round 0 Round 2 Round 3

Backbone CNN Bracket-style Network for pixel-wise labeling

CAF module

Element-wise multiplication

Element-wise addition

Attentional features

Feature maps

Predict

Sep. Conv.

1x1 Conv. Bilinear
Upsample

Cha. Att.

Spa. Att.

Lower-resolution input

Higher-resolution input

Output

{4, d1}

{4, d1}

{4, d1}

{2x, d}

{x, d/c}

{-, d/c}

{x, d/c}

{x, d/c}

{x, d/c}

{x, d/c}

{4, d1} {4, class} {1, class}{8, d2}

{16, d3}

{8, d2}

{8, d2}

{16, d3}

{32, d4}

{x, d/c}

T. Conv.

FIGURE 3.13: Architecture of the proposed CAB-Net. Given an input image fed into
the backbone CNN containing series of predefined convolution blocks, final outputs
of these blocks have strides of 4, 8, 16, and 32, respectively. Subsequently, these cho-
sen feature maps (namely convmap-1, convmap-2, convmap-3, convmap-4) are utilized
in the decoding process for pixel-wise labeling. In brief, these fine-to-coarse feature
maps (represented by black arrows) are densely combined via the Cross-Attentional
Fusion modules to produce outputs, which continuously pass through the same pro-
cedure until one final prediction map is retrieved. As for the obtained segmentation
map, every pixel is assigned an object class within the predefined number of train-
ing classes. Since every inferred feature map fuses with its adjacent finer-resolution
map at each round and the total number of feature maps decreases by one round-by-
round, such process is named Bracket-shaped network. Note that the symbol {x, d}
attached to each arrow indicates the corresponding feature map having stride of x
(i.e., its spatial dimension is 1/x as large as that of the input image) and d chan-
nels. Meanwhile, x = - (dash) means that the spatial size equals to 1× 1. Besides
that, ‘T. Conv.’ and ‘Sep. Conv.’ stand for Transpose and Separable Convolution layer
while ‘Spa. Att.’ and ‘Cha. Att.’ represent Spatially and Channel-wisely Attentional

blocks, respectively. Color view is recommended for the best visualization.

Next, every of those feature maps, except for the finest-resolution one (i.e., convmap-1), com-

bines with the adjacent higher-resolution version through the CAF module to generate an output
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having same dimension as that of the latter. In other words, the utilization of all the middle-level

feature maps (e.g., convmap-2 and convmap-3) is leveraged since each one simultaneously plays

two roles, i.e., (i) integrating global context at a certain level to the final prediction map by upsam-

pling itself, and (ii) refining semantically richer information of upsampled version of the adjacent

coarser-resolution map by embedding its finer patterned features. Hence, it is clear that given n

encoded feature maps chosen from the backbone CNN, such connection style infers n− 1 outputs

at the first round of the proposed Bracket-shaped decoder. Subsequently, as such routine iterates,

total number of semantic feature maps decreases by one while average spatial dimension increases

round-by-round until the final pixel-wise prediction map is retrieved.

In specific, let Fr
i be the ith feature map at rth round, where i = 1, . . . , n− r and r = 0, . . . , n− 1.

Note that i = 1 indicates the feature map having highest resolution and i = n − r corresponds

to the lowest. Accordingly, F0
1 refers to as convmap-1 and F

0
4 corresponds to convmap-4 at the

initial 0th round as presented in Fig. 3.13. Then, the feature maps of next rounds are continuously

determined by

F
r
i = C(Fr−1

i ,Fr−1
i+1 ), r ≥ 1 (3.15)

where C(.) is the CAF module, which is fully depicted at section 3.3. It is obvious that until the

(n− 1)th round, the final prediction map containing finely patterned features fulfilled by seman-

tically rich context is acquired. Since every decoded feature map fuses with its adjacent finer-

resolution map at each round and the total number of feature maps decreases by one round-by-

round, such process is named Bracket-shaped network.

Fundamentally, there are two apparent advantages of using the Bracket structure: (i) missing

or ambiguous details are suppressed significantly since every upsampled feature map is always

refined by the equivalent-sized version of finer-grained information; and (ii) semantically rich in-

formation is densely enhanced in the final per-pixel segmentation map because such upsampling

plus dense mixture strategy is applied for all fine-to-coarse feature maps at all rounds during the

decoding stage.

3.3 Cross-Attentional Fusion Module

Obviously, the ultimate purpose of the upsampling process in a semantic segmentation architec-

ture is to ensure that visual details in the upsampled version of certain coarse-resolution feature
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Channel Pool FC, ReLU FC, Sigmoid
{2x, d} {-, d/c}{-, d} {-, d/c}

(A) Channel-wisely Attentional (Cha. Att.) Block

7x7 Conv.Spatial Pool Sigmoid Repeat
{x, d/c} {x, 1} {x, d/c}{x, 1} {x, 1}

(B) Spatially Attentional (Spa. Att.) Block

FIGURE 3.14: Details of operators in attentional schemes, i.e., ‘Spa. Att.’ and ‘Cha.
Att.’. Note that ‘FC’ stands for Fully Connected layer and ‘7x7 Conv.’ indicates one

Convolution layer having kernel size of 7x7.

map are capable of bearing the semantic information reasonably. To achieve this, refining lo-

cal ambiguities appearing in the upsampled ones by effectively involving well-representational

knowledge in the corresponding encoder’s feature maps plays a critical role in many model de-

signs.

Existing work introduced various refinement styles for the upsampled high-level features,

which range from simple channel-wise concatenation [75, 83] to more complicated lateral connec-

tion components [8, 42, 52, 59, 62] or attention-based blocks [56, 97, 101]. However, to efficiently

coordinate with the capability of the proposed Bracket-structured decoder, the CAF module built

upon the attentional mechanism (inspired from [11, 34]) followed by Separable Convolution (Sep.

Conv.) layers [17] is proposed as illustrated in the copper circle in Fig. 3.13. Concretely, each CAF

unit comprehensively carries out contextual information from the two inputs of different resolu-

tion in twofold: (i) Channel-wisely Attentional (Cha. Att.) block, which depth-wisely re-weights

the lower-level features of the higher-resolution input by using semantically richer features of

the lower-resolution counterpart; and (ii) Spatially Attentional (Spa. Att.) block, which spatially

re-calibrates features of the upsampled lower-resolution input by utilizing finer patterns of the

higher-resolution one. As a consequence, fusioning the acquired cross-attentional information

can infer fruitful feature maps for the dense prediction.

The first block (a.k.a., Cha. Att.) is executed according to the fact that the coarser and deeper

feature map possesses much more informative context along the depth dimension than the finer

and shallower one does. Therefore, it is beneficial to the final performance when conducting the
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impact of that channel-wise semantic information on the fine-grained features in feedback-like

manner. To address this, a depth-wise calibration strategy inspired from the attention mechanism

in [34] is employed as demonstrated in Fig. 3.14a. It is worth noting that the DFN [97] also adopts

such scheme. Specifically, all feature responses are re-weighted through a step of cross-channel

learning on the global pooling information, which is acquired from the considered feature map

itself [34] or that concatenated with the adjacent scale [97], a.k.a. self-attention. Differently, the

proposed approach collects informative attributes across channels of the lower-resolution input

only in order to depth-wisely enhance corresponding responses of the higher-resolution one, a.k.a.

cross-attention. As shown in Fig. 3.14a, each channel of the coarser-resolution input, of which the

spatial and depth size are 1
2x as large as that of the original image and d respectively, is averaged

spatially to form a vector having length of d. Accordingly, this vector, namely g ∈ Rd, compactly

carries reasonable information in channel-wise manner as follows

g =
[

g1(F
r−1
i+1 ), . . . , gd(F

r−1
i+1 )

]T
(3.16)

where gd(.) is the Channel Pool operation taking place on dth channel of a considered feature map

f , of which the corresponding formulation is

gd(F
r−1
i+1 ) =

1
H ×W

H

∑
h=1

W

∑
w=1

F
r−1
i+1 h,w,d (3.17)

where (h, w) indicates pixel coordinates of the considered feature map Fr−1
i+1 having spatial resolu-

tion of H ×W. Consequently, every channel of the lower-resolution input has its own represen-

tative response in the d-length vector g. Next, to correspondingly express the relative importance

degree of each channel onto that of the higher-resolution input, the vector g is firstly filtered by

two Fully Connected (FC) layers with ReLU activation in the middle so as to learn cross-channel

relationships. Notably, the size of applied hidden layers is set to be identical to the number of

the higher-resolution input’s channels. These learning operations are equivalent to the following

equation

gca = W f c2

(
ReLU(W f c1

g + B f c1
)
)
+ B f c2

(3.18)

where {W f c1
∈ R

d
c×d, Bfc1 ∈ R

d
c } and {W f c2

∈ R
d
c×

d
c , Bfc2 ∈ R

d
c } are learnable parameters of the first

and second FC layers, respectively, and gca is the yielded channel-wise attention feature vector of

d
c length. Then, the Sigmoid activation σ(.) is utilized to rescale values of elements in the vector
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gca within the range from 0 to 1. Subsequently, the resulting channel-wisely attentional features

are used to modify the responses of the higher-resolution input Fr−1
i ∈ R2H×2W× d

c in depth-wise

manner as below

F
r−1
ica

=

{
F

r−1
i :,:,δ ⊗ σ(gca)δ | δ = 1, . . . , d

c

}
(3.19)

where ⊗ symbolizes the element-wise multiplication and Fr−1
ica
∈ R2H×2W× d

c is the channel-wisely

attentional version of Fr−1
i .

For the second block, it can be realized that higher-resolution feature maps possess finer pat-

terns spatially is apparently profitable for the refinement of local details in the upsampled version

of the lower-resolution ones. Therefore, important spatial features of the finer-resolution input are

integrated into the upsampled partner in the CAF module through a spatially-attentional block

exhibited in Fig. 3.14b. Different from [11], an early layer of FC and ReLU is additionally involved

for acquiring the underlying attentional features more smoothly in spatial manner. In particular,

the finer-resolution input Fr−1
i ∈ R2H×2W× d

c is fed into a Spatial Pool operation, in which responses

at every pixel (h, w) are averaged across channel dimension as follows

F
r−1
isp h,w

=
c
d

d
c

∑
z=1

F
r−1
i h,w,z (3.20)

wherein Fr−1
isp ∈ R2H×2W×1 is the corresponding output of this operation. Subsequently, one train-

able Convolution layer having kernel size of 7× 7 with padding of 3, namely W7×7, followed by

the Sigmoid activation σ(.) is adopted to quantify the locally spatial dependencies as below for-

mulation

F
r−1
is77

= σ(W7×7 ∗ Fr−1
isp ) (3.21)

where ∗ and W7×7 ∈ R1×7×7×1 represent the convolution operator and learnable parameters of

the above-mentioned kernel, respectively, and F
r−1
is77
∈ R2H×2W×1 is defined as the spatially at-

tentional features. It is worth noting that this one-channel map is then repeated by d
c times to

be same depth size as that of the higher-resolution input of the CAF module. Simultaneously, the

lower-resolution input Fr−1
i+1 is upsampled into Fr−1

iu
using the Transpose Convolution (T. Conv.) layer

having stride of 2 and the number of filters identical to channel dimension of the higher-resolution

input. Notably, as shown in Fig. 3.13, given d as the channel size of the lower-resolution input,
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then that of the higher-resolution one is c times smaller. The upsampling operation can be ex-

pressed as below

F
r−1
iu

= upsample(Fr−1
i+1 ) = Wu ∗u

F
r−1
i+1 + Bu (3.22)

where ∗u is fractionally-strided convolution operation, Wu ∈ R
d
c×3×3×d corresponds to trainable

weights in d
c transposed convolution filters having size of 3 × 3 × d, and Bu ∈ R

d
c stands for

trainable biases. Finally, from (3.21) and (3.22), the spatially attentional version, denoted as Fr−1
isa

, of

the originally upsampled map Fr−1
iu
∈ R2H×2W× d

c is obtained by multiple operations of Hadamard

product as follows

F
r−1
isa

=

{
F

r−1
iu :,:,δ

⊗ Fr−1
is77
| δ = 1, . . . , d

c

}
(3.23)

To this end, both semantically richer information and finely patterned features are exhaus-

tively exploited in cross-attentional manner, i.e., Fr−1
ica

and F
r−1
isa

, respectively. The next step is to

integrate them by a simple pixel-wise addition scheme, of which the total result is continuously

fed into the Sep. Conv. as follows

F
r
i = Wsc ∗ ReLU(Fr−1

ica
⊕ Fr−1

isa
) (3.24)

where ⊕ signifies the element-wise addition, Wsc = {Wd f ∈ R
d
c×3×3, Wpf ∈ R

d
c×1×1× d

c } denotes

the sequential execution of d
c depth-wise convolution filters with 3× 3 size and d

c point-wise con-

volution filters with 1× 1× d
c size. It is also worth noting that the Sep. Conv. layer defined in this

CAF module includes three consecutive operations, i.e., ReLU activation, Sep. Conv., and Batch

Normalization layer [41] (which was not shown in (3.24) for simplicity). Obviously, compared to

using normal 3× 3 convolution, such kind of filter can reduce the number of trainable parame-

ters per layer from d
c × 3× 3× d

c to d
c (3× 3 + d

c ) while effectively maintaining the capability of

shrinking unexpected artifacts appearing caused from previous upsampling steps in such decod-

ing process. Remarkably, it is also investigated that additionally taking the fusion in (3.24) with

F
r−1
i and F

r−1
iu

is not necessary due to trivial performance improvement while being subject to

more computation.

