

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Thesis for the Degree of Doctor of Philosophy

Managing Change History in Dynamic
Web Ontologies

Asad Masood Khattak

Department of Computer Engineering

Graduate School

Kyung Hee University

Seoul, Korea

August, 2012

Managing Change History in Dynamic
Web Ontologies

Asad Masood Khattak

Department of Computer Engineering

Graduate School

Kyung Hee University

Seoul, Korea

August, 2012

Managing Change History in Dynamic
Web Ontologies

by

Asad Masood Khattak
Advised by

Professor Sungyoung Lee

Submitted to the Department of Computer Engineering

and the Faculty of the Graduate School of

Kyung Hee University in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Dissertation Committee:

Professor Tae-Choong Chung, Ph.D. .

Professor Brian J. d’Auriol, Ph.D. .

Professor Kyung Mo Park, Ph.D. .

Professor Guan Donghai, Ph.D. .

Professor Sungyoung Lee, Ph.D. .

Managing Change History in Dynamic Web Ontologies

by

Asad Masood Khattak

Submitted to the Department of Computer Engineering
on July, 2012, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract
Knowledge constantly grows in scientific discourse and is revised over time by differ-
ent stakeholders, either collaboratively or through institutionalized efforts. The body of
knowledge gets structured and refined as the Communities of Practice concerned with a
field of knowledge develop a deeper understanding of the issues. As a result, the knowl-
edge model moves from a loosely clustered terminology to a semi-formal or even formal
ontology. Change history management in such evolving knowledge models is a an impor-
tant and challenging task. Different techniques (including change classification, represen-
tation, capturing, and logging) have been introduced in the research literature to solve the
issue; however, these are limited in their scope. Ontology change management solutions
must provide a consistent and coherent support to maintain and manage all the ontology
changes. Moreover, the role of change history information becomes critical when an on-
tology engineer wants to review the ontology evolution history. A storage structure for
such information is also crucial for effective retrieval. A single change also makes the ex-
isting mappings between ontologies unreliable. In addition, the re-establishment of map-
ping is also a time consuming process. To handle these challenges, a comprehensive so-
lution is required that must address various multi-faceted issues, such as ontology change
history management and traceability, recovery, visualization of change effects, keeping
the evolving ontology in a consistent state, mapping reconciliation between evolving on-
tologies, query reformulation, and collaborative ontology engineering.

This research introduces a change history management framework for evolving on-
tologies. It is a comprehensive and methodological framework for managing issues re-
lated to change management in evolving ontologies, such as versioning, provenance, con-
sistency, recovery, change representation, mapping reconciliation, and visualization. The
Change history log is central to the proposed framework and is supported by a seman-

i

tically rich and formally sound change representation scheme known as Change History
Ontology (CHO). Changes are captured and then stored in the Change History Log (CHL)
in conformance with the CHO. Changes in resources consequently make the existing
mappings between ontologies unreliable and staled. This highlights the need for map-
ping evolution to eliminate discrepancies from the existing mappings. To re-establish the
mappings between dynamic ontologies, CHL entries of changing ontologies are used to
eliminate the saltness from the existing mappings. The framework for change capturing
is implemented to work as a plug-in for ontology editor, such as Protege. For the mapping
reconciliation procedure, the proposed scheme is plugged in with the existing mapping
systems. The existing systems restart the complete mapping process which is time and
memory consuming process. The proposed mapping reconciliation approach between the
updated ontologies takes less time and use lesser memory as compared to the existing
systems by only considering the changed resources to eliminate the staleness from the
mappings.

The framework is implemented to work as a plug-in for ontology editors, such as
Protege. The change capturing accuracy of the proposed system Change Tracer is com-
pared with that of Changes Tab, Version Log Generator in Protege; Change Detection;
and Change Capturing of NeOn Toolkit. The proposed system has shown better accu-
racy against the existing systems. A comprehensive evaluation of change logging is also
validate using recovery operations with different versions of SWETO Ontology, CIDOC
CRM Ontology, OMV Ontology, and SWRC Ontology. The performance, space usage,
and accuracy of proposed mapping reconciliation procedure is compared with existing
mapping systems, such as FOAM, Falcon, H-Match, Prompt, Lily, AgreementMaker, and
TaxoMap. Overall time efficiency of 43% to 85%, reduced the runtime memory consump-
tion in range of 41.11% to 58.43%, and accuracy range of 93.50% to 100% in comparison
to existing mapping systems is achieved. The experimental results and comparison with
existing approaches shows that the change management and mapping reconciliation pro-
cess of the proposed system are accurate, consistent, and comprehensive in their coverage.

Thesis Supervisor: Sungyoung Lee
Title: Professor

ii

Acknowledgments

First and foremost, my humble and sincere thanks to the Almighty Allah for showering

his blessings upon me. He gave me the strength, courage,and patience during my studies

and stay here in Korea. This dissertation represents a great deal of time and effort not

only on my part, but also on part of my advisor, Prof. Sungyoung Lee. I am grateful for

the time and advice that you provided me over the past three and half years. This thesis

owes much of its contents to your ideas and guidance. You helped me in shaping up

my research and finding research areas which are theoretically interesting and practically

important.

I am also thankful to my thesis committee members for providing insightful and con-

structive comments to improve the quality of this dissertation. I am especially thankful

to Dr. Khalid Latif and Prof. Brian J. d’Auriol. Their constructive criticism on my work

and insightful discussions and suggestions helped me in improving this dissertation a lot.

I would also like to thank all the current and former Ubiquitous Lab members for

their support and for providing a pleasant working environment. I am very thankful to

all my Pakistani friends at Kyung Hee University and especially to Mr. Zeeshan Pervez,

Dr. Adil Mehmood Khan, Dr. Mohammad Shoaib Siddiqui, Mr. Ozair Idrees Khan, Mr.

Muhammad Fahim, Mr. Wajahat Ali Khan, and Mr. Muhammad Bilal Amin for their

time, help, and continuous support.

I have no words to express my sincere gratitude to my parents, sisters, and brothers for

their unconditional love, prayers, support, wishes, and encouragement. They have been

my strongest motivation to complete this dissertation.

