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Abstract

Activity recognition systems (ARSs) have been a goal of researchers due to its strength in pro-

viding personalized support for many diverse applications such as medicine and health-care. A

considerable amount of activity recognition systems have been proposed. The fundamental prob-

lem of such systems is that these are not general-purpose. To configure the system, extensive

interaction with the experts is compulsory. Such a system would not be able to recognize the

new activities of interest. An activity recognition system trained in an environment would only be

applicable to that environment.

This dissertation presents an efficient activity recognition system that uses a set of simple and

ubiquitous sensors. It is assumed that a set of sensors are embedded with appliances (or objects)

like, door, cabinet, desk. Given a set of activities to monitor, object names with attached sensors

and their corresponding locations, a method of mining activity information from World Wide Web

(WWW), converting these into activity models is proposed. It is shown that it is possible to use

such information for activity recognition in real time. The propose system is general-purpose for

following reasons: First, it would be applicable to almost all environments. Second, it is config-

urable by the end-user with little expert knowledge. Third, it could learn its model parameters

automatically from web as well as from the environment (e.g. home) to which it is deployed.

Forth, it has the ability to handle growing amounts of activities and sensors in a graceful manner

(effortlessly scalable). The novelty of the system, compared to the existing general-purpose sys-

tems, lies in: (1) it uses more robust activity models (2) it significantly reduces the time to mine

web activity data. The system is tested with the activity data obtained from both web and real-

world. The proposed mechanism yields significant improvement in comparison with the existing

activity recognition systems proposed in the literature.
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Chapter 1
Introduction

Understanding human activities or behavior has long been a goal of humans from the beginning of

mankind. We are curious about the daily activities (e.g. taking medication, playing games, watch-

ing TV) of our parents, children or even relatives. Companies may be interested in monitoring the

activities of one or more workers. By recognizing the activities of daily livings (ADLs), it is pos-

sible reduce the risk of potentially life-threatening abnormalities. By recognizing activities during

production, it is possible reduce the incidence of making harmful products. However, employing

a person to monitor (or recognize) ADLs is not realistic because it needs constant monitoring.

Therefore, researchers are trying to automate the recognition process. This can be termed as the

computerized activity recognition.

Even though it sounds a simple task, it is a quite complex for a computer because it involves

many complicated tasks like, sensing, learning and inference. For example, if a system to rec-

ognize an activity of a person is developed, the system needs to know the location in which the

person is pursuing the activity, time of the persuasion, the set of objects he/she is interacting with,

previous history of the person, etc. The main intention of this research is to make a reliable com-

puterized system that would have similar capabilities as human to recognize ADLs.

Activity recognition is the key element for many ubiquitous computing applications ranging

from office worker tracking to home healthcare. In general, activity recognition systems observe

the behavior of people, and, when necessary, take actions in response [1–8]. For example, in

a home environment, it can remind users to perform missed activities or complete actions (e.g.

taking medicine), help them recall information, or encourage them to act more safely [9]. In a

hospital environment, it can remind a doctor or nurse to perform certain tests before operating.

Or in a production environment, it can ensure the quality of the product by monitoring the set of

1
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actions. In addition to these, patterns mined from home activities can be used to support a wide

range of applications. For example, recommended healthy lifestyle of a Young Parkinson disease

(YOPD) patient.

If an automated activity recognition system is considered, the first thing we need to consider is

how to determine the state of the physical world. There are several ways to do this using different

sensor systems [10]:

1. remote observation of the subject (user) using audio and video sensors and analyze the

generated signals,

2. track and identify primitive human actions by attaching sensors to the body of the subject,

and

3. embed sensors to appliances (or object) and track their usage.

Audio and video sensors based activity recognition [11–19] is complex to implement because it

requires processing of highly multidimensional data. Additionally, both types of sensors informa-

tion may violate user’s privacy. Although body attached sensors is promising to identify primi-

tive sequences of movements [15, 20–24] such as walking and running, it is difficult to identify

goal-oriented activities (or activities of daily living) such as cooking and bathing. Many recent pa-

pers [5,6,10,25–28] have shown that it is better to use embedded sensors to identify goal-oriented

activities, since such activities require interaction with objects. In this thesis, an activity recogni-

tion system is developed, which recognize goal-oriented activities using embedded sensors. This

is seemingly the best choice since it is possible to make such sensors nearly invisible and therefore

should not impact on daily life activities; it would be inexpensive and would be used to recognize

the essential activities.

The mechanism of learning and inference would be the next thing to consider. The theme

of this thesis is to provide an efficient mechanism to do such tasks. Activity recognition based

on sensors is a challenging task due to the inherent noisy nature of the input. Thus, the tem-

poral probabilistic reasoning and machine learning techniques are powerful tools for this task.

However, building a comprehensive activity recognition system for real-world environments is ex-

tremely challenging even with state-of-the-art tools. In this thesis, a novel learning and inference
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techniques are developed to make an automated activity recognition system to recognize a variety

of real-world human activities from real sensor data.

: Sensors

Figure 1.1: An example environment for activity recognition.

In our daily life we usually perform an activity by interacting with a series of objects. For

example, for bathing we may interact with a door, light, exhaust fan, shower faucet, etc. The

strategy is to embed sensors into these objects such that it is possible to determine the state of that

object should a person interact with it. An example of an environment in which a set of objects are

embedded with sensors is shown in Figure 1.1. The objective is to build an activity recognition

system that can recognize activities based on a set of object-usage (interaction with an object) at a

given time. An example of activity recognition based on a set of object-usage is shown in Figure

1.2.

1.1 Motivation

The sensor-based activity recognition system faces several challenges due to the noisy nature of

the input and because of the large number of activities to be recognized [10]. There are several
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Door Light Exhaust Faucet Closet

Taking Shower

Activity Recognition System

Figure 1.2: An example of activity recognition based on a set of object-usage.

ways of pursuing an activity. For example, one can use either bathtub or shower faucet or both

to take a shower. The biggest challenge is to build a robust model that can represent the mapping

between low-level sensor data to high-level activity.

The straightforward way would be to learn the models and train the system using the real-world

activity data acquired from an environment. In order to do this, a sequence of steps is required as

shown in Figure 1.3 (a),

1. Select the environment (e.g. home) in which the system will be deployed.

2. Choose and embed sensors to a set of objects (one sensor/object).

3. List the set of activities that will be recognized by the system.

4. Assign a participant (or volunteer) to stay at that environment and perform the listed activ-

ities for a specified period of time (e.g. 4 weeks). During this period, the participant will

annotate their activities using an experience sampling tool (ESM) [6, 29, 30]. When using

the ESM tool, the participant need to carry either a PDA (with an ESM software installed

on it) or wear a headset to report the current activity to a server (with an ESM software

installed on it). For every specified period of time (e.g. 10 minutes), the tool provides the
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Select an environment 

(e.g. Home)

Select an environment 

(e.g. Home)

Select a set of objects 

and embed sensors

Select a set of objects 

and embed sensors

Select a set of 

activities to monitor

Select a set of 

activities to monitor

Assign participant and collect real-

world activity data  for a period of 

time (e.g. 30 days) 

Collect web 

activity data

Learn the activity 

models

Learn the activity 

models

a. training using real-world activity data b. training using web activity data

Figure 1.3: Two ways to train an activity recognition system: a. using real-world activity data, b.
using web activity data.

list of activities to user for obtaining input from the participant, if he/she select an activity,

the tool then stores this information along with the activated sensors (as the user interacted

with the objects). This is called data collection period.

5. After the data collection period, the activity recognition system is trained with the help of

collected data.

However, this approach is impractical because of the following reasons:

• First, using an ESM for real-world activity data collection has several disadvantages [31]: it
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may appear burdensome to the participants; and it could be intimidating if the participants

are not familiar with the system or device. Another major problem of such techniques is

that it is not always possible to annotate all the activities. In any environment there could be

hundreds of activities. Given such a large number of activities, it is impossible to label all

such activities for the end users without expert knowledge.

• Second, this approach is subject-dependent. Such a dependency greatly reduces the appli-

cability and easiness of an activity recognition system. This system is not general purpose

for three reasons,

– First, an activity recognition system trained in an environment would not be applicable

to another environment. It needs to be trained for every environment in which the

system will be deployed.

– Second, it would not be able to recognize new activities. If it is required to add new

activities of interest, such a system needs to be trained again.

– Third, it requires extensive interaction with the experts, especially in the training

phase.

To overcome the aforementioned limitations, we need to ease the human dependency for data

collection. We need an alternate source of the training data and an efficient method to extract

such data. An alternate approach to train an activity recognition system is shown in Figure 1.3

(b). Advancement of the Internet and the World Wide Web (WWW) encourages millions of users

to promote billions of web pages with varieties of contents [33]. A fraction of these pages either

explicitly or implicitly provide information related to the activities of daily livings. For instance,

the web page1 [32] shown in Figure 1.4 provides information for how to prevent bathing injuries

among elderly. Such web pages not only state an activity but also depict where to perform this

activity and what objects to use and in what sequence. An activity recognition system would be

broadly applicable and scalable by its very design if it can mine information from such web pages

to learn the models. It would remove any subject’s dependency and therefore make the system

general-purpose.

1http://www.ehow.com/how_2242133_prevent-bathing-injuries-among-elderly.html
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How to Prevent Bathing Injuries Among the Elderly

...

Step #1 Place slip-resistant bath mats both inside and outside 

the tub/shower area. Immediately clean up any water that may 

get splashed on the floor. Carpeting the bathroom floor is 

another option for safer footing.

Step #2 Hang towel rods that are rounded rather than rods with 

sharp corners to help prevent serious injuries from falls. Also, 

place a padded safety cover over the tub spout to protect 

against sharp edges. Wrapping a washcloth around the tub 

faucet will work just as well.

Step #3 Mount sturdy grab bars in the bathing area. Vinyl 

coated bars or bars with ridges provide for better grasp. Never 

use a towel rod for a grab bar, as they are not designed to bear 

weight. In addition, do not use glass shower doors for support. 

Be sure to place bath accessories within easy reach.

Step #4 Use adequate lighting in the tub/shower area. Low 

illumination in combination with poor vision can increase the 

risk of falling. A ceiling fixture is one way to provide plenty of 

light.

Step #5 Install an emergency telephone within easy reach.

Step #6 Set water heater thermostat to its lowest setting, 

typically not above 120 degrees F. Many people do not realize 

that hot water burns just like fire. A simple precaution is to 

purchase an anti-scalding device that shuts off water from a 

shower or bathtub faucet if the water temperature gets too 

hot. Found in hardware stores, these devices are easy to install.

...

Figure 1.4: An web page that provides information related to an activity [32].

A few efforts have been made to train an activity recognition system from the web (Train

From Web (TFW)) rather than from the environment (Train From Environment (TFE)) [27,28]. The

system in [27] is packaged with thousands of activity models for different domains. It significantly

limits the applicability and the accuracy of the system because the system fails to capture the

idiosyncrasies of the environment to which it will be deployed. Although the system in [28] can
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focus on a particular environment to increase the applicability of their system, the mining method

is complex and extremely time-consuming. It might take hours to mine a single activity.

Additionally, the accuracy of activity recognition of the above approaches is very low. One

of the main reasons is that their activity model is only an Object-usage Based Model (OBM). The

problem of using only OBMs is that in any environment there could be hundreds of objects, many

of these objects could be used for different activities. For example, let us consider an environ-

ment in which the bathroom and the kitchen both have the following three objects: door, cabinet

and faucet. Now, let us consider that a kitchen activity (e.g. washing dishes) is performed by a

person using these three objects. It would be hard for an activity recognition system (that uses

only OBMs) to recognize this activity correctly because there could be a bathroom activity (e.g.

washing face) that usually requires the same set of objects as well. Therefore, only the OBM is

not enough for an activity recognition system to produce high accurate recognition results.

The location (e.g. bedroom, kitchen) of a person in an environment can provide important

context information for classification decisions and thus could be very helpful for activity recog-

nition [34, 35]. It is common to use a specific location (e.g. the kitchen is for cooking and the

bathroom is for bathing) to do an activity. The group of activities is limited for a given location.

For example, preparing breakfast, preparing dinner etc. are kitchen activities, bathing, toileting,

etc. are bathroom activities. It is possible to build an activity recognition system that uses only

location-usage based model. However, such a system will only be able to provide high-level ab-

straction (or clue) of an activity (e.g. kitchen activity). It means that the system will not be able to

recognize any specific goal-oriented activity (e.g. cooking).

It is possible to build a system that works in two-layer, in the first layer it classifies a group

of activities (e.g. kitchen activity) using a location-usage based model and in the second layer it

classifies the actual activity from that group using an object-usage based model. This is the main

idea of the activity recognition system proposed in this research. However, location information

by itself is not enough to classify the true activity group because a subject (or user) may switch

among locations while performing an activity (e.g., moving back and forth between the living-

room and kitchen while cooking). Such a situation could be named as location-confusion. It

restricts the system’s ability to recognize the actual activity group. Therefore, object with location
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in the first-layer is used in the proposed system to resolve any location-confusion which in turn

helps the system to classify actual group.

It is also possible to classify an activity by using the combination of both object-usage and

location-usage information. With this setting, it is desirable that such a system should provide

high-level accuracy. However, it is important to stress here that such assumption might not be

realistic in most cases. Because location-usage information, in one hand, can provide high-level

abstraction (or clue) of an activity (e.g. the kitchen activity) and object-usage information, on the

other hand, can provide low-level abstraction of an activity (e.g. cooking), the combination of

these two can only generate mid-level clue. In practice, the low-level clue is primarily necessary

to accurately classify a specific activity. Therefore, combining location and object information

might not be suitable for accurately classifying an activity.

Furthermore, failure to classify activities with no specific location is another major drawback

of the combined approach. For example, doing laundry (activity) is usually performed with a

washing machine (object) which could be located in kitchen or in the foyer. Hence, doing laun-

dry, in general, is an activity with no specific location, even though it has its own key object(s)

i.e., washing machine. Let us term such activities as location-independent activities. It is highly

probable that if the activity information is mined from the web, the location usage probability

of a location-independent activity for a particular location would be relatively low compared to

other activities specified for that location. For instance, the probability of using kitchen for doing

laundry will be low with respect to that of other kitchen activities (e.g., dinner). Therefore, for

a location-independent activity combination of both object-usage and location-usage information

would not be appropriate, because using location with object in a model reduces the influence of

object to that model. If the influence of such object(s) is reduced for an activity, it will eventually

reduce the probability of classifying that activity. As a result, the system may become more prone

to misclassification.

To overcome the aforementioned limitations, the motivation is to build an activity recognition

system that first classifies a group of activities (e.g. kitchen activity) using a Location-and-Object-

usage based model (LOBM) and then subsequently, classifies the actual activity (e.g. cooking)

from that group using an object-usage based model. The system uses the web activity data to learn
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the models. This system will be applicable to a diverse set of environments and would provide high

accurate recognition results. An end-user will be able to configure the system within a very short

period of time and without the help of experts. He/she would even be able to add new activities or

objects to the system by simply providing the name of the activities or objects.

1.2 Challenges

Although the need for the activity recognition research is addressed by many researchers past,

it is not until recently that it has become one of the most active areas of research. A handful

amount of researchers are working on building a variety of activity recognition systems. A lot of

human behavior attributes (e.g. Multitasking, periodic variations, time scale) related challenges

[36] for activity recognition have already been solved by the researcher. However, the challenges

associated with the development of robust algorithms still exist. Additionally, there are a lot of

challenges that exist to make an activity recognition system that uses web activity data to train the

underlying classifier, since, few efforts have been made in this area. In this thesis the following

challenges are dealt with:

• Integrating location : as discussed earlier, the motivation is to integrate location informa-

tion along with object information to construct the robust models such that the system can

use this to improve the activity recognition accuracy. However, in order to integrate location

the following needs to be considered:

– The set of object-usage for doing an activity may differ from location to location. For

example, cleaning a bathroom is required a different set of object-usage than cleaning

a kitchen.