In a nutshell, instead of simply adding upsampled version of the coarser input to the naive

finer-resolution one (which may hinder the precise integration of semantically rich features into

spatial dimension), taking into account the proposed CAF module can improve the efficiency of

context acquirement and corresponding pixel-wise localization.
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Chapter 4

Experiments on Natural Image

Segmentation

In this chapter, the proposed CAB-Net is intensively experimented on PASCAL VOC 2012 [20],

CamVid [9], Cityscapes [18], and MS-COCO [64] datasets to show its effectiveness for applica-

tions of vision-based object localization and autonomous driving, to name a few, in the industry.

Particularly, the benchmark datasets are introduced at first, then provide details of training con-

figurations, and finally present ablation study on the proposed architecture as well as subsequent

analyses of on-hand experimental results.

4.1 Benchmark Datasets

4.1.1 PASCAL VOC 2012 [20]

The dataset name is the abbreviation of “Pattern Analysis, Statistical Modelling and Computa-

tional Learning”. This dataset aims to represent 20 semantic object categories common in real

world (i.e., groups of person, animal, vehicle and indoor context). Originally, there are 1,464 train-

ing, 1,449 validation, and 1,456 testing images of various sizes in this challenge. It is noted that

513× 513 is set as spatial size of the CAB-Net’s inputs. Moreover, the training process follows

the procedure of [6, 67] wherein additional annotations from Semantic Boundaries Dataset [28]

are included for increasing the total number of training images to 10,582. Afterwards, the pro-

posed CAB-Net is further fine-tuned with the original training plus validation set before being

benchmarked by the test set on a designated testing server.
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4.1.2 CamVid [9]

The name of this dataset stands for “Cambridge-driving Labeled Video Database”. It is the col-

lection of various road scenes recorded in 10 minutes by a dashboard camera, which acts as the

eyes of an autonomous car. Accordingly, all 701 obtained 720× 960 video frames are pixel-wisely

labeled given 32 semantic categories. However, to be comparable with previous work, the con-

ducted experiment uses the split of 367 training, 101 validation and 233 testing images with 12

finalized ground-truth labels (consisting of building, tree, sky, car, sign-symbol, road, pedestrian,

fence, column-pole, side-walk, bicyclist and the background) to evaluate the proposed model.

Besides that, all of those images are downsampled to 360× 480 at first.

4.1.3 Cityscapes [18]

This dataset also represents things that an autonomous car should ‘see’ for understanding ur-

ban street scenes semantically. It offers a large pool of 5,000 and 20,000 1024× 2048 images with

fine and coarse annotations, respectively, corresponding to 19 semantic classes through a 50-city

itinerary. In this work, only the set of fine annotations with 2,975 training, 500 validating, and

1,525 testing images is utilized for the evaluation of the proposed CAB-Net. Note that crop size

of 768× 768 is used to train the proposed deep network for ensuring reasonable mini-batch size.

Correspondingly, there are 19 labels applied for such semantic segmentation problem, which in-

clude road, sidewalk, building, wall, fence, pole, traffic light, traffic sign, vegetation, terrain, sky,

person, rider, car, truck, bus, train, motorcycle, and bicycle.

4.1.4 MS-COCO [64]

The name of this benchmark dataset stands for “Microsoft Common Object in Context”. It is a

very large-scale dataset with approximately 100,000 images containing reasonable pixel-wise rep-

resentations of the 20 semantic categories defined in the PASCAL VOC 2012 dataset. Specifically,

only the image having at least 1000 pixels annotated as one of the predefined 20 classes is valid for

the experiments using this dataset. As a consequence, there are totally 95,737 training and 4,043

validation images chosen for evaluating the 20-class semantic segmentation performance of the

proposed deep architecture. Note that the default input image resolution is set at 513× 513. Sim-

ilar to the strategy adopted for learning PASCAL VOC 2012 dataset, the model initially trained



Chapter 4. Experiments on Natural Image Segmentation 43

with this MS-COCO dataset shall be continually fine-tuned with the original training plus val-

idation set of PASCAL VOC 2012 prior the final evaluation with the test set on the designated

server.

4.2 Training Configurations

In this work, the proposed CAB-Net is trained using PyTorch framework [73] with two NVIDIA

GTX 1080Ti GPUs. The training images are augmented by following strategies: scaling with ran-

dom factor in {0.5, 0.75, 1.0, 1.25, 1.5, 1.75}; random cropping to pre-specified size (513× 513 for

PASCAL VOC 2012, 360× 480 for CamVid, and 768× 768 for Cityscapes); randomly horizontal

flipping; and channel-wise normalization with zero mean and standard deviation of one. Besides

that, random Gaussian noise with random standard deviation in the range from zero to eight and

rotation in [-10◦, 10◦] are further involved in experiments with PASCAL VOC 2012. Moreover,

weight decay coefficient is set to 1e − 5 for promoting the proposed model’s generalization ca-

pability. Note that the batch size of 12, 16, 6, and 16 are used for PASCAL VOC 2012, CamVid,

Cityscapes, and MS-COCO, respectively.

About the backbone CNN, the powerful ResNet-101 [29] is applied as mentioned before. Con-

cretely, final outputs of the 1st, 2nd, 3rd and 4th residual blocks (with d1 = 256, d2 = 512, d3 = 1024,

d4 = 2048, respectively) are taken into account for the decoder.

Afterwards, each batch of augmented images is sequentially fed into the proposed network

to produce pixel-wise segmentation maps which, along with corresponding ground-truth label

maps, get through a softmax cross-entropy loss calculation step. The corresponding formulation

is defined as follows

L(Y, G) = ∑
Yp

(
Cl

∑
j=0

αjip,jlog(sp,j)

)

ip,j =

1, Yp,j = Gp,j

0, otherwise

(4.1)

where Yp represents considered pixels of prediction map Y; αj stands for balancing coefficient of

class j ∈ {1, . . . , Cl} in which Cl corresponds to the total number of training classes; ip,j indicates

the predicted class j of Yp with respect to its actual class in ground-truth label map G; sp,j denotes

softmax score of Yp corresponding to class j. It is worth noting that in the case of evaluating with
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the CamVid dataset, each category j is associated with a loss coefficient αj determined from the

median frequency balancing approach [19]. Meanwhile, as for the remaining datasets, αj = 1 ∀j.

Then, the optimization strategy of Chen et al. [12] is adopted to minimize the total softmax

loss L∑ in (4.1) with respect to the CAB-Net’s parameters (which are initialized following [30]).

In short, stochastic gradient descent with momentum of 0.9 is applied together with the ‘poly’

learning rate decay schedule, wherein learning rate at the ith iteration equals to the initial learning

rate (which is set at 0.01 in this work) multiplied by (1− i
maxi

)0.9. Correspondingly, pretrained

weights of the backbone network are fine-tuned with the contemporary learning rate multiplied

by 0.01.

Finally, the CAB-Net is trained with PASCAL VOC 2012, CamVid, Cityscapes, and MS-COCO

in 50, 500, 250, and 50 epochs, respectively. The mean Intersection of Union (mIoU) metric is used

for performance evaluation. In particular, let us denote pxy as the pixel belonging to ground truth

label x is predicted to be of label y, and L as the total number of labels, the mIoU is determined by

mIoU =
1
L

L

∑
x=1

pxx
L
∑

y=1
pxy +

L
∑

y=1
pyx − pxx

Moreover, a multi-scale test strategy is conducted for the final comparison with the state-of-the-

arts besides simply feeding original test images into the finalized model to retrieve corresponding

performance, which also report their experimental results applying the same procedure. In con-

crete, every original test image and its variously scaling (i.e., with factors of {0.5, 0.75, 1.25, 1.5,

1.75} compared to the original size) and horizontal-flipping versions are fed into the built network.

The final prediction scores are then averaged from those of all the obtained outputs. Compared

to the single-scale test approach, the multi-scale one is capable of boosting mIoU by 1.0− 3.5%

approximately depending on the dataset as reported in Tables 4.4, 4.5, and 4.6, but trading-off a

much more expensive computation.

4.3 Ablation Study

For the ablation study, the training plus augmentation (10,582 images) and validation (1,449 im-

ages) sets of PASCAL VOC 2012 are used for the evaluation of different setting strategies. In this

section, the impact of backbone CNNs with various capacities on the segmentation performance

is firstly examined. Next, the comparison between the proposed Bracket-style decoding network
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and the Ladder/U-shaped counterpart for leveraging middle-level feature combinations is inves-

tigated. Afterwards, how the channel-wisely and spatially attentional mechanisms coordinates

with the Bracket-shaped architecture is taken into account. Finally, how the proposed CAB-Net

represents semantic details along the decoding process through the visualization of manifold fea-

ture maps is demonstrated.

4.3.1 The contribution of backbone CNN to final performance

TABLE 4.1: mIoU (%) on Pascal VOC 2012 [20] validation set and number of param-
eters with different backbone CNNs.

Backbone CNN
Depth sizes

{d1, d2, d3, d4}
mIoU

(%)
No. parameters

Backbone Bracket Total

VGG-16 [79] {128, 256, 512, 512} 75.24 14.72M 7.13M 21.85M

Xception-65 [17] {128, 256, 728, 2048} 77.96 20.81M 21.06M 41.87M

ResNet-50 [29] {256, 512, 1024, 2048} 78.27 23.51M 38.97M 62.48M
ResNet-101 [29] 80.37 42.50M 38.97M 81.47M

{d1, d2, d3, d4}: Depth sizes of backbone CNN’s feature maps involved to the Bracket-shaped decoding process (abbreviated as
‘Bracket’ in the fifth column)

To this end, The contribution of backbone CNN to the final performance in terms of mIoU

is further exploited. Specifically, VGG-16 [79] and Xception-65 [17] are utilized as an alternative

to the main backbone ResNet-101 [29]. Besides that, the shallower version, i.e., ResNet-50, is

included in this experiment for providing further insights into the impact of varying-deep features

on the pixel-wise segmentation performance.

In general, the more capacities an architecture has, which means superior representations of

deep features are achieved, the better the segmentation performance in terms of mIoU gets (up to

around 5.13% for ResNet-101 vs. VGG-16) as reported in Table 4.1. Correspondingly, the model

complexity is enlarged as the total number of trainable parameters increases, which is determined

by two major factors, i.e., backbone CNN’s capacity and depth sizes of the feature maps involved

to the Bracket-shaped decoding stage. The former is enumerated in the fourth column of Table 4.1.

It is worth noting that despite possessing more layers than those in ResNet-50, Xception-65 has

fewer trainable parameters thanks to the full usage of Sep. Conv., which is more cost-efficient that

the conventional version as described in Section 3.3. Regarding the latter, information of consid-

ered channel dimension is given in the second column of Table 4.1, from which those retrieved

from ResNet have largest sizes compared to the counterparts. This leads to the increment of more
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hidden nodes and convolution kernels for FC and Sep. Conv. layers, respectively, in the CAF

modules. Therefore, applying ResNet as the backbone CNN results in a much larger number of

learnable parameters in the Bracket-structured decoding process (more than 1.85 times compared

to the others) as well as the whole architecture (more than 1.5 times) accordingly.

However, as aforementioned that semantically-rich details are essentially encoded in channel-

wise manner, the deeper features acquired from ResNet are capable of contributing more gener-

alized and informative context to the decoding step than those of VGG or Xception. In addition,

since the proposed Bracket-shaped decoding procedure exhaustively involves such varying-scale

feature maps through multiple rounds, depth-wisely representational abilities of those features

are marked as strongly influential attributes benefiting the final segmentation performance. Con-

sequently, it can be observed from Table 4.1 that employing ResNet-50 as the backbone network

introduces a slightly better mIoU (despite fewer layers) while the 101-layer version improves by

2.41% (which is significant in this domain) in comparison with the usage of Xception-65.

4.3.2 The effectiveness of Bracket-style decoding network over the Ladder/U-shaped

counterpart for leveraging middle-level features

TABLE 4.2: mIoU (%) on Pascal VOC 2012 [20] validation set and number of param-
eters with Bracket-style vs. Ladder/U-shaped decoding network.

Feature Combination Strategy mIoU(%) No. parameters

Ladder/U-shaped (Fig. 1.1a) 77.30 72.81M

Bracket-style (Fig. 1.1c) 80.37 81.47M

It can be observed that in comparison with the Ladder/U-shaped (Asymmetrically-structured

network illustrated in Fig. 1.1a), the proposed Bracket-style decoding scheme (manifested in

Fig. 1.1c) engages additional feature combination modules along the tournament of inferenc-

ing the final segmentation map. Particularly, middle-level features like F0
2,F0

3,F1
2 are extensively

utilized to simultaneously combine with adjacent higher- and lower-resolution maps as follows:

C(F0
1,F0

2), C(F0
2,F0

3), and C(F1
1,F1

2). Accordingly, an ablation study assessing the effectiveness of

such Bracket-style feature combination over the Ladder/U-shaped version is conducted in this

sub-section.

From the results reported in Table 4.2, the aforementioned extra combinations for leveraging

middle-scale feature maps, which form into the proposed Bracket-style decoding network, make a
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considerable gap of mIoU-based performance (↑3.07%) compared to the conventional Ladder/U-

shaped counterpart. Notably, the involvement of more combination modules clearly leads to an

increment of the parameters’ amount by 11.89%, which is however worth trading off for a vast el-

evation of quantitative segmentation performance. In brief, this experiment further expresses the

advantages of continually and extensively operating middle-level features in Bracket-structured

manner for the semantic image segmentation objective.

4.3.3 The coordination between Bracket-shaped Network and CAF-based Connec-

tions for leveraging middle-level features

TABLE 4.3: mIoU (%) on Pascal VOC 2012 [20] validation set and number of param-
eters with various settings of attentional mechanism.