iii

Contents

Table of Contents iv

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Motivation . 2

1.2 Approaches . 5

1.3 Problem statement . 7

1.3.1 Ontology Change Management 9

1.4 Contributions . 11

1.4.1 Change Representation . 12

1.4.2 Change History Logging . 13

1.4.3 Mapping Reconciliation . 13

1.5 Thesis Organization . 14

2 Related Work 16

2.1 Ontology Evolution Process . 23

2.1.1 Change Detection and Description 23

2.1.2 Inconsistencies Detection . 25

iv

2.1.3 Change Implementation and Verification 26

2.2 Change Management . 26

2.2.1 Database Change Management 26

2.2.2 Ontology Change Management 28

2.3 Ontology Change Tracking . 29

2.4 Ontology Change based Mapping Re-establishment 30

3 CHO: The Change History Ontology 34

3.1 Ontology Change . 36

3.2 Change History Ontology . 37

3.2.1 Change Handling . 39

3.2.2 Change Set . 41

3.2.3 Provenance . 42

3.2.4 Change Types . 43

3.2.5 Temporal Ordering . 46

3.2.6 Conceptual Design Patterns . 46

3.2.7 CHO Modeling Language . 48

3.2.8 Complex Changes . 51

3.3 Change History Log (CHL) . 51

4 Applications of Change History Log 56

4.1 Ontology Recovery . 57

4.2 Visualization . 58

4.3 Mapping Reconciliation . 61

4.4 Query Reformulation . 62

4.5 Change Prediction . 66

4.6 Collaborative Ontology Engineering . 67

v

5 Change Capturing and Mapping Reconciliation 69

5.1 Change Capturing . 70

5.1.1 Change Listener . 72

5.1.2 Change Logger . 72

5.1.3 Parser . 74

5.2 Reconciliation of Ontology Mappings 74

5.2.1 Mapping Reconciliation Procedure 75

5.2.2 Re-establishing Mappings . 77

6 Implementation and Results 83

6.1 Change Capturing . 84

6.2 Mapping Reconciliation . 87

6.2.1 Comparison using Complex Changes 90

6.2.2 Comparison using Atomic Changes 95

6.2.3 Effects of Change Type . 100

6.2.4 Memory Utilization . 102

6.2.5 Reconciled Mapping Accuracy 102

7 Conclusion and Future Directions 109

7.1 Conclusion . 109

7.2 Contributions . 111

7.2.1 Change History Ontology . 111

7.2.2 Change Capturing . 111

7.2.3 Mapping Reconciliation . 112

7.3 Future Directions . 113

References 115

vi

Appendix A: Change Tracer Evaluation 128

A.1 Change Recovery . 128

A.1.1 System Evaluation . 131

Appendix B: List of Publications 141

B.1 International Journal Papers . 141

B.2 International Journal Papers Under Review 143

B.3 International Conference Papers . 143

B.4 Patents . 147

vii

List of Figures

1.1 Showing the ontology changes, management of change history, and using

these changes to reconcile the mapping between ontologies 8

1.2 Showing the change in ontology handled by the proposed change history

management framework including the evaluation criteria 12

2.1 Change occurrence and implementation cycle 17

2.2 Ontology Evolution Lifecycle, takes source ontology along with new changes

and implement the new changes to source ontology 19

2.3 An an example of difference between the schema level and data level . . . 20

2.4 The Ontology Evolution Process when a change in ontology is requested . 24

3.1 Ontology changes including change item with meta data of the changes . 37

3.2 Ontology change and its consistency with the change representation scheme

and constraints . 38

3.3 Example of ChangeSet with corresponding meta data including change

agent, reason for change, changed ontology, start and end times of the

change . 42

3.4 Representation of ChangeSet author information using CHO 43

3.5 Example of Transaction class addition as a subclass of parent class Jour-

nal and its representation using CHO . 45

viii

3.6 Example of showing timestamp value attached with the PropertyDeletion

change instance using CHO . 46

3.7 Realizing Participation Pattern in Change History Ontology 47

3.8 Example of a ChangeSet instance spanning over a time interval 48

3.9 Reification of time-indexed participation: ChangeSet is a setting for a

change event, ontology resources, and the time interval in which the

change occurs . 49

3.10 Snapshot representing core classes of Change History Ontology 50

3.11 An example ontology showing the complex change scenario. 52

3.12 Complex change resulting from a single change event (Document class

deletion) . 53

3.13 Example of change representation using change history ontology constructs 55

4.1 Graph visualization of ontology with change history playback feature . . 60

4.2 Ontology evolution and stalled mappings scenario 63

4.3 SPARQL query for extracting TechnicalDocument instances from ontology 65

4.4 SPARQL query for extracting ChangeSet instance 65

4.5 SPARQL query for extracting the changes of a ChangeSet instance 66

4.6 SPARQL query for extracting the changes of a ChangeSet instance 66

4.7 Mining frequent change pattern from logged changes 67

4.8 The scenario of collaborative ontology engineering and the use of CHL . 68

5.1 Overall architecture of the proposed system for change capturing and

reusing the changes for mapping reconciliation 71

5.2 SPARQL query for extracting changes corresponding to the ChangeSet

and then extracting their relevant details 81

5.3 Overall framework for reconciliation of mappings in dynamic/evolving

web ontologies . 82

ix

6.1 Proposed system comparison against existing systems for change capturing 86

6.2 Average results of 20 experiments with 35 different changes using the

proposed system and existing systems 88

6.3 Mapping and Re-establishment of mapping results with respect to time

for Mouse and Human ontology . 91

6.4 Detail comparison of the proposed extensions against Falcon, FOAM,

Lily, AgreementMaker, and Prompt on combination of 7 different data

sets . 97

6.5 Detail comparison of the proposed extensions against Falcon, FOAM,

Lily, AgreementMaker, and Prompt on combination of 7 different data

sets . 99

6.6 Cascading effects of changes on the performance of mapping reconcilia-

tion procedure . 101

6.7 Space consumption analysis of the proposed system against the existing

systems . 103

x

List of Tables

2.1 Comparative Review of Ontology Change Management Systems. 22

2.2 Brief description of ontology editing tools. 24

5.1 List of change listeners implemented in the Change Capturing plug-in to

listen and log ontology changes. 73

6.1 Comprehensive comparison for change capturing of the proposed system

against the existing systems . 88

6.2 Computation time analysis of Falcon, H-Match, Lily, and TaxoMap for

mapping, re-mapping, and reconciliation of mappings with proposed ex-

tensions . 93

6.3 Computation time analysis of Falcon, H-Match, Lily, and TaxoMap for

mapping, re-mapping, and reconciliation of mappings with proposed ex-

tensions . 94

6.4 Ontology versions and the number of atomic changes applied to one ver-

sion that transforms ontology to another version 95

6.5 Shows mapping accuracy results of proposed extensions to the mapping

systems against the original mapping systems using Human, Mouse, Health,

Food, ACM, and Springer Ontologies 105

xi

6.6 Shows mapping accuracy results of proposed extensions to the mapping

systems against the original mapping systems using HL7 Classes Ontol-

ogy and openEHR Classes Ontology . 107

A.1 Change logging validation by implementing Roll Back and Roll Forward 139

A.2 Roll Back and Roll Forward procedures’ results for OMV and SWRC

Ontologies . 139

A.3 Roll Back and Roll Forward procedures’ results for CIDOC-CRM and

SWETO Ontologies . 140

xii

List of Acronyms

In alphabetical order:

ACID Atomicity, Consistency, Isolation, and Durability

ACM Association for Computing Machinery

CHAO Change and Annotation Ontology

CHL Change History Log

CHO Change History Ontology

CRM Conceptual Reference Model

CVS Concurrent Versions System

DL Description Logic

MSC Mathematics Subject Classification

OMV Ontology Meta Data Vocabulary

OWL Web Ontology Language

OWL-DL Web Ontology Language - Description Logic

OWL-FULL Web Ontology Language - FULL

RDF/N3 Resource Description Logic / Notation 3

rdfs Resource Description Framework Schema

SA Semantic Affinity

SPARQL SPARQL Protocol and RDF Query Language

xiii

SWETO Semantic Web Technology Evaluation Ontology

SWRC Semantic Web Research Community

URI Universal Resource Identifier

xiv

Chapter 1

Introduction

The fundamental aspect of information exchange among applications, systems, system

agents, and web services is the development of a consistent and comprehensive model for

the representation of domain knowledge [27]. It is essential for: sharing knowledge of re-

search outcomes, sharing information among independent organizations [12], exchange

of information among clinics [47], and among heterogeneous systems [11]. To enable

such sharing, the need is to model the information and at the same time preserve its se-

mantics. Special attention is required to preserve the semantics while modeling certain

aspects of a domain [40]. Ontology provides formal structure (model) with semantics

about how an expert perceives the domain of interest with its real meaning. Philosophical

ontology is the science of defining the kinds and structures of objects, properties, events,

processes, and relations in every area of reality. Whereas in computer science domain,

ontology is a formal and explicit specifications of a shared conceptualization of a domain

of discourse [36] and is the main driving force of the Semantic Web vision [10].

The usage of ontology is wide spread in information systems, especially when build-

ing a lingua franca for resolving the terminological and conceptual incompatibilities be-

1

CHAPTER 1. INTRODUCTION 2

tween information networks of varying archetype and different provenance [27, 58, 90].

This in response increases the significance of ontology maintenance [27, 28]. Ontologies

are complex in nature and often largely structured. Their development and maintenance

incorporates related research areas like: engineering, evolution, versioning, merging, and

integration, where these are fundamentally different [27]. For better system accuracy and

performance, up-to-date and complete information must be maintained in the knowledge-

base. The domain knowledge evolves as the communities of practices concerned with

knowledge develop better understanding of their perceived knowledge [93]. Ontology

evolution takes place when the perspective under which the domain is viewed has changed

[27, 75]. More specifically, ontology evolution means modifying or upgrading the ontol-

ogy when there is a certain need for change as Communities of Practice concerned with a

field of knowledge develop a deeper understanding of the domain. Ontology change man-

agement deals with the problem of deciding the modifications to perform in ontology and

implementation of these modifications and the management of their effects in dependent

data structures, ontologies, services, applications, and agents [26, 27, 58].

1.1 Motivation

Different convergence technologies like: Semantic Web Services [69, 85], Context-aware

Search Engines [56], Software Agents [18], Semantic Grid [87], and Cloud Comput-

ing [14] use ontologies for their customized needs [6]. Systems using context-aware

information (information modeled using ontology) offer opportunities for applications,

services, application developers, and end users by gathering context information. The

modeled information facilitates in adapting systems behavior according to application

CHAPTER 1. INTRODUCTION 3

and end user’s customized needs. Especially in combination with mobile devices, this

modeled information is of high importance that increases usability of information and

applications tremendously [6].

The systems, services, and technology developed and used by independent organi-

zations are autonomous in nature and behave according to organizational needs. The

convergence of diverse systems, services, and technologies in use is based on material

unity (information modeling and exchange) at every level and of technology integration

for that level of unity [87, 61]. Currently in use and most appropriate approach for in-

formation modeling, mediation, and integration is the use of ontology in every aspect of

data level, system level, service level, and technology level integration and interoperabil-

ity [6, 40, 61].

The integration and interoperability is maintained not only by maintaining the ontol-

ogy but there must be a systematic approach that can also handle the dynamic/evolving

nature of ontology. Change history management in such evolving knowledge models is a

an important and challenging task. The evolution process deals with the growth of ontol-

ogy. More specifically, ontology evolution means modifying or upgrading the ontology

when there is a certain need for change or there comes a change in the domain knowl-

edge [27, 38]. Ontology evolves from one consistent state to another [27, 37] and to

accomplish the evolution process several different sub-tasks in a sequence are involved

i.e., Capture change, Change representation, Semantics of change, Change implementa-

tion and verification, and Change propagation [28, 27, 55, 91, 93].

One of the crucial tasks faced by practitioners and researchers in knowledge repre-

CHAPTER 1. INTRODUCTION 4

sentation area is how to efficiently encode the human knowledge in ontologies? The

proper maintenance of these, usually large, structured, dynamic ontologies and in partic-

ular adaptation of these ontologies to new knowledge (ontology change) is one of the most

challenging problems in the Semantic Web research [28, 31, 58]. Different techniques

have been introduced in the research literature to solve the issues of ontology evolution,

change history management, and the change effects on dependent data and applications

[28, 27, 38, 55, 58, 74, 93].

As an ontology evolves to a new state, the dependant ontologies, applications, and

services may become invalid [15, 27, 55, 58]. Consequently, ontology change manage-

ment solutions must answer a number of questions [32]. One such question is, “how to

maintain and manage all the changes in a consistent and coherent manner?” Moreover,

the role of change history information becomes critical when an ontology engineer wants

to review the ontology evolution history. A storage structure for such information is also

crucial for effective retrieval. A single change also makes the existing mappings between

ontologies unreliable. In addition, the re-establishment of mappings is also a time con-

suming process. To handle these challenges, a comprehensive solution is required that

must address various multi-faceted issues, such as ontology change history management

and traceability, recovery, visualization of change effects, keeping the evolving ontology

in a consistent state, mapping reconciliation between evolving ontologies, query reformu-

lation, and collaborative ontology engineering.

CHAPTER 1. INTRODUCTION 5

1.2 Approaches

There are several approaches to handle the issues of change management and change ef-

fects. The existing approaches can be learned/analyzed from three main perspectives as

maintenance of changes, change management, and use of changes to eliminate their ef-

fects on dependent data, applications, and services.

Relational database management system’s techniques are amongst the most popu-

lar and mature change management techniques. The changes in relational databases are

managed by the database management system for recovery and traceability purposes. The

basic purpose of database recovery is twofold. Firstly, it is used to recover the data after

system/disk crashes. Secondly, it preserves ACID properties in transactions, and brings

the database into a consistent state after transaction errors [23, 50].

Several techniques have been proposed in the literature to maintain database changes,

among which logging, check-pointing, shadowing (or shadow paging), and differential

tables are the most prominent [23]. Instead of directly updating the actual database tables

for a change during a transaction, the intermediate updates are recorded in a sequential

file known as transaction log. Database systems can also maintain a checkpoint record in

the log. This log can later be used for data recovery, and to bring the database back into a

previous consistent state. Similar to the logging method, updates could be accumulated in

the differential tables rather than making the changes in the original table or maintaining

a complete before image [50]. Three differential tables (i.e., a read-only copy of the base

table, a differential table for insertion, and a deletion differential table) are maintained for

a single database relation. These different schemes are used for the purpose of change

CHAPTER 1. INTRODUCTION 6

audit, traceability, and recovery.

Various strategies could be adopted to preserve the changes in ontology, including the

use of a database or semi-structured log files. Researchers have provided various tech-

niques to maintain these changes. For example, Changes Tab [66] in Protege and Change

Capturing [81] in NeOn Toolkit, listens to the ontology changes and preserve them in

a log file. Changes Tab [66] and Change Capturing [81] can also be configured for a

client-server model in collaborative ontology engineering.

Klein [58] and Flouris [26] have done a significant work on change management for

distributed ontologies engineered over a period of time. The author developed change on-

tology by modeling both the atomic and complex changes. A similar approach is used by

D. Liang [63] and [81]. Ontology changes are stored in a file as a script following a tem-

poral ordering. The script follows the specifications provided in the Log Ontology [62]

and OWL 2 Change Ontology [81]. Upon the user’s request, this script file is used to

carry out undo or redo operations. Such log files are maintained for particular editing

sessions.

There exist systems like [2, 25, 67, 102, 104] that support mapping evolution which

are effected by the the changes in corresponding ontologies. Studies done in [25, 102]

mainly focus on schema based mappings evolution to support Local as View and Global

as View approaches [61]. This supports query reformulation in data integration applica-

tions. The system proposed in [102] focuses on mapping evolution based on incremental

adoption of changed mappings. The system discussed in [25] is based on composition

and inversion technique. This technique makes the schema evolution restricted to a set

CHAPTER 1. INTRODUCTION 7

of defined states based on mapping evolution options, which is not true in real world [27].