– It is required to generalize the activity models such that the system uses this will ap-

plicable to a diverse set of environments (i.e. not limited to an environment).

– As the parameters (location and object) are integrated in a same model, a way to con-

trol the influence of each of the parameters to the model is required. Since, equal

influence to each of these parameters may not appropriate in obtaining high-accurate

recognition result.
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– A way to estimate the optimal influence of each of these parameters in the model is

needed.

• Activity grouping : as described in section 1.1, the motivation is to use a two-layer classifier

in which the first layer would classify the group of activities. To accomplish such goal, an

efficient mechanism to group the activities is needed.

• Web activity data mining : Even though there are millions of pages that either explicitly

or implicitly describe the activities of daily livings, identifying these pages would be the

biggest challenge of any mining algorithm. How to extract activity knowledge from these

pages would be the next big challenge. Above all, the hardest part would be to do the above

tasks using a less amount of time.

1.3 Contributions

In this dissertation, an efficient activity recognition system that uses web activity data to train

the underlying classifier is developed. It is applicable to diverse environments, it provides high

accurate recognition result and it is possible to configure the system by an end-user with little

expert knowledge. A high-accurate two-layer probabilistic classification integrating location and

object-usage information is proposed. The first-layer uses a location and object-usage model to

narrow down the scope for the recognition task, and the second-layer uses an object-usage based

model for the actual activity recognition. More specifically, the first layer uses the LOBM to

recognize a group of (location specific) activities from a set of activities, and the second layer uses

the OBM to recognize the actual activity from that group.

The Naı̈ve Bayesian (NB)-based classifier is used in both levels of classification. The parame-

ter estimation for NB-based models uses the method of maximum likelihood (ML). Data sparsity

is a major problem in estimating ML in AR because the size of the training data is relatively small

in comparison with the other machine learning datasets. The distribution of the observed sensors

in a dataset may not be always even between the activities. Additionally, some sensors would

appear during testing but would not appear while training. This is called zero-frequency [37] prob-

lems which assign zero-probability of an unseen object-usage for an activity. To prevent such
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estimation problem, a Smoothing Technique is developed for adjusting the maximum likelihood of

the probabilities to produce a more precise activity model.

A novel and a straightforward algorithm is developed to mine each of the model parameter

from the web. It uses the advance operators of a search engine (Google is used for the experi-

ments) to mine object-usage (how frequently an object is used to do an activity) and location-usage

probabilities from the web. It not only dramatically reduces the mining time, but also makes the

system easy to use-and-configure and highly scalable.

Four experiments are performed with three real-world activity datasets to validate the system’s

performance. The proposed system achieved higher recognition accuracy and significantly reduces

the mining time in comparison with the method of Wyatt et al. [28].

1.4 Organization

The thesis is organized as follows:

• Chapter 1 has presented a brief introduction of the concepts of activity recognition, and

the problems associated with the current state-of-the-art systems that use real-world activity

data. It has also described the importance and benefit of using web activity data to train an

AR system. Finally, Chapter 1 has described the limitations of the existing systems that use

web activity data and an overview of contributions in this thesis.

• Chapter 2 discussed the related work in the area of embedded sensors based activity recog-

nition. It first describes the data collection frameworks and the essential tools for pursuing

activity recognition research. Then the state-of-art probabilistic methods for activity recog-

nition are described. Related work on embedded sensor based activity recognition systems

that use real-world activity data is also discussed. Finally, the activity recognition systems

that use web activity data are discussed with a set of differences between the proposed and

the existing system.

• Chapter 3 presents an overview of the proposed activity recognition system. The system

consists of five components. This chapter briefly describes each of the components. The
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activity classifier, which is the most important component of the system, is discussed in

detail with algorithms.

• Chapter 4 gives a detail description of the proposed web activity data mining engine. It

first defines the types of web activity pages, and the goal of the mining engine. Then a

detail description of the mining algorithm is provided. This chapter also presents how to

train the activity classifier using web activity data. Finally, it describes the noises associated

with mined data, the challenges and/or difficulties of removing these noises and the noise

reduction techniques.

• Chapter 5 demonstrate the experimental results to support the claims. The objectives of

the experiments are defined first. Then the experimental setup to validate the system is

discussed. Finally, the experimental results are described.

• Finally, chapter 6 concludes the thesis with a direction for future work.



Chapter 2
Related work

In this chapter, first, different types of sensor-based activity recognition systems are briefly dis-

cussed. Second, some of the real-world activity data collection frameworks for activity recognition

research are described. Third, the well-known temporal probabilistic models for activity recogni-

tion are discussed. Finally, a set of activity recognition systems that use either real-world or web

activity data to train the classifier are described.

2.1 Types of activity recognition systems

Activity recognition systems can be categorized into three types based on the type of sensor they

use:

1. audio/video-based activity recognition system,

2. wearable sensor (e.g. accelerometer) -based activity recognition system,

3. simple and ubiquitous sensors (embedded sensors) -based activity recognition system,

In a video-based activity recognition system [11–19], sequences of video frames obtained from

one or more video cameras are used to determine the activity. In a wearable sensor-based activity

recognition system [15,20–24], acceleration signals in three axes (x, y, and z) are used to recognize

a user’s activity. In a simple sensor-based (or embedded sensor-based) activity recognition system

[5,6,10,25–28], an activity is recognized through a stream of sensory data acquired from different

sensors.

All the activity recognition systems based on the aforementioned sensors demonstrate the

excitement and need for activity recognition systems. However, using these sensors there are

14
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some limitations. For example, video-based activity recognition system has the limitations of

breaking user’s privacy, whereas wearable sensor-based activity recognition system requires the

user to wear sensors and their accuracy depends on the position of the attachments. Although,

embedded sensor-based activity recognition system do not have these sorts of limitations, but it can

only recognize an activity, if it is performed interacting with one or more objects with embedded

sensors.

2.2 Real-world activity data collection frameworks

In order to collect real-world activity data, smart homes are required to monitor the interaction

between users and their home environment. This is achieved by distributing a number of ambient

sensors throughout the subjects living environment. Expertise and resources are needed to design

and install the sensors, controllers, network components, and middleware to perform basic data

collections [38]. Additionally, an effective way is needed to annotate subject’s activities in an

automatic and easy way.

In this section, first, a set of smart homes that are developed to collect real-world activity data

are described. Second, a set of annotation techniques that are used to label subject’s activity are

described.

2.2.1 Smart homes around the world

Many research groups from all over the world have been investigating how to construct smart

living environments that target medical care to the individual [39]. This Bold House [40] is the

beginning in the world’s most accessible house contains easy-grip handles, flat thresholds, and

adjustable-height vanities. The Duke Smart House [41] is a dynamic “living laboratory” environ-

ment. It contributes to the innovation and demonstration of future residential building technology.

University of Rochester is building the Smart Medical Home, which is a five-room house equipped

with infrared sensors, computers, bio-sensors, and video cameras for use by research teams to

work with research subjects as they test concepts and prototype products [42]. Georgia Institute

of Technology builds an Aware Home as a prototype for an intelligent space [43]. Massachusetts
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Institute of Technology (MIT) and TIAX are working on the PlaceLab initiative, which is a part

of the House n project [44]. The mission of House n is to conduct research by designing and

building real living environments—“living labs”—that are used to study technology and design

strategies in context.

2.2.2 Experience sampling methods

Experience Sampling Method (ESM) [6, 29, 30] or ecological momentary assessment (EMA) is

a common tool to study a user’s behavior [45]. It was first designed to study the experiences in

the wild [46]. It has now been applied to study diverse fields such as educational and clinical

research [47]. The ESM has recently been employed for interface design [29, 48–52]. In an

electronic ESM, a user usually carries a portable computing device with an ESM installed on it.

The user is prompt with a set of questions after every pre-specified period of time and the user

provides his/her answer by tapping one choice. An example of ESM is shown in Figure 2.1

ESM is one of the most important tools for activity recognition research. An activity recogni-

tion algorithm requires a set of real-world activity examples for training. In order to collect such

examples, a volunteer is needed to stay in a smart home for a specific period of time and annotated

their activity using an ESM. In recent years, a considerable amount of ESM-based tools have been

developed for data collection associated with the activities.

To the best of our knowledge, the first ever computerized ESM was introduced in [54]. Barrett

et al. have shown that it is possible to use a PDA to expand the repertoire of experience-sampling

techniques and reduced or eliminated some traditional problems associated with the pen-and-paper

methods. They installed an ESM to PDA, it prompts participants with a set of questions and the

prompting lasts for 10 seconds, and the participant has 60 seconds to respond. If the participant

responses within the time frame, the item responses and associated reaction times are recorded.

Otherwise it cues the participant again 5 minutes later. If the participant again does not respond,

the trial is recorded as missed. The working principle of the most of the ESM tools (developed so

far) is similar to this one.

In [29], Intille et al. designed an ESM tool so that it suits both researcher and subject needs.

Their goal was to handover the PDA (with ESM software installed on it) to the participant and
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Figure 2.1: A screen shot of an ESM [53].

takes it back after the study period with all the experiences and corresponding sensor data. It has

the capabilities for standard multiple choice question experience sampling using a time-sampled

protocol. They also included the protocol development flexibility which is not common in other

open-source ESM software. Additionally, it has the ability to add a new protocol by simply modi-

fying a comma-separated value file. Moreover, it is possible to configure the software such that it

allows participants to leave answers via audio recording or by taking a picture.

MyExperience [55] is the latest and the most popular open source context-aware data col-

lection platform for capturing objective and subjective data as it’s experienced. MyExperience

collects both quantitative and qualitative data on human activity, attitudes and behaviors by com-

bining both sensing and self-report. MyExperience can record a wide range of data including
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sensors, images, video, audio and user surveys. Sensor data is automatically recorded with times-

tamped to a local SQL Compact Edition database running on the mobile phone. The initial version

ships with 50 built-in sensors including support for GPS, GSM-based motion sensors, and device

usage information [56].

2.3 Temporal probabilistic models

Activity recognition based on sensors is a challenging task due to the inherent noisy nature of the

input. Thus, the temporal probabilistic models are the state-of-the-art to solve this task. A set of

probabilistic models have been proposed for activity recognition, for example, the Naı̈ve Bayesian

(NB) in [5,8,57], the Hidden Markov Model (HMM) in [6,28,58,59] and the Conditional Random

Field (CRF) in [2,3,6,60,61]. In this section, some of the popular probabilistic models are briefly

described.

Before formally defining the models, a few terms are needed to be defined. Let A =

{a1, a2, ..., am} be the set of activities, O = {o1, o2 ..., ot} be the set of objects and L ={
l1, l2, ..., lq

}
be the set of locations in an environment. Where, m, t, and q are the total num-

ber of activities, objects, and locations respectively. Let Θ = {θ1, θ2, ..., θn} ∈ O be the set of

object-usage (interacted object) at a given time, where, n is the total number of object-usage.

2.3.1 The Hidden Markov Models (HMMs)

a1

Θ1

aTa3a2

ΘTΘ2 Θ3

...

Figure 2.2: The Graphical model of a Hidden Markov Model.

HMM is a sequential model which is a probabilistic function of Markov chain as shown in

Figure 2.2. It consists of a Hidden state (e.g. activity), at , and the observations (e.g. interacted

objects), Θt , on each state. Hidden state at time, t, depends on the previous state at time, t−1. The
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observed variable at time, t, depends on the state at time, t. The goal is to find the joint probability

distribution,

P(a,θ) =
T

∏
t=1

P(at |at−1)P(θt |at) (2.1)

In HMM, a first-order Markov chain is used to generate a hidden state sequence. That is, given

some probability of first state, a1, and then given, a1, second state, a2, is generated, and so on. For

each time, t, an output, Θt , is created, which is a function of state, at .

2.3.2 The Conditional Random Fields (CRFs)

a1 aTa3a2

θ

...

Figure 2.3: The Graphical model of a linear-chain Conditional Random Field.

A CRF is an undirected graphical model which models the conditional probability distribution

over hidden states (e.g. activities) given the observations (e.g. interacted objects) [62]. Unlike

HMM, a CRF is a discriminative probabilistic model, and makes no assumption that the observa-

tions are independent given the hidden state.

In a CRF, the cliques (the set of maximal fully connected subgraphs) play the key role in the

conditional distribution. Let, C, be the set of all cliques in a given CRF. Then, a CRF factorizes

the conditional distribution into a product of clique potentials ϕc(ac,Θc), where every c ∈C is a

clique of and ac and Θc are the observed and hidden nodes in such a clique. Clique potentials are

functions that map variable configurations to nonnegative numbers. Using the click potentials, the

conditional distribution can be written as,

P(a|Θ) =
1

Z(Θ) ∏
c∈C

ϕc(ac,Θc) (2.2)
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where Z(Θ) = ∑a ∏c∈C ϕc(ac,Θc) is the normalizing function which guarantees that the outcome

is a probability.

Considering the clique potential as the log-linear combination of feature functions, fc(), the

Equation (2.2) can be written as,

P(a|Θ) =
1

Z(Θ) ∏
c∈C

exp
{

W T
c · fc(ac,Θc)

}
(2.3)

=
1

Z(Θ)
exp

{
∑
c∈C

W T
c · fc(ac,Θc)

}
(2.4)

where Wc is the weight vector, fc(ac,Θc) is a function which will return 0 or 1 depending

on the values of the input variable and therefore determines whether a click potential should be

included in the calculation.

2.3.3 Naı̈ve Bayes classifier

Studies comparing classification algorithms show that a simple Bayesian classifier known as the

Naı̈ve Bayesian (NB) classifier exhibits extremely good performance in various machine learning

applications [63].

ai

θnθ1 θ2 ...

Figure 2.4: The Graphical model of a Naı̈ve Bayes.

The NB-based activity classifier (shown in Figure 2.4) assumes that the effect of an object on

a given activity is independent of the other object. This assumption is called activity conditional

independence. For classification, the classifier computes the posterior probability, P(A|Θ), using
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the Bayes rule:

P(ai|Θ) ∝ P(ai)
|Θ|

∏
k=1

P(θk|ai) (2.5)

where, ai ∈ A represents an activity (e.g. Bathing), A represents the set of activities and P(ai) is

the Prior Probability (PP) of an activity. P(θk|ai) is the likelihood of θk given an activity ai, Θ⊂O

is the vectors of activated sensors (as the subject interest with objects with embedded sensors) at a

given time frame, O is the set of objects with embedded sensors.

During training the following probabilities are estimated:

P(θ1|ai), P(θ2|ai) . . . P(θk|ai),P(ai) ∀ai ∈ A.

In order to classify the activity label of Θ, P(ai)P(Θ|ai) is evaluated for each activity ai. The

classifier predicts that the activity label of vector Θ is the activity ai if and only if

P(ai|Θ)> P(a j|Θ) f or 1 ≤ j ≤ m, j ̸= i

where, m is the total number of activities. In other words, the classified activity label is the activity,

ai, for which, P(ai), is the maximum.

2.3.4 Naı̈ve Bayes and smoothing

Parameter estimation plays the central role in the performance of a NB-based activity classifier.