Settings
mIoU (%) No. parameters

Cha. Att. Spa. Att.

76.73 33.66M
X 77.86 33.66M

X 79.45 38.97M
X X 80.37 38.97M

Let’s consider a middle-level feature map Fr
i (with 1 < i < n− r, ∀r) which plays different roles

in two adjacent CAF modules because of the Bracket-shaped connection manner, i.e., the lower-

resolution input of C1(F
r
i−1,Fr

i ) and the higher-resolution input of C2(F
r
i ,F

r
i+1). In the CAF block

C1, Fr
i contributes its finer representation via the learnable T. Conv. layer and the depth-based

semantic information via the channel-wisely attentional mechanism to be adjusted by and re-

calibrate the remaining input Fr
i−1, respectively. Meanwhile, in the CAF module C2, Fr

i takes a re-

versed role in which its finely patterned features and neural units are employed to spatially refine

and be re-calibrated in depth-wise manner by the partner Fr
i−1, respectively. Consequently, each

middle-level feature map is exhaustively exploited as both roles of coarser- and finer-resolution

features for comprehensively embedding semantic into fine-grained details on the tournament of

inferring the final pixel-wise prediction map.

The advantage of cross-attentional mechanism in the Bracket-style decoding procedure is quan-

titatively examined by validating various settings in Table 4.3. Compared to the baseline combina-

tion, performance improvement introduced by the embedded attentional mechanisms is consider-

able with 1.13% for spatial-based and especially 2.72% for channel-based attentions. Furthermore,

by combining these two attention types in crossing manner, the mIoU is further elevated by 1.0%
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approximately. This implies the powerful coordination between Bracket-structured network and

the CAF-based connections for leveraging the capability of embedding semantically contextual

information into finely patterned features.

Moreover, from the reported number of parameters in Table 4.3, it can be realized that the

utilization of one simple 7× 7 convolution kernel in each Spa. Att. block has nearly no impact

on the model complexity. Meanwhile, employing fully connected layers in Cha. Att. modules

increases the number of trainable parameters by approximately 15.8% due to large channel size

of processed tensors. Obviously, it is worth trading off such minor complexity increment for an

overall mIoU improvement of 3.64%, which is significant in the semantic segmentation problem.

4.3.4 Representation of feature maps with respect to different attentional schemes

In this part, the visual representations of key feature maps for semantic segmentation, comprising

F
1
1,F2

1, and F
3
1, with respect to different attentional schemes are introduced. Given an image fed

into the proposed CAB-Net, responses in the chosen features are averaged over corresponding

channel dimension. Then, those pixel intensities are scaled to the range of [0, 255] as illustrated

by two example cases in Fig. 4.1.

Clearly, since F1
1 is only decoded by low-level semantic information (from F

0
1 and F

0
2) in the

CAB-Net, using naive upsampling followed by element-wise fusion still results in ambiguous

features for next rounds. In contrast, applying any attentional mechanisms initializes more mean-

ingful focuses (with high pixel intensities) on object details as shown in the last three rows in

the first and fourth column of Fig. 4.1. Then, in the second round, features F2
2 inferred by the

non-attention strategy (first row in Fig. 4.1) continue to hardly manifest the regions of interest.

Although the Bracket-shaped network structure is able to smoothly embed semantically rich fea-

tures to spatial context round-by-round, the representation of predefined object categories is still

not optimal.

Accordingly, the utilization of spatially and channel-wisely attentional modules has strength-

ened the capability of expressing vital features and diminishing trivial ones. On the one hand,

using Spa. Att. is able to precisely orientate the expressiveness while effectively maintaining spa-

tial context as shown in F
1
1 and F

2
1 (see third row compared to those in the second and fourth

rows). On the other hand, involving Cha. Att. blocks can leverage the contribution of semantic

details encoded along depth dimension, which plays an important role for class discrimination.

However, as can be observed from F
3
1 in the third and fourth rows of Fig. 4.1, Spa. Att. blocks face
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F
1
1 F

2
1 F

3
1 F

1
1 F

2
1 F

3
1

FIGURE 4.1: Representation of key feature maps (i.e., F1
1,F2

1, and F3
1 from left to right)

extracted by the proposed CAB-Net with respect to different attentional schemes.
Note that the responses presented in the feature maps are averaged over the depth
dimension. Top row: example raw images in PASCAL VOC 2012 [20] validation set
and a color-intensity indicator; 2nd row: no Cha. Att. and Spa. Att.; 3rd row: only
using Spa. Att.; 4th row: only using Cha. Att.; and last row: applying both Cha.
Att. and Spa. Att. in the connection blocks. Color view is recommended for the best

visualization.

difficulty of distributing semantically rich features (of which the pixels should have high intensi-

ties) over space. Meanwhile, Cha. Att. blocks show its weakness in highlighting extracted spatial

features.

Finally, with the proposed cross-attention scheme described in Section 3.3, the advantages

of both Spa. and Cha. Att. modules are comprehensively combined for better differentiation and

localization of objects’ features. In specific, feature maps in the last row of Fig. 4.1 perform the best

coordination between semantically rich features and corresponding spatial context. For instance,

compared to the counterparts, semantic features of the horse’s body in the right F2
1 are expressed

and localized more impressively, which leads to better representation of attentional responses in

the subsequent F3
1.
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4.4 Comparison with State-of-the-art Methods

4.4.1 PASCAL VOC 2012

The experimental performance on test set is quantitatively reported in Table 4.4. It can be ob-

served that the proposed approach achieves competitive mIoU of 83.6% compared with that of

the state-of-the-arts. Regarding the class-wise results, the CAB-Net attains the top performance

with significant margin (up to 3.7%) for 10/20 semantic objects ranging from small to large scale.

Meanwhile, state-of-the-art results of the remaining labels are shared between deep models ap-

plying dilated convolution operators such as EncNet [101], PSPNet [103], and WideResNet [95].

Another noteworthy methodology called Tree-structured Kronecker CNN (TCKN) [94] adopted

Kronecker product as the custom convolutional layers, which nails the second-best overall per-

formance in Table 4.4. Differently, by employing the Sep. Conv. layers under the unique Bracket-

shaped structure, the proposed model is able to give superior achievements over those networks.

In specific, the exhaustive employment of middle-level features during the inference process is

able to continuously refine the integration of semantic context to high-resolution representation.

As a consequence, the details of various scales are managed more efficiently. Besides that, thanks

to the cross-manner operation of multiple CAF blocks along the Bracket-style decoder, the pro-

posed architecture outperforms the DANet [23] (which uses dual attention applied only to the

highest-level feature in parallel fashion) by 1.0%, which is significant in such a competitive se-

mantic segmentation topic.

Moreover, typically visual results exhibited in Fig. 4.2 have shown the effectiveness of the

CAB-Net in partitioning multiple categories of different scales. Additionally, compared to the

outputs introduced by B-Net-VGG-LCM, the proposed network can reason better pixel-wise la-

beling performance, especially the bird and chair classes. However, the proposed model still fails

in precisely segmenting objects which contain interior gaps (void labeled regions in ground-truth

map) such as the light-brown chair and the horse’s body parts overlapped by fence in the fourth

and fifth rows of Fig. 4.2, respectively. In addition, a very small-sized airplane located at right

side of the input image in the first row is not segmented in the prediction map. It is argued

that the largest-resolution feature maps involved in the proposed decoding procedure have stride

of 4 is the major reason for several improper representations of those small spaces for complete

scene learning. Accordingly, taking into account features with stride of 2 may bring in finer de-

tails for better local context learning. Nevertheless, such approach requires an unworthy trade-off
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FIGURE 4.2: Several qualitative results on Pascal VOC 2012 [20] validation set. Left
to right: original images, ground-truth labels, results of B-Net-VGG-LCM [35], and

the proposed CAB-Net.

for much lower allowed size of training mini-batches and higher number of operations as well

as model complexity during training, which should even make the overall performance worse

accordingly.

4.4.2 CamVid

It can be observed from the Table 4.5 that the proposed CAB-Net obtains state-of-the-art mIoU

of 76.4%. Regarding per-class performance, the proposed network reaches state-of-the-art class-

wise IoU in 10 (building, tree, sky, car, sign-symbol, road, pedestrian, fence, sidewalk, and bicyclist)

out of totally 11 semantic labels. Remarkably, significant margins ranging diversely from 0.1%
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TABLE 4.5: Experimental per-class IoU and mIoU (%) on CamVid [9] dataset. Bold-
face numbers indicate the best performance at each class.

Approach Building Tree Sky Car Sign-symbol Road Pedestrian Fence Pole Sidewalk Bicyclist mIoU (%)

SegNet (3.5K dataset) [6] (S) - - - - - - - - - - - 60.1
DeepLab-LFOV [14] (A) 81.5 74.6 89.0 82.2 42.3 92.2 48.4 27.2 14.3 75.4 50.1 61.6
Dilation8 [99] (A) 82.6 76.2 89.9 84.0 46.9 92.2 56.3 35.8 23.4 75.3 55.5 65.3
Dilation+FSO-DF [53] (A) 84.0 77.2 91.3 85.6 49.9 92.5 59.1 37.6 16.9 76.0 57.2 66.1
B-Net-VGG-LCM [35] (A) 81.4 75.3 92.8 82.5 42.8 89.2 60.8 47.8 36.3 66.4 54.8 66.4
G-FRNet [42] (S) 82.5 76.8 92.1 81.8 43.0 94.5 54.6 47.1 33.4 82.3 59.4 68.0
BiSeNet [98] (A) 83.0 75.8 92.0 83.7 46.5 94.6 58.8 53.6 31.9 81.4 54.0 68.7
DDSC [8] (ss) (S) - - - - - - - - - - - 70.9
LDN121 16→2 [52] (S) - - - - - - - - - - - 75.8

CAB-Net (ss) (A) 88.7 87.2 94.9 91.0 60.5 94.9 57.4 60.4 26.8 85.4 55.4 73.0
CAB-Net (A) 91.1 88.9 95.7 93.0 64.8 94.7 66.5 70.5 29.8 85.3 60.3 76.4

(ss): single-scale testing strategy; -: no data recorded in the original work; (A): Asymmetrically-structured Network; (S):

Symmetrically-structured Network

FIGURE 4.3: Several qualitative results on the CamVid [9] dataset. First row: original
images; 2nd row: corresponding ground truth labeled maps; 3rd row: results inferred

by B-Net-VGG-LCM [35]; and last row: CAB-Net.

to 16.9% are gained at these categories in comparison with the corresponding second places.

These achievements show that the exhaustive utilization of middle-scale feature maps in terms
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of Bracket-structured manner can effectively embed semantic information to the representation

of medium- to small-sized objects (e.g., tree, pedestrian, sign-symbol) while providing precise anno-

tations for large-sized ones (e.g., building, car). However, the segmentation performance for the

pole label is still lower than that of B-Net-VGG-LCM [35] by 6.5%. Apparently, due to the heav-

ily imbalanced class issue, it is challenging to produce the performance higher than 50% for this

category, even in the existing work. In addition, despite the fact that feature maps with stride of

2 are also taken into account in [35] allows fine details like pole to be acquired more effectively,

the corresponding mIoU is significantly lower than that of the proposed CAB-Net by 10%. This

arguably implies that, as discussed at previous sub-section, the involvement of too large-sized

tensors during the decoding process should encounter the issue of training convergence and fol-

lowing non-optimal test performance.

Besides that, several visual results compared with those of B-Net-VGG-LCM [35] and the cor-

responding ground-truth maps are illustrated in Fig. 4.3. Obviously, the proposed architecture is

able to reduce the wrong labeling between truck (in purple) and building (in red) as displayed in

the 2nd row; sidewalk (in blue) and road (in magnetta) as shown in the 1st and 3rd row, respectively.

This infers that the discrimination between similar-sized objects is performed better thanks to the

usage of a more robust backbone CNN, the newly defined connection module called CAF and its

powerful coordination with the Bracket-style decoding structure.

4.4.3 Cityscapes

The quantitative and qualitative benchmark results of this dataset from the evaluation server are

presented in Table 4.6 and Fig. 4.4, respectively. The proposed CAB-Net achieves a competitive

mIoU of 78.3%, where the performance of semantically recognizing motion objects like fence, veg-

etation, rider, car, truck, bus, and motorbike is superior over that of the state-of-the-art methods by a

large margin (up to 2.7%). The performance of remaining categories, except for small-scale traffic

light and sign symbol, has average lower IoU of 0.6% approximately in comparison with that of the

state-of-the-art PSPNet [103]. Clearly, while varying-rate dilated convolution-oriented approach

can capture contextual information well for segmenting static things impressively, the proposed

technique is more robust at tackling motion instances of different scales thanks to the comprehen-

sive utilization of middle-level features. In particular, despite the issue of handling very small-

sized objects in high-resolution images, the proposed hybrid attentional mechanism coordinating

in crossing manner still enables the proposed model to ‘mark’ diverse representation of medium-
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to large-scale targets reasonably like the moving instances. Simultaneously, with the dense com-

bination scheme between the decoded feature maps by the Bracket-structured network, the local-

ization of those categories is continuously refined for the optimal pixel-wise labeling as depicted

in Fig. 4.4. Furthermore, compared to the sibling B-Net-VGG-LCM, the proposed CAB-Net, with

the remarkable improvements in terms of backbone network as well as attentional connection

scheme, can label the objects more accurately (e.g., the representations of sidewalk category in the

second row of Fig. 4.4).

FIGURE 4.4: Several qualitative results on Cityscapes [18] validation set. Left to
right: original images, ground-truth labels, B-Net-VGG-LCM [35], and CAB-Net.