To support the dynamic nature of the Semantic Web, there must be some mechanism

to cope with the continuous evolution of domain ontologies. Therefore, it is important

to manage the ontology changes effectively and in a consistent and coherent manner,

and to maintain the relationship between the changes and ontology. It is a complicated

task while considering the dynamics of ontologies, and is also critical to the support of

networked ontologies. Ontology evolution could be amalgamated in a holistic approach

to manage ontology change history as well as their effects on dependent services. This

approach helps in optimum utilization of resources in terms of computational time and

runtime memory usage.

1.3 Problem statement

An ontology evolve from one consistent state to another due to certain changes [27],

which on the other hand introduce problems related to management of changes and

change effects. Change representation, logging, and propagation (for reconciliation) are

the areas that remained partially uncovered. The focus of this research work is to work on

ontology change management in general and on change representation, history manage-

ment, and change reuse for mapping reconciliation in particular (see Figure 1.1). These

challenges associated with ontology changes are highlighted in the following subsections.

CHAPTER 1. INTRODUCTION 8

Figure 1.1: Showing the ontology changes, management of change history, and using
these changes to reconcile the mapping between ontologies.

CHAPTER 1. INTRODUCTION 9

1.3.1 Ontology Change Management

Most of the existing systems work with managing ontology changes of two different ver-

sions. However, they target ontology versioning rather than ontology evolution. Whereas

in ontology evolution, information about the previous state as well as the changes are sim-

ply preserved in a sequential log that mix the current information with the existing. The

problems that raises and remaind unsolved in ontology change management perspective

while managing changes in dynamic ontologies are:

Change Representation

• There is no pragmatic and formal structure for management and representation of

changes based on principles of change and standards defined in literature.

• There is no uniform and generic structure that is based on a specific granularity

level of changes. This make the existing structure as strictly application specific.

Change Logging

• To refer to any particular state of ontology, storage and access to and associated

changes with the referred state is required. However, the current storage structures

do not support the associated logging of changes from a particular change session.

• The existing storage structures do not support effective and efficient retrieval of

change information for better performance and optimum resource utilization.

CHAPTER 1. INTRODUCTION 10

Mapping Reconciliation

When an ontology evolves then the changes should also be propagated to its dependent

data, applications, and services. However, system that supports change propagation to

dependents have following issues.

• The ontology evolution results in making the mappings between ontologies unreli-

able and stalled. The existing systems fails to re-establish the mappings among the

changed ontologies and re-instating the suspended applications in time.

• The existing systems are resource hungry (i.e., it consumes lots of computational

time and runtime memory) when considering re-establishment of mappings even

for a single change.

In nutshell, there is no comprehensive Change History Management Framework for

effective change capturing, formal representation, and logging. And then based on the

logged changes, reconcile stalled mappings with efficient utilization of memory and com-

putational resources, while maintain appropriate level of mapping accuracy. Considering

the issues associated with ontology changes, the ontology change management becomes

more important, not only to manage the changes in a consistent and coherent manner but

also to eliminate/minimize the effects of change on dependent applications, systems, and

services. In addition, the change history also help to reconcile the mappings between

dynamic mapped ontologies and support in reliable information exchange on updated

mappings.

CHAPTER 1. INTRODUCTION 11

1.4 Contributions

Based on discussion in Section 1.2, there exist different techniques to store the change in

a data model, for example, check points, shadowing, differential tables, scripts files, and

logging. Among these, logging technique has been adopted in this research work to store

the changes in an ontology.

The goal of this research work is to provide a methodological framework for ontol-

ogy change management in general. In particular, the objectives of this research are to:

develop a comprehensive storage model for ontology changes, consistent and coherent

management of ontology change history, mechanism for ontology change capturing and

logging, and reusing the ontology change history for the purpose to reconcile the map-

pings between evolved (i.e.,changed) ontologies. Figure 1.2 shows the layered approach

of the proposed change history management framework towards handling of ontology

change and reusing it for mapping reconciliation. All functions proposed are also evalu-

ated for their validity and effectiveness.

The general approach adopted and followed in this research is to achieve the goals of

change representation, capturing, maintaining, and managing the ontology changes hap-

pened during its evolution in a coherent manner. Moreover, to use the logged changes

for reconciling stalled mappings between dynamic ontologies. The subsequent sections

presents the main contributions of this research.

CHAPTER 1. INTRODUCTION 12

Figure 1.2: Showing the change in ontology handled by the proposed change history
management framework including the evaluation criteria.

1.4.1 Change Representation

Ontology is generally used by community of users for knowledge sharing and reuse.

When there occurs some changes in the domain ontology then these changes needs to be

preserved for later use [27, 58, 81]. To store these changes, mechanisms like databases

and text files exist. However, to maintain the changes in a structured and semantically

enrich model, a Change History Ontology (CHO) has been developed in this research. To

model CHO, a chronological ordering scheme from conditional random fields modeling

[103], categorical association scheme from Concurrent Versions System Concurrent Ver-

sions System (CVS) and SVN systems [100], and participation patterns of change from

ontology design patterns [33] have been used. A comprehensive ontological structure i.e.,

CHO has been designed that model both element and complex level changes of ontology

at atomic level.

CHAPTER 1. INTRODUCTION 13

1.4.2 Change History Logging

Understanding different ontology changes is necessary to correctly handle explicit and

implicit change requirements [27, 38]. For that purpose an ontology has been designed

and developed to capture ontology change requirements and keep track of the change

history. Similar to relational databases, the proposed methodology relies on a logging

technique to persistently store ontology changes. The logged changes in Change His-

tory Log (CHL) help in ontology recovery, traceability, query reformulation, and mapping

reconciliation. The changes are preserved in a time-indexed manner in a triple store.

The change description in CHL conforms to the CHO. Each entry in CHL is modeled as

an instance of OntologyChange having association with corresponding changes of that

particular change session. The log also preserves the provenance information about the

changes, such as who made the changes, and when and why these changes were made to

support the change audit.

1.4.3 Mapping Reconciliation

As the domain ontologies are provided by autonomous and independent providers, it

makes them evolve independently with flexible structure [39]. The changes result as a

change in the already existing mappings and make these mappings unreliable for infor-

mation exchange. The existing systems consume more time and runtime memory for

re-establishing the mappings between ontologies. However, the changes in mapped on-

tologies and regenerated mediation are not significant [39]. Consequently, less time and

memory consuming scheme for reconciling ontology mappings (mapping evolution) is

provided using the changes stored in CHL as compared to the existing systems. Proposed

CHAPTER 1. INTRODUCTION 14

approach uses CHL (i.e., local, centralized, and distributed) for mapping reconciliation to

overcome the staleness problem of mappings and produces the results in both time and

memory efficient manner.

In short, this dissertation strongly contributes in solving the issue of ontology change

history management by designing a structurally sound and semantically enrich ontology

structure to capture and maintain the ontology change history. Moreover, the logged

changes are reused to achieve the objective of mapping reconciliation with optimum re-

source utilization.

1.5 Thesis Organization

This dissertation is organized in seven chapters as following.

• Chapter 1 Introduction. Chapter 1 is the brief introduction of the research work

on ontology change management and in particular on change history management

of ontology changes and their utilization. Chapter 1 mainly presents the challenge

in focus, the set goals, and the objective achieved in this research work.

• Chapter 2 Related Work. Chapter 2 sets the stage by providing the background

subject knowledge about ontology evolution and ontology change management.

It also compares and contrasts different models, techniques, systems, and related

research projects.

• Chapter 3 Change History Ontology. A comprehensive description of the design

and development of the semantic structure developed for maintaining the ontology

CHAPTER 1. INTRODUCTION 15

changes is presented in Chapter 3. It also discusses the details of changes and

their storage in Change History Log (CHL) using Change History Ontology (CHO).

Different examples are also provided for better understanding.

• Chapter 4 Applications over Change History Log. In Chapter 4, different po-

tential applications of CHL are discussed with examples and their current status.

This chapter also highlights the applications amongst the discussed ones which are

developed in this research.

• Chapter 5 Change Capturing and Mapping Reconciliation. A comprehensive

discussion on the system design and implementation for the change capturing and

logging capability is presented in this chapter. This chapter also reuses the logged

changes for later use for the purpose of reconciling ontology mappings. Detail

procedure for mapping reconciliation is provided in this chapter.

• Chapter 6 Implementation and Results. Detail results on change capturing as

well as on mapping reconciliation is provided in this chapter. This chapter also

presents the proposed scheme’s comparison against the existing systems. The pro-

posed scheme’s results are discussed in detail from different aspects, such as com-

putational time, runtime memory usage, and accuracy.

• Chapter 7 Conclusion and Future Directions. This chapter presents the con-

clusion of this research work and highlights the main contributions. The future

directions for this research work are also mentioned in this chapter, which may

need further research efforts and systematic thought.

Chapter 2

Related Work

Ontologies are formal descriptions of a shared conceptualization of a domain of dis-

course [36]. The main components of ontologies are concepts, properties, individuals,

and axioms. Concepts represents classes or entities of a domain, whereas, relations de-

scribe the interactions between individuals of these concepts. Individuals are the real

world existence of information represented using concepts. To apply constraints on con-

cepts and individuals axioms are being used. Ontologies are developed to capture and

model the domain knowledge, and share it with the community of users, machines, sys-

tems, and system agents [27, 36]. When there is a change in the domain knowledge then

the definitions provided using the domain ontologies will also be changed to reflect the

changed knowledge. A formal ontology is flexible and dynamic in nature. It evolve with

the evolving domain knowledge in order to keep it consistent with the growing knowl-

edge [4, 27, 58, 105].

A common understanding of a change is that it happens in relation to time. The rate

of change and time is different that separate these entities; however, are very much re-

16

CHAPTER 2. RELATED WORK 17

Figure 2.1: Change occurrence and implementation cycle.

lated [27, 42]. The nature of change may vary from small scale to a larger; however, the

changes always have its cycle to complete [88]. The changes cycle and the philosophy of

changes is depicted in the Figure 2.1. The change will start and passes through different

phases and will finally be accommodated in the final model. The final model is in most

cases the intermediate model once another change is initiated.

The large and complex structure of ontology raise several interesting challenges relat-

ing the development and maintenance of the dynamic ontology. One of such challenges

is the ontology change [27, 58]. Several reasons for ontology changes has been identified

in the literature. In this dissertation, the term ontology change will be used in a broad

sense, covering: changes from external sources/events, changes by the ontology engineer,

changes forced by importing another ontology, changes forced by translating the ontology

CHAPTER 2. RELATED WORK 18

into a different language or different terminology, changes due to ontology merging and

integration [27, 60, 58, 55, 61, 62, 75, 81, 84, 86, 93].