Data sparsity puts substantial challenges in parameter estimation because the sizes of the activity

datasets are relatively small. The distribution of the sensors may not be even among the activity

classes. Additionally, some of the sensors would appear during testing but would not appear while

training, these are called unseen sensors. This is called zero-frequency [37] problem which assign

zero-probability to an unseen sensor for a given activity. To prevent such estimation problem,

smoothing is required to adjust the likelihood of a model to make it more accurate. At the very

least, it is required to not assign zero probability to the unseen sensor. When estimating a likeli-

hood based on a limited amount of sensors, such as a single activity instance, smoothing of the
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likelihood is extremely important.

A set of smoothing techniques have been proposed in the field of speech recognition (SR)

and information retrieval (IR) [64]. The Jelinek-Mercer (JM) [65] (also referred to as the linear

interpolation language model) and the Bayesian smoothing (BS) using Dirichlet priors [66] are two

commonly used smoothing techniques used in IR to retrieve documents based on user’s query. To

the best of our knowledge, no smoothing techniques have been proposed in the field of AR. In

this thesis, the JM based smoothing technique is adopted for activity recognition. In this section,

various smoothing techniques proposed in the field of IR, are described.

2.3.4.1 Smoothing techniques in information retrieval

IR is the way to retrieve relevant documents based on the users query. In order to come up with

a good query to retrieve the relevant documents, we need to think of the words (or terms) that

would likely appear in these documents. In IR, the language modeling approach directly models

this idea: If the document model is likely to generate a query, it will be a good match for the query,

and it will happen if the document contains the query words often [37].

In other words, in the language modeling approach to IR, we can consider the probabil-

ity of a query as being generated by a probabilistic model based on a document. For a query

q = q1,q2 · · · ,qn and a document d, this probability is denoted by p(q|d) [64]. In order to rank

documents, the posterior probability p(d|q) is estimated by the Bayes formula,

P(d|q) ∝ P(q|d)P(d) (2.6)

where p(d) is the prior probability of a document for any query and p(q|d) is the likelihood of the

query given a document d. In IR, the p(d) is considered to be uniform and therefore ignored. The

likelihood, p(q|d) is calculated as:

P(q|d) =
n

∏
i=1

P(qi|d) =
n

∏
i=1

t fqi,d

Ld
(2.7)

where t fqi,d is the term frequency of the term qi in a document d, Ld = ∑t∈d t ft,d is the length of

the document and t is a term. This is called query likelihood model which is the original and basic
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method of language modeling in IR.

The classic problem of language modeling is one of estimation: The terms appear sparsely in

the documents. In particular, if a query term qi does not appear in the document then P(q|d) will

be 0. This is called zero probability estimation problem [37]. Such a problem leads to smooth

probabilities in document language models to discount nonzero probabilities and to give some

probability mass to unseen terms.

A wide variety of smoothing techniques have been proposed in the literatures. The Jelinek-

Mercer (JM) [65] (also referred as the linear interpolation language model) and the Bayesian

smoothing using Dirichlet priors (BS) [66] are two popular smoothing methods used in language

models. The main idea behind these methods is to discount the probability of the words seen in the

document and assign the extra probability mass to the unseen terms according to some “fallback”

model.

Jelinek-Mercer (JM) smoothing: It is a simple idea but works extremely well in practice. It

usages a mixture between a document-specific and entire collection-specific multinomial distribu-

tion:

P(t|d) = λPmle(t|Md)+(1−λ )Pmle(t|Mc) (2.8)

where 0 < λ < 1 is the smoothing parameter and Md and Mc are the language models derived from

a document and from the entire document collection respectively.

Bayesian smoothing using Dirichlet priors (BS): An alternative of JM smoothing is to use a

language model built from the whole collection as a prior Bayesian distribution in a Bayesian

updating process. This is written as:

P(t|d) =
t ft,d +µPmle(t|Mc)

Ld +µ
(2.9)

where µ is the smoothing parameter. A large value of µ means more smoothing.
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2.3.4.2 Other smoothing techniques in information retrieval

Laplace or additive smoothing [67] is the simplest smoothing method which works by adding an

extra count to every term. The probability mass of a term, t, given a document, d, is calculated as,

P(t|d) =
t ft,d +1

Ld
(2.10)

The problem of the Laplace smoothing is that it gives too much probability mass to unseen terms.

An improved smoothing method is the Good-turing smoothing [68] which re-estimate the

frequency of the term t that occur t f times [69] as,

t f ∗t = (t ft +1)
nt ft+1

nt ft
(2.11)

where nt ft is the number of terms that occur exactly t ft times in the training data. Good-Turing is

often used in combination with the backoff and interpolation algorithms rather than using it itself.

A more sophisticated smoothing technique known as Katz smoothing [70] extends Good-

Turing estimation. The Katz smoothing method is a well known backoff method which works

by discounting and redistributing probability mass only for the less common terms. Such a tech-

nique is popular in speech recognition.

Absolute discounting [71] is another smoothing method used in IR. The idea is similar to

the interpolation method. It works by discounting the probability of seen terms by subtracting a

constant instead of multiplying it.

2.4 Embedded sensor-based ARSs

Based on the type of training data an activity recognition system uses, the embedded sensor-

based ARSs can be classified into two categories: train from environment (TFE) based activity

recognition system that uses real-world activity data to train the classifier and train from Web

(TFW) based activity recognition system that uses web activity data to train the classifier. In this

section, some of the well known TFE-based and TFW-based ARSs are described.
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2.4.1 Train From Environment (TFE)-based ARSs

A variety of simple and ubiquitous sensors based activity recognition systems have been proposed.

For example, Tapia et al. [5] first employed such sensors for activity recognition. The authors

provided the ESM in a PDA to the user to annotate their daily activities. NB-based classifier was

used to recognize activities. They have showed an excellent promise, even though their mechanism

suffers from low recognition accuracy. Kasteren et al. [6] used the similar settings, except their

annotation technique is quite innovative. They employed predefined set of voice commands to

start and end points of an activity through a bluetooth enabled headset combined with speech

recognition software. The problem of this annotation technique is that, it cannot be guaranteed

that the start and end points of an activity will always be marked properly by the participants.

They did not even alert the participants to label the start and end points.

2.4.2 Train From Web (TFW)-based ARSs

Perkowitz et al. [27] introduced the notion of mining the generic activity models from web. They

have shown that it is possible to convert the natural-language recipes into activity models. Which

in turn can be used in conjunction with RFID tags to recognize activity. Their model consists of

a sequence of states and is based on a particle filter implementation of Bayesian reasoning. Their

model extractor works as follows:

1. Select a set of websites like, http://www.ehow.com/, http://www.epicurious.com/

that describes activities, and understands the HTML structure of such websites,

2. search for a page that describes an activity and extract the activity direction from this page,

3. set the title of the direction as the label of the activity,

4. parses and extract the object phrases from the direction,

5. removes the phrases that do not have noun sense,

6. calculate the object-usage probability using the Google Conditional Probability (GCP),

GCP(oi) =
hitcount(ob ject activity)

hitcount(activity)
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where hitcount(x y) is the number of pages Google returns if we search with x and y.

7. finally filters the tagged object (object with embedded RFID tags) from the phrases.

They use a Sequential Monte Carlo (SMC) approximation to infer activities probabilistically. They

borrowed the inference engine from [4]. Despite their good performance in classifying hand-

segmented object-use data, they suffered from low accuracy and limited applicability. In addition

to this, they used specific web sites whose formats were known before mining the activity models

[28].

Wyatt et al. [28] proposed an Unsupervised Activity recognition System (UARS) using mined

model from web. They first developed two algorithms: First one is the document genre classifier

that would identify the pages describing an activity. Second one is the object identification algo-

rithm that would extract objects from a page and calculate the object’s weights within the page.

Their proposed algorithm of mining for an activity works as follows:

1. It first queries the Google with the activity name along with “how to” as the discriminating

phrase. The Google would return the number of pages it has indexed for the query.

2. The algorithm then retrieves P pages as the top z pages within the total pages returned by

Google. In their paper they did not define the optimal value of z. The effectiveness of

mining data is clearly related to z, the larger the value of z is the more effective the data

would be. However, it will increase the mining time complexity.

3. It then determines P̃, a subset of P, as the activity pages using the genre classifier.

4. For each page p in P̃, it extracts the objects mentioned in the page and calculates their

weights, ŵ using object identification algorithm.

5. Finally, the algorithm calculates the objects usage probabilities for that activity using fol-

lowing formula:

p(ob ject|activity) = 1
|P̃| ∑p wob ject,p

They assemble an HMM, M, from the mined information. It has the traditional 3 parameters:

1) prior probabilities for each state, π , were uniformly distributed, 2) the transition probability
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matrix, T , which is set to a constant probabilities, 3) and the observation probability matrix, B,

where B ji = p(ob jecti|activity j).

This work is closely related to above two works. An activity recognition system using simple

and ubiquitous sensors is developed, which is broadly applicable, and easy-to-use. This system

also mine activity data from web to train its classifier. Despite these similarities, the proposed

system has several differences which are summarized below:

1. It uses a high-accurate two-layer probabilistic classification integrating location and object-

usage information. The classifier uses location-and-object-usage based model in the first-

layer to classify a group of activities and object-usage based model in the second-layer to

classify the actual activity.

2. The web activity data mining algorithm is efficient and simple. At first a parameter estima-

tion model using web activity data is designed. It is efficiently implemented using advance

operators of a search engine.

3. The proposed system is highly scalable. It is possible to add new activity or new object by

simply giving activity name or the object (with embedded sensor) name. In other words, it

has the ability to handle growing amounts of activities and objects in a graceful manner.

In summary, the proposed system uses more sophisticated activity model to improve the accu-

racy of activity classification. It uses an efficient algorithm to mine activity data from web and

dramatically reduces the mining time.

2.5 Summary

In this chapter, first, smart homes, data collection frameworks and essential tools that are devel-

oped for pursuing activity recognition research are discussed. Second, the state-of-art probabilistic

methods for activity recognition are described. Third, the related work on embedded sensor based

activity recognition systems that use real-world and web activity data is described. The differ-

ences between the existing and the proposed system are outlined. In the next chapter, the proposed

activity recognition system is described.



Chapter 3
Activity recognition system using web activity data

This chapter presents the proposed activity recognition system. First, the general concept of each

of the components of the system is described. Second, the detailed descriptions of each of the

major components of the system are given.

3.1 Overview

A scalable and easy-to-use activity recognition system is developed that can recognize a large

number of activities concerning different environments. Given a set of activities to monitor, object

names and their corresponding locations, the proposed system mines the activity data from the web

and stores them into repository. It then estimates the location-usage and object-usage likelihoods

from the mined data. Once all the likelihoods are estimated, the system is ready to recognize

activities in real-time. The overview of EARWD is shown in Figure 3.1.

The EARWD consists of five components:

1. The environment (e.g. home), in which the system will be deployed, consists of a number

of appliances (or objects) such as, door, cabinet and desk. The strategy is to embed sensors

to these objects to facilitate the activity recognition system in determining the state of that

object when a person interacts with it.

2. The core of the system is the Activity Classifier (AC) which classifies (or infers) an activity

based on a set of object-usage (interaction with an object) information, at a given time. The

classifier is learned using the activity data mined from web. It uses a Naı̈ve Bayes-based

(NB) two-layer classifier to classify activities.

28
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Figure 3.1: An overview of activity recognition system.

3. The Activity Mining Engine (AME) mines activity data from the web. It takes the following

external inputs: a set of activities to monitor, object names with attached sensors and their

corresponding locations. It gives object-usage and location-usage information for a given

activity as output, such that the system can compute the model parameters (i.e. likelihoods).

4. The Parameter Estimator learns the model parameters and coefficients using the activity

data mined by the mining engine.

5. The Visualizing tool is used to provide Graphical User Interface (GUI) to monitor the day-

to-day activities. This is a web-based tool that shows detail (e.g. Activity label, Object used,

date/time) of an activity such that an authorized person can access a secured website where

he/she can scan a check-list.

3.2 Activity classifier

The activity classifier first classifies a group of activities (e.g. kitchen activity) using a Location-

and-Object-usage based model (LOBM) and then subsequently, classifies the actual activity (e.g.

cooking) from that group using an object-usage based model. In this section, the need for adopting
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Figure 3.2: An example of location specific activities.

two activity models and two-layer classifier is justified first. Second, the activity models and the

classification methods in each layer are described.

Most of the ACs [6, 27, 28, 72] utilize only the OBM to classify activities. As the number of

activities to be monitored grow, the number of distinguishing objects between activities decreases.

Hence, the downside of such approach is that they would produce more confusion between activi-

ties. Such systems would produce more confusion between activities. Therefore, only the OBMs

would not be enough for highly accurate AR system.

Location of a person provides important context information for activity recognition and thus

could be very helpful to make the classification decision [34, 35]. It is common to use a specific

location to do an activity. For example, the “kitchen” is for cooking and the “bathroom” is for

“bathing”. The group of activities are limited for a given location (an example is shown in Figure

3.2).

A two-layer classifier is proposed, in which, the first-layer classifies the group of activities

(e.g. kitchen activities) using the LOBM and the second-layer classifies the individual activity

(e.g. doing laundry) within the activity group using the OBM. The object information along with

location information is used in the first-layer to resolve any location-confusion. A subject (or user)

may switch among locations while performing an activity (e.g., moving back and forth between

living-room and kitchen while cooking). Such a situation could be named as location-confusion.
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It limits the system’s ability to recognize the true activity group. Therefore, the EARWD employs

the object information at the first-layer along with the location information to resolve any resulting

location-confusion. For example, the use of “stove” as the object information would increase the

probability of the activity group to which the “cooking” belongs to.

It could be possible to design a one-layer classifier that uses object information along with the

location information to classify an activity. However, if such a classifier is designed to discriminate

all activities, some activities with no specific location may not be well classified. For example,

the activity, “doing laundry”, is usually performed with a “washing machine” (object), might not

have any obvious location. It could be performed in kitchen, foyer and bathroom. Using a one-

layer classifier, this activity might not be well classified. The reason is, as activity information is

mined from web, the probability of a location given an activity with no obvious location would

be relatively low compared to other activities in that location. For example, the probability of

using “kitchen” for “doing laundry” will be low with respect to those of other kitchen activities

(e.g., dinner). For such activities with no specific location, both object and location would not be

appropriate because using location with object in a model reduces the influence of object to that

model. An activity has its own key object(s), for example, “washing machine” is the key object

for doing laundry. If the influence of such object(s) is reduced for an activity, the probability of

classifying that activity will also be reduced.

Consider the following scenario that would help us for understanding why activities with no

specific location may not be well classified using only location-and-object-usage based model. Let

us consider that there is a probabilistic model that uses half of location-usage probability and half

of object-usage probability. For the sake of simplicity, let us assume that there are two kitchen ac-

tivities, “dinner” and “doing laundry”. Let the probability of using “door” and “laundry dryer” be,

0.069 and 0.0032, and the probability of using “kitchen” be 0.51 for “doing laundry”. Similarly,

let the probability of using “door” and “laundry dryer” be respectively 0.063 and 0.000001, and

the probability of using “kitchen” be 0.94 for “dinner”.

Let us now assume that “doing laundry” is performed in “kitchen” using two objects, “door”

and “laundry dryer”. If the above model is used with a Naive Bayes classifier, the probability of

“doing laundry” would be, (1/2 ∗ 0.069+ 1/2 ∗ 0.51) ∗ (1/2 ∗ 0.0032+ 1/2 ∗ 0.51) = 0.0742857
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and the probability of “dinner” in “kitchen” would be, (1/2 ∗ 0.063 + 1/2 ∗ 0.94) ∗ (1/2 ∗

0.000001+ 1/2 ∗ 0.94) = 0.235705251. Finally, the outcome of the classifier will be “dinner”,

since it shows comparatively higher probability. Although the object-usage probabilities are high

for “doing laundry”, it is not classified appropriately.