4.4.4 MS-COCO

In this experiment, the compared methods, i.e., U-Net [75] (representative of existing symmetrically-

structured network topology) and DeepLabv3+ [13] (asymmetrically-structured counterpart), are re-

produced with several customization so that they all have similar amount of learnable parameters

with that of the proposed CAB-Net (i.e., ≈81.5M) for a fairer comparison given the same envi-

ronmental settings. In particular, the backbone network of the reproduced U-Net [75] is ResNet-

101 [29] and the depth-wise concatenation operators in the combination modules are replaced by
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the element-wise addition counterpart. Meanwhile, modifications in the DeepLabv3+ [13] with

backbone ResNet-101 [29] are enumerated as follows: (i) output channel dimension of the Atrous

Spatial Pyramid Pooling (ASPP) module is changed from 256 to 576; (ii) number of convolution

filters applied to the considered low-level feature map in the decoder is changed from 48 to 256;

and (iii) channel size of the features concatenated by the processed low-level feature map (with

new channel size of 256) and the output feature of ASPP scheme (with new channel size of 576)

is set to be compressed from 832 (=256+576) to 304 (instead of from 256+48=304 to 256 as in the

original version) prior subsequent operations.

From the experimental results reported in Table 4.7, it can be realized that the proposed ar-

chitecture attains the competitive mIoU of 85.2%, which significantly outperforms those of the

compared networks by 2.2− 4.6%. With respect to the class-wise segmentation results, the pro-

posed CAB-Net reaches top performance on 12/20 semantic object categories (i.e., airplane, bike,

bird, boat, bus, chair, cow, table, horse, person, sofa, and television). These outcomes demonstrate the

effectiveness of the proposed deep learning architecture in labeling objects of various scales and

deformations. Remarkably, it is obvious that the quality of segmenting the corresponding ob-

ject classes in PASCAL VOC 2012 dataset (as shown in Table 4.4) is further leveraged thanks to

the significant supplement of well-annotated training images’ amount in this benchmark dataset.

In particular, the gap between CAB-Net only trained with PASCAL VOC 2012 [20] dataset and

that additionally learned from MS-COCO [64] in advance is 1.7%, which is considerable in such a

competitive research area.

4.4.5 Computational Complexity

Finally, the computational complexity in terms of inference speed and total number of parameters

is compared with several existing methods belonging to both symmetrically and asymmetrically-

structured network families. In each group, approaches with different ultimate objectives, i.e.,

focusing more on either labeling accuracy or inference rapidity, are involved in the discussion.

Accordingly, high-resolution images (1024×2048) in Cityscapes dataset [18] are taken into account

for this experiment, from which the comparison details are given in Table 4.8. The proposed CAB-

Net is run on a Linux OS-based desktop computer equipped with Intel® CoreTM i7-7700 CPU

at 3.6GHz × 8, NVIDIA GeForce GTX 1080Ti GPU, and 32GB RAM, which yields the inference

speed of 20 frames per second (fps). Meanwhile, the B-Net-VGG-LCM [35] reaches 27 fps because

channel sizes of the feature maps utilized from the backbone VGG-16 are considerably shallower.
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TABLE 4.8: Comparison of mIoU, inference speed, and number of model parameters
for input image with resolution of 1024×2048 in Cityscapes [18] dataset. Boldface

numbers indicate the best performance at each criterion.

Network
structure Approach

NVIDIA
GPU

mIoU
(%)

Inference
speed (fps)

No.
parameters

Symmetric SegNet [6] Titan X 56.1 24 29.46M
SwiftnetRN-18 [72] GTX 1080Ti 75.5 39 11.80M

Asymmetric PSPNet [103] GTX 1080Ti 78.4 11 65.60M
BiSeNet [98] Titan Xp 74.7 65.5 49.00M

Bracket B-Net-VGG-LCM [35] GTX 1080Ti 75.9 27 25.92M
CAB-Net GTX 1080Ti 78.3 20 81.47M

Regarding the symmetrically-structured topology, both SegNet [6] and SwiftnetRN-18 [72] have

faster segmentation speeds of 4 and 19 fps than the proposed model due to the employment of

much lower-capacity CNNs, i.e., VGG-16 [79] and ResNet-18 [29], respectively. In concrete, for

such kind of symmetric encoder-decoder, the process of inferring pixel-wise labeled map mainly

relies on the inherent structure of backbone CNN. Therefore, applying shallower network that

extracts features having smaller depth size to be involved in the decoding stage requires fewer

parameters and operations throughout the whole architecture. However, there is a huge trade-

off with the mIoU-based performance, wherein the proposed CAB-Net greatly outperforms the

SegNet [6] and SwiftnetRN-18 [72] by 22.2% and 2.8%, respectively. On the other hand, it is note-

worthy that the B-Net-VGG-LCM [35], another representative of Bracket-style structure, attains

higher mIoU (of 19.8%) and processing rate (of 3 fps) while having same backbone CNN but

fewer parameters (of 12%) in comparison with those of the SegNet [6]. The major reason is that its

decoder is the reverse replication of the original VGG-16 [79], which is obviously more expensive

than the connections between several selective feature maps only in the Bracket-shaped structure

or the SwiftnetRN-18 [72].

Compared to PSPNet [103] and BiSeNet [98] in asymmetrically-structured group, the proposed

CAB-Net contains more number of parameters but still accomplishes noticeable results in the re-

maining criteria. Particularly, the proposed method reaches a comparable mIoU (with trivially

lower rate of 0.1%) but nearly double inference speed (20 vs. 11 fps) in comparison with the

PSPNet [103]. It is argued that the primary cause is the manifold utilization of the deepest fea-

ture maps in ResNet-101 [29] for various pooling rates followed by conventional convolutional

layers in that approach. Such strategy heavily elaborates the volume of operations (comprising

multiply, add, max-value calculations, etc), which subsequently reduces the segmentation speed.
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Meanwhile, the involvement of efficient attentional and Sep. Conv. layers to lower-depth features

round-by-round in the proposed technique conducts cheaper operation burden despite carrying

more learnable parameters. On the contrary, since the BiSeNet [98] targets at processing rapidity

more favorably, it is built upon the lightweight backbone ResNet-18 [29] with an attached dual

network stream for amalgamating global context and local details in a cost-efficient way. Hence,

the inference speed is impressive with approximately 65 fps but compromising poorer mIoU with

a gap of 3.6% compared to that of the proposed CAB-Net.

TABLE 4.9: Comparison of mIoU, inference speed, total multiply-adds operations
and memory occupancy given similar number of model parameters for input image
with resolution of 513×513 in PASCAL VOC 2012 [20] dataset. Boldface numbers

indicate the best performance at each criterion.

Approach
NVIDIA

GPU
No.

parameters
mIoU

(%)
Inference

speed (fps)
Total

mult-adds
Memory occupancy

Forward/Backward pass size Parameters size

U-Net [75] (S)
Titan RTX ≈81.5M

80.7 48 163.1G 1,701M 326M

DeepLabv3+ [13] (A) 83.1 37 145.4G 1,836MB 326MB

CAB-NET (A) 85.3 41 169.4G 2,002MB 326MB

(A): Asymmetrically-structured Network; (S): Symmetrically-structured Network

Furthermore, in order to conduct a more comprehensive and fairer comparison of computa-

tional complexity, the two reproduced approaches, i.e., U-Net [75] and DeepLabv3+ [13], evalu-

ated with MS-COCO [64] and PASCAL VOC 2012 [20] datasets as described in Section 4.4.4 are

taken into account. Given the mIoU performance for input images of size 513×513 and simi-

lar number of trainable parameters (≈81.5M) with same backbone ResNet-101 [29] in these two

networks and the proposed model as discussed before, statistics of inference speed, total multiply-

adds operations, and memory occupancy in terms of forward/backward pass size and parameters

size using one NVIDIA Titan RTX GPU are summarized in Table 4.9.

Particularly, since the proposed architecture targets at segmentation quality with the dense in-

volvement of cross-attention fusion modules organized in a hierarchical manner, the mIoU perfor-

mance achieves highest rate of 85.3%. However, this leads to unavoidable trade-offs that the total

multiply-adds operations and the forward/backward pass size occupied in memory are largest

with 169.4G and 2,002M, respectively. Meanwhile, the customized U-Net [75] reaches the fastest

inference speed (with 7 more fps compared to that of the proposed CAB-Net) and least mem-

ory access (with around 300MB less than that of the proposed model). Clearly, as channel-wise

concatenation is replaced by element-wise summation in combination modules of the considered

U-Net variant as described previously, computational burden and memory occupancy are further
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reduced but trading off the worst quantitative segmentation performance. On the other hand, de-

spite the consequence of slowest throughput with 37 fps, the customized DeepLabv3+ [13] attains

the fewest number of multiply-adds operations with 10.9-14.2% less than those of the compared

techniques. It is argued that the significant increment of tensor’s depth size in the ASPP mecha-

nism followed by a specialized decoder in the modified DeepLabv3+ [13] leads to more memory

usage and simultaneously slows down the operational momentum of the convolutional layers

along the feedforward process. In a nutshell, it can be realized that the mIoU, inference speed,

and model complexity in terms of parameters’ amount and memory occupancy are strongly cor-

related criteria, to which the preference certainly depends on predefined purposes of each deep

learning model.
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Chapter 5

Bracket-style Network Variant for

Medical Image Segmentation

In this chapter, overview of retinal blood vessel segmentation domain, a popular medical-related

topic, is firstly delivered. Then, descriptions of Bracket-style network variant are given. Af-

terwards, the DRIVE dataset [80] with corresponding evaluation metrics for benchmark is pre-

sented. Next, training configurations are taken into account. Finally, ablation study along with

performance analyses are conducted to show the effectiveness of the proposed methodology. Re-

markably, the experimental procedures involving human subjects described in this chapter were

approved by the Institutional Review Board.

5.1 Domain Overview

According to World Health Organization (WHO), Diabetic Retinopathy (DR) is the top-five and

-four causes of vision impairment and blindness on earth, respectively. It is originated by the

long-term impact of diabetes which results in adverse changes in nerves and blood vessels of the

patient’s retina. Specifically, the earliest sign of DR is the phenomenon of capillary wall dilata-

tion [16] at retinal vessels, namely microaneurysm (MA). These swellings may cause blood and

fluid outflow to the retina, which leads to a more severe level of vision loss. Therefore, early and

accurate detection of the MA can help ophthalmologist easily deploy optimal treatment plan for

DR progression prevention and management. As a consequence, developing a method be able to

precisely localize the MA on color fundus photographs is currently an open research area. In color

fundus photography, abnormal changes in representation of retinal blood vessel may tell initial
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sign of common eye diseases comprising diabetic retinopathy (DR), glaucoma, ocular hyperten-

sion, cataracts, to name a few. For example, the phenomenon of capillary wall dilatation [16] at

retinal vessels, namely microaneurysm, is the earliest indicator of suffering from DR. Therefore,

efficiently extracting the vessel-based information can help ophthalmologists precisely diagnose

and effectively deploy an optimal treatment plan for prevention and regulation of blindness and

vision impairment for patients.

As a consequence, there has been a lot of efforts dealing with the problem of vessel segmenta-

tion in the last decade. Recently, resulting from the expeditious growth of computational resources

like Graphical Processing Units (GPU) as well as the quantity of image datasets, Convolutional

Neural Networks (CNNs) has been widely employed in various domains of medical image pro-

cessing with impressive performance thanks to the powerful feature representation. Specifically,

in the field of retinal blood vessel segmentation in color fundus image, there are many attempts

handling such kind of binary classification problem at pixel level, a.k.a. semantic segmentation

given 2 classes (background and vessel), based on fully convolutional neural networks (FCN) ar-

chitectures. For instance, CNN-RFs [91] utilized CNNs and Random Forest as feature extractor

and corresponding classifier, respectively, for the vessel segmentation. Besides that, the authors

of [69] introduced a model including a base CNN for extracting meaningful features along with

additional layer blocks specialized for simultaneously segmenting optic disc and retinal blood

vessel. On the other hand, since the ratio between the number of vessel and background pix-

els is massively imbalanced, many works split a given fundus image into multiple overlapping

patches [22, 31, 44, 49, 65], which are considered as newly augmented images, in order to address

the class-imbalancing issue as well as increase dataset size for combating overfitting matter. In

specific, methods proposed in [44, 65] took into account RGB patches as inputs of CNNs formed

by stacks of convolution, max-pooling, and fully connected layers. Meanwhile, Feng et al. [22]

proposed a technique called local entropy sampling to generate grayscale patches from original

fundus photography as inputs of a predefined FCN having skip-connection scheme. He et al. [31]

implemented a similar approach but additionally took into consideration of differences between

small and large vessel regions by a local de-regression along with regression based deep architec-

ture. Furthermore, instead of converting RGB to grayscale as in [22, 31], Kassim et al. [49] only

involved green channel of the raw fundus image to constitute patches for training a predefined

14-layer CNN. The readers may refer to [71] for an intensive review of existing literature of retinal

vessel segmentation area.
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As aforementioned, small patches generation can reduce the imbalance between the amount of

retinal blood vessel and background pixels, which facilitates the semantic segmentation model to

encode features more effectively. However, it is obvious that such kind of patch-based approaches

brings in expensive computations in both data preprocessing and execution stage for trading-off

better performance. Therefore, in this section, an architecture called RFA-BNet is introduced to

efficiently partition the blood vessels in color fundus photography without the necessity of costly

processing small patches of raw images for training the deep learning network. Concretely, it can

be realized that because of being pretrained with large-scale dataset, classification-based CNNs

like VGG-Net [79], ResNet [29] can delineate the objects of interest at different levels of feature

representation, i.e., from finely patterned to semantically rich features. This leads to the hypothe-

sis that leveraging the utilization of those finely patterned features, which should be continuously

enhanced the semantically rich information during the pixel-wise prediction map construction

process, is capable of labeling small objects more precisely in case of heavily class-imbalancing

issue. Hence, Round-wise Features Aggregation (RFA), as the step of exhaustively utilizing finely

patterned features, is proposed to be embedded into the B-Net architecture [35], a light-weight

version of CAB-Net in Chapter 3, with sorts of specialized manipulations. As a consequence, it

is able to comprehensively exploit semantic context of middle-scale features onto the final per-

pixel prediction map for the ultimate purpose of segmenting retinal blood vessels, which appear

diversely and irregularly in terms of middle- to small-sized objects.