An ontology is just like any other information model holding information regarding

a domain of interest. The information model may need to evolve to accommodate new

information/change [27, 58, 94]. The changes are new information or updates in exist-

ing information, which were previously unknown, or otherwise unavailable, or different

features of the knowledge may become important now [27, 44]. Moreover, ontology de-

velopment is a collaborative process and this process would require the ontology to reach

a consistent final state. However, this final state is an intermediate final, as ontology

evolution/change process is usually a continuous/ongoing process of ontology modifica-

tions [27, 44, 60, 58, 55, 81, 84, 86, 93], (see Figure 2.2 for lifecycle of ontology evolu-

tion/change process).

Ontology change management deals with the problem of deciding which modifica-

tions to perform in ontology in response to a certain need for change [29]. This mech-

anism ensures that the required changes are reflected in the ontology, and that it is in a

consistent state. It deals with four different aspects [28, 27, 81]. (1) Ontology evolution

is the process of modifying ontology in response to a certain change in the domain or its

conceptualization. (2) Ontology versioning is the ability to handle an evolving ontology

by creating and managing different versions of it. (3) Ontology integration is the process

of composing the ontology from information found in two or more ontologies covering

related domains. (4) And lastly, ontology merging is the process of composing the on-

tology from information found in two or more ontologies covering highly overlapping or

identical domains. The focus of this research work is on the change aspect of ontology

CHAPTER 2. RELATED WORK 19

Figure 2.2: Ontology Evolution Lifecycle, takes source ontology along with new changes
and implement the new changes to source ontology.

evolution whereas, sometime it is also confused with ontology versioning; however, on-

tology versioning is a stronger variant of ontology evolution [27, 38, 44, 60, 58, 55, 81].

Moreover, this research is mainly focusing on the schema level of ontology instead of

both schema and data level. To understand the difference between schema level and data

level, refer to Figure 2.3.

To support the dynamic nature of the Semantic Web, there must be some mechanism

to cope with the continuous evolution of domain models and knowledge repositories.

Therefore, it is important to manage the ontology changes effectively, and to maintain the

relationship between the changes and models [62]. To achieve the objective of ontology

evolution, different research have worked on this area. Details of efforts by the researcher

is presented in Table 2.1. A lot of research on schema evolution has been carried out

CHAPTER 2. RELATED WORK 20

Figure 2.3: The figure shows an example of difference between the schema level and data
level. This research is focusing on the ontology changes at schema level.

in relational databases. Schema evolution handles changes in a schema of a populated

database without losing data, and provides transparent access to both old and new data

through the new schema. It is a complicated task considering the dynamics of ontolo-

gies [74], and is also critical to the support of networked ontologies. Ontology evolution

and versioning could be amalgamated in a holistic approach to manage ontology changes

as well as their effects.

CHAPTER 2. RELATED WORK 21
A

pr
oa

ch
C

ha
ng

e
R

e-
qu

es
t

C
ha

ng
e

R
ep

re
-

se
nt

at
io

n
C

on
fli

ct
R

es
ol

u-
tio

n
C

ha
ng

e
Im

pl
e-

m
en

ta
tio

n
C

ha
ng

e
Pr

op
a-

ga
tio

n
W

or
ki

ng

[9
3]

T
he

co
m

pl
et

e
ch

an
ge

re
qu

es
ti

sr
ep

-
re

se
nt

ed
in

fo
rm

al
re

pr
es

en
ta

tio
na

l
fo

rm
at

.T
he

se
ch

an
ge

s
(d

ue
to

bu
si

-
ne

ss
re

qu
ir

em
en

ts
)

ar
e

sp
ec

ifi
ed

by
on

to
lo

gy
en

gi
ne

er
.

O
nt

ol
og

y
en

gi
ne

er
re

so
lv

e
al

lt
he

in
co

ns
is

te
nc

ie
s

du
e

to
re

qu
es

te
d

ch
an

ge
s

by
in

co
rp

or
at

in
g

de
du

ce
d

ch
an

ge
s.

T
he

re
qu

es
te

d
ch

an
ge

s(
in

-
cl

ud
in

g
de

du
ce

d
ch

an
ge

s)
ar

e
ap

pl
ie

d
to

th
e

so
ur

ce
on

to
lo

gy
.

A
pp

lie
d

ch
an

ge
s

ar
e

pr
op

ag
at

ed
to

de
pe

nd
en

t
da

ta
,

ap
pl

ic
at

io
ns

,s
er

vi
ce

s,
an

d
on

to
lo

gi
es

.
O

ut
-o

f-
da

te
in

st
an

ce
s

ar
e

si
m

pl
y

re
pl

ac
ed

w
ith

th
e

up
-t

o-
da

te
in

st
an

ce
s.

U
se

r
D

ep
en

-
de

nt

[6
0]

,
[5

8]
,

[7
3]

Sp
ec

ifi
ed

by
on

to
lo

gy
en

gi
ne

er
.

C
ha

ng
e

an
d

A
nn

ot
a-

tio
n

O
nt

ol
og

y
(C

H
A

O
)

to
re

pr
es

en
t

ch
an

ge
re

qu
es

t.

O
nt

ol
og

y
en

gi
ne

er
in

vo
lv

em
en

t.
Su

gg
es

te
d

th
at

to
ol

s
sh

ou
ld

pr
ov

id
e

in
te

rf
ac

e
fo

ru
se

ri
nt

er
ac

tio
n.

C
on

si
st

en
t

pr
op

ag
a-

tio
n

of
ch

an
ge

s
to

di
st

ri
bu

te
d

in
st

an
ce

s
of

on
to

lo
gy

.

U
se

r
D

ep
en

-
de

nt

[3
0]

Sp
ec

ifi
ed

by
on

to
lo

gy
en

gi
ne

er
Fo

rm
al

re
pr

es
en

ta
tio

n
of

ch
an

ge
s

U
se

pr
ed

efi
ne

d
st

ra
te

gi
es

fo
r

co
nfl

ic
t

re
so

lu
tio

n
an

d
av

oi
di

ng
si

de
-e

ff
ec

ts
.

Pr
ov

id
e

in
te

rf
ac

e
fo

r
us

er
in

te
ra

ct
io

n
an

d
al

so
lo

g
th

e
ch

an
ge

s.

Pr
op

ag
at

io
n

of
ch

an
ge

s
to

de
pe

nd
en

t
ar

te
fa

ct
.

Se
m

i
au

to
m

at
ic

[8
3]

D
iff

er
en

tv
er

si
on

s
of

on
to

lo
gi

es
ar

e
us

ed
in

th
is

ap
pr

oa
ch

.
T

he
ch

an
ge

s
am

on
g

di
ff

er
en

tv
er

si
on

s
ar

e
re

pr
e-

se
nt

ed
fo

rm
al

ly
.

A
ft

er
ch

an
ge

im
pl

em
en

ta
-

tio
n,

it
ch

ec
ks

fo
ri

nc
on

si
s-

te
nc

ie
s

an
d

if
pr

es
en

tt
he

n
it

m
ak

es
th

e
ch

an
ge

re
co

v-
er

y.

Fi
rs

t
it

im
pl

em
en

ts
th

e
ch

an
ge

re
qu

es
t

an
d

th
en

ch
ec

k
fo

ra
ny

co
nfl

ic
ts

.

It
do

es
no

t
su

pp
or

t
ch

an
ge

pr
op

ag
at

io
n

as
it

w
or

ks
on

ve
rs

io
ns

.

U
se

r
de

pe
n-

de
nt

[8
0]

,[
86

]
C

ha
ng

es
ar

e
de

te
ct

ed
am

on
g

tw
o

ve
rs

io
ns

by
us

in
g

Pr
om

pt
D

iff
an

d
O

nt
oV

ie
w

[5
9]

,
an

d
co

m
pi

le
a

co
m

-
pl

et
e

ch
an

ge
re

qu
es

t.

Fo
rm

al
ly

re
pr

es
en

te
d

us
in

g
th

ei
r

de
ve

lo
pe

d
se

m
an

tic
st

ru
ct

ur
e.

O
nt

ol
og

y
en

gi
ne

er
re

so
lv

e
in

co
ns

is
te

nc
ie

s
by

in
tr

o-
du

ci
ng

de
du

ce
d

ch
an

ge
s.

W
ith

ch
an

ge
im

pl
em

en
ta

-
tio

n,
al

l
th

e
ch

an
ge

s
ar

e
al

so
lo

gg
ed

fo
r

un
do

/r
ed

o
pu

rp
os

e.

It
do

es
no

t
su

pp
or

t
ch

an
ge

pr
op

ag
at

io
n

as
it

w
or

ks
on

ve
rs

io
ns

.

U
se

r
de

pe
n-

de
nt

CHAPTER 2. RELATED WORK 22
A

pp
ro

ac
h

C
ha

ng
e

R
e-

qu
es

t
C

ha
ng

e
R

ep
re

-
se

nt
at

io
n

C
on

fli
ct

R
es

ol
u-

tio
n

C
ha

ng
e

Im
pl

e-
m

en
ta

tio
n

C
ha

ng
e

Pr
op

a-
ga

tio
n

W
or

ki
ng

[6
8]

U
se

to
p-

do
w

n
ap

pr
oa

ch
(m

an
ua

l)
an

d
bo

tto
m

-u
p

ap
pr

oa
ch

(a
ut

om
at

ic
)

fo
rc

ha
ng

e
de

te
ct

io
n.

Su
gg

es
tio

ns
fo

r
us

e
of

fo
rm

al
re

pr
es

en
ta

-
tio

n
i.e

.,
us

in
g

th
e

lo
g

re
pr

es
en

ta
tio

n
fo

r
ch

an
ge

s.

In
vo

lv
e

on
to

lo
gy

en
gi

-
ne

er
in

g
fo

r
re

so
lv

in
g

co
nfl

ic
ts

.

M
an

ua
li

m
pl

em
en

ta
tio

n
of

th
es

e
ch

an
ge

s.
It

do
es

no
t

su
pp

or
t

ch
an

ge
pr

op
ag

at
io

n.
U

se
r

de
pe

n-
de

nt

[6
5]

C
ha

ng
es

ar
e

su
gg

es
te

d
by

en
d

us
er

an
d

ar
e

as
su

m
ed

to
be

re
pr

es
en

te
d

at
at

om
ic

le
ve

l.

Fo
r

al
l

co
nfl

ic
ts

,
th

e
re

-
su

lti
ng

so
lu

tio
ns

ar
e

ca
lc

u-
la

te
d

us
in

g
D

L
as

se
rt

io
ns

.

C
ha

ng
es

ar
e

im
pl

em
en

te
d;

no
lo

g
is

m
ai

nt
ai

ne
d

fo
r

th
is

.

Su
gg

es
tio

ns
fo

r
co

n-
si

st
en

t
pr

op
ag

at
io

n
is

m
ad

e.

U
se

r
de

pe
n-

de
nt

[1
5]

C
ha

ng
es

ar
e

re
co

g-
ni

ze
d

au
to

m
at

ic
al

ly
by

an
al

yz
in

g
do

m
ai

n
ar

tif
ac

ts
.