In order to overcome such situation, a two-layer classifier is used, in which the first-layer uses

the object information along with the location information to classify a group of (location specific)

activities, and the second-layer uses the object information to recognize the actual activity from

that group.

The activity groups are constructed manually based on the external input. The location at

which an activity is performed is highly dependent on an individual and an environment to which

the system is applied. Therefore, the groups are constructed manually using user’s preference of

an activity/location and the environment. There are some activities that could be performed in

multiple locations depending on the requirements of the activity. For example, the activity, “dress-

ing” could be performed in “bedroom” and or it could be performed in “bathroom”. Additionally,

there are some activities having no specific location. For example, the activity, “cleaning home”,

does not have any specific location. In order to deal with such situations, the system allows the

user to put one activity in multiple groups.

3.2.1 The goal of the classifier

Let A = {a1, a2, ..., am} be the set of activities, O = {o1, o2 ..., ot} be the set of objects and

L =
{

l1, l2, ..., lq
}

be the set of locations in an environment, where, m, t, and q are the total

number of activities, objects, and locations respectively. Let Θ = {θ1, θ2, ..., θn} ∈ O be the set

of object-usage sequence at any given time, and lθ1 , lθ2 , ..., lθn ∈ L be the corresponding locations,

where, n is the total number of object-usage. The goal is to map the observation sequence (i.e.

object-usage sequence, Θ) into corresponding activity labels.

In the first-layer, the classifier classifies a group of activities, A j ∈ A, using the LOBM. An

individual activity, ai ∈ A j, is classified in the second-layer using only on the OBM.

Figure 3.3 shows an overview of the two-layer classifier and an example is illustrated in Figure

3.4.
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Figure 3.3: An overview of activity classification.

3.2.2 Activity models

The activity models are Naı̈ve Bayes-based probabilistic models.

3.2.2.1 Location-and-Object-usage Based Model (LOBM)

Definition 3.1 The LOBM is a mixture model which involves a linear interpolation of the location

and the object, using a Influential Coefficient (IC), 0 < α < 1, to control the influence of each.

PLOBM(A j|Θ) ∝
|Θ|

∏
k=1

(αP(lθk |A j)+(1−α)P(θk|A j)) (3.1)

where, lθk is the location of θk, P(lθk |A j) and P(θk|A j) are the probabilities of using a location

and an object respectively for a given activity group.

The LOBM produces a movement of probability mass from the object to location. A large

value of α means more emphasis on location and a small value of α means more emphasis on

object. The IC can be set to a value that maximizes the average performance of the classifier or to

a value that can represent the importance of the locations in a dataset.

The probabilities estimation technique for this model and defining the value of α are described

in Section 3.4.
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Figure 3.4: Two-layer activity classification: An example for the activity “Watching TV”.

3.2.2.2 Object-usage Based Model (OBM)

In a Naı̈ve Bayes-based classifier for activity recognition, the model parameters are usually ap-

proximated using the relative frequencies of the object-usage in a training set. This is called

likelihood estimation of the probabilities. If a given activity and the object-usage value never oc-

cur (unseen object) together in the training set then the estimated likelihood will be zero. This is

problematic since it will wipe out all information in the other object-usage probabilities when they

are multiplied. To prevent such estimation problem, a smoothing technique is proposed which

is based on the Jelinek-Mercer (JM) [65] (described in Chapter 2 ) smoothing technique used in

Information Retrieval.
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Table 3.1: An example dataset: Each cell represents how many times an object is used for an
activity.)

XXXXXXXXXXXActivity
Sensors

o1 o2 o3 o4 o5 ... on

Leaving 2 17 21 1 5 ... 2
Toileting 1 40 195 0 0 ... 16
Showering 0 68 1 0 0 ... 0
Sleeping 0 15 13 0 0 ... 44
Breakfast 7 1 0 2 38 ... 0
Dinner 5 0 4 4 23 ... 0
Drink 0 0 0 17 30 ... 1

Before defining the smoothing method, it is required to define following two terms.

Definition 3.2 An Activity Model (AM) = {v1, v2, ..., vn} is an observation vector of n number of

objects for an activity, where, vi, being the observed frequency of ith object for an activity.

Definition 3.3 A Collective Model (CM) = {AM1, AM2, ..., AMm} is a collection of observation

vectors of m number of activities, where, AMi, being the activity model for ith activity.

Let us consider an activity dataset shown in Table 3.1. Each cell of the table represents the number

of times tth object, ot , is used for an activity. Each row of this table represents an AM, Mai , for ith

activity, ai. Entire table represents the CM, Mc, for the activity collection, c.

Definition 3.4 The OBM is also a mixture model which involves a linear interpolation of the AM

and with the CM, using a Smoothing Coefficient (SC), 0 < λ < 1, to control the influence of each:

POBM(ai|Θ) ∝ P(ai)
|Θ|

∏
k=1

(λP(θk|Mai)+(1−λ )P(θk|Mc)) (3.2)

where, P(ai) is the Prior Probability (PP) of an activity, P(θk| Mai) is the probability of using an

object given an AM and P(θk|Mc) is the probability of using an object given a CM.

In equation (3.2), 0 < λ <1 is the smoothing parameter. Smaller values of λ means more

smoothing. The smoothing method produces a movement of probability mass from seen objects

to unseen objects. The value of λ can be set either to maximize the average performance of the

classifier or to the average number of zero-frequencies in a dataset.
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The probabilities estimation technique for this model and defining the value of λ are described

in Section 3.4.

3.2.3 Classification of an activity group

In the first-layer, the classifier uses a NB-based method to classify a group of activities from a

set activities based on the LOBM (shown in Equation (3.1)). To classify the activity group of Θ,

PLOBM(Ai|Θ) is evaluated for each activity group Ai ∈ A. The classifier predicts that the activity

group of the vector Θ is the activity group Ai if and only if

PLOBM(Ai|Θ)> PLOBM(A j|Θ) f or 1 ≤ j ≤ q, j ̸= i (3.3)

where, q, is the total number of activity groups.

3.2.4 Classification of an individual activity

Similarly, in the second-layer, the classifier uses a NB-based method to classify the individual

activity from the activity group, A j (output of the first-layer classifier), using only on the OBM

(shown in Equation (3.2)). To classify the activity label of Θ, POBM(ai|Θ) is evaluated for each

activity ai ∈ A j. The classifier predicts that the activity label of vector, Θ, is the activity ai if and

only if

P(ai)POBM(ai|Θ)> P(a j)POBM(a j|Θ) f or 1 ≤ j ≤ g, j ̸= i (3.4)

where, g is the total number of activities in the activity group, A j.

3.3 Activity mining engine

There are two types of pages in WWW which are related to human activities: The Explicit Activity

Catalog Page (EACP) and the Implicit Activity Catalog Page (IACP). An EACP explicitly describe

the steps required to perform an activity. In contrast, an IACP provides some steps that are related

to an activity or it would influence an activity without directly specifying how to perform an
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activity.

Most of the activity mining engines [27, 28] proposed so far only mine information from

EACPs. The mining engine proposed in this thesis considers both types (i.e. EACP and IACP)

of pages. The reason is that even though an IACP does not provide steps to perform an activity,

however, it provides activity related information. Therefore, the purpose of activity mining engine

is to mine activity data from all relevant web pages. It provides object-usage and location-usage

information for a given activity as output, which are used to compute the model parameters.

In this thesis, the total number of IACPs and EACPs in the web is termed as, activity pages

indexed (API). The number of pages within these APIs that contains an object name is termed

as, object pages indexed (OPI). Similarly, the number of pages within these APIs that contains a

location name is termed as, location pages indexed (LPI).

The existing activity mining engines need to load (from web) a set of these pages (EACPs,

IACPs) to classify the EACPs and to mine activity data (API, OPI and LPI). On the other hand,

the mining engine proposed in this thesis doesn’t need to load these pages, but instead, it employs

the search engines (already mine information from these pages) for this purpose. Employing the

search engines for this purpose makes the mining system exceptionally fast. The details about the

mining engine are provided in next chapter.

3.4 Parameter estimator

The main task of the parameter estimator (PE) is to transform the activity data into likelihoods such

that the classifier can use them to classify activities. Additionally, the PE estimates the coefficients

associated with the models.

3.4.1 Estimation of likelihoods

The PE uses the following formulas to calculate the likelihoods:

P(o j|Ai) =
∑ak∈Ai f req(o j|ak)

∑ak∈Ai,oc∈O f req(oc|ak)
(3.5)
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P(l j|Ai) =
∑ak∈Ai f req(l j|ak)

∑ak∈Ai, lc∈L f req(lc|ak)
(3.6)

P(o j|Mai) =
f req(o j|ai)

∑oc∈O f req(oc|ai)
(3.7)

P(o j|Mc) =
∑ai∈A f req(o j|Mai)

∑ak∈A,oc∈O f req(oc|Mak)
(3.8)

where, f req(o j|ak) and f req(l j|ak) are the relative frequencies of object, o j, and location, l j

in a dataset for a given activity, ak.

3.4.2 Estimation of prior probability

If the classifier is trained using real world activity data, then the prior probability, P(ai) of an

activity, ai, is estimated as,

P(ai) =
f req(ai)

∑a j∈A f req(a j)
(3.9)

However, if the classifier is trained using web activity data, P(ai) is estimated based on the external

input. The frequency of pursuing an activity in a time frame (e.g., two showers per day) is the

input, which is then converted into per minute to get the prior probability. It is to be noted that

there is no suitable way (not yet at least) to mine and estimate prior probabilities from the web

because it is highly subject dependent. If it is considered to be, P(ai) =
API(ai)

∑a j∈A API(a j)
, which might

not be an accurate measurement, because it would be biased to the number of pages indexed by the

search engines. For example, Google would return n = 694,000 for “Bathing” and n = 1220 for

“Toileting”, using the above formula, the probability of “Toileting” would be << then “Bathing”.

In real life, frequency of “Toileting” is lot more than “Bathing”. On the other hand, if some

existing datasets are used to compute the prior probabilities, it would limit the applicability and
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scalability of the system. This is because the degree of pursuing an activity is totally depended on

the user.

3.4.3 Estimation of coefficients

In equation (3.1), the coefficient, 0<α < 1, is used to control the influence of location. It is needed

to estimate how much influence would be optimal (or nearly optimal) for a given dataset. In other

words, it is required to calculate the importance of the locations for all the activity groups. If the

sum of average number of times the locations appeared in the activity documents is calculated, it

would give the importance. Therefore, it is calculated as,

α =
∑q

i=1
∑ak∈Ai, lc∈L f req(lc|ak)

∑ak∈Ai f req(ak)

q
(3.10)

Where, f req(ak) = ∑o j∈O f req(o j|ak)+∑ lc∈L f req(lc|ak) and q is the number of activity groups.

In equation (3.2), the coefficient, 0 < λ < 1, is used to control the smoothing. The smoothing

is clearly related to the number of zero-frequencies in a dataset. In other words, the smoothing

is proportional to the number of zero-frequencies. The more zero-frequencies a dataset has, the

more smoothing is required. Therefore, if λ can be calculated as the distance of the average of the

average number of objects with zero-frequencies in each activity from 1, it will give us the optimal

(or nearly optimal) λ . That is,

λ = 1 − ∑ai∈A
∑oc∈O δ ( f req(oc|ai))

t
m

,
{

δ =
{

1 i f f req(oc|ai) == 0
0 otherwise (3.11)

where, m and t are the number of activities and objects respectively.

3.5 Visualizing tool

The Visualizing tool is a web-based tool that shows in detail (e.g. Activity label, Object used,

date/time, etc.) of an activity such that an authenticated person can access a secured website

where he/she can scan a check-list. Figure 3.5 shows an example of output of the visualizing tool.

It represents the activity log of Mr. John for a day (Friday, May 22, 2009). It consists of four
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Figure 3.5: An example of the output of visualizing tool.

columns: the name of the activity, the start-time, end-time of the activity and a link to a page in

which the set of object-usage for that activity will be found.

3.6 The summary of the terms and the algorithms

This section summarizes the terms and equations of this chapter. It also discuss the learning and

inference algorithms.

3.6.1 The summary of the terms

Let A = {a1, a2, ..., am} be the set of activities, O = {o1, o2 ..., ot} be the set of objects and

L =
{

l1, l2, ..., lq
}

be the set of locations in an environment. Where, m, t, and q are the total

number of activities, objects, and locations respectively. Let Θ = {θ1, θ2, ..., θn} ∈ O be the set

of object-usage sequence at any given time, and lθ1 , lθ2 , ..., lθn ∈ L be the corresponding locations,

where, n is the total number of object-usage. The goal is to map the observation sequence (i.e.
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object-usage sequence, Θ) into predefined activity labels.

In the first-layer, the classifier classifies a group of activities, A j ∈ A, using the LOBM shown

below:

PLOBM(A j|Θ) ∝
|Θ|

∏
k=1

(αP(lθk |A j)+(1−α)P(θk|A j)) (3.12)

where, lθk is the location of θk, P(lθk |A j) and P(θk|A j) are the probabilities of using a location and

an object respectively for a given activity group.

The individual activity, ai ∈ A j, is classified in second-layer using the OBM shown below:

POBM(ai|Θ) ∝ P(ai)
|Θ|

∏
k=1

(λP(θk|Mai)+(1−λ )P(θk|Mc)) (3.13)

During the training the model parameters are estimated as,

P(θ j|Ai) =
∑ak∈Ai f req(θ j|ak)

∑ak∈Ai,oc∈O f req(oc|ak)
(3.14)

P(l j|Ai) =
∑ak∈Ai f req(lθ j |ak)

∑ak∈Ai, lc∈L f req(lc|ak)
(3.15)

P(θ j|Mai) =
f req(θ j|ai)

∑oc∈O f req(oc|ai)
(3.16)

P(θ j|Mc) =
∑ai∈A f req(θ j|Mai)

∑ak∈A,oc∈O f req(oc|Mak)
(3.17)



3.6 THE SUMMARY OF THE TERMS AND THE ALGORITHMS 42

α =
∑q

i=1
∑ak∈Ai, lc∈L f req(lc|ak)

∑ak∈Ai f req(ak)

q
(3.18)

λ = 1 − ∑ai∈A
∑oc∈O δ ( f req(oc|ai))

t
m

,
{

δ =
{

1 i f f req(oc|ai) == 0
0 otherwise (3.19)

where, f req(o j|ak) and f req(l j|ak) are the relative frequencies of object, o j, and location, l j

in a dataset for a given activity, ak, q is the number of activity groups, m and t are the number of

activities and objects respectively.

3.6.2 The algorithm for classification

Algorithm 3.1: ActivityClassifier(A, Θ, P(l|A), P(θ |A), α , λ ). The activity classifier.
Data: List of activities, A, List of object-usage, Θ, at a given time, P(l|A), P(θ |A), α , λ
Result: An activity, a
/* Location-and-object-usage based first-layer classifier */;
A j = FirstLayerClassifier(A, Θ, P(l|A), P(θ |A), λ );1

/* Object-usage based second-layer classifier */;
a = SecondLayerClassifier(A j, Θ, P(θ |A), α);2

The system would be ready to recognize activity in real time, as soon as all the model param-

eters have been estimated. This is called inference phase. In this phase, activities are inferred by

an inference engine (or classifier) which uses sensory data coming from the objects (as human

interact with the objects with embedded sensors).