5.2 Descriptions of Bracket-style Network Variant for Medical Image

Segmentation

This section firstly delivers a brief description of the initial version of the Bracket-shaped convolu-

tional neural network (B-Net) [35] for semantic segmentation. Then, the approach of round-wise

features aggregation embedded on top of the B-Net is proposed in order to effectively address the

problem of partitioning retinal blood vessel in color fundus photography, in which the pixel ratio

between regions of interest, i.e., the vessels, and the background is heavily imbalanced.

5.2.1 Bracket-shaped Convolutional Neural Networks

In the initial work [35], a novel deep learning based semantic segmentation model, namely B-Net,

wherein a Bracket-style decoding process is introduced to construct the final pixel-wise labeled
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map from typical feature maps of various scales learned at backbone VGG16-Net [79]. The idea

is motivated from the observation that middle-scale features along a classification-based CNN’s

feed-forwarding path are not exploited intensively for the segmentation problem although they

possess valuable balances between fine details and semantically contextual information, which

is clearly profitable for the decoding (i.e., per-pixel prediction map inference) process. Accord-

ingly, to leverage those features’ usage, every pair of scale-adjacent feature maps chosen from the

backbone network passes through predefined lateral connection modules to infer newly decoded

outputs, which continuously repeat the same procedure round-by-round until one final prediction

map of finest-resolution is obtained. Note that each round of such decoding approach is defined

by the process in which n feature maps combining with neighboring versions to yield n− 1 out-

puts possessing enhanced semantic information. In other words, the major contribution of their

work is that feature maps at middle levels of spatial resolution are comprehensively utilized to

simultaneously (i) contribute semantically richer contexts to the adjacent higher-resolution map

and (ii) refine ambiguously coarse details in upsampled version of the adjacent lower-resolution

one. Consequently, middle- to small-sized object representation is handled effectively in the final

labeled map by the B-Net. Since the appearance of the retinal blood vessel is somewhat suitable

to target function of the method proposed in [35], the Bracket-style CNN concept with several

variations compared to the original work is adopted to maximize the retinal vessel segmentation

performance.

In particular, as illustrated in Fig.5.1, the pretrained ResNet-101 [29] is utilized as backbone

network of the proposed approach. Subsequently, four feature maps of different scales utilized

for the decoding procedure are outputs of the initial convolution layer and three first residual

blocks, with strides of 2, 4, 8, and 16 with respect to the input images’ spatial dimension, respec-

tively. Let these feature maps of Round 0 (blue-line rectangles in Fig.5.1) densely combine with

their adjacency as described previously, three newly decoded outputs (green-line rectangles of

Round 1 in Fig.5.1) are inferred. Next, the same procedure takes place two more rounds until one

finest-resolution feature map (having stride of 2) is remained before the RFA module. The contin-

uous combination between two certain scale-adjacent feature maps during the Bracket-structured

decoding process is defined as follows

F
r
i = Conv

[
F

r−1
i ⊕U (Fr−1

i+1 )

]
(5.1)
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where Fr
i is ith feature map at rth round, wherein r = 1, 2, 3 and i = 1, . . . , 4− r (the larger value of

i, the lower spatial resolution (i.e., larger stride) the corresponding feature map has); ⊕ stands for

element-wise sum; U (.) represents transposed convolution operator for 2x upsampling; Conv[.]

consists of following operations on the sum feature map: Rectified Linear Unit (ReLU) activation,

separable convolution [17], and batch normalization [41] for diminishing adverse effects during

the upsampling progress. It is worth noting that the number of both the transposed and sepa-

rable convolution layers is specified to be identical to channel size of the corresponding higher-

resolution input at each combination step.

Chosen feature maps  extracted by backbone CNN

Round 1Round 0 Round 2 Round 3

ReLU + Separable Convolution + Batch Normalization

Element-wise Sum

Round-wise Features Aggregation 

Identity pass
Upsampling
Classi�er

Feature maps decoded by RFA-BNet 

RFA

RFA

Backbone CNN

FIGURE 5.1: Architecture of the proposed RFA-BNet, a variant of CAB-Net. Let an
input color fundus image be fed into the backbone ResNet-101 [29], final outputs
of the initial convolution layer and three first residual blocks, i.e., with strides of 2,
4, 8, 16, respectively, are involved in the Bracket-manner decoding process (in three
rounds) for retinal blood vessel labeling. Briefly, these fine-to-coarse feature maps
are densely combined via the element-wise summation along with non-linear learn-
ing (ReLU, separable convolution [17], and batch normalization [41]) to infer outputs
which repeat the same operations round-by-round until only one decoded feature
map is left. Then, the highest-resolution decoded feature maps at each round are
aggregated via depth-wise concatenation procedure before its upsampled version
goes through the predefined classifier for pixel-wise segmentation. Since the finest-
resolution feature maps decoded at each round of the Bracket-style CNN are aggre-
gated to produce remarkable representation of retinal blood vessels, such process is
called Round-wise Features Aggregation on Bracket-shaped Network (RFA-BNet).
Note that area and thickness of rectangles demonstrate spatial and depth size of the

corresponding feature maps, respectively.

5.2.2 Round-wise Features Aggregation

Apparently, the exhaustive utilization of middle-scale features by the Bracket-shaped decoder can

effectively represent medium- to small-sized objects at pixel level, which is suitable for segmenting
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blood vessel in fundus photography. However, naively applying the original structure of the B-

Net is obviously not an optimal strategy since the representation of retinal blood vessels is diverse

and irregular (if compared with usual contents in natural images), e.g. more and more sudden

branches of thin vessels emerge when being away from the optic disc. Also, another noticeable

factor is that the ratio between vessel and background pixels are heavily imbalanced (e.g. around

1.3:8.7 in training set of the DRIVE dataset [80]). Therefore, in this work, an approach of RFA is

additionally proposed on top of the B-Net manipulated by another backbone network with lower

output stride as specified in previous sub-section. Since the finest-resolution feature map at each

round possesses different degrees of semantically rich features which may get rid of representa-

tion of thin and ambiguous vessels, the RFA module aims to aggregate finest-resolution feature

maps of all rounds to make the built model flexibly learn weakly-to-strongly embedded semantic

contexts while retaining proper annotations of fine details like thin vessels’ edges. In concrete,

the finest-resolution feature maps of each round are concatenated along the depth dimension and

then the transposed convolution followed is applied by a final classifier as demonstrated in Fig.5.1.

Accordingly, the final per-pixel prediction map Y is produced as below

Y = U (A[F1
1,F2

1,F3
1]) (5.2)

where A[.] means depth-wise aggregation procedure.

5.3 Experiments

5.3.1 Benchmark Dataset: DRIVE [80]

DRIVE stands for Digital Retinal Images for Vessel Extraction [80], which is used to validate stud-

ies on retinal blood vessel segmentation in fundus photography. The dataset pool consists of

totally 40 images, half of which is designated for training and the remaining for testing. It is

worth noting that image crop size around field of view (FOV) is fixed at 584× 565. Also, mask of

the FOV inside each fundus image is provided to specify regions of interest for fair performance

evaluation. Hence, ground-truth labels of the retinal background, vessel, and non-FOV pixels are

defined as 0, 1, and 255, respectively, during the training stage. For evaluation, well-known met-

rics such as sensitivity, specificity, accuracy, precision, and AUROC are involved to validate the

effectiveness of the proposed method.
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5.3.2 Training Configurations

In this work, Tensorflow [4] and Scikit-learn [3] are employed to train and evaluate the pro-

posed deep network on one NVIDIA 1080TI GPU, respectively. Since the dataset pool is small,

the training images are massively augmented by following manipulations: random scale of {0.5,

0.75, 1.0, 1.25, 1.5, 2.0}, random crop with centered FOV subject to predefined spatial dimension

(i.e., 585× 565), depth-wise mean intensity normalization, random horizontal and/or vertical flip.

Then, each batch of five augmented images is continuously fed into the proposed architecture.

Subsequently, weighted cross-entropy loss function is utilized to assess the compatibility between

the resulting pixel-wise prediction maps Y and corresponding ground-truth label maps G in the

scenario of class imbalance as follows

L(Y, G) = ∑
Yp

(
1

∑
j=0

αjip,jlog(sp,j)

)

ip,j =

1, Yp,j = Gp,j

0, otherwise

(5.3)

where Yp represents considered pixels of prediction map Y, αj stands for balancing coefficient of

class j ∈ {0, 1}, ip,j indicates the predicted class j of Yp with respect to its actual class in ground-

truth label map G, sp,j denotes softmax score of Yp corresponding to class j. In this work, α0 and

α1 are set to be 1.0 and 6.975, respectively, which exhibit the ratio between total number of back-

ground (label value of 0) and vessel (label value of 1) pixels in the training dataset. As can be seen

from equation 5.3, non-FOV pixels (label value of 255) are ignored during the loss computation

procedure. From the measured loss, to optimize parameters initialized by He’s approach [30] in

the RFA-BNet, Adam optimizer [51] is adopted with learning rate, decay rate of moving average

of gradient’s first and second moment are assigned at 0.001, 0.9, and 0.999, respectively. In ad-

dition, weight decay of 0.0001 is included to boost the generalization capability of the proposed

architecture. Finally, the training process runs 500 epochs to finalize the built model for multi-scale

plus horizontal and vertical flipping testing.

The retinal vessel segmentation is equivalent to binary classification problem at each pixel of

a given fundus image. Therefore, well-known performance metrics such as sensitivity (recall),

specificity, accuracy, precision, AUROC (Area Under the Receiver Operating Characteristics) are

used to evaluate the effectiveness of the proposed methodology.
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FIGURE 5.2: Typically qualitative results of the proposed RFA-BNet on several test-
ing fundus images of DRIVE [80] dataset. Top row: Raw fundus images; Middle

row: Ground truth; Bottom row: Results of the proposed RFA-BNet.

TABLE 5.1: Quantitative Results on DRIVE [80] dataset. Boldface numbers indi-
cate the best performance of each measure. Note that (A) indicates Asymmetrically-

structured Network and (S) stands for Symmetrically-structured Network.

Approach Sensitivity Specificity Accuracy AUROC

Liskowski et al. [65] (A) 0.7763 0.9768 0.9495 0.9720
Jiang et al. [44] (A) 0.7540 0.9825 0.9624 0.9810
Feng et al. [22] (S) 0.7811 0.9839 0.9560 0.9792
He et al. [31] (S) 0.7761 0.9792 0.9519 N/a

Baseline (w/o RFA) (A) 0.7807 0.9667 0.9484 0.9659
RFA-BNet (A) 0.7932 0.9741 0.9511 0.9732

5.3.3 Experimental Results and Analyses

As quantitatively shown in Table 5.1, compared to the baseline concept, the involvement of RFA

scheme outperforms 0.0027 − 0.0125 for all the measures. Moreover, the proposed RFA-BNet

achieves state-of-the-art sensitivity (0.7932) among the compared methods. Meanwhile, the per-

formance in terms of specificity, accuracy, and AUROC is still comparable to that of the patch-

based methods with 0.9741 (< 0.0098 compared to the best performance reported in [22]), 0.9511
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(< 0.0113 [44]), and 0.9732 (< 0.0078 [44]), respectively. Additionally, it can be observed from sev-

eral typically qualitative results displayed in Fig.5.2 that irregular and diverse appearance of reti-

nal blood vessel is carried out remarkably under various illumination conditions of input images

compared to corresponding ground truth. These outcomes imply that the proposed architecture

is able to effectively label challenging retinal vessel at pixel level without expensively utilizing

patches augmented from the raw fundus photography.

In summary, this section introduced an approach using Round-wise Features Aggregation on

Bracket-shaped convolutional neural networks for dealing with retinal blood vessel segmenta-

tion problem in color fundus image. The proposed method targets to efficiently infer pixel-wise

labeled map without involving costly computation of generating patches from original color fun-

dus image. For this objective, the Bracket-style decoding manner combining with comprehensive

aggregation between decoded feature maps of highest-resolution enables the proposed RFA-BNet

to identify vessels’ location flexibly and precisely at pixel level as shown by the experimental

results.
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Chapter 6

Bracket-style Network Variant for Image

Classification

In this chapter, at first, two domains of Diabetic Retinopathy detection and Facial Expression

recognition with respectively existing issues in the literature are introduced. Then, descriptions of

the adopted Bracket-style network variants are given to explain how they are applicable to tackle

the above-mentioned natural and medical image classification domains. Afterwards, correspond-

ing benchmark datasets, ablation studies as well as analyses of experimental results are in-turn

presented to show the effectiveness of the proposed approaches.