H
-M

at
ch

[1
7]

an
d

W
or

dN
et

[7
1]

ar
e

us
ed

fo
r

ne
w

ch
an

ge
de

te
ct

io
n.

C
ha

ng
es

ar
e

th
en

fo
r-

m
al

ly
re

pr
es

en
te

d.
In

co
ns

is
te

nc
ie

s
ar

e
re

so
lv

ed
by

on
to

lo
gy

en
gi

ne
er

.

C
ha

ng
es

ar
e

m
ad

e
by

on
-

to
lo

gy
en

gi
ne

er
.

C
ha

ng
e

pr
op

ag
at

io
n

is
no

ti
n

fo
cu

s.
Se

m
i

au
to

m
at

ic

[5
5]

N
ew

ch
an

ge
s

su
ch

as
(c

ha
ng

e
in

si
ng

le
co

nc
ep

t,
gr

ou
p

of
co

nc
ep

ts
an

d
co

nc
ep

ts
in

a
hi

er
ar

ch
ic

al
st

ru
c-

tu
re

)
ar

e
de

te
ct

ed
au

to
m

at
ic

al
ly

us
-

in
g

H
-M

at
ch

[1
7]

an
d

W
or

d-
N

et
.

C
ha

ng
e

re
pr

es
en

ta
tio

n
is

pr
o-

vi
de

d
by

C
ha

ng
e

H
is

to
ry

O
nt

ol
og

y
(C

H
O

)
[5

2]
.

Fo
r

co
nfl

ic
t

re
so

lu
tio

n
K

A
O

N
[2

8]
is

us
ed

w
ith

so
m

e
su

gg
es

te
d

ex
te

ns
io

ns
.

C
ha

ng
es

ar
e

im
pl

em
en

te
d

at
om

ic
al

ly
an

d
af

te
r

ev
-

er
y

ch
an

ge
im

pl
em

en
ta

-
tio

n,
th

es
e

ar
e

lo
gg

ed
in

C
H

L
[5

2]
.

A
t

th
e

en
d

al
l

ch
an

ge
s

ar
e

va
lid

at
ed

ag
ai

ns
tt

he
ch

an
ge

re
qu

es
t.

C
ha

ng
e

pr
op

ag
at

io
n

is
no

th
an

dl
ed

in
th

is
ap

-
pr

oa
ch

.

Su
gg

es
tio

ns
to

w
ar

d
au

to
m

at
io

n

[1
06

]
C

ha
ng

es
ca

n
be

sp
ec

ifi
ed

by
us

er
an

d
de

te
ct

ed
au

to
m

at
ic

al
ly

.
T

he
y

al
so

us
e

W
or

dN
et

fo
r

ne
w

ch
an

ge
de

te
ct

io
n.

T
he

n
th

es
e

ch
an

ge
s

ar
e

fo
rm

al
ly

re
pr

es
en

te
d

us
in

g
di

ff
er

en
t

re
pr

es
en

ta
tio

n
te

ch
ni

qu
es

fo
llo

w
ed

in
th

ei
ro

ve
ra

ll
N

eO
n

To
ol

ki
t.

A
ne

w
de

ve
lo

pe
d

al
go

-
ri

th
m

fo
r

co
nfl

ic
t

re
so

lu
-

tio
n

st
ra

te
gy

is
pa

rt
ia

lly
im

pl
em

en
te

d.

C
ha

ng
es

ar
e

im
pl

em
en

te
d

an
d

ve
ri

fie
d.

C
ha

ng
e

pr
op

ag
at

io
n

is
th

e
fo

cu
s

fo
r

2n
d

ph
as

e
w

ith
co

nfl
ic

t
re

so
lu

tio
n.

To
w

ar
ds

au
to

m
at

ic
on

to
lo

gy
ev

ol
ut

io
n.

Ta
bl

e
2.

1:
C

om
pa

ra
tiv

e
R

ev
ie

w
of

O
nt

ol
og

y
C

ha
ng

e
M

an
ag

em
en

tS
ys

te
m

s.

CHAPTER 2. RELATED WORK 23

2.1 Ontology Evolution Process

The efforts in this section are towards discussion on and identification of deficiencies in

current research on ontology evolution, that has extensively been worked in [26, 27, 58,

81]. Viewing ontology as a special type of Knowledgebase gives a different perspective

of ontology evolution [27, 74].

The process of ontology evolution has the following two variants: Ontology Popula-

tion and Ontology Enrichment. New instances of prior coded concepts can be introduced

or existing instances can be updated. As a result, the A-Box is changed and reflects new

realities. This is called Ontology Population. Where as in Ontology Enrichment pro-

cess, new domain concepts; properties; or restrictions are introduced or existing ones are

updated. This later variant refers to the changes in the schema or T-Box. Overall, the pro-

cess of evolution takes ontology from one consistent state to another [16, 93]. Figure 2.4

depicts an overview of this process and shows an interconnection of needed building

blocks. In a holistic manner. These components ensure that the ontology has evolved

to a consistent new state, incorporating all the required changes. These components are

comprehensively discussed in the subsequent sections whereas the tools supporting the

evolution process are discussed in Table 2.2.

2.1.1 Change Detection and Description

The first step in the process is to detect changes, whether the suggested changes are al-

ready present in the target ontology. Additionally, schema and individual level differences

can be detected effectively, as reported in [98]. In case the concept in focus is totally new

CHAPTER 2. RELATED WORK 24

System Contributions Limitations Evolutions
Protege
[79, 73]

1. Mostly used for ontology creation 2. Often

used for evolution and maintenance 3. Provide

Visualization, Merging, Integration, and Com-

parison 4. SparQL queries support

1. Weak facility for ontology change

management 2. No facility for ontology

recovery 3. Use third party services for

consistency checking of ontology

Manual evolution

support

KAON
[30]

1. Provide ontology editing services like Protege

2. Provide good environment for pre-evolution

strategy making, generate deduce changes to

avoid conflicts 3. Support automatic evolution,

redo, and undo 4. Provide collaborative editing

facility

1. Complex system 2. Slow in response

3. Need ontology engineering for con-

flict resolution

Pre-defined strat-

egy based evolu-

tion support

OilED
[7]

1. Used for ontology engineering 2. Disal-

low inconsistency in ontology 3. Support semi-

automated ontology evolution

1. No change logging facility 2. No

facility for ontology recovery 3. More

strict in its operations compared to Pro-

tege

Semi-automatic

support

OntoEdit
[95]

1. Used for ontology editing 2. Use more op-

tions than KAON for strategy making 3. Allow

collaborative environment for ontology editing

1. Provide less operations than KAON

2. To avoid side effects of conflicts, it

involve ontology engineer

Strategy-based

evolution support

Table 2.2: Brief description of ontology editing tools.

Figure 2.4: The Ontology Evolution Process when a change in ontology is requested.

CHAPTER 2. RELATED WORK 25

and there is no additional information, then the H-Match algorithm [17] is used. It takes

the new concepts for addition and the target ontology as inputs, and returns the best match-

ing concept in the ontology in order to identify a taxonomic position for the concept [16].

The identified changes: elementary (atomic/simple) change e.g., renaming a class or a

property; or composite (complex) change e.g., merging two hierarchies with all their con-

straints applied, are represented in a consistent format. These changes are first assembled

in a sequence, followed by the change implementation. The focus is on atomic changes

and also all the composite changes are considered as an ordered sequence of atomic

changes. Change History Ontology [52] representation is used to represent changes. This

representation is also used to log ontology changes in the Change History Log (CHL)

discussed later.

2.1.2 Inconsistencies Detection

In this module ontology changes are analyzed in a systematic manner to ensure that the

consistency of the ontology is not lost. The ontology may become inconsistent because of

the changes. Two types of inconsistencies can occur: (1) syntactic inconsistencies occur

when an undefined or inconsistent construct from meta ontology level is used; (2) seman-

tic inconsistencies occur when the meaning of the ontology entity is changed due to the

changes. To keep the ontology in a consistent state, further changes are inferred by tak-

ing into account the newly introduced ontology changes, known as induced and deduced

changes, respectively.

CHAPTER 2. RELATED WORK 26

2.1.3 Change Implementation and Verification

This process covers the following three aspects: 1) change should be applied in complete

isolation, and must be atomic, durable, and consistent; 2) each implemented change is

verified against the change request; and 3) All the implemented changes must be logged

in the CHL to keep track of the changes performed in an ordered manner.

2.2 Change Management

This section introduce different techniques and approaches in ontology domain as well as

in the sibling domains for handling the issues of change management.

2.2.1 Database Change Management

It is worth mentioning some of the change management and recovery techniques available

in related fields, such as databases. Relational databases also change and these changes

are managed by the database management system for recovery and traceability [4, 23, 39].

The basic purpose of database change management is twofold. Firstly, it is used to re-

cover the data after system/disk crashes. Secondly, it preserves (atomicity, consistency,

isolation, and durability) Atomicity, Consistency, Isolation, and Durability (ACID) prop-

erties in transactions, and guarantees to brings the database into a consistent state after

transaction errors.

From the ontology change management standpoint, this research is not strictly con-

CHAPTER 2. RELATED WORK 27

cerned with system crashes. This aspect could easily be delegated to the underlying stor-

age system which can maintain a complete backup/shadow of the whole ontology. On the

other hand, recovery from inconsistencies doesn’t require a complete archival copy of the

database. Several techniques have been proposed in the literature to recover databases,

among which logging, check-pointing, shadowing (or shadow paging), and differential

tables are the most prominent [23]. Instead of directly updating the actual database tables

for a change during a transaction, the intermediate updates may be recorded in a sequen-

tial file known as transaction log. The log file serves as historical archive of the recent

database operations. Database systems can also maintain a checkpoint record in the log.

This log can later be used for data recovery, and to bring the database back into a consis-

tent state.

Similar to the logging method, updates could be accumulated in the differential tables

rather than making the changes in the original table or maintaining a complete before

image [50]. Three differential tables are maintained for a single database relation: 1) a

read-only copy of the base table; 2) a differential table for insertion, wherein all the new

tuples are first inserted in this differential table; 3) a deletion differential table, wherein

all the deleted tuples are maintained in this differential table. Consider, for example, a

Student relation. The read-only table for this relation could be referred to as StudentR,

the insertion differential as StudentD+, and the deletion differential table as StudentD−.

The following equation could then be used to reflect the updates in the actual table.

Student = (StudentR ∪ StudentD+)− StudentD− (2.1)

CHAPTER 2. RELATED WORK 28

2.2.2 Ontology Change Management

Various strategies could be adopted to preserve the changes in ontology, including the use

of a database or semi-structured log files. Different researchers have provided various

techniques to maintain these changes. For example, Changes Tab [66] and Version Log

Generator [84] in Protege and Change Capturing [81] in NeOn Toolkit, listens to the

ontology changes and preserve them in a log file. The generated logs are flexible to add,

delete, and modify annotations about changes made to the model. Changes Tab [66] and

Change Capturing [81] can be configured for a client-server model in Collaborative Pro-

tege and NeOn Toolkit respectively. It also comes with a conventional tabular view for

searching and navigating within the changes.