The classifier (or the inference engine) is shown in Algorithm 3.1. It takes following inputs:

list of activities A, list of object-usage, Θ, at a given time, P(l|A), P(θ |A), α and λ . It classifies

the most probable activity as output in two-layers.

In the first-layer, the classifier infers a group of activities, A j ∈ A, using Equation 3.12. The

corresponding algorithms is shown in Algorithm 3.2. It takes following inputs: A, Θ, P(l|A),

P(θ |A), α and provides an activity group, A j, as output.
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Algorithm 3.2: FirstLayerClssifier(A, Θ, P(l|A), P(θ |A), α). The activity group classifier.
Data: List of activity groups, A, List of object-usage, Θ, List of location-usage

probabilities, P(l|A), list of object-usage probabilities, P(θ |A), and α
Result: An activity group, Ag

Ag = A1; /* First-layer’s output */1

for j = 1 to q do2

/* q is the total number of activity groups in A */;
PLOBM(A j|Θ) = 0;3

for each object-usage, θk ∈Θ do4

if PLOBM(A j|Θ)> 0 then5

PLOBM(A j|Θ) = PLOBM(A j|Θ)∗ (αP(lθk |A j)+(1−α)P(θk|A j));6

else7

PLOBM(A j|Θ) = αP(lθk |A j)+(1−α)P(θk|A j);8

end9

end10

if j > 1 AND PLOBM(A j|Θ)> PLOBM(A j−1|Θ) then11

Ag = A j;12

end13

end14

Algorithm 3.3: SecondLayerClssifier(A, Θ, P(θ |A), λ ). The activity classifier.
Data: List of activities, A, List of object-usage, Θ, list of object-usage probabilities,

P(θ |A), and λ
Result: An activity, a
a = a1; /* Second-layer’s output */1

for i = 1 to length(A) do2

/* length(A) is the total number of activities in A */;
POBM(ai|Θ) = 0;3

for each object-usage, θk ∈Θ do4

if POBM(ai|Θ)> 0 then5

POBM(ai|Θ) = POBM(ai|Θ)∗ (λP(θk|Mai)+(1−λ )P(θk|Mc));6

else7

POBM(ai|Θ) = λP(θk|Mai)+(1−λ )P(θk|Mc);8

end9

end10

if i > 1 AND POBM(ai|Θ)> POBM(ai−1|Θ) then11

a = ai;12

end13

end14
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In the second-layer, the classifier infers the actual activity, ai ∈ A, using the equation 3.13. The

corresponding algorithms is shown in Algorithm 3.3. It takes following inputs: A, Θ, P(θ |A), λ

and provides an activity, ai, as output.

3.7 Summary

In this chapter, first, an overview of the system is briefly described. Second, importance of location

information along with object information for activity recognition is described. Third, a two-

layer classifier is proposed, in which, the first-layer classifies the group of activities (e.g., kitchen

activities) using the location-and-object-usage based model, and the second-layer classifies the

individual activity (e.g., cooking) within the activity group using the object-usage based model.

Fourth, the characteristics of the different types of activity pages available in web are described.

Finally, the mechanism to mine web activity data from these pages using the search engines, and

the mechanism to learn the model parameters are described.



Chapter 4
Activity mining engine

4.1 Introduction

Advancement of the Internet and the World Wide Web (WWW) encourages millions of users to

promote billions of web pages with varieties of contents [33]. A fraction of these pages either

explicitly or implicitly provide information related to the activities of daily livings. Such web

pages not only state an activity but also depict where to perform this activity and what objects

to use and in what sequence. An activity recognition system would be broadly applicable and

scalable by its very design if it can mine information from such web pages to learn the models.

The purpose of activity mining engine is to provide enough information such that the system can

use these for training. Before describing any further how activity mining engine works, it would

be useful to define the web activity data mining first.

Definition 4.1 The web activity data mining can be defined as a type of web mining technique,

under the category of recourse finding and/or extracting. More specifically, activity data mining is

the process of retrieving (either on-line or off-line) the data related to human activities available

in the web and the process transforming the above data into a form such that it can be used to

train an activity classifier.

Therefore, the goal of the activity mining engine is to mine web activity data, such that these

can be used to train the system. Before explaining the activity mining engine, it is essential to

provide some facts related to the web pages that describe activities of daily livings.

45
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Bathing in Style - The Art of Bathing Well

...

The perfect length of a bath is 10-15 minutes. After that your skin starts 

to wrinkle and your water gets cold. It is always good to have a bottle 

of water available since a warm or hot bath can be dehydrating. Be sure 

to sip water if you feel the need. Some people prefer a glass of red 

wine, champagne or port to help relax. Or you can have a cup of green 

tea or even chamomile tea to help you relax. Lock your door, turn the 

lights off and light as many candles as you can (candles are essential as 

they affect your mood). Support your head with a bath pillow or a 

folded up towel. Pick a nice relaxing CD, close your eyes and enjoy 

your peace and quiet.

...

Figure 4.1: An EACP that provides information related to object-usage for an activity [73].

4.1.1 Types of activity pages in the web

There are two types of pages in WWW which are related to human activities: The Explicit Activity

Catalog Page (EACP) and the Implicit Activity Catalog Page (IACP).

Definition 4.2 Explicit Activity Catalog Page (EACP): A web page is called an Explicit Activity

Catalog Page (EACP) if it provides instructions in detail, like how to perform an activity. Such a

page has a title, which in most cases contains the activity name. It also has a body, which provides

detail descriptions of how to perform the activity and may also specify the object-usage sequence

and location-usage for that activity.

For example, the web page1 [73] shown in Figure 4.1 is an EACP that contains the activity

name (i.e. “bathing”) in its title. In description section, it describes how to perform that activity

and what object(s) (e.g. door, lights) to use and their usage sequence.

Definition 4.3 Implicit Activity Catalog Page (IACP): A web page is called an Implicit Activity

Catalog Page (IACP) if it does not directly define how to perform the activity but instead provides

the instructions that would influence the activity. It has the similar features (e.g. object-usage) as

an EACP.

1http://www.articlealley.com/article_108210_28.html
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How to Make Bathing Safe For Independent Seniors

...

The simplest and most inexpensive remedy is to have a bath seat

installed. This way, the user can have a seat in the bathtub for 

stability. The seat would be too high to take a bath, so the best way to 

bathe in this manner would be to use a hand-held shower head. Keep 

in mind the drawbacks for this method: The user still must step over 

the side of the tub to get in and out, and they will have to manually 

clean themselves with the shower head. If the user's mobility is not 

terribly restricted, just a little slow or unsteady, this method could 

easily work.

A bath lift would work better than a bath seat for someone with 

limited mobility. These mobility aids allow a user to sit comfortably 

before lowering them down into the bath. Once they are ready, the 

device lifts them back up to a sitting position. Often, they will feature 

a transfer bench so that the user can "slide" over the edge of the tub 

to get in or out. Bath lifts are more expensive than bath seats, but can 

restore privacy and independence even for seniors with moderately 

severe mobility restrictions.

Installing a tall walk-in bathtub in a separate area of the bathroom is 

probably the best way to guarantee safety for a senior with limited 

mobility. Walk-in bathtubs feature a doorway so that the user doesn't 

have to step over the side. While some walk-in bathtubs are meant to 

replace an ordinary bathtub as a permanent installation, I don't 

recommend those because they don't offer an easy way for the user to 

sit/stand and they will bring down the resale value of a house. 

Instead, opt for a tall walk-in bathtub with a bench. This type of 

walk-in tub can be removed from the bathroom when it's no longer 

needed. This way, the user can take a bath while sitting upright, 

similar to sitting in a hot tub. There's no need to lower the body to 

ground level, and getting in and out is easy. Walk-in bathtubs are 

gaining in popularity for residential use as more and more people 

decide that they are worth the cost to maintain their privacy and 

independence.

...

Figure 4.2: An IACP that provides information related to object-usage for an activity [74].

For example, the web page2 [74] shown in Figure 4.2 is an IACP that describes the list of steps

required to make bathing safe for independent seniors. In detail description section of this page, it

mentioned the terms like, “bathroom”, “bathtub”, and “doorway”. It does not directly reflect the

2http://ezinearticles.com/?How-to-Make-Bathing-Safe-For-Independent-Seniors&id=2148355
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Table 4.1: An example of PCs for Activity = Bathing and number of APs for Bathing = 694,000
Location PC for location Object PC for object
Kitchen 20,400 Cups 11,100

Bathroom 27,500 Door 14,500

steps required for bathing but it provide information that is related to bathing.

The web-based activity recognition systems proposed in the literature, only consider EACP

as the source of activity information. However, IACPs also provide information that is extremely

helpful for activity recognition. In this research, both of these pages are considered to be the

source of activity data.

4.1.2 Goals of the mining engine

We can see from Equations (3.1) and (3.2) that during training, it is required to estimate the

following likelihoods:

P(lθk |A j), P(θk|A j), P(ai), P(θk|Mai) and P(θk|Mc).

The goal of the AME is to provide sufficient web activity data such that these can be used by the

PE to estimate the likelihoods.

In other words, the goals of an AME is to find the EACPs and IACPs and determine how many

of these pages (i.e. Page Count (PC)) contain the given objects and how many of these pages

contain the given locations, and generate a table like Table 4.1.

All the mining engines proposed in the literature so far need to load a set of pages to determine

the set of EACPs. It makes the mining engines extremely time consuming. Therefore, the motiva-

tion is to develop a fast mining engine that will mine activity data from web without loading any

pages.

4.2 Mining web activity data

The proposed mining engine is based on the popular web search engines available today. A web

search engine is developed to find a piece of information on the web. If we search with a specific

term(s) or sentence(s), the search engine will provide information that is related to the term(s)
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Table 4.2: Search engine’s Query modifiers and operators.
Name Description

“” The quotes forces the search engine to search for the exact phrase. For example,
the query [“Preparing dinner”] would find the pages containing the exact phrase
“Preparing dinner”.

intitle If we include [intitle:] in our query, a search engine would return all the web pages
containing the word in the title of the web pages. For instance, the query [inti-
tle:“Preparing dinner”] would find all the web pages that have “Preparing dinner”
in their title.

intext Is the Google search syntax for searching only in the body text of documents and
ignoring links, anchors, URLs, and titles [75]. That is, if we include [intext:] in
our query, a search engine would return all the web pages containing the word in
the body text of the web pages. For instance, the query [intext:“Washing machine”]
would find all the web pages that have “Washing machine” in their body text.

inbody
Is the Yahoo and Bing search syntax, which is same as “intext”.

or sentence(s). The information may consist of web pages, images, information and other types

of files (e.g. pdf or doc). Some search engines also mine data available in databases or open

directories [76].

The AME uses the existing search engines (e.g. Google, Yahoo and Bing) to search such

pages and determines the PCs. Searching using a search engine is simple, choosing the appropriate

search terms is the key to find the required information [77]. Most of the search engines support

a bunch of advanced operators, which are query words and have special meaning for the engine.

It is possible to modify the search in some way, or even instruct the search engine for a different

search [78]. For instance, “intitle:” is a special operator, and the query [intitle:Bathing] does not

do a normal search, instead finds all the web pages that have “Bathing” in their title. Table 4.2

shows the modifiers and operators that are used to mine the web activity data.

Figure 4.3 shows how the AME mines activity data from the web using a search engine. The

corresponding algorithm is shown in Algorithm 4.1. For each activity, ai ∈ A, the AME first

searches the number of potential pages that describe ai, using a query, intitle :“ai”intext :“ai.

Let the set of activity pages indexed (API) by the search engine be Ω for a given query. The

cardinality of Ω is denoted by n = |Ω|. Next step is to determine the number of pages indexed

by the search engine for a location (or location pages indexed (LPI)) l j ∈ L within the activity



4.2 MINING WEB ACTIVITY DATA 50

for each ai in A search with the query, 

intitle:“ai” intext:“ai”

for each lj in L

search with the query, 

intitle:“ai” intext:“ai”  

intext:“lj”

for each ok in O

search with the query, 

intitle:“ai” intext:“ai” 

intext:“ok”

ai ai

p: number of pages 

returned by the 

search engine

n
: 
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m: number of pages 

returned by the 

search engine

Store API(ai) = |n| , LPI(ailj) = |m| and OPI(aiok) = |p|

Figure 4.3: Activity Mining Engine.

Algorithm 4.1: AME(A, O, L). The activity mining engine.
Data: List of activities A, List of objects O, List of locations L
Result: Activity Pages Indexed (API), Location Pages Indexed (LPI) and Object Pages

Indexed (OPI)
for i← 1 to length(A) do1

APIi = this←SG(“intitle :“ai”intext :“ai””); /* SE (Search Engine) would2

return the number of pages indexed by the search engine for the

given query */;
for j← 1 to length(L) do3

LPIi j = this←SE(“intitle :“ai”intext :“ai” intext :“l j””);4

end5

for k← 1 to length(O) do6

OPIik = this←SE(“intitle :“ai”intext :“ai” intext :“ok””);7

end8

end9

pages. The AME uses the query, intitle :“ai”intext :“ai intext :“l j” (for Bing and Yahoo AME

uses intitle :“ai” inbody :“ai inbody :“l j”) to return the number of pages containing the l j in their
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text for a given activity pages. Let the search engine return m⊆Ω pages that contain an occurrence

of l j. Similarly, let p⊆Ω be the pages returned by the search engine for an object (or object pages

indexed (OPI)), if the AME searches with the query, intitle :“ai” intext :“ai intext :“ok”. The AME

finally saves API(ai) = n, LPI(l j|ai) = m and OPI(ok|ai) = p into repository such that the PE

can estimate the model parameters. In Figure 4.4, some examples of API, OPI and LPI are shown.

b. an example of Location Page Indexed (LPI)

a. an example of Activity Page Indexed (API).

c. an example of Object Page Indexed (OPI)

API

LPI

OPI

Figure 4.4: Mining examples using Google (the search engine).
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4.3 Number of queries required for mining

Given a set of activities A, objects, O, and their corresponding locations, L, the total number of

queries, r, required by the AME to mine web activity data is:

r = m+m(q+ t); (4.1)

where, m, t, and q are the total number of activities, objects, and locations respectively. As we can

see in Algorithm 4.1, for m activities, the AME requires m queries to mine APIs, for q locations

and m activities, the AME requires mq queries to mine LPIs, and for t objects and m activities, the

AME requires mt queries to mine OPIs.

For example, if we consider an environment where 20 objects are embedded with sensors in 5

different locations and there are 10 activities to monitor. To mine the model parameters, the AME

would need 260 queries in total.

4.4 Training the system using web activity data

In section 3.4, the purpose of the parameter estimator is to estimate likelihoods and the coefficients

from the training data is described. In this section, how the parameter estimator estimates them

from mined data is shown.

4.4.1 Estimation of likelihoods

In order for better understanding, the likelihood estimation equations (as shown in Equations 3.5 -

3.8) are rephrased here.

P(o j|Ai) =
∑ak∈Ai OPI(o j|ak)

∑ak∈Ai,oc∈O OPI(oc|ak)
(4.2)

P(l j|Ai) =
∑ak∈Ai LPI(l j|ak)

∑ak∈Ai, lc∈L LPI(lc|ak)
(4.3)
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P(o j|Mai) =
OPI(o j|ai)

∑oc∈O OPI(oc|ai)
(4.4)

P(o j|Mc) =
∑ai∈A OPI(o j|Mai)

∑ak∈A,oc∈O OPI(oc|Mak)
(4.5)

where, OPI(o j|ak) and LPI(l j|ak) are the relative frequencies of an object, o j, and a location,

l j in a dataset for a given activity, ak.