6.1 Domain Overview

6.1.1 Diabetic Retinopathy Detection

Diabetic Retinopathy (DR) is the complication developed from long-term being affected by di-

abetes mellitus during a lengthy period, is among the leading causes of visual impairment and

blindness [37]. Generally, the seriousness of DR is manually assessed through the aggravation

of vasculature and occurrences of abnormal protrusions within retinal-related photograph. In

concrete, the DR grades are decided by the combined evaluation of different structural features

presented in the color fundus images, for instance, existence of microaneurysms, exudates, hem-

orrhages, neurodegeneration, retinal vascular complications [48, 50, 87, 90]. Traditionally, the

severity of DR is determined based on the combined evaluation of different structural features

presented in the color fundus images, for instance, existence of microaneurysms, exudates, hem-

orrhages, and neovascularization [32, 50, 87]. Accordingly, five severity grades comprising no

apparent retinopathy (no DR), mild nonproliferative DR (NPDR), moderate NPDR, severe NPDR,
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and proliferative DR (PDR) have been defined as international clinical classification system based

on the Early Treatment Diabetic Retinopathy Study [74] (which are subject to aforementioned clin-

ical criteria). However, such grading process remains time-consuming and challenging due to the

heavy dependence on technical expertise and quality of the screened retinal fundus images. More-

over, it can be observed that effective diagnosis of DR severity level allows the ophthalmologists

to deploy proper treatment procedure for the prevention of vision deterioration. These lead to

the fact that the research topic of automatic DR detection from retinal-based images shows great

interest in both ophthalmology and modern computer vision domains nowadays.

To this end, thanks to recently marvelous advancement of computational resources and image

data regarding both quantity and quality, deep learning technique has been widely researched

diverse fields, especially computer vision. Particularly, Convolutional Neural Network (CNN), a

powerful DL architecture, has been applied in diverse vision-oriented areas ranging from natural

image classification [29, 34, 79, 81], human action recognition [39, 40] to biomedicine [10, 88],

medical image segmentation [36], and DR risk prognosis [37], to name a few. As a result, utilizing

CNN to recognize DR severity scales from fundus images has also attracted numerous researches

[2, 5, 15, 43, 45, 77, 84–86, 92, 106] thanks to the representational power of the above-mentioned

biomarkers for automatic diagnosis. Particularly, the existing CNN-based methods are divided

into two primary groups: (i) the employment of the CNN built by common trainable and non-

linear layers for classification [15, 43, 77, 84, 85] and (ii) deep architecture of multiple network

streams learning through ensemble scheme [45, 86, 92, 106].

Regarding the first line of work, the authors of [85], [84], [43], and [15] employed 11-, 17-

, 18-, and 20-layer CNNs (which are commonly designed by sequential pipeline of convolution,

rectified linear unit (ReLU) activation, max/average pooling, Fully Connected (FC) layers), respec-

tively, for classifying corresponding DR grades. Similarly, in [77], the light-weight Inception-v3

architecture [82] is utilized using transfer learning tehnique. As for the second group, Vo et al. [86]

introduced two modified versions of VGG [79] and GoogleNet [81], namely VNXK- and CKML-

Net respectively, to recognize the DR grades. In addition, the authors considered L-, green-, and

I1-channel counterparts of the original fundus image as inputs of those two networks for perfor-

mance boost. Meanwhile, a triplet of sub-CNNs [92], i.e., Main, Attention, and Crop Networks,

was introduced for exhaustively examining multiple clinical details existing in the fundus photog-

raphy. On the other hand, the methodology in [106] introduced two stages of patch-level learning
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to comprehensively acquire fine-to-coarse details at multiple scales from the raw fundus photog-

raphy for DR grade prediction. Besides that, the authors in [45] slightly modified the original

ResNet-18 [29] by involving an additional attention stream to enhance inter-class discrimination.

It is worth noting that large-scale dataset [47] was utilized in those studies for attaining an ex-

cellent performance of detecting the DR grades. In addition, the model training cost becomes a

significant concern due to dealing with a large number of high-resolution images.

6.1.2 Facial Expression Recognition

Recently, extraordinary advancement of computing resources and visual data regarding both

quantity and quality has facilitated deep learning technique to be widely applied into numerous

areas, especially computer vision. To this end, CNN [29, 34, 38, 79], a well-known deep learn-

ing architecture, has attracted a great number of researchers thanks to its impressive performance

enhancement in different recognition-based issues, such as human activity recognition [39], se-

mantic scene understanding [35, 36], disease progression identification [37], and especially facial

expression recognition (FER) [93].

In fact, FER has long been an active research field due to its diverse applications related to

human-computer interactions [57]. Nowadays, with an increasing number of images collected

from laboratory [68] and the wild [58], the power of CNN is exhaustively exploited in this im-

age classification-related domain, of which further achievements are significantly accomplished.

Particularly, there are three major CNN-based approaches proposed in the literature of FER: (i)

ensemble of multiple deep networks [21, 24, 46]; (ii) algorithms of specialized objective function

or statistical modules [1, 58, 61] attached to a conventional CNN; and (iii) attention mechanism

embedded to pretrained CNNs [60, 70].

Since emotions via a person’s face are represented by the combination of various muscular

modalities (e.g., shape of eyes, eyebrow, nose, mouth, facial wrinkle, to name a few), several re-

searches as shown in the first group aggregated multiple deep networks to express potentially

facial features as well as contextual information for high recognition performance. In concrete,

the authors in [24] took into account capsule, facial-attribute, and holistic-feature networks for co-

ordinating spatial details with deep context smoothly throughout the whole architecture. Mean-

while, MRE-CNN [21] firstly divided the original input into multiple regions of interest based
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on predefined facial landmarks, then fed those patches into different VGG-16 [79] models for en-

semble learning. Another noticeable architecture, called ResiDen [46], is the mixture of two well-

known concepts in deep learning-based computer vision, i.e., residual connections [29] and dense

blocks [38] in a single network. Such combination style is capable of exhaustively maintaining

important facial expression features and gradient signals in both feedforward and backpropaga-

tion stages. Obviously, expensive computation is the major limitation of these approaches. Hence,

instead of involving additional sub-networks, methods in the second group mainly introduce

locality preserving loss [58] or designated cluster loss [61] to minimize intra-category variation

while maximize inter-category discrimination. Recently, SPDNet [1] offered specialized modules

of covariance matrices for spatiotemporal pooling to combat distortion of facial landmarks dur-

ing the learning process. However, the utilization of these objective functions or statistical mod-

ules sometimes results in trivial performance since certain discriminative features might not be

focused properly. Accordingly, in order to express essential features extracted by trainable lay-

ers, attention scheme is of great interest in the third group. For instance, ACNN [60] introduced

patch- and global-based attention networks to re-calibrate acquired feature responses at local re-

gions and image level, respectively. On the other hand, FERAtt [70] involved an attention module

with encoder-decoder structure to effectively reconstruct facial information from the output of a

CNN-based feature extractor for further classification step. It can be realized that the attention

mechanism is only applied to high-level feature maps in these techniques.

6.1.3 Common Problem Statement and Proposed Solution

Regarding the DR detection domain, it can be realized that the existing multi-stream networks

are subject to costly computation while the remaining models do not involve multiple levels of

semantic context in the constructed CNN. Particularly, the fact that multiple downsampling stages

during feedforward process of the CNN leads to the loss of certain spatial correlations between

the aforementioned DR-related signs, which are hardly encoded along depth dimension. Thus, it

is hypothesized that only taking into account highest-level features for the classifier is insufficient

in terms of predicting DR severity level.

With respect to the FER domain, existing multi-stream networks are subject to costly compu-

tation while attention-embedded models do not involve multiple levels of semantic context in a

predefined CNN for FER. As aforementioned, the output emotion is represented by the fusion

of different muscular modalities, which are exhaustively acquired at multiple levels by a CNN.
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Therefore, manifold sub-sampling stages along feedforward pass of the CNN leads to the loss of

certain spatial correlations between several facial tissues, which are hardly encoded in channel di-

mension. Consequently, it is hypothesized that only relying upon the outputs and corresponding

attentional features of the deepest layer for the classifier is insufficient.

It can be realized that these two domains share the similar problem statement that the target

label (DR severity grade or facial emotion class) heavily relies on the amalgamation of multi-

scale structural details existing inside the considered image. Motivated by the aforementioned

observations and hypotheses, a Single-mode Cross-Attentional Bracket-style CNN (sCAB-Net)

is proposed to leverage the learnable integration of channel-wise attention at multi-level fea-

tures in a pretrained CNN, which allows accomplishing superior recognition performance in a

cost-effective way. Specifically, given that informative features are channel-wisely encoded from

shallow to deep layers, densely embedding such semantically-rich details into the finer-grained

patterns by the attention extractors (which are inspired from [34]) in a Bracket-style reversed man-

ner is taken into account. Moreover, in order to smoothly coordinate the finely-patterned (low-

level) and semantically-rich (high-level) features, a dense re-calibration procedure is taken into

account. Consequently, the attachment of Channel-wisely Cross-Attentional (CCA) stream into

the backbone CNN facilitates spatial representations of important DR-oriented factors (for the DR

detection domain) as well as facial modalities (for the FER domain), which are comprehensively

refined by semantic context of higher-level features ahead, to be comprehensively involved in the

final prediction of given supervised labels. It is obvious that such effective aggregation scheme of

various semantic information from the multi-level feature maps in a CNN is the principal key for

recognizing corresponding DR severity level or facial emotion label more accurately.

Finally, as for the DR detection domain, the proposed sCAB-Net is evaluated using Kaggle DR

detection dataset [47], of which the experimental results in terms of quadratic weighted kappa

(QWK) are compared with the state-of-the-arts. Meanwhile, regarding the FER domain, RAF-DB

dataset [58] is employed for the evaluation, of which the experimental results in terms of mean

class accuracy (sum of diagonal elements in a confusion matrix) are also compared with novel

approaches in the literature.
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6.2 Descriptions of Bracket-style Network Variant for Image Classifi-

cation

This section describes details of the proposed sCAB-Net, a variant of the original CAB-Net ap-

plied for image classification, with demonstrations in Fig. 6.1 and Fig. 6.2 corresponding to DR

detection and FER, respectively. Generally, the proposed architecture is constructed by a backbone

CNN associated with the stream of CCA. As demonstrated in Fig. 6.1 and Fig. 6.2, convolution

blocks in the dashed box represent the fundamental components of the backbone CNN while the

remaining sketch in green region illustrates the attention-oriented stream of amalgamating multi-

level features for the classification of DR severity grade or facial emotion label.

6.2.1 Backbone CNN

Different backbone networks, i.e., VGG [79], ResNet [29], and DenseNet [38] are applied to prove

the flexibility of the proposed attention-embedded stream with respect to diverse capacities of

feature representation. In these classification networks, layers in each convolution block learn

and perform acquired features at a specific scale corresponding to a relatively semantic level. For

instance, both ResNet and DenseNet consist of four basis convolution blocks (as shown in Fig.

6.1 and Fig. 6.2), of which the final outputs have strides of 4, 8, 16, and 32 in comparison with

the input’s spatial size, respectively. Note that the total number of convolution and non-linear

activation layers is varied in each block. Accordingly, in order to ensure the reasonable increment

of computational cost, only four feature maps, which are ultimate outputs of the aforementioned

learnable blocks, are taken into account for the stage of attentional features extraction. Mean-

while, since there is no explicit definition of convolution blocks in the VGG architecture, outputs

of ReLU activation layers preceding the last four max-pooling layers, which also have same strides

as specified previously, are chosen for further processes.

Obviously, spatial resolution of the extracted feature maps is reduced by half along the feed-

forward flow between the convolution blocks while the corresponding depth size grows rapidly.

Moreover, since the outcomes at later layers contain semantically-richer context in channel di-

mension compared to those obtained earlier, they can be utilized to recalibrate (i.e., strengthen

the informative and weaken the less-productive) feature responses extracted at shallower layers

in reversed fashion. Consequently, available ambiguities in spatial details of the considered low-

level feature maps are eliminated thanks to the embedding of semantic information. Briefly, it



Chapter 6. Bracket-style Network Variant for Image Classification 77

Depth-wise concatenation

Point-wise multiplication

Feature vectors
Feature maps

c

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Conv. Block 1

Conv. Block 2

Conv. Block 3

Conv. Block 4

Preprocessing

c

c

SCA

SCA

SCA

SCA

Moderate DR

FC, Sigmoid

FC, Sigmoid

Softmax

FC, Sigmoid
Global 

c

cAverage 
Pooling 

(GAP)

FIGURE 6.1: Architecture of the proposed sCAB-Net for DR severity classifica-
tion. Given an input image fed into the backbone CNN containing series of pre-
defined convolution blocks, final outputs of these blocks have strides of 4, 8, 16, and
32, respectively. Subsequently, these feature maps (namely convmap-1, convmap-2,
convmap-3, convmap-4) are involved in the process of attention feature extraction. In
brief, these fine-to-coarse feature maps (represented by black arrows) are densely
combined via the Cross-Attentional Fusion modules to produce outputs, which con-
tinuously pass through the same procedure until one final prediction map is re-
trieved. As for the obtained segmentation map, every pixel is assigned an object
class within the predefined number of training classes. Since every inferred feature
map fuses with its adjacent finer-resolution map at each round and the total number
of feature maps decreases by one round-by-round, such process is named Bracket-
shaped network. Note that ‘Conv. Block’ and ‘SCA’ stand for the blocks of prede-
fined Convolutional layers and Self-Context Aggregation, respectively. ‘FC, Sigmoid’
means Fully Connected layers followed by the Sigmoid activation function. View in

color is recommended for the best visualization.

is advantageous to involve finely-patterned (high-resolution) feature maps, which possess well-

organized representation of DR-oriented factors, with the semantically-rich (low-resolution) ver-

sions for higher recognition performance.