Klein [58] has done a significant work on change management for distributed ontolo-

gies. The author developed change ontology by modeling both the atomic and complex

changes. A comprehensive categorization of different ontology changes is also provided.

In addition, Flouris in [26, 27] provided a detailed classification of ontology changes and

the related fields of studies which were very much confused together. A formal procedure

for ontology evolution is devised that is based on the concept of belief change tools and

techniques. This categorization and the change representation given by [26, 58] are the

foundation of this research work. This research has used the basis provided to model a

representational structure for ontology changes.

A similar approach to the proposed approach is used by [63] for query reformulation

and [81] for collaborative ontology engineering. Ontology changes are stored in a file

as a script following a temporal ordering. The script follows the specifications provided

CHAPTER 2. RELATED WORK 29

in the Log Ontology [62] and OWL 2 Change Ontology [81]. Upon the user’s request,

this script file is used to carry out undo or redo operations. Such log files are maintained

for particular editing sessions. This way, the command history of one editing session

is maintained within Protege and is a candidate for transparent query answering. The

Change Capturing [81] is responsible for capturing the ontology changes and propagat-

ing them to the other instances of the same ontology on different nodes, both locally and

remotely [81]. The need is to establish a mechanism for maintaining the changes for a

longer time-span to support, for example, mining change patterns in a networked ontolo-

gies.

2.3 Ontology Change Tracking

Most of the previously discussed ontology change management systems focus mainly on

detection and archiving the ontology changes [58]. These changes are not used; however,

for undo/redo operations during collaborative ontology engineering [81], or even for on-

tology recovery. Change traceability and in particular accurate change detection is still a

challenging task [27, 81].

In [86], the authors provided a structure for persistent storage of ontology changes

and a limited support for change visualization. The work reported in [86], introduces a

scheme of logging and visualizing multiple ontology changes. The process starts with

detecting changes in two versions of ontology using Prompt [77] and OntoView [59]. A

runtime and offline change detection and tracking techniques have also been presented

in [84]. However, during runtime, the technique is totally dependent on the ontology edit-

CHAPTER 2. RELATED WORK 30

ing tools. Because, it can only detect changes which are triggered by the editing tools.

Whereas in offline approach, some of the changes are missed; moreover, the sequence

of changes is also not preserved. A centralized, distributed, and remote change detection

as well as management and propagation infrastructure has been presented in [81]. This

technique is also configured with NeOn Toolkit to detect changes in ontology at runtime.

Then the changes are stored in OWL 2 Change Ontology. These changes are later prop-

agated to dependent applications, ontologies, and services. However, as discussed, this

technique also depends on the tool to which it is configured and may miss changes which

are committed by the user but not triggered by that editor.

2.4 Ontology Change based Mapping Re-establishment

Recently, ontology is being used by convergent technologies such as; Context-aware

Search Engines [56], Software Agents [18], Semantic Grid [87], Cloud Computing [14],

and Semantic Web Services [69, 82, 85]. Many research groups are working on on-

tology matching/mapping and have developed different systems (such as MAFRA [67],

Prompt [76], FOAM [22], H-Match [17], Falcon [46], Lily [104], TaxoMap [41], and

AgreementMaker [20, 19]) that facilitate interoperability between collaborative conver-

gent technologies.

Mapping systems discussed above are those with outstanding performances at Ontol-

ogy Alignment Evaluation Initiative. Among the discussed systems, AgreementMaker [20,

19], TaxoMap [41], and Lily [104] are the most efficient and widely used tools for ontol-

ogy matching and mapping with relatively better accuracy. Also, when alignment is to be

CHAPTER 2. RELATED WORK 31

constructed completely from the scratch, their accuracy is better than the other existing

algorithms [3, 5, 67, 76, 22, 17, 46]. However, like every other system, AgreementMaker,

TaxoMap, and Lily also take considerable amount of time in the establishment of align-

ments, and they have no support for the process of mapping reconciliation (i.e., to update

the stalled/unreliable mappings).

All the above discussed systems re-initiate the process of mapping between ontologies

after they are being updated. This consumes lots of time as the changes are usually very

simple in type and less in number [27, 39]. There exist systems like [102, 25, 2, 104, 67]

that support mapping evolution. However, some of these have different focus while few

are not mature enough in their approach.

The systems discussed in [102, 25] mainly focus on schema based mappings evolu-

tion to support Local as View and Global as View approaches [61] that supports query

reformulation in data integration applications. The system proposed in [102] focus on

mapping evolution based on incremental adoption of changed mappings. The incremen-

tal adoption technique makes it hard to cope with the drastic schema evolution situation.

The system discussed in [25] is based on composition and inversion technique. This tech-

nique makes the schema evolution restricted to a set of defined states based on mapping

evolution options, which is not true in real world [27].

The proposed approach is different from both [102, 25] as schema and ontologies are

fundamentally different [2, 74]. In [2], authors proposed a mapping evolution algorithm

for mappings between a schema and schema’s annotations. The focus of algorithm is to

maintain the consistency of mapping between the schemas and their corresponding anno-

CHAPTER 2. RELATED WORK 32

tations. Both the systems discussed in [102, 25] and [2] are different from the proposed

system as [102, 25] focus on schema level mapping evolution and [2] focus on mapping

evolution between schema and annotations (meta data) for the schema.

MAFRA [67] and Lily [104] are the two mapping systems that in addition to map-

ping generation between two ontology versions also focus on the evolution of mappings

when at least one of the mapped ontology evolve from one state to another. However,

both MAFRA [67] and Lily [104] have still no concrete methodology to support mapping

evolution for evolving ontologies. So for the testing and discussion on proposed system,

the authors made extensions to the existing mapping systems to support the mapping rec-

onciliation procedure instead of redeveloping a complete mapping system.

In a nutshell, most of the existing systems discussed here provide a comprehensive

ontology change representation schemes which are adoptable for particular applications.

Some of the systems do provide the change capturing services; however, limited by the

ontology editing tools. The main questions that the existing literature have not answered

are: (1) A unified, comprehensive, and generic ontology change representation structure

that can maintain the ontology changes independent of any services and applications. In

addition, the structure should be based on principles and be useful for all services and

applications. (2) The current change capturing and logging techniques are lacking in

capturing the overall change information of an ontology as they wholly depends on the

ontology editing tools. (3) Lastly, there is no system available to support the mapping

reconciliation process. In addition, to minimize the resource (time and space) utilizations

in reproducing the mappings and eliminating the staled mappings.

CHAPTER 2. RELATED WORK 33

In this chapter, a detailed review of existing literature and systems relating to ontol-

ogy change management and mapping reconciliation is presented. The sibling domains

are also studied for relevant information and conclusions. In next chapter, the details on

design and development of Change History Ontology is provided. The notions borrowed

from different domains and their use in the design and development is discussed. Change

History Log with conformance to Change History Ontology is also discussed with exam-

ples.

Chapter 3

CHO: The Change History Ontology

Ontology engineering process consists of sub processes like; ontology modeling, ontol-

ogy evolution, ontology change management, refining the ontology, ontology matching,

ontology merging, ontology integration, and ontology reuse [27, 45, 58]. Due to the

dynamic nature of entities in general, and ontology and ontology based applications in

particular, the need to have a changes management framework for life cycles of ontology

development and maintenance is getting increasingly important.

The goal of this research is to build a change history management framework to trace

ontology changes. The framework helps in automatically detecting and logging all the

changes triggered by the change request from ontology engineer. The focus is to develop

a generic framework for temporal traceability of ontology changes during evolution and

reuse the logged changes to minimize the after effects of ontology evolution. To store and

log the changes a repository is required to record all the changes in a systematic manner.

It can help in providing the facilities of ontology recovery, mapping reconciliation, query

reformulation, and collaborative ontology engineering. Whenever required, the logged

34

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 35

changes are accessed and the required operation is performed. It can also provide facil-

ity to make the ontology changes temporally traceable by visualizing the change effects

on ontology. To provide these facilities, a semantic structure for representing ontology

changes is required. The semantic structure to keep track of ontology changes is devel-

oped in this chapter. The structure/model is based on a chronological ordering scheme

from conditional random fields modeling [103], categorical association scheme from

CVS and SVN systems [100], and participation patterns of change from ontology design

patterns [33]. The semantic structure and examples of changed information representa-

tion are discussed in this chapter one after another.

As discussed in Chapter 2, recovery and change traceability are essential ingredients

of ontology change management systems. A semantic structure is proposed for represent-

ing ontology changes, referred to as Change History Ontology (CHO). A comprehensive

workflow for change traceability is also presented later. The framework helps in auto-

matically detecting and logging all the changes, triggered by the change request from the

ontology engineer. Changes can be recorded according to the defined structure in the

repository and can later be utilized to minimize the evolution effects. Consequently, this

chapter is organized into two major sections: in first section, CHO is introduced with

all its basic design and development constructs. This ontology is used to give a defined

structure to ontology changes. The second section of this chapter presents the Change

History Log (CHL) on top of CHO, to store ontology changes. Examples showing the

representation of changes in CHL are also presented in this chapter.

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 36

3.1 Ontology Change

Change is the only constant and is taking place throughout the passage of time in a given

domain. Due to the nature of change, it causes cascading effects, including inconsisten-

cies in domain knowledge. So studying and reasoning about change make sense when

things extend through time which means that the temporal changes relating to concept

can have different characteristics at different times [101].

From the above discussion, it is clear that with the dimensions like; reason for change,

change agent, and actual change; there is another dimension of change i.e., the time di-

mension [72]. In order to handle the change, ontology engineer need to identify its occur-

rence, effects, dependency, and time [90]. As mentioned before, the occurrence of change

is time independent and can be referred with time. So representing a change to be univer-

sally identifiable and independently meaningful, following five aspects must be contained

in it that are derived from the discussion above. (1) Who (user) performed the change?

(2) When (timestamp) is this change applied? (3) How is this change identified (change

identifier) from a change list? (4) What is the change (change element)? (5) Where is the

change applied in ontology context (change parameters with respect to ontology)? The

first three aspects holds the meta data information of the change, whereas, the fourth and

fifth aspects holds the actual information of change items (see Figure 3.1). This change

is an example of atomic type change, whereas, to handle these sort of changes, a detailed

representational structure is required. The representational structure is discussed in the

next section with details for change representation and storage.

The five aspects of change in Figure 3.1 are satisfied in the following manner. (1) User

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 37

Figure 3.1: Ontology changes including change item with meta data of the changes.

in this example is Asad. (2) The timestamp value in example is Thu Mar 10 15:51:26

GMT 2011 (3) The identifier for this change is 1299772286625 (4) The change operation

is Add subClass. (5) The change parameters are PhD Student is added as subclass of

Student class.