4.4.2 Estimation of coefficients

In order for better understanding, the coefficient estimation equations (as shown in Equations 3.10

and 3.11) are rephrased here.

α =
∑q

i=1
∑ak∈Ai, lc∈L LPI(lc|ak)

∑ak∈Ai (∑ lc∈L LPI(lc|ak)+∑o j∈O OPI(o j|ak))

q
(4.6)

where, q is the number of activity groups.

λ =
∑ai∈A

∑oc∈O δ (OPI(oc|ai))
t

m
,
{

δ =
{

1 i f OPI(oc|ai) == 0
0 otherwise (4.7)

where, m and t are the number of activities and objects respectively.

4.5 Noise associated with the mined data

There could be much noise associated with the mined data, since the mining technique is based

on the search engines. In other words, as the mining is based on syntactic meaning rather than

semantic meaning, there will be various types of noises:
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• Noises associated with the activity title: There could be a page that is not an activity page

(i.e. EACP) nor a relevant activity page (i.e. IACP), but has an activity name in its title.

Such page can be categorized into two types:

– Invalid activity page: Although the activity name appears in the document’s title, it is

not guaranteed that only the activity manual page contains such title.

– Inappropriate title: Although the activity name appears in the document’s title and the

page is an activity manual page, it is not guaranteed that the information is related to

the activity we are looking for.

• Noises associated with the object or location usage: A set of activity manual pages may

contain unexpected (noisy) object or location usage information. Such pages could be cate-

gorized into three types:

– Different activity context: There could be activity pages that provide object or location

usage information whose context is different from the expected.

– Irrelevant object or location usage information: A web page typically contains many

information blocks. Apart from the main content blocks, it could have blocks like,

navigation panels, copyright and privacy notices, and advertisements. Such blocks

may provide irrelevant object or location usage information for an activity.

– Object names with different meanings: There could be many object names with mul-

tiple meanings. For instance, the object “Pan” has at least two meanings: cooking

utensil consisting of a wide metal vessel, and commode pans. Activity pages may

contain such objects which are different from the object we are searching for.

In the following subsections, a brief description of these noises is given.

4.5.1 Noises associated with the activity title

There can be a page having activity name on its title which is neither an activity page nor a page

providing relevant information. Such a page could be termed as invalid activity page.
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4.5.1.1 Invalid activity page

Figure 4.5: An example: A noisy web page [79], contains a noisy activity name in the title.

The mining engine uses the keyword, “intitle:” to determine the set of activity pages. Using

such a keyword to find the activity pages, would only return the pages that have the activity name

on their title. It is not guaranteed that only the activity manual pages (EACP or IACP) will be

returned. For example, as shown in Figure 4.5, the web page is not an activity page, even though

it has an activity name (i.e. taking medication) in the title.
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4.5.1.2 Inappropriate title

Figure 4.6: An example: A noisy web page [80], contains a different activity name in the title.

Although the activity name appears in the document title and the page is related to an activity

it is not guaranteed that the information is related to the activity we are looking for. For example,

as shown in Figure 4.6, the title of this page contains cooking but body does not contain the
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instruction related to “cooking” instead it has information related to “exercise”. If the search is

performed to get the activity pages related to cooking, this page would appear.

4.5.2 Noises associated with the object or location usage

A set of activity manual pages may contain unexpected (noisy) object or location usage informa-

tion. Such pages could be categorized in three types:different activity context, irrelevant object or

location usage information and Object/location names with different meanings.

4.5.2.1 Different activity context

Figure 4.7: An example: A noisy web page [81] contains a noisy activity name in the title and an
object name in the text.

There are pages that provide activity information but the context of the pages may be different

from the expected, for example, as shown in Figure 4.7, the page is something related to “tak-
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ing medication” while the context is different. It talks about alternative information of “taking

medication”. However, it has object-usage information like, “mattress”.

4.5.2.2 Irrelevant object or location usage information

Figure 4.8: An example: A noisy web page [82], contains a activity name in the title and a noisy
object name in the navigation panels.

A web page typically contains many information blocks. Apart from the main content blocks,

it could have blocks like, navigation panels, copyright and privacy notices, and advertisements.

Such blocks may provide irrelevant object or location usage information for an activity. For exam-

ple, as shown in Figure 4.8, the page is something related to “taking medication” in the navigation

panel it has object-usage information like, “TV”.

4.5.2.3 Object/location names with different meanings

There could be object/location names with multiple meanings. Activity pages may contain such

objects which is different to the object we are searching for. For instance, as shown in Figure 4.9,

the object, “Pan”, has at least two meanings: cooking utensil consisting of a wide metal vessel and

commode pans. If the object, “Pan” (in kitchen, as cooking utensil) is embedded with sensors and

information are mined based on this then the page shown in 4.9 (b) is noisy.
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a. An example: Pans as cooking utensil

b. An example: Pans as ablution utensil

Figure 4.9: An example: An object with different meanings a. Pans as cooking utensil [83], b.
Pans as ablution utensil [84].
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4.6 Challenges and difficulties to remove noises

4.6.1 Identifying the true activity pages

In order to identify a true activity page, it may not be sufficient to find only the pages that mention

the activity name in their title, but rather the subset of those pages that contain detailed descriptions

of the activity being performed. Identifying this subset of the pages is a problem known as genre

classification [28]. Therefore, the first thing we need is the genre classifier. However, there are

several disadvantages of using a genre classifier for this:

1. It is required to load each of the pages (returned by a search engine) to determine the genre

of the page. This is not realistic, since there could be millions of pages. Loading each

of these pages would take huge amount of time. For example, let us consider we need to

classify the genre of the pages that contain “cooking” in their title. We searched for the

potential set of pages using the query, “intitle:cooking”, the search engine returned around

8 millions of pages. This is not realistic to load and classify the genre of these pages, since

it could be very expensive or could take months.

2. The accuracy of the genre classifier should be very high, because the higher the accuracy is

the lower the noises would be.

4.6.2 Identifying the object-usage and location-usage

After identifying the true activity pages, the next task is to identify the terms that denote objects

and locations from these pages. For this purpose we need a parts-of-speech tagger (POS tagger

or POST) to identify the nouns and an object (or a location) tagger to identify the objects (or

locations) from these nouns. However, the accuracy of such tagger should also be very high.

4.7 Reducing the effect of mining noises

Rather than eliminating the noises during mining, it is more appropriate to reduce the conse-

quences of such noises while training with the mined data, since it will not impact mining time.

The reduction is performed in following two ways.
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4.7.1 Reducing the effect of activity title related noises

To reduce the effect of the noises associated with the activity title, only the pages that contain at

least one object/location name in their text are considered to be the true activity pages. Such a

technique removes the unwanted pages that have inappropriate/irrelevant title.

That is, to estimate the conditional probability, ∑oc∈O OPI(oc|ai) and ∑ak∈A,oc∈O OPI(oc|Mak)

are used instead of API(ai) and ∑ak∈Ai API(ak) respectively, as shown in Equations 4.4 and 4.5.

For example, let “Preparing Breakfast”, “Preparing dinner” be two activities, and “Fridge”,

“Oven” be two objects. After mining the web activity data, we have,

API(Preparing breakfast) = 53,

API(Preparing dinner) = 119,

OPI(Fridge|Preparing breakfast) = 3,

OPI(Oven|Preparing breakfast) = 4,

OPI(Fridge|Preparing dinner) = 3 and

OPI(Oven|Preparing dinner) = 5.

The PE estimates,

P(Oven|MPreparing break f ast = 4/(4+3) = 0.571,

instead of 4/53 = 0.075.

Similarly, it estimates,

P(Oven|Mc) = 4/((4+3)+(3+5)) = 0.26,

instead of 4/(53 + 119) = 0.023.

It means that the parameter estimator considers only the activity pages to be the true pages if

it contains either a specified object or location. Such a technique removes most of the pages that

are not activity pages or not related activity pages.

4.7.2 Reducing the effect of object/location usage noise

The noises associated with the object and location usage will not impact the activity recognition

accuracy significantly, because such noises will be relatively low. However, to reduce the effect

of such noise, the proposed classifier combines the location and object usage information together

in a model. Such a combination reduces the influence of each other (location and object). That
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is, even though the noise is associated with the object-usage information, by using location-usage

information with it, reduces the influence of object-usage noise and vice versa. The noise will

only be significant if both object and location usage information are noisy. Experimental results

are provided to validate the claim.

4.8 Summary

In this chapter, a brief description of the activity mining engine is given. The activity mining

engine uses the advanced search engine’s operators to mine activity information from the web.

Using such techniques reduce the mining time dramatically. However, it also introduces noises

to the mined data. The description of such noises and what are the challenges and difficulties to

remove such noises is also provided. Finally, a method is proposed to reduce the effect of the

mining noise.



Chapter 5
Experimental results and analysis

The objective of this chapter is to validate the performance of the EARWD. Four experiments

are performed to validate the system’s performance: First, the efficiency of mining method is

verified by checking the likelihoods estimated by the parameter estimator (PE) with the help of

the activity mining engine (AME). Second, the classifier’s performance in classifying activities of

three datasets is evaluated. Third, the impact of the coefficients (α and λ ) in activity classification

is analyzed, and evaluate the proposed methods for estimating these coefficients. Finally, the

comparison results of different classifiers and different mining engines are shown.

The chapter is organized as follows, in section 5.1, a procedure of acquiring a real-world ac-

tivity dataset is described. In section 5.2, the setup for mining web activity data and for evaluating

system’s performance is explained. In section 5.3-5.6, the results of four experiments are provided.

In section 5.7, important issues associated with system are discussed.

5.1 A framework for real-world activity data collection

Activity recognition algorithms require a large variety of real-world activity datasets for evaluating

the algorithm. In order to collect such data, smart homes are developed which can monitor the

interaction between users and their home environment. This is achieved by distributing a number

of ambient sensors throughout the subject’s living environment. There is a tremendous amount

of overhead in constructing such a testbed [38]. Expertise and resources are needed to design

and install the sensors, controllers, network components, and middleware just to perform basic

data collections. Therefore, acquiring real-world activity datasets is expensive. Another difficulty

in promoting the use of such systems is to find effective ways to annotate subject’s activities in

an automatic and easy way. As a result, very few physical testbeds exist. In the cases where

63
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real sensor data have been collected and analyzed, only rarely is this data made available to the

research community.

Moreover, the range and variety of such datasets is limited to only one or two environments.

In other words, the diversity of such datasets is extremely limited. In activity recognition research,

it is important to validate the performance of the system with a diverse set of real-world activity

examples. The algorithm tested with the datasets acquired from varieties of environment would be

robust in general. It would therefore show superior performance (irrespective of the environment)

in comparison with the algorithms validated with the datasets acquired from a single environment.

Additionally, the datasets acquired in real-world environment are relatively small. There are

a variety of reasons for the datasets being smaller: 1) it is difficult to find volunteers who would

stay in a testbed and annotate their own activities, 2) even if such volunteers are found, they are

required to stay there for long time to generate a reasonable amount of data. For example, in order

to have 100 instances of an activity, participant(s) might need to stay in the testbed for 100 days,

3) the volunteers have to be focused all the time for accurate annotation of an activity 4) it could

be very expensive to get a large dataset.

Thus it is desirable to have a data collection method that is inexpensive, flexible, and user-

friendly but is capable of providing large and diverse activity datasets. In this thesis, a solution

is proposed to this problem by implementing a data collection tool which is inexpensive but is

capable of providing large variety of activity datasets. The proposed tool is web-based and can be

used to create a replica of any home environment, according to the system’s requirements. It can

collect data inexpensively as long as the users want.

5.1.1 Setup a virtual environment for data collection

In order to setup an activity recognition environment, first, it is required to define the set of activ-

ities to be annotated. It is then require choosing objects that can be embedded with sensors. In

order to add activities and objects, two interfaces are developed which are simple and therefore

could be used by a user with little computer’s knowledge. In the following two subsections, two

interfaces are described.
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5.1.1.1 Add the activities to monitor

The first step is to add the number of activities to monitor. In this step a user is prompt with

a set of activities and locations using the interface shown in Figure 5.1. A user is expected to

choose an activity and their corresponding location(s) (e.g. the room(s) where an activity is usually

performed).

Figure 5.1: Add the set of activities to monitor.

5.1.1.2 Add the set of objects

After acquiring the activities information, the next step is to add the set of key objects (i.e. most

important objects) that a person have in the environment. The key objects are the objects which

are most frequently used for doing an activity. Only the key objects should be chosen since it

would be very expensive to embed sensors to all the objects in an environment.

In this step a user is prompt with a set of the key objects given a location through the interface

shown in Figure 5.2. The set of locations shown in this interface are the locations which are chosen

during the activity addition step (referring Figure 5.1). A user is expected to select one or more

objects per locations.
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Figure 5.2: Select a set of objects to embed sensors.

5.1.2 Web-based Experience Sampling Method

In this thesis a web-based inexpensive ESM is proposed to collect a set of large dataset from

different environments and therefore, this research refrained using any special device that may

not available in all environments. Additionally, the web-based solution makes the data collection

procedure ubiquitous.

The screen shot of the ESM is shown in Figure 5.3. The ESM consists of a combo box (as

shown at the left hand side of the Figure 5.3) to which participant can select the activity he/she

performed. The participant can choose the duration of the activity from two combo boxes (i.e.

Hour and Minutes). Upon selection of the duration from the combo boxes, the two text boxes (i.e.

Start time and End time) will be filled automatically, however, participant can modify the “Start

time” and “End time” too. In addition to these, participant is expected to provide the set of object

he/she uses along with the time interval.

The set of objects are the objects available to the location(s) to which the selected activity is
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Figure 5.3: The experience sampling tool.

performed. Therefore, the set of objects is subject to automatically changed when the selected

activity is changed. After the selection of an activity, only one row of the object-usage will be

visible. The next row will only be visible if the participant chooses an object from the combo box

and the next will be shown if he/she select another object and so on. The maximum number of

object-usage would be the total number of objects available to the location to which the activity is

performed. In this way, the redundant stuffs are made invisible from the participants.

There are 6 check boxes per object-usage through which the participant can provide the object-

usage interval. The corresponding 6 buttons are used to label the time intervals. To reduce the

participant’s effort, the number of intervals is decided to be 6. The label of the buttons (e.g. 0-

3 min, 3-6 min) is automatically changed based on the selected duration. For example, if the

participant provides 10 minutes as the duration of the activity, the labels of the buttons will be 0 -

2, 2-4, ..., 10 - 12.

After providing all the information, participants can add his/her experience. The ESM stores
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all the given object-usage and their corresponding intervals. Additionally, it generates and stores

random noises. The ESM would store an additional object-usage that is not on the list as the

random noise. The random noise makes the data as close as possible to real-world. In real-world

activity scenario, it is possible to use one or more objects inadvertently (e.g. living room’s light is

on while toileting).

Although it is possible to add experiences anytime (e.g. at the end of each day) the participant

wants. But it is expected that participant(s) will add his or her experience at the end of an activity.

The ESM tool will beep every 10 minutes to remind the participant to input his or her activity if

finished. The reason to choose such technique is that as the object-usage sequence are taken from

participants, it would be best to add activities at the end such that he or she can provide a complete

picture of the object-usage sequence for that activity. It also reduces the participant’s effort in

annotating their experience.

5.2 Experimental setup

Before presenting the analysis, the experimental setup is described. Two sorts of setup are required

to mine web activity data and to evaluate the performance of the system, which are described in

this section.

5.2.1 Setup for mining

As described earlier, the AME uses three search engines: Google, Yahoo and Bing to mine web

activity data.