In other words, the CCA stream is coupled with the backbone CNN for leveraging the impact

of finely-patterned features at earlier layers on the final prediction. Concretely, channel-wise se-

mantic details of the higher-level features are utilized to enhance the informative responses while
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FIGURE 6.2: Architecture of the proposed sCAB-Net for facial expression recogni-
tion. Note that ‘Conv. Block’ and ‘SCA’ stand for the blocks of predefined Convolu-
tional layers and Self-Context Aggregation, respectively. ‘FC, Sigmoid’ means Fully
Connected layers followed by the Sigmoid activation function. View in color is recom-

mended for the best visualization.

mitigating the less effective ones in feedback-like manner. As a consequence, such reverse refine-

ment brings two noticeable benefits as follows. Firstly, it allows encoded features that rely on

spatial representations to be extensively involved in the final classifier. This activity is achievable

since finer-resolution (i.e., low-level) feature maps, of which the semantic information is much

enhanced by higher-level context reversely, can be early engaged to the Softmax classifier without

significant obscurity. Secondly, it acts as an extensive augmentation procedure at multiple feature

levels because the sCAB-Net has an additional learning stream of backward and parallel styles

besides the main feedforward path.

6.2.2 Channel-wisely Cross-Attentional (CCA) Stream

In general, the proposed CCA stream consists of three major components, i.e., (i) Self-Context

Aggregation (SCA) inspired from Hu et al. [34], (ii) Bracket-style Attention (BsA), and (iii) Multi-

level Fusion (MLF). Details are delivered as follows.
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FIGURE 6.3: Functional layers in the Self-Context Aggregation module. ‘GAP’ sig-
nifies the Global Average Pooling layer.

Self-Context Aggregation At first, the four chosen feature maps (i.e., final output of the funda-

mental blocks of convolutional layers in ResNet) are fed into this SCA module for individually

exploiting semantic context encoded along depth dimension. Let Fn denote those feature maps

of interest, where n = 1, . . . , 4 such that larger n indicates the higher-level features, which have

semantically-richer context but smaller spatial size. Subsequently, the process of aggregating self-

context shown in Fig. 6.3 is initially performed by a Global Average Pooling (GAP) layer, which is

G : Fn ∈ RHnxWnxCn → gn ∈ RCn . The corresponding formulation of G is defined as

gnc = G(Fn) =
1

Hn ×Wn

Hn

∑
h=1

Wn

∑
w=1

Fn(h,w,c) (6.1)

where h = 1, . . . , Hn; w = 1, . . . , Wn; and c = 1, . . . , Cn are height, width, and channel coordinates

of pixels in the considered feature maps Fn, respectively.

Then, FC layers followed by ReLU activation are applied to exploit underlying cross-channel

interactions of the retrieved vectors gn. Formally,

in = ReLU(WT
f c1n

gn + B f c1n)

sn = σ(WT
f c2n

in + B f c2n)
(6.2)

where {W f c1n ∈ RCn× Cn
r , B f c1n ∈ R

Cn
r } and {W f c2n ∈ R

Cn
r ×Cn , B f c2n ∈ RCn} are respectively trainable

parameters of two FC layers in use; in ∈ RCn/r and sn ∈ RCn are intermediate and final outputs

of the SCA module, respectively; and σ(.) symbolizes the Sigmoid activation function that weights

vectors’ entries from 0 to 1 based on corresponding utilities. It is noted that value of r, the com-

pression rate for saving computational cost, is set to 16 following Hu et al. [34]. Besides that, the

lengths Cn of sn, where n = 1, 2, 3, 4, are determined based on the ultimate output’s channel size of

the four fundamental convolution blocks. For instance, using VGG-16 as the backbone introduces

Cn = {128, 256, 512, 512} while the ResNet-101 counterpart give Cn = {256, 512, 1024, 248}.
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Remarkably, in the original work [34], the output representational vector of this SCA module

is subsequently used to re-calibrate its input feature map only at every layer, which can be referred

to as intra-feature attention. Meanwhile, the counterpart in the proposed sCAB-Net is employed

to further incorporate with the corresponding version at lower scale for performing both intra-

and inter-feature (in a reversely cross manner as described at next sub-section) attention tasks.

Another noteworthy difference is that the SCA blocks in the proposed model are only involved at

the end of the four predefined convolution blocks in the backbone network.

TABLE 6.1: Lengths C of extracted attentional feature vectors gi (i = 1, 2, 3, 4) with
respect to different backbone CNNs.

Backbone CNN g1 g2 g3 g4

VGG-16 [79] 128 256 512 512

ResNet-101 [29] 256 512 1024 2048

DenseNet-161 [38] 384 768 2112 2208

Note: These values of C are also identical to the depth size of corresponding feature maps
F1,F2,F3,F4 extracted from the backbone networks.

Bracket-style Attention Previous step only introduces the utilization of intra-relationships across

channels within each individual feature map taken into account. Accordingly, four attentional fea-

ture vectors g1, g2, g3, and g4 (demonstrated by outbound gray arrows of Att. Ext. modules in

Fig. 6.1 and Fig. 6.2) corresponding to the four chosen feature maps F1, F2, F3, and F4, respec-

tively, are inferred by the above-mentioned attentional features extractor. With respect to various

backbone models, the vectors gi have different lengths of C as reported in Table 6.1. To this end,

semantic inter-dependencies between the considered features by uniquely learning all pairwise

concatenation of the self-context vectors, i.e., sn and sn+1, where n = 1, 2, 3, are additionally ex-

ploited. This allows deeper feature maps involved from the backbone CNN to enrich semantic

representations onto the shallower counterparts reversely, which then suggests two advantages.

Firstly, the refined low-level features, which possess high resolution, have stronger contributions

since they can be alternatively applied as a shortcut to the final classifier. As a result, characteriza-

tions of small-sized factors related to early DR (e.g., microaneurysms, hemorrhages, or capillary

abnormalities) or facial emotion (e.g., eyebrows, wrinkles at eyes and cheeks), which may cer-

tainly get loss at later layers due to spatial pooling operations, can be apprehended extensively to

improve the recognition performance. Secondly, it is argued that incorporating a stream of manip-

ulating multi-level features in reverse fashion can be considered as another intensive procedure
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of feature-level augmentation for avoiding overfitting issue.

According to center part of the green region in Fig. 6.1 and Fig. 6.2, the workflow of this BsA

module is formulated as follows.

Fbsa4 = F4 ⊗ s4

Fbsan = Fn ⊗ σ(WT
f c3n

(C[sn, sn+1]) + B f c3n)
(6.3)

where n = 1, 2, 3 in this step; ⊗ refers to as the point-wise multiplication at each channel; and

{W f c3n ∈ R(Cn+Cn+1)×Cn , B f c3n ∈ RCn} denote the parameters of the FC layers followed by an-

other Sigmoid activation function. These learning layers manage the integration of features hav-

ing semantically-richer information into those with finer representation of spatial-based details.

Notably, such reverse combinations only take place in pairwise fashion to ensure reasonable in-

crement of computational burden and refrain low-level self-context vectors from overwhelming

acquisition of heterogeneous higher-level information. Then, the cross-context output vectors are

utilized for re-calibrating the corresponding feature maps Fn via point-wise multiplication along

channel dimension. Afterwards, the retrieved results, denoted as Fbsan , are the finalized represen-

tatives of typical semantic and spatial scales adopted for multi-level learning by Softmax classifier

in the proposed architecture.

Multi-level Fusion To this end, each Fbsan is fed into the GAP layer followed by channel-wise

concatenation for gaining the mixture of multi-level context, which smoothly carries finely-patterned

and semantically-rich features of DR-related factors. Such procedure is given as follows

F f inal = C
[
G(Fbsa1),G(Fbsa2),G(Fbsa3),G(Fbsa4)

]
(6.4)

where F f inal stands for the final features handled by the subsequent Softmax classifier. Eventually,

the severity grading performance can be improved since DR-oriented clinical signs or FER-related

appearances in various spatial scales are involved exhaustively and unambiguously thanks to the

CCA stream.
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6.3 Experiments on Diabetic Retinopathy Detection

6.3.1 Benchmark Dataset: Kaggle DR Detection [47]

Kaggle DR detection dataset [47] is used to evaluate the proposed methodology. It contains ap-

proximately 35,000 training, 11,000 validation (public test), and 43,000 private test images, which

are categorized into five severity scales as aforementioned. Notably, all the color fundus images

are supplied by EyePACS, a retinopathy screening platform.

6.3.2 Training Configurations

The proposed model and corresponding evaluations are implemented using Pytorch [73]. Ini-

tially, the procedure in [27] is adopted to preprocess the raw fundus images by re-scaling to a

predefined radius and then subtracting local average color for suppressing the diverse difference

of illumination and resolution in the dataset. Same as existing work, augmentation techniques

such as randomly cropping to size of 448 × 448, horizontal and vertical flipping, and arbitrary

rotation are also applied to the training batches, of which each includes 32 images. In addition,

weight decay of 5e-4 is employed to generalize the proposed model intensively. In the proposed

sCAB-Net, VGG-16, ResNet-101, and DenseNet-161 pretrained with ImageNet [76] are adopted

as representatives of backbone CNN as aforementioned. Accordingly, the attached CCA scheme

is shown to be capable of flexibly coordinating with various depth capacities of encoding features

at multiple levels. As for the optimization phase, stochastic gradient descent with initial learning

rate of 0.005 and momentum of 0.9 is applied. During training, the learning rate decreases by half

after every 20 epochs. In total, 80 training epochs on one NVIDIA GTX 1080TI GPU is executed.

6.3.3 Ablation Study

To this end, three strategies, i.e., Baseline, AN, and sCAB-Net with respect to each backbone CNN,

are experimented to benchmark the effectiveness of the proposed architecture. Notably, the Base-

line means that the pretrained backbone CNN is finetuned end-to-end. Meanwhile, the AN refers

to as the additional engagement of attentions at the end of basis convolution blocks but without

the densely reversed stream. Finally, QWK measures of these strategies on the validation set are

presented in Table 6.2.
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TABLE 6.2: QWK on DR Kaggle [47] validation set with different types of backbone
CNN and attention-embedded scheme.

Backbone
CNN

Strategy
QWK (%) Number of

ParametersBaseline AN sCAB-Net

VGG-16 [79]
X 84.9 134.30M

X 85.4 14.81M
X 86.3 15.59M

ResNet-101 [29]
X 85.4 42.51M

X 86.1 43.23M
X 86.7 47.36M

DenseNet-161 [38]
X 85.5 26.49M

X 86.5 27.78M
X 86.9 39.56M

Apparently, AN and sCAB-Net with respect to different backbone CNNs show superior per-

formance over the corresponding Baselines with higher QWK of 0.5-1.0% and 1.3-1.4%, respec-

tively. This implies that the engagement of attention scheme at multi-scale features and subse-

quent depth-wise aggregation of corresponding outcomes are plausible in the scenario of classi-

fying DR severity level. Also, it is argued that major reason is the aforementioned observation

wherein different DR-related factors are captured at multiple levels in a CNN, from which the

attention strategy can maintain those beneficial details intensively and efficiently for higher pre-

diction performance.

Moreover, compared to AN, sCAB-Net is capable of boosting the QWK more 0.4% (in the case

that VGG-16 is the backbone CNN), 0.6% (ResNet-101), and 0.9% (DenseNet-161). Accordingly,

these improvements imply the advantage of exhaustively embedding deeper attentional feature

vectors to recalibrate shallower features. In concrete, as previously mentioned in Section 6.2.2,

the operator of dense concatenation in reversed manner further enables low-level features (which

contain spatially informative details of DR-related factors) to be extensively involved in the final

classifier.

Also, it can be observed that higher capacity of backbone CNN is able to produce better predic-

tion performance. Particularly, sCAB-Net equipped with backbones of ResNet-101 and DenseNet-

161 increases the QWK by 0.4% and 0.6%, respectively, compared to that employing VGG-16.

Regarding the computational costs enumerated in Table 6.2, the sCAB-Net with VGG as back-

bone can reduce the number of parameters by approximately 88.4% because of not involving ex-

pensive FC layers at backend of the baseline. Meanwhile, compared to original architectures of
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TABLE 6.3: Comparison of QWK on Kaggle DR [47] test set.

Approach QWK (%)

11-layer CNN [85] 76.7
SI2DRNet-v1 [15] 80.4
18-layer CNN [43] 85.1
Zoom-in-Net [92] 85.7

sCAB-Net (VGG-16) 84.9
sCAB-Net (ResNet-101) 85.4
sCAB-Net (DenseNet-161) 85.6

the ResNet, using the proposed scheme only increases the complexity by around 11.4%. Clearly,

although the increment of parameters’ amount is mainly caused by the stage of pair-wisely back-

ward concatenation, it is worth gaining a QWK improvement of 0.4-0.9% as mentioned previously.

6.3.4 Comparisons with State-of-the-arts

For the comparison with other methods, the proposed sCAB-Net with three different backbone

CNNs is evaluated by the Kaggle DR test set. The benchmark results reported in Table 6.3 show

that of the proposed approach is competitive with the state-of-the-arts. Specifically, although

Zoom-in-Net [92] achieves highest QWK, the superiority over the proposed sCAB-Net (which

utilizes DenseNet-161 as backbone network) is insignificant (0.1%). It should be noted that their

results are obtained from the expensive triplet of sub-CNNs and ensemble learning. In a nut-

shell, thanks to the dense attention of higher-level depth-wise features to spatially-rich details at

lower levels in reversed scheme, which allows early involvement of finely-patterned features, the

proposed architecture can achieve an impressive performance on such challenging dataset.