3.2 Change History Ontology

A number of changes, ranging from concepts to properties, can affect an evolving on-

tology. Most of these changes are discussed in greater length in previous literature [8,

58, 81]. The understanding of different ontology changes is necessary to correctly han-

dle explicit and implicit change requirements, classify the changes, and modeling the

changes for their unified representation [24, 27, 38, 58, 81]. For that purpose, an ontol-

ogy to capture ontology change requirements and keep track of the change history have

been designed and developed. The proposed Change History Ontology (CHO) [52] reuses

constructs from existing ontologies [26, 58, 62] and ontology design patterns [33]. New

extensions to the existing schemes have been introduced in this research. The notable

extensions of CHO are discussed in the subsequent sections.

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 38

Figure 3.2: Ontology change and its consistency with the change representation scheme
and constraints.

Before presenting CHO, it is important to highlight some of the main participating

characters of it. The core elements of CHO are the OntologyChange and ChangeSet

classes. The OntologyChange class has a subclass AtomicChange that represents all

the class, property, individual, and constraint level changes at atomic level. On the other

hand, the ChangeSet bundles all the changes from specific time interval in a coherent

manner. The ChangeSet is responsible for managing all the ontology changes and ar-

ranges them in time indexed fashion. This time indexing also classifies the ChangeSet

as Instant type and Interval type. Instant type ChangeSet holds only one change

occurred at some time instant, whereas the Interval type ChangeSet holds the changes

occurred in a stretched time interval.

Different resources are referred using different prefixes in this work. It is important to

explain the prefixes prior to their use in this research work. The concepts under the “ch”

prefix are used from change history ontology and the prefixes “log” and “bib” represent

the repository log and an example of evolving Bibliography ontology respectively. “xml”

is used for xml, “rdf” for rdf, “rdfs” for rdfs, and “owl” for owl namespaces.

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 39

3.2.1 Change Handling

The CHO is strictly bounded with the principles of change in ontology/knowledgebase.

To satisfy the validity of a change, a change must have three basic properties i.e., Mini-

mal, Success, and Validity [1] discussed below. To validate the change, the change must

go through the connected process of validatory (see Figure 3.2). The execution of this

process depends on change validity constraints (for consistency, discussed in this section)

and change formulation procedures introduced in later sections of this chapter.

1 The Principle of Minimal Change enforce that the modifications supposed to be

applied on ontology should be minimal. The applied changes are kept at atomic or

minimal level for the purpose to avoid any drastic change in ontology. To enforce

the minimality of change, the concept of transaction ACID (atomicity, consistency,

isolation, and durability) property is applied [34]. The ACID property axioms are

given below, whereas, for the given case database transaction is considered as a

change and database is considered as ontology. The below given axiom enforce

that at particular time, there should be only one change which satisfy the atomicity

property of a change.

Change ≡ ∃X{X|X ∈ ∆, X.resources.lock = exclusive}

To add in the atomicity of change, executing it in isolation is implemented using

below axiom.

Change ≡ ∃X{X|X ∈ ∆, X = 1}

After having all the resources rights and executing in isolation, the next constraint

to be verified before reflecting the change results to dependent ontology and ap-

plications is consistency. The constraints are to verify the consistency of ontology

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 40

and once the change is executed then the results will completely be reflected to the

dependent ontology and application. The axioms for consistency of ontology after

change is given in the Principle of Validity, whereas, durability of change imple-

mentation on ontology is enforced in the below given axiom.

Ontology ≡ {{Ontology−Change}t{Ontology+Change}}u{Ontology.consistent =

true}

Based on the above discussion and propositions, below given axiom is used to en-

force the overall minimality of change. It represents the notion (constraint) for

keeping the change at minimal level.

Change ≡ ∃X{X|X ∈ ∆, X = 1targetChange}

2 The Principle of Success observe and satisfy the priorities of alternate changes.

Mostly, there are alternate changes available for a given change request. So before

a change is applied, the set of changes (alternate changes) are tested for their final

result. A change with minimal effects and complete execution is selected for the

final implementation. The axiom given below satisfy this principle implementation.

Change ≡ ∃X{X|X ∈ ∆,∆ = {C1,Cn}}whereC = ChangeInstance

Change = 1targetChange umin.(Change.Effects)

3 The Principle of Validity enforces that when a change is applied then the ontology

must evolve to a new consistent state. Any change that cannot satisfy the consis-

tency constraint is not applied to an ontology. The ACID property consistency is

formulated and applied.

Change ≡ ∃X{X|X ∈ ∆, Ontology.consistent(change) = true}

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 41

This principle of validity is enforced using the following axiom based on the con-

sistency validation borrowed from the ACID property of transactions.

Change ≡ ∃X{X|X ∈ ∆,∆ = {C1,Cn}}whereC = ChangeInstance

Change = 1targetChange uOntology.consistent.(Change) = true

To enforce the change implementation principles on CHO, CHO has been modeled

to capture the changes at atomic level and all the changes must be applied in isolation.

In addition, the change should completely satisfy the ACID property of a transaction. A

change when implemented is atomic, either it should be performed completely or should

not be performed at all. No other change is handled until the current change has been

processed and stored. This make the change to be handled in isolation and results in a

consistent evolved state of an ontology. After the formulation/handling of change, the

change is formally logged in CHL for future use that facilitate the durability of change

handling.

3.2.2 Change Set

The notion of ChangeSet was introduced a couple of years ago [52]. The same has

also been suggested in Change Set Vocabulary [35, 97]. The rationale is that individual

changes are not performed in isolation and are usually part of a particular session. On the

contrary, ChangeSet can be used to group the individual changes from a particular ses-

sion in order to incorporate a holistic view over an ontology evolution. Logging changes

in sets also helps in maintaining and managing the ontology changes corresponding to

specific sessions which is also required for mapping reconciliation, as discussed later.

The use of ChangeSet(s) is common in versioning systems, such as CVS and SVN. A

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 42

ChangeSet holds information about the changes made during an ontology engineering

session. A ChangeSet can span over a stretched interval of time. Its members, atomic

changes, are singleton changes on an ontology element at some instance of time. Dif-

ferent changes can be part of the ChangeSet, such as modifying details of an ontology

class or adding a new object property. ChangeSets also help in maintaining the sequence

and grouping of changes. The example in Figure 3.3 of ChangeSet instance covers an

ontology editing session spanning over half an hour.

log:ChangeSet01
rdfs:type ch:ChangeSet ;
ch:hasChangeSetType log:Interval ;
ch:hasChangeAuthor log:ChangeAgent01 ;
ch:startTime "2010-01-01 15:12:58+1" ;
ch:endTime "2010-01-01 15:43:11+1" ;
ch:hasChangeReason "Concept X is split into two levels" ;
ch:targetOntology http://seecs.nust.edu.pk/vocab/bib .

Figure 3.3: A ChangeSet example with corresponding meta data including the change
agent information, the reason for change, the changed ontology, and the start and end
times of the change event. The Figure shows the time spam of ChangeSet as well.

3.2.3 Provenance

The proposed change history ontology is also designed to captures provenance informa-

tion, such as the change author, reason, and timestamp of change. The author can be

an ontology engineer making changes using an ontology editor, or a software agent re-

questing for some changes, such as an agent during an automatic ontology mapping task.

Figure 3.4 depicts an instance of the ChangeAgent class from CHO.

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 43

log:ChangeSet01
rdfs:type ch:ChangeSet ;
ch:hasChangeSetType log:Interval ;
ch:hasChangeAuthor log:ChangeAgent01 ;
...

log:ChangeAgent01
rdfs:type foaf:Person, ch:ChangeAgent;
ch:fullName "Asad Masood".

Figure 3.4: Representation of ChangeSet author information using CHO.

3.2.4 Change Types

The change history ontology supports three types of change operations corresponding to

the CRUD interfaces in databases (except the read operation). Create allows the addition

of new facts and vocabulary in ontology, such as ClassAddition, PropertyAddition,

and IndividualAddition. Update operation is used for modifying existing triples, such

as renaming a class, property, and individual throughClassRename, PropertyRename,

and IndividualRename respectively. And lastly, Delete operation serves for removing

axioms from the ontology, such asClassDeletion, PropertyDeletion, and IndividualDeletion.

The following axioms depict parts of the conceptual representation of this aspect.

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 44

OntologyChange ≡ ∃changeTarget.(Class t Property t

Individual tOntology) u ∃changeType.(

Create t Update tDelete) (3.1)

ClassChange ≡ OntologyChange u ∀changeTarget.Class (3.2)

ClassAddition ≡ ClassChange u ∀changeType.Create (3.3)

SubClassAddition ≡ ClassAddition u ∀targetSubClass.Class

u = 1targetParent (3.4)

For instance, the snippet in Figure 3.5 represents the addition of a new subclass.

SubClassAddition is defined as a subclass ofClassAddition and is a type ofClassChange

event. The hasChangedTarget represents the newly added class in the Bibliography on-

tology. As the new class is a subclass, the hasTargetParent property connects the newly

added class with its parent class through a subclass assertion. The hasT imeStamp rep-

resents the exact time of the change event, whereas, the isPartOf connects the change

to the corresponding ChangeSet instance.

In the below points, some of the modifications that are made to CHO during im-

plementation of the system are discussed. These changes are then reflected in the final

version of CHO.

• The first version the CHO was modeled in Web Ontology Language - Description

Logic (OWL-DL) and all changes related to classes and properties were represented

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 45

log:ClassAddition01
rdfs:type ch:SubClassAddition ;
ch:hasChangedTarget bib:Transaction ;
ch:hasTargetParent bib:Journal ;
ch:hasTimeStamp "2010-01-01 15:12:59+1" ;
ch:isPartOf log:ChangeSet01 .

Figure 3.5: An example of Transaction class addition as a subclass of parent class Journal
and its representation using CHO.

using a datatype property hasChangedTarget with a string value. Consequently,

it required string manipulation to process the entries in/from CHL, which is er-

ror prone and may lead to incorrect results. To overcome this problem, the CHO

is transformed from OWL-DL to Web Ontology Language - FULL (OWL-FULL)

and hasChangedTarget is declared an object property and its range is set to

owl:Class. A similar treatment is applied to isSubClassOf , isSubPropertyOf ,

hasDomain, hasRange, isInverseOf .

• The datatype property hasChangeSetType has also been changed to an object

type property and created a new class ChangeSetType having two instances as

Instant and Interval. Now the property hasChangeSetType connect the class

ChangeSet with ChangeSetType for its type value.

• Each ChangeSet also needs to maintain information about the ontology to which

its corresponding changes are made. In previous version a datatype property hasOntology

having string value was used; however, during implementation the property has

been changed to object type property and its range is set as owl:Ontology.

• Two other properties isSubClassOf and isSubPropertyOf are also changed to

object type properties and their ranges are set to owl:Class and rdfs:Property re-

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 46

spectively. The reason for their conversion is to log complete Universal Resource

Identifier (URI) of the resources they are referring to.