To mine activity data using Google, AME uses the site, http://ajax.googleapis.com/

(developed by Google for applications to retrieve data from the Google server asynchronously),

instead of the original site, http://www.google.com/. For example, to mine the API for “Cooking”,

the AME will send a query as, http://ajax.googleapis.com/ajax/services/search/

web?v=1.0&q=Cooking. In response, Google will return a page that would contain the formatted

results like, the estimatedResultCount (i.e. the number of pages indexed by Google), the links of

few (usually 4) result pages, the link for more results etc. Searching with Ajax would retrieve a
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bit old data with respect to the original site.

Similarly, to mine activity data using Yahoo, AME uses the site, http://boss.yahooapis.

com/ysearch/web/v1/. For example, to mine the API for “Cooking”, the AME will send

a query as, http://boss.yahooapis.com/ysearch/web/v1/intitle:Cooking?appid=

<apiid>&format=xml&start=1&count=1. In response, Yahoo will return a XML page that

would contain the field, <resultset web...>, in which there is a parameter, totalhits, which is the

number of pages indexed by Yahoo.

Similarly, to mine activity data using Bing, AME uses the site, http://api.search.

live.net/xml.aspx. For example, to mine the API for “Cooking”, the AME will send

a query as, http://api.search.live.net/xml.aspx?Appid=<apiid>&query=intitle:

Cooking&sources=web+image. In response, Bing will return a XML page that contains the

field, <web:Total>, which is the number of pages indexed by Bing.

It is to be noted here that Google, Yahoo and Bing would not allow automated search using

their original sites.

5.2.2 Setup for evaluating system’s performance

Three datasets have been used to evaluate the system’s performance, which are described in this

section. Additionally, the formulas to measure the activity recognition accuracy are described.

5.2.2.1 The datasets

To evaluate the performance of EARWD, two real-worlds and a semi real-world datasets have been

used. Real-worlds datasets are gathered by Tapia et al. [5] in MIT PlaceLab (it is called PlaceLab

dataset), and by Kasteren et al. [6] at Intelligent Systems Lab Amsterdam (ISLA) (it is called ISLA

dataset). The semi real-world dataset is gathered by using the tool described in previous section.

Tapia et al. utilized 77 sensory data collection boards equipped with reed switch sensors,

deployed these in two single-person’s (i.e. Subject one, Subject two) apartments, and collected

data for two weeks. The sensors were installed in everyday objects such as drawers, refrigerators,

containers to record activation/deactivation events (opening/closing events) as the subject carried

out everyday activities. Their data were collected by a base station and labeled using an ESM. In
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Figure 5.4: The activities and their grouping.

this thesis, only the Subject one’s dataset is used.

Kasteren et al. deployed 14 digital sensors in a house of a 26-year-old man, attached these
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sensors to doors, cupboards, a refrigerator, and a toilet flush, and they collected data for 28 days.

Their activities were chosen from Katz ADL index [85].

In order to gather semi real-world dataset, a virtual environment is created (using the tool

described in section 5.1) which is identical to a 28-year-old girl’s environment. Thirty objects

are virtually embedded with thirty state-change sensors and nine activities are considered to be

monitored. During the time of conducting the experiments, 1 day data was annotated.

Figure 5.4 shows the ISLA, PlaceLab and UCLab activities and their grouping is used to

validate the system’s performance.

5.2.2.2 Accuracy measurement formulas

As the activity instances are imbalanced between classes, two types of measurements are used to

evaluate the performance of the system, similar to [6]. The time slice accuracy is measured by,

∑N
i=1 recognizedi==true

N

and the class Accuracy is measured by,

1
C ∑C

c=1

{
∑Nc

i=1 recognizedi==true
Nc

}
where, N is the total number of activity instances, C is the number of classes and Nc is the total

number of instances for class c.

Although the time-slice accuracy is a typical way of evaluating classifier’s accuracy [6], it is

not always true for AR classifiers because the dataset would contain dominant classes that appear

a lot frequently than others. For example, let us consider the ISLA dataset, in which total number

of instances of “Toileting” is 114 and that of “Dinner” is 10. If a classifier correctly classify 110

instances of “Toileting” (accuracy = 96.491%) and 4 instances of “Dinner” (accuracy = 40%)

then the time-slice accuracy will be≈ 92%, whereas the class accuracy will be≈ 68%. Therefore,

the class accuracy should be the primary way to evaluate the activity classifiers performance.

However, in this dissertation both the time-slice and the class accuracy is reported.

It is to be noted here that if the number of instances of activities are equal then time-slice

accuracy and class accuracy are equal.
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5.3 Experiment 1: Effectiveness of activity mining engine

The purpose of this experiment is to evaluate the effectiveness of the AME in mining activity

knowledge from the web. The mining would be effective, if the likelihoods estimated from the

mined data are realistic. Table 5.1 and 5.2 show the calculated object-usage and location-usage

likelihoods for the ISLA activities. The likelihoods are estimated by the PE in conjunction with

the AME. Most of these likelihoods are highly expected as shown in these tables. For example, in

Table 5.1, the likelihoods of using a “Microwave” for preparing “breakfast” or preparing “dinner”

are considerably high with respect to other activities and the likelihood of using a “toilet flush” for

“Toileting” is reasonably higher than other activities.

Table 5.1: The likelihoods of object-usage generated by the PE in conjunction with the AME for
ISLA activitiesXXXXXXXXXObjects

Activities
Going out Toileting Bathing Sleeping Breakfast Dinner Drink

Microwave 0.011690 0.002967 0.018108 0.023292 0.093776 0.069610 0.040820
Door 0.271218 0.169139 0.206099 0.201636 0.189941 0.118653 0.139415
Cups 0.024783 0.086053 0.201334 0.037974 0.066897 0.129529 0.201873
Fridge 0.016600 0.000001 0.009768 0.031555 0.096165 0.043901 0.068815
Plate 0.064531 0.038575 0.048248 0.037171 0.061522 0.254115 0.114878
Dishwasher 0.007715 0.005934 0.007386 0.016259 0.017023 0.042814 0.016172
Flush 0.009352 0.097922 0.022873 0.012996 0.004479 0.004706 0.026544
Freezer 0.011690 0.000001 0.004884 0.014868 0.028551 0.046472 0.044055
Pans 0.007949 0.109792 0.012747 0.014761 0.012543 0.026499 0.014945
Groceries 0.017301 0.000001 0.009292 0.009306 0.009676 0.019577 0.042493

However, there are some noises too. For example, the “Pans” usage likelihood is reasonably

higher for “Toileting”, but this is a kitchen appliance and the likelihood of this object usage should

be high for “Breakfast” or “Dinner”. The reason is, the term “Pan” have at least two meanings:

cooking utensil consisting of a wide metal vessel and commode pans.

Table 5.2: The likelihoods of location-usage generated by the PE in conjunction with the AME for
ISLA activities```````````Locations

Activities
Going out Toileting Bathing Sleeping Breakfast Dinner Drink

Kitcen 0.098658 0.063457 0.085161 0.096515 0.093393 0.107818 0.104163
Toilet 0.019917 0.170678 0.062832 0.020528 0.012939 0.004612 0.012626
Bathroom 0.029803 0.062910 0.086459 0.036005 0.072523 0.010522 0.019570
Hallway 0.002158 0.000547 0.000270 0.003364 0.002278 0.000896 0.001479
Bedroom 0.040285 0.024070 0.021160 0.050944 0.058784 0.008996 0.016233
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5.4 Experiment 2: Activity recognition accuracy
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Figure 5.5: The accuracies per class for ISLA dataset the rightmost two pairs of clusters compare
the overall timeslice accuracy (OTA) and the overall class accuracy (OCA).
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Figure 5.6: The accuracies per class for PlaceLab dataset (Subject one), the rightmost two pairs of
clusters compare the overall timeslice accuracy (OTA) and the overall class accuracy (OCA).

The purpose of this experiment is to see how accurate the proposed method is to classify the
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Figure 5.7: The accuracies per class for UCLab dataset, the rightmost two pairs of clusters com-
pare the overall timeslice accuracy (OTA) and the overall class accuracy (OCA).

activities.

Figures 5.5, 5.6 and 5.7 summarize the accuracies per class for three datasets. Each of the

three bars in a cluster represents (from left to right) the accuracy of each activity using Google,

Yahoo and Bing respectively. The rightmost two clusters compare the overall time slice accuracy

(OTA) and the overall class accuracy (OCA).

The estimated coefficients are shown in Table 5.3. In section 5.5, more about the effect of α

and λ is discussed.

Table 5.3: The estimated α and λ for three datasets.

Datasets
α λ

Google Yahoo Bing Google Yahoo Bing
ISLA 0.5354 0.5726 0.5823 0.9694 1.0000 1.0000
PlaceLab 0.4605 0.4834 0.4968 0.8650 0.9550 0.9350
UCLab 0.4134 0.4381 0.4210 0.8370 0.9519 0.9296

5.4.1 Summary of the accuracies

In this section, the summarization of the activity recognition results of the system (learned using

web activity data as well as real-world activity data) is given. The results are shown in Figure
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Figure 5.8: The summary of the accuracies for all the datasets.

5.8. Each of the four bars in a cluster represents (from left to right) the overall class accuracy of

the system when it is learned using both web activity data (first three bars in a cluster) and the

real-world activity data (last bar in a cluster). Detail description of each of the accuracy bars are

given below:

• Using web activity data

1. Google: The system achieves overall class accuracy 69.25% (time slice accuracy is

97.50%), 58.60% (time slice accuracy is 55.35%) and 81.67% (time slice accuracy is

97.46%) for the ISLA, PlaceLab and UCLab data set respectively when learned using

the knowledge mined by Google.

2. Yahoo: The system achieves overall class accuracy 67.01% (time slice accuracy is

97.34%), 59.14% (time slice accuracy is 57.86%) and 76.59% (time slice accuracy is

96.80%) for the ISLA, PlaceLab and UCLab data set respectively when learned using

the knowledge mined by Yahoo.
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3. Bing: The system achieves overall class accuracy 71.23% (time slice accuracy is

97.57%), 66.76% (time slice accuracy is 65.06%) and 82.24% (time slice accuracy

is 97.46%) for the ISLA, PlaceLab and UCLab data set respectively when learned

using the knowledge mined by Bing.

• Using real-world activity data: The system achieves overall class accuracy 76.21% (time

slice accuracy is 97.66%), 67.75% (time slice accuracy is 66.71%) and 95.18% (time slice

accuracy is 99.27%) for the ISLA, PlaceLab and UCLab data set respectively when learned

using the real world activity data.

5.4.2 Confusion matrices

The corresponding confusion matrices are shown in Tables 5.4, 5.5, 5.6. Each of these tables

contains three matrices, each of which is a n-by-n confusion matrix (excluding the activity name)

generated by the system for a dataset when it is learned using a search engine (e.g. Google). The

ith row, and the jth column represents the percentage of times an activity, ai, is recognized as

activity, a j.

For the ISLA dataset, as shown in 5.4, the system exhibits similar performance in classifying

individual activities when it is learned through any of the search engines. However, the per-

formance of the system is worse for classifying “Toileting” when it is learned through Bing in

comparison with Google and Yahoo.

Similarly, for the PlaceLab dataset, as shown in 5.5, the system exhibits similar performance

in classifying individual activities when it is learned through any of the search engines. However,

the performance of the system is better for classifying “Bathing” when it is learned through Bing

in comparison with Google and Yahoo.

Finally, for the UCLab dataset, as shown in 5.6, the system exhibits similar performance in

classifying individual activities when it is learned through any of the search engines. However, the

performance of the system is worse for classifying “Toileting” when it is learned through Google

in comparison with Yahoo and Bing.
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Table 5.4: The Confusion matrix for the ISLA dataset.
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Using Google
Going out 0.99 0.01 0.00 0.00 0.00 0.00 0.01
Toileting 0.12 0.60 0.12 0.14 0.00 0.01 0.01
Bathing 0.05 0.18 0.76 0.00 0.01 0.00 0.00
Sleeping 0.00 0.01 0.00 0.99 0.00 0.00 0.00
Breakfast 0.09 0.17 0.03 0.07 0.62 0.00 0.01
Dinner 0.12 0.25 0.01 0.01 0.00 0.39 0.23
Drink 0.05 0.08 0.07 0.00 0.03 0.27 0.49

Using Yahoo
Going out 0.98 0.01 0.00 0.00 0.00 0.00 0.01
Toileting 0.04 0.54 0.23 0.15 0.01 0.01 0.01
Bathing 0.01 0.17 0.82 0.00 0.01 0.00 0.00
Sleeping 0.00 0.00 0.00 1.00 0.00 0.00 0.00
Breakfast 0.16 0.17 0.05 0.06 0.56 0.00 0.01
Dinner 0.24 0.25 0.00 0.01 0.00 0.31 0.20
Drink 0.05 0.08 0.07 0.00 0.03 0.27 0.49

Using Bing
Going out 0.98 0.01 0.00 0.00 0.00 0.00 0.01
Toileting 0.08 0.63 0.13 0.14 0.00 0.01 0.01
Bathing 0.04 0.19 0.76 0.00 0.01 0.00 0.00
Sleeping 0.00 0.00 0.00 1.00 0.00 0.00 0.00
Breakfast 0.11 0.17 0.06 0.07 0.59 0.00 0.01
Dinner 0.12 0.01 0.00 0.01 0.00 0.48 0.38
Drink 0.05 0.05 0.03 0.02 0.03 0.27 0.54

5.4.3 Discussion

The activity recognition system makes more confusion between the activities which were per-

formed in a same location using similar objects. This is expected because the objects within that

location are equally likely to be used for these activities. For example, as we can see in Table

5.5, the classifier made more confusion between “Toileting” and “Bathing” because, these two

activities were performed in a same location (i.e. “Bathroom”), and the number of distinguishing

objects are low.

It is observed that the activities in an environment are more accurately recognized, if the most
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Table 5.5: The Confusion matrix for the PlaceLab dataset.
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Using Google
Going out 0.90 0.07 0.01 0.01 0.00 0.01 0.00 0.00
Toileting 0.09 0.66 0.14 0.02 0.01 0.05 0.02 0.02
Bathing 0.08 0.63 0.21 0.02 0.01 0.01 0.03 0.00
Dressing 0.06 0.23 0.13 0.49 0.01 0.07 0.03 0.00
Breakfast 0.24 0.03 0.04 0.03 0.66 0.00 0.00 0.00
Lunch 0.13 0.04 0.00 0.16 0.00 0.58 0.07 0.01
Dinner 0.07 0.06 0.08 0.04 0.00 0.00 0.73 0.02
Doing laundry 0.42 0.04 0.03 0.03 0.01 0.02 0.00 0.46

Using Yahoo
Going out 0.91 0.06 0.01 0.01 0.00 0.01 0.00 0.00
Toileting 0.09 0.78 0.02 0.02 0.01 0.05 0.02 0.02
Bathing 0.09 0.65 0.18 0.03 0.01 0.02 0.02 0.00
Dressing 0.06 0.30 0.05 0.48 0.01 0.07 0.03 0.01
Breakfast 0.24 0.04 0.01 0.06 0.64 0.00 0.00 0.00
Lunch 0.13 0.04 0.00 0.15 0.00 0.59 0.07 0.01
Dinner 0.07 0.04 0.07 0.03 0.00 0.06 0.69 0.03
Doing laundry 0.42 0.06 0.00 0.03 0.01 0.02 0.00 0.46

Using Bing
Going out 0.90 0.03 0.05 0.01 0.00 0.01 0.00 0.00
Toileting 0.07 0.73 0.06 0.05 0.01 0.03 0.02 0.03
Bathing 0.08 0.21 0.60 0.05 0.01 0.01 0.03 0.00
Dressing 0.04 0.17 0.14 0.55 0.01 0.07 0.03 0.00
Breakfast 0.22 0.05 0.02 0.05 0.64 0.00 0.00 0.01
Lunch 0.12 0.03 0.01 0.16 0.00 0.58 0.07 0.03
Dinner 0.06 0.02 0.11 0.03 0.00 0.00 0.74 0.04
Doing laundry 0.07 0.04 0.03 0.24 0.01 0.02 0.00 0.60

important objects (or the key objects that are more generally used) for that activities are embed-

ded with sensors rather than the less important objects. For example, the activities of ISLA and

UCLab datasets are more accurately recognized than the PlaceLab dataset, because the numbers

of important objects are relatively high in ISLA and UCLab.