In summary, a CNN with densely reversed attention, i.e., sCAB-Net, has been introduced

to effectively address the DR detection problem. Concretely, the proposed architecture enables

finely-patterned (high-resolution) feature maps, which possess well-organized representation of

DR-oriented factors, to be smoothly combined with the semantically-rich (low-resolution) coun-

terparts for a better recognition performance. The key for such utilization is the dense embed-

ding of a channel-wise attention mechanism into a pretrained CNN in reversed manner. As a

consequence, experimental results have demonstrated consistent improvements of the proposed

model, which is constructed from a baseline network to the involvement of multi-scale attentional

features extractor and a further stream of densely reversed attention. In the future, sCAB-Net

can be potentially extended for tackling other disease recognition problems besides detecting DR

severity scale.
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6.4 Experiments on Facial Expression Recognition

6.4.1 Benchmark Dataset: RAF-DB [58]

RAF-DB [58], standing for Real-world Affective Faces Database, is a large-scale dataset of in-the-

wild facial expression. This database is challenging in the literature since its 30,000 images carries

out a tremendous diversity of ages, genders and ethnicity, head poses, lighting conditions, oc-

clusions, specialized manipulations, and so on. In this section, only the single-label set, i.e., each

image exclusively indicates one of the seven basic classes of emotion (angry, disgust, fear, happy,

neutral, sad, and surprise) is involved. Accordingly, 12,271 training and 3,068 testing images,

which are prior cropped into the resolution of 100 × 100 around the regions of face, are involved

for the designated experiments. Moreover, it should be noted that mean class accuracy (i.e., sum

of diagonal elements in the resulting confusion matrix) is the golden metric to benchmark the

classification performance due to the between-class imbalance issue stated in [58].

6.4.2 Training Configurations

The proposed model and corresponding evaluations are implemented using Pytorch [73] and

Scikit-learn [3] frameworks, respectively. Same as existing work, the following augmentation

schemes such as random change of hue and saturation, horizontal flipping, and rotation in range

of (-20◦ , 20◦) are applied to the training images with mini-batch size of 64. In addition, weight

decay of 0.0005 is employed generalize the proposed model more robustly.

About the training stage, the initial learning rate is set at 0.005 and use Softmax loss to assess

the quality of sCAB-Net’s parameters given ground-truth labels. Then, in order to accordingly

minimize the calculated loss with respect to those trainable parameters, the optimization proce-

dure in [13], wherein stochastic gradient descent with momentum of 0.9 is utilized along with the

‘poly’-style schedule of learning rate decay, is adopted. Notably, the training process takes place

in 50 epochs on one NVIDIA 1080TI GPU.

6.4.3 Ablation Study

For the purpose of showing robustness of the proposed architecture regarding facial expression

prediction, three different strategies, i.e., Baseline, AN, and sCAB-Net for each backbone network,

are conducted. Note that the Baseline refers to as finetuning the pretrained model end-to-end.

Meanwhile, the AN corresponds to the involvement of attentional features extractor at the end of
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TABLE 6.4: Mean Class Accuracy on RAF-DB [58] test set with various settings of
backbone CNN and attention strategy.

Backbone
CNN

Strategy Mean Class
Accuracy (%)

Number of
ParametersBaseline AN sCAB-Net

VGG-16 [79]
X 74.96 134.30M

X 77.35 14.81M
X 78.81 15.59M

ResNet-101 [29]
X 77.10 42.51M

X 77.48 43.23M
X 79.33 47.36M

DenseNet-161 [38]
X 77.21 26.49M

X 77.75 27.78M
X 79.37 39.56M

the basis convolution blocks but without densely backward concatenation scheme. Accordingly,

quantitative performance of these strategies with different backbone CNNs on the testing images

is reported in Table 6.4.

In general, AN and sCAB-Net outperform the baseline one 0.38-2.39% and 2.16-3.85%, respec-

tively, for all backbone networks. This implies that the engagement of attention scheme at multi-

scale features and subsequent depth-wise aggregation of corresponding outcomes are plausible in

the scenario of facial expression identification. It is argued that major reason is the aforementioned

observation wherein different muscular modalities are captured at multiple levels in a CNN, from

which the attention strategy can maintain those beneficial details intensively and efficiently for

higher prediction performance.

Moreover, regarding the effectiveness of the sCAB-Net compared to AN, the mean class ac-

curacy is further improved 1.46% (in the case of using VGG-16 as backbone network), 1.85%

(ResNet-101), and 1.62% (DenseNet-161). Such superior performance points out the importance of

additionally integrating higher-level attentional feature vectors for recalibrating lower-level fea-

ture maps. As discussed in Section 6.2.2, the dense combination in backward manner helps the

network flexibly express informative spatial features subject to multi-level semantic details along

depth dimension.

It is also obvious that the greater capacity the core CNN has, the better performance is attained

(but not significantly). Concretely, using ResNet-101 and DenseNet-161 as backbones yields the

similar mean class accuracy of 79.33% and 79.37%, respectively, which are around 0.5% higher

than that of employing VGG-16.
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TABLE 6.5: Comparison of Mean Class Accuracy on RAF-DB [58] test set.

Approach Mean Class
Accuracy (%)

DLP-CNN [58] 74.20
3DMFA [61] 75.73
ResiDen [46] 76.54
MRE-CNN [21] 76.73
Capsule-based Net [24] 77.48
Double Cd-LBP [78] 78.60

sCAB-Net (VGG-16) 78.81
sCAB-Net (ResNet-101) 79.33
sCAB-Net (DenseNet-161) 79.37

As for details of class-wise performance, confusion matrices of the proposed sCAB-Net corre-

sponding to different backbone networks are further manifested in Fig. 6.4. All of these confusion

matrices deliver common outcomes as follows. The prediction of happy feeling yields highest

accuracy and that of neutral, sad, and surprise also gives remarkable performance. On the other

hand, the expressions of disgust and fear are misclassified with neutral/sad and sad/surprise by

an average rate of about 10%, respectively. It is argued that the learnable layers following the

dense combination of attentional features (i.e., W f c31 , W f c32 , and W f c33 in (6.3)) have to trade-off

unavoidable loss of concatenated semantic details, which leads to indistinguishable representa-

tions of facial modalities between the above-mentioned emotions.

Regarding the computational costs enumerated in Table 6.4, the sCAB-Net with VGG as back-

bone can reduce the number of parameters by approximately 88.4% because of not involving ex-

pensive FC layers at backend of the baseline. Meanwhile, compared to original architectures of

the ResNet, using the proposed scheme only increases the complexity by around 11.4%. Clearly,

although the increment of parameters’ amount is mainly caused by the stage of pair-wisely back-

ward concatenation, it is worth gaining an improvement of 1.46-1.85% for mean class accuracy as

aforementioned.

6.4.4 Comparison with State-of-the-art Methods

Through the quantitative comparison shown in Table 6.5, the proposed sCAB-Net achieves mean

class accuracy competitive with that of the state-of-the-arts. In details, by only applying VGG-

16 as the core network in the architecture, higher rates of 0.21-4.61% than those of the com-

pared methods are attained. Furthermore, with deeper backbone networks like ResNet-101 or

DenseNet-161, performance of the proposed approach is continuously improved, and reaching
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state-of-the-art recognition rate. Clearly, such impressive performance on a challenging dataset

expresses the advantage of aggregating low- and high-level features by the utilization of channel-

wise attention mechanism in densely backward structure.

In summary, this section has introduced a cost-effective convolutional network with densely

backward attention, namely sCAB-Net, for FER. The proposed approach aims to aggregate low-

and high-level features in an efficient way according to the hypothesis that facial emotion is rep-

resented by the fusion of different muscular modalities extracted at multiple levels.For such pur-

pose, attention mechanism is densely embedded in backward manner to a pretrained classification-

based CNN for leveraging the performance of FER. The achievement of impressive experimental

results enables the sCAB-Net to be widely applied in practical scenarios.
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FIGURE 6.4: Confusion Matrices of the proposed sCAB-Net on RAF-DB dataset [58]
with different backbone CNN: (a) VGG-16 [79], (b) ResNet-101 [29], (c) DenseNet-

161 [38].
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Chapter 7

Conclusions and Future Direction

7.1 Conclusions

This thesis introduced a novel approach towards semantic segmentation and classification of

given images using Bracket-style CNN and its variants. Fundamentally, the proposed architec-

ture is different from the existing works in the way it takes into account multi-level features ac-

quired from the backbone CNN, wherein middle-scale representations are exploited exhaustively

using predefined specialized attentional schemes. As such, it is flexible to customize the base

concept as distinct variants for numerous problems comprising semantic segmentation in natu-

ral images (PASCAL VOC 2012 [20], CamVid [9], Cityscapes [18], and MS-COCO [64] datasets)

and medical images (DRIVE [80]); as well as classification of facial emotion (RAF-DB [58]) and

diabetic retinopathy severity (Kaggle DR Detection [47]). Notably, remarkable performance on

those datasets suggested that the proposed methodology is capable of the two basis tasks of com-

puter vision, i.e., image semantic segmentation and image classification, for further operations in

practical perception-related applications.

Regarding the task of semantic segmentation, the proposed network in form of Bracket struc-

ture is able to coordinate with specialized modules called CAF to comprehensively incorporate the

high-level (semantically-rich) features with the low-level (finely-patterned) counterparts. Such

kind of cooperative procedure facilitates multi-level features extracted in the deep learning ar-

chitecture to be continuously and thoroughly refined by various representations through a tour-

nament of multiple decoding rounds. In particular, due to inherent characteristic of the bracket

structure, the considered features in middle levels are incessantly utilized not only for enhancing

semantic context in finer resolution but also for smoothing the appearances in coarser patterns. As

a consequence, highly-qualified per-pixel segmentation map is achieved thanks to the exhaustive
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exploitation of middle-level features for smoothly consolidating local details in the globally se-

mantic context. Consequently, based on the impressively experimental results on public datasets

like PASCAL VOC 2012 [20], CamVid [9], Cityscapes [18], and MS-COCO [64], the proposed archi-

tecture is potential to effectively interpret semantic classes from given images of daily life and/or

street scenes for further operations in the practical perception-related applications.

Meanwhile, for the purpose of image classification, corresponding Bracket-shaped variants

are proposed to facilitate the scenarios where spatial details have significant impacts on the pre-

defined category of the concerned images (e.g., facial expression recognition, DR grading). In

particular, as for the facial expression recognition problem, the emotions are decided by the amal-

gamation of different muscular modalities. Regarding the DR grading procedure, corresponding

severity scales are concluded by the all-inclusive assessment of various structural biomarkers in-

side the fundus photograph. The operational principle for such advantage of the model in those

specialized domains is briefly described as follows. Considering features of multiple scales ex-

tracted from a backbone deep learning network, outcomes at later layers contain semantically

richer context in channel dimension compared to those obtained earlier. Thus, they can be utilized

to recalibrate (i.e., strengthen the informative and weaken the less-productive) feature responses

extracted at shallower layers in reversed fashion via the mechanism of channel-wise attention

across feature maps of adjacent scales. Therefore, existent ambiguities in spatial details of the con-

sidered low-level feature maps are eliminated thanks to the embedding of semantic information.

Subsequently, high-resolution spatial appearances with attended higher-level representations can

be informatively involved in the multi-scale aggregation module followed by the final classifier.

7.2 Future Direction

To this end, the proposed methodology is shown to effectively tackle the two fundamental com-

puter vision-related tasks, i.e., image semantic segmentation and image classification, in both

generic and medical domains. For instance, common object (comprising groups of person, animal,

vehicle, and indoor context) segmentation, street scene understanding, retinal blood vessel seg-

mentation, facial expression recognition, and DR severity grading. It can be realized that inputs of

the aforementioned problems are single and independent images per session of model inference.
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But nonetheless, regarding the problems requiring inputs with temporal and/or sequentially-

spatial information, the proposed idea in this dissertation is hardly applicable. Several exam-

ples of those problems are collective activity understanding, video captioning, video Question

Answering, video classification, atomic actions, image and/or video colorization, to name a few.

Clearly, in these research topics, the efficient processing of historical patterns in a continuous man-

ner within a predefined temporal window length plays an essential role for ensuring a highly-

qualified performance of the considered deep learning model. Meanwhile, the proposed deep

architecture is primarily built from units of convolutional layers, which only share the learnable

parameters across different locally receptive field and does not target at processing time-series

information. Accordingly, the lack of operational manipulations for effectively learning tempo-

ral characteristics in the proposed technique yields unexpected recognition performance in those

research areas.

On the other hand, there are still vacancies to further improve proficiency of the proposed

Bracket-style CNN and its variants for more robust utilities in real-world practice. Firstly, as

more operations are required to adapt the extensive utilization of middle-scale features in the pro-

posed architecture and corresponding variants, it is quite challenging to meet the requirements

of inference with very high frame rate or usage on mobile platforms. In such kind of context,

constructing fast and compact versions of the proposed deep learning architecture is the next re-

search objective to adapt various purposes based on trade-off prerequisites of accuracy, latency,

and resource capacity. Accordingly, relevant research topics such as knowledge distillation, net-

work pruning and/or quantization, neural architectural search, to name a few, shall be taken into

account for that target. Secondly, since the final performance proportionally relies on the size of

training dataset for any deep learning models in common, the strategy of unsupervised domain

adaptation can be applied with the proposed Bracket-structured network to address the lack of

well-labeled and big visual data. Note that annotations of image labels and especially pixel-wise

categories are labor-intensive and time-consuming. As such, large-scale labeled data available

from computer games or computer graphics programs can be used to train the deep learning

model for pixel- and/or image-level classification of real-world images with same contents (but

not largely annotated). Thirdly, besides the basis functions of image semantic segmentation and

classification, the Bracket-style network concept is potential to additional manage more compli-

cated tasks like object detection, panoptic segmentation (which performs instance and semantic

segmentation simultaneously), image super-resolution, etc.
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