3.2.5 Temporal Ordering

A time stamp is added with each ontology change. Though a single change is performed

at an instance of time, it is common that several changes are performed over an extended

time interval. A single change is modeled as a change at a time instance, whereas a se-

quence of changes is considered as one ChangeSet spanned over a time interval. So for

every change entry that corresponds to a ChangeSet, a timestamp value is added. This

helps in keeping the ontology change entries in an order. The snippet in Figure 3.6 is an

example of a timestamp value added to a PropertyDeletion event.

log:PropertyDeletion01
rdfs:type ch:PropertyDeletion ;
ch:hasChangedTarget bib:title ;
ch:hasPropertyType owl:DataType Property
ch:hasTimeStamp "2010-01-01 15:24:31+1" ;
ch:isPartOf log:ChangeSet01 .

Figure 3.6: Example of showing the timestamp value attached with the
PropertyDeletion change instance using CHO.

3.2.6 Conceptual Design Patterns

Recently, different ontology development methodologies have emerged [9, 49, 99], some

of which advocate the reuse of concepts and patterns from foundational ontologies [33].

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 47

Ontology

Resource OntologyChange

TimeInterval

+participant‐in

1..*

+temporal‐location 1+defined‐in1

Figure 3.7: Realizing Participation Pattern in Change History Ontology.

More specifically, patterns are useful in order to acquire, develop, and refine the ontolo-

gies. Two of the fundamental ontology design patterns have been reused in this research.

The Participation Pattern consists of a participant in relation between the ontology re-

source and the change event, and assumes a time indexing for it [33]. Time indexing is

provided by the temporal location of the change in a time interval, while the respective

location within the ontology space is provided by the participating objects (see Figure 3.7

and 3.9). As an example, consider Figure 3.8 as the description of a ChangeSet.

In Figure 3.8, a ChangeSet instance is described using CHO. The start and end times

of the changes are reflected by startT ime and endT ime, respectively. It also logs infor-

mation about the change agent and the reason for the changes.

CHO is the backbone of the proposed framework. It binds different components of

the framework togethers in order to effectively recover ontology from its previous state.

In most of the previous approaches, ontology changes are stored sequentially without

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 48

log:ChangeSet192
rdfs:type ch:ChangeSet ;
ch:hasChangeSetType log:Interval
ch:hasChangeAuthor log:ChangeAgent2 ;
ch:startTime "2010-01-02 16:32:58+1" ;
ch:endTime "2010-01-02 16:53:11+1" ;
ch:hasChangeReason "Changes after applying

rigidity meta property." ;
ch:targetOntology http://seecs.nust.edu.pk/vocab/bib .

Figure 3.8: Example of a ChangeSet instance spanning over a time interval.

preserving their dependence or interlinking with other changes [26, 27, 35, 58, 62, 81].

CHO on the contrary, uses ChangeSets to group and time index the changes in a ses-

sion to preserve coherence of all the ontology changes. A ChangeSet is a setting for

atomic changes. One ontology resource participates in a change event at one time in-

terval. Figure 3.9 shows diagrammatic depiction of this pattern. The complete change

history ontology is available online1. Core classes and concepts in the ontology are also

shown in the Figure 3.10.

3.2.7 CHO Modeling Language

To represent the intricacy of changes in, classes, properties, individuals, and constraints;

quite a large number of classes with associated object and datatype properties are mod-

eled. This helps in recording all the relevant information about a specific change. The

properties in CHO, which link the change with its target, are represented as annotation

properties. Similarly, object properties are modeled to hold the information of changing

1http://uclab.khu.ac.kr/ext/asad/CHOntology.owl

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 49

Figure 3.9: Reification of time-indexed participation: ChangeSet is a setting for a change
event, ontology resources participating in that change event, and the time interval in which
the change occurs.

classes by setting their range to owl:class. Consequently, the model still conforms to

OWL-DL; however, it supports very limited Description Logic (DL) inference. Advan-

tages of this approach are: reducing the likelihood of error, avoiding string manipulation,

and removing ambiguity about the change target.

SubClassAddition ≡ ClassAddition u ∀targetSubClass.Class

u = 1targetParent

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 50

Figure 3.10: Snapshot representing core classes of Change History Ontology.

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 51

3.2.8 Complex Changes

In addition to simple class additions, deletions, and renaming’s; complex facet modifica-

tion information is also recorded. Examples include property scope restrictions, equiva-

lence, disjointness, and complex union classes. Similarly, property modification details,

such as change in domain/range, setting upper-bound and lower-bound for property val-

ues, symmetric, equivalent, inverse, and functional property axioms are also recorded.

Consider an ontology given in Figure 3.11, the Document class has two subclasses:

TechnicalDocument and ResearchDocument. The Document class is also the domain of

an object property author. Suppose, due to some reasons the Document class gets deleted.

This deletion is a complex change event as it will also result in deletion of the subclasses

and also unsetting the domain of author property. Proposed system records all the changes

one by one at atomic level in a sequence. In this deletion event, the change order triggered

by Protege is the deletion of the subclasses first, then the deletion of domain of a property,

and at the end the deletion of the Document class. Proposed system listens to all these

changes and logs them in CHL. Figure 3.12 represent information about changes made to

the ontology and represented in CHL as a sequence of atomic changes resulting from a

complex change event.

3.3 Change History Log (CHL)

In this section, the change history logging scheme has been introduced. On top of CHL,

different applications are possible and are briefly discussed in next chapter. The subse-

quent chapter introduce and explain different applications (CHL-based applications).

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 52

Figure 3.11: An example ontology showing the complex change scenario.

Similar to relational databases, the proposed methodology relies on a logging tech-

nique to persistently store ontology changes. Logged changes help in recovering a previ-

ous state of ontology after, for example, un-authorized changes, version conflicts, or even

an inconsistent state of ontology due to accidentally closing the ontology editor. The

changes are automatically preserved in a time-indexed manner in a triple store embedded

with the framework. Recovery is manually triggered by a knowledge engineer collabo-

ratively building the ontology. The change description in the log conforms to the CHO.

Each entry in the log is an instance of either the ChangeSet or OntologyChange class.

The log also preserves the provenance information about the changes, such as who made

the changes, and when and why these changes were made.

The proposed change history management framework offers numerous benefits rang-

ing from reconciling ontology mappings to increased understanding of ontology evolution

process. A running example featuring a Bibliography ontology to show the process of log-

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 53

Figure 3.12: Complex (compound) change resulting from a single change event (Docu-
ment class deletion).

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 54

ging the changes in CHL. Consider two changes as a part of oneChangeSet. First change

adds a new Author class in the ontology and the second change sets Author as range of

the property hasAuthor. Firstly, the process of creating entries in the log is explained.

Taking into account the first change, an individual of ClassAddition is instantiated. The

isPartOf property of this change instance is set to the active ChangeSet. Secondly,

the hasT imeStamp value of the atomic change is also recorded for time-indexing of

change entries. For logging the range addition entry, an individual of RangeAddition

class from change history ontology is created and the value for its hasChangedTarget

predicate is set to the Object property for which the range has changed. The modified

range information is then stored as a value of hasTargetRange property. Like all log

entries, the isPartOf property of the individual is set to the active ChangeSet and

its hasT imeStamp value is also stored with the individual. The code snippet given in

Figure3.13 represents these changes in Resource Description Logic / Notation 3 (RDF/N3)

format.

In this chapter, a semantically enrich structure (i.e., Change History Ontology) for rep-

resenting the ontology changes with major constructs like ChangeAgent, ChangeSet,

and OntologyChange is developed. Their working details and logging information in

Change History Log with timestamp are all elaborated with examples. As the changes

are all logged in the CHL, which are usable for different applications. The potential appli-

cations of CHL are discussed in next chapter with suggested implementation procedures.

CHAPTER 3. CHO: THE CHANGE HISTORY ONTOLOGY 55

log:ChangeSet192
rdfs:type ch:ChangeSet ;
ch:hasChangeSetType ch:Interval
ch:hasChangeAuthor log:ChangeAgent2 ;
ch:startTime "2010-01-02 16:32:58+1" ;
ch:endTime "2010-01-02 16:53:11+1" ;
ch:hasChangeReason "Changes after applying

rigidity meta property." ;
ch:targetOntology http://seecs.nust.edu.pk/vocab/bib .

log:ChangeAgent192
rdfs:type ch:ChangeAgent, foaf:Person ;
foaf:name "Administrator" .

log:IntervalChangeSet2457
rdfs:type ch:ChangeSet ;
ch:hasChangeAuthor log:ChangeAgent192 ;
ch:startTime 00:00:46 ;
ch:endTime 00:03:21 ;
ch:hasChangeReason "User Request" ;
ch:targetOntology http://seecs.nust.edu.pk/vocab/bib .

log:ClassAddition245701
rdfs:type ch:ClassAddition ;
ch:hasChangedTarget bib:Author ;
ch:hasTimeStamp 1224702057078 ;
ch:isPartOf log:ChangeSet192 .

log:RangeAddition245701
rdfs:type ch:RangeAddition ;
ch:hasChangedTarget bib:hasAuthor ;
ch:hasPropertyType owl:ObjectProperty ;
ch:hasTargetRange bib:Author ;
ch:hasTimeStamp 1224702072640 ;
ch:isPartOf log:ChangeSet192 .

log:ClassRenaming245734
rdfs:type ch:ClassRenaming ;
ch:hasChangedName bib:TechnicalDocuments ;
ch:hasOldName bib:Technical_Documents ;
ch:hasTimeStamp 1224702057078 ;
ch:isPartOf log:ChangeSet192 .

Figure 3.13: Example of changes in Bibliography ontology represented using change
history ontology constructs.

Chapter 4

Applications of Change History Log

The proposed change history management framework offers numerous benefits ranging

from reconciling ontology mappings to increased understanding of ontology evolution

process. Ontology evolution propagate side effects of ontology evolution on the depen-

dent data, applications, systems, system agents, services, and other ontologies. For all

the challenges/issues/side effects discussed in different scenarios in subsequent sections,

possible solutions are suggested to overcome these challenges or even to minimize their

effects. In discussion on these challenges, the problems at class level (concept) are pre-

sented in the subsequent sections; however, it is applicable to all including slots, instances,

and restrictions.

In previous chapter, the change history logging scheme has been introduced. On top

of CHL, different applications are possible and are discussed in details with potential sug-

gested solutions in this chapter. The subsequent sections explains these applications in

detail.

56

CHAPTER 4. APPLICATIONS OF CHANGE HISTORY LOG 57

4.1 Ontology Recovery

Changes in an ontology makes the ontology to change from one state to another state.

Proper maintenance of the changes is very important to provide the facility of revert-

ing back these changes on the ontology to get the previous consistent state of ontology.

These stored changes not only provide the facility for rollback, but is also used for roll-

forward operations based on user request. Different ontology editors like Protege [79],

KAON [30], and OntoEdit [95] do provide the facility for undo and redo changes, but

they do not provide the facility for complete recovery of ontology from one consistent

state to another as discussed in Chapter 2, Table 2.2.

For the recovery of ontology, the proposed change history framework is implemented