The system’s performance is proportional to the number of objects utilized in an environment.

The more objects are utilized the more likely it is to create confusion. For example, the classifier
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Table 5.6: The Confusion matrix for the UCLab dataset.
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Using Google
Going out 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Toileting 0.04 0.33 0.58 0.00 0.04 0.00 0.00 0.00 0.00
Bathing 0.00 0.19 0.81 0.00 0.00 0.00 0.00 0.00 0.00
Dressing 0.35 0.00 0.05 0.60 0.00 0.00 0.00 0.00 0.00
Sleeping 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
Breakfast 0.00 0.00 0.00 0.00 0.06 0.94 0.00 0.00 0.00
Dinner 0.00 0.00 0.19 0.05 0.00 0.10 0.67 0.00 0.00
Doing laundry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Watching TV 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Using Yahoo
Going out 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Toileting 0.04 0.29 0.58 0.00 0.04 0.00 0.00 0.00 0.04
Bathing 0.00 0.19 0.81 0.00 0.00 0.00 0.00 0.00 0.00
Dressing 0.35 0.30 0.15 0.20 0.00 0.00 0.00 0.00 0.00
Sleeping 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
Breakfast 0.00 0.00 0.00 0.00 0.00 0.88 0.00 0.13 0.00
Dinner 0.00 0.00 0.19 0.00 0.00 0.10 0.71 0.00 0.00
Doing laundry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Watching TV 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Using Bing
Going out 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Toileting 0.04 0.25 0.67 0.00 0.04 0.00 0.00 0.00 0.00
Bathing 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Dressing 0.35 0.05 0.00 0.50 0.10 0.00 0.00 0.00 0.00
Sleeping 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
Breakfast 0.00 0.00 0.00 0.00 0.06 0.94 0.00 0.00 0.00
Dinner 0.00 0.00 0.19 0.00 0.00 0.10 0.71 0.00 0.00
Doing laundry 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Watching TV 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

performs best in classifying the ISLA activities, with a classification accuracy of 71.20%. This is

because in their experiment they only utilized 14 objects, and the number of objects per location

was limited. Nevertheless, for the PlaceLab dataset, the accuracy of classification is 66.88%. They
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have utilized 84 objects for their setup.

A group of similar activities is more distinguishable if performed in different locations. For

example, “Toileting” and “Bathing” in the ISLA dataset are more distinguishable (as shown in

Table 5.4) than in the PlaceLab or the UCLab datasets (as shown in Table 5.5 and 5.6) because

“Toilet” and “Bathroom” are two different locations in the ISLA environment.

The system usually performs better if it is learned with the activity knowledge mined using

Bing in comparison with Google and Yahoo. For example, as we can see in Figure 5.8, the

classification results of the system are better for PlaceLab and UCLab datasets when using the

knowledge that is mined using Bing. The reason is that the activity knowledge mined using Bing

is less noisy then other search engines.

5.5 Experiment 3: Varying the model coefficients

The purpose of this experiment is two-folds: Analyze the impact of the coefficients (α and λ ) in

accuracy of activity classification and to observe whether the proposed methods of estimating the

coefficients can determine the nearly optimal values or not. The experiment is performed with α

and λ values: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0.

5.5.1 Varying the coefficient, α

The activity recognition results for varying the coefficient, α , are shown in Figure 5.9, 5.10 and

5.11 for the ISLA, PlaceLab and UCLab datasets respectively.

As expected, all the three datasets are sensitive to the α values. For example, as we can see

in Figure 5.9-5.11, for α = 0.0, the accuracies of activity classification are relatively low with

respect to α = 0.1. It indicates that incorporating the LOBM significantly improve the activity

classification accuracy. But only the LBM is not always sufficient for first-layer classification. For

example, the accuracies are relatively low when α is set to 1.0.

The estimated coefficients, α , for all the datasets as shown in Table 5.3, are near their op-

timal values. For example, as we can see in Figure 5.9 that the maximum performance for the

ISLA dataset is observed for α = 0.6 and the estimated α for this dataset are 0.5354, 0.5726,
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Figure 5.9: Activity recognition accuracy with different α settings for the ISLA dataset.
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Figure 5.10: Activity recognition accuracy with different α settings for the PlaceLab dataset.

0.5823(using Google, Yahoo and Bing respectively), which are near their optimal values.
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Figure 5.11: Activity recognition accuracy with different α settings for the UCLab dataset.

5.5.2 Varying the coefficient, λ

The activity recognition results for varying the coefficient, λ , are shown in Figure 5.12, 5.13 and

5.14 for the ISLA, PlaceLab and UCLab datasets respectively.
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Figure 5.12: Activity recognition accuracy with different λ settings for the ISLA dataset.

The activity recognition accuracy is sensitive to λ values for all the datasets except the ISLA
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Figure 5.13: Activity recognition accuracy with different λ settings for the PlaceLab dataset.
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Figure 5.14: Activity recognition accuracy with different λ settings for the UCLab dataset.

dataset. This is because they used only 14 sensors and the AME was able to mine the activity

knowledge efficiently (e.g. number of unseen objects is almost zero).

The estimated coefficient, λ , as shown in Table 5.3, are near their optimal values. For example,

in Figure 5.13, we can see that the maximum performance for the PlaceLab dataset is observed
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when the λ = 0.9 and the estimated λ for this dataset is 0.9550, which is nearly optimal.

5.6 Experiment 4: Comparison with the other methods

The goal of this experiment is two-fold:

1. Compare the performance of the EARWD in classifying the activities with UARS [28].

2. Compare the time complexity of the proposed mining technique with the mining technique

proposed in [28].

5.6.1 Performance comparison of the classifiers

The performance of the proposed classifier is compared with a TFW based classifier, proposed

by Wyatt et al. in [28], which uses HMM as the classifier. The comparison results are shown in

Figure 5.15. It is observed that the EARWD achieved superior performance for all the datasets.

For example, for the PlaceLab datset, the observed improvement is 60.35% when learned with the

mined data using Bing.
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Figure 5.15: Comparison with other methods (class accuracies are used to compare).
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5.6.2 Mining time comparison
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Figure 5.16: Mining time comparison between the EARWD and the UARS for the ISLA dataset.
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Figure 5.17: Mining time comparison between the EARWD and the UARS for the PlaceLab
dataset.

To the best of our knowledge, only two systems [27, 28], have been proposed to train an

AR system from the web. The proposed mining technique is compared with the technique used

in [28] (Their system is named as, UARS). It is not feasible to perform a direct comparison to the
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Figure 5.18: Mining time comparison between the EARWD and the UARS for the UCLab dataset.

technique used in [27]. Their models were mined from a single web site, they had to manually

map their models to the activities found in their data as well as map the tagged object (object with

embedded sensors) names with the mined object names [28]. The method has a strict one-to-one

match between the activities. It is not required to map the tagged object names with the mined

object names since the information associated with the tagged object is mined.

The mining time required by EARWD and UARS for each of the datasets are shown in Figure

5.16, 5.17 and 5.18. As expected, the EARWD outperforms for all the datasets.

The total time, t, the EARWD and the UARS would take to mine an activity knowledge is

analyzed. For this purpose, let us consider an environment to which there are 20 objects in 5

different locations, and 1 activity (e.g. “Going out”) to monitor.

The EARWD would take t = 1+ 1(5+ 20) = 26 (using the Equation (4.1)) seconds to mine

activity information regarding “Going out”, assuming that the search engine would take 1 second

to provide the search result for each query.

The total time, t, UARS would take to the mine activity knowledge is calculated using the

following steps (in chapter 2.4.2, the mining algorithm is described).

1. The UARS first search web with the query “How to” “Going out”. The search engine would

return P̂ pages. Let us assume that |P̂| = 10,700,000 and we set t = 1 (assuming that the
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search engine would take 1 second for each query).

2. It then retrieves P⊂ P̂ pages . Let |P| = 10,700 (0.1% of |P̂|).

3. It then determines P̃⊂ P, as the activity pages. Let |P̃| = 107 (1% of |P|). To determine P̃,

the URAS needs to load and check all the pages in P and it would take 2 seconds in average

for each page. Therefore, total time, t, would be, t = 1+10700∗2 = 21401.

4. For each page p∈ P̃, it extracts the objects mentioned in the page and calculate their weights.

Let us assume that UARS would take 2 seconds (on average) per page to extract and calcu-

late objects weights. So, total time, t, will be 21615.

Therefore, the UARS would take 21615 seconds (or around 6 hours) to mine a single activity

knowledge, whereas the EARWD would only take 26 seconds.

5.7 Discussion

5.7.1 Providing activity name, object name and location name

One of the most important components of the EARWD is to choose the name of the activities,

objects and locations because the efficiency of the AME depends on choosing appropriate names.

For the current version of the EARWD the names are chosen manually. For example, for the

PlaceLab dataset the exact activity names are used as they used in their paper. But for the ISLA

dataset the activity “Leaving” is changed to “Going out” to make it more sensible and consistent

to other datasets. It is preferred to provide object name in one word, however, multiple words (e.g.

“Washing machine”, “Shower faucet”) is also fine.

5.7.2 Choosing the right object vs. accuracy

Choosing the right object to embed a sensor is an important factor for accuracy of activity classi-

fication. For example, embedding a sensor in the “shower faucet” would increase the classifica-

tion accuracy of “Bathing”, because it is highly likely that “shower faucet” would be used while

“Bathing”. In Kasteren et al.’s setup, they did not place any sensor to “shower faucet”. Replac-

ing the “bathroom door” with the “shower faucet” would improve the classification accuracy of
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“Bathing”. Additionally, embedding sensors to both of these objects might improve the classifica-

tion accuracy.

5.7.3 Affect of web data changing

The web is a dynamic information environment. Web contents are constantly changing and there-

fore, new activity page can be added to web. How much these changes would affect the activity

recognition? To answer this question, the performance of the system is measured for different

days. Three datasets are used, ISLA, PlaceLab and UCLab. The results are shown in Table 5.7.

The experiment is performed for 3 days and as we can see in the Table that the web data changing

affect is negligible. The biggest fluctuation (around 4%) of activity recognition accuracy is ob-

served between June 03, 2010 and June 05, 2010, for the UCLAB activities, when the system is

learned with the datasets mined using Google.

Table 5.7: The affect of web data changing (G−>Google, Y−>Yahoo, B−>Bing).
XXXXXXXXXXXDatasets

Date
June 03, 2010 June 05, 2010 June 06, 2010

G Y B G Y B G Y B
ISLA 0.69 0.67 0.71 0.70 0.69 0.69 0.69 0.69 0.71
PlaceLab 0.59 0.59 0.67 0.59 0.59 0.67 0.57 0.59 0.68
UCLab 0.82 0.77 0.82 0.86 0.75 0.83 0.86 0.75 0.83

5.8 Summary

In this chapter, the performance of the EARWD is validated. For this purpose, four experiments

are performed: First, the efficiency of mining method is verified by checking the likelihoods es-

timated by the parameter estimator with the help of the activity mining engine. Second, the clas-

sifier’s performance is evaluated in classifying activities of three datasets. Third, the impact of

the coefficients (α and λ ) in activity classification is analyzed, the proposed methods of estimat-

ing these coefficients is also analyzed. Finally, the comparison results of different classifiers and

different mining engines are shown.



Chapter 6
Conclusion and future work

6.1 Conclusion

The goal of this research is to develop an efficient activity recognition system using web activity

data that is broadly applicable, easy-to-use and highly accurate. For this purpose an environment in

considered in which a set of simple and ubiquitous sensors (or state-change sensors) is embedded

with a set of daily life objects. The sensors are embedded in a way such that the system can

determine the state of the object when a user interacts with it. The system recognizes the activities

of daily livings based on a set of object-usage for a period of time.

An activity recognition system requires training with representative examples for all the ac-

tivities it has to recognize. There are two ways to train an activity recognition system: using

real-world activity data and using web activity data. In this thesis, the problems of using real-

world activity data to train the system are addressed and the benefits of using web activity as the

alternate source of activity data are described. The problems associated with the current state of the

art techniques to mine web activity data and to train an AR system using such data are addressed.

Finally, a novel way to mine human activity data from web is described. How to train an activity

classifier using such data are also described. One of the major advantages of such technique is

that it eliminates the amount of human effort in labeling the activities while still achieving high

recognition accuracy. Another advantage of this technique is that it is possible to label thousands

of activities within a very short period of time.

The proposed activity recognition system (i.e. EARWD) uses a high-accurate two-layer Naı̈ve

Bayesian based probabilistic classifier, that utilizes both location-usage and object-usage informa-

tion to classify an activity. The first-layer uses a location-and-object-usage based model to narrow

down the scope of the classification task by classifying a group of activities (location specific)
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from a set of activities. The second-layer uses an object-usage based model to classify the actual

activity from that group (classified by the first-layer).

The EARWD uses an activity mining engine to mine activity data from web. The mining en-

gine takes the following external inputs: a set of activities to monitor, object names with attached

sensors and their corresponding locations. It generates object-usage and location-usage informa-

tion for the given activities as output by utilizing web search engines (e.g. Google, Yahoo and

Bing). These information are used by the AR system to train the underlying classifier.

In order to validate the system’s performance, four experiments have been conducted. It is

shown that the proposed method can classify the activities with high accuracy. The comparison

results of different classifiers and different mining engines are also shown. It is observed that the

proposed mechanism yields significant improvement in comparison to the existing systems in the

literature.

6.2 Future work

As discussed in chapter 5, the activities in an environment are more accurately recognized by

EARWD if the most important objects (or the key objects that are more generally used) for that

activities are embedded with sensors rather than the less important objects. Therefore, it will be

helpful for the system if a recommendation system is developed that can recommend the set of key

objects from a given set of objects. That is, given a set of activities to monitor, a set of objects of

the environment, the recommendation system would suggest the set of objects to which the sensors

should be embedded. Therefore, one of the future goals will be to develop such a recommendation

system.

Additionally, current research is focused on human activity recognition in a single person

environment. However, there could be an environment in which we need to recognize activities

of two or more person. For example, we may need to know how our parents are doing while we

are away from home. Therefore, the next focus would be to make an efficient activity recognition

system using web activity data that would be able to recognize multi-user activities from sensor

readings in a smart home environment. Some of the challenges in building such system are stated

below:
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• Object-usage: At first we need to determine who is using the object. If we consider a

multi-user environment, in current configuration there is no way to distinguish who uses the

object. We can either use wearable GPS sensors or we can use RFID tags with a wearable

RFID reader rather than using a video-camera.

• Collective-effort: Activities are often performed by multiple users involving interactions

between them. How to recognize these activities would be another major challenge.

• Activity dataset: To the best of our knowledge, there is no real-life activity dataset that

would reflect activities in a multi-user environment. Therefore, getting or generating such a

dataset and subsequently checking the validity of the algorithm would be another challenge.
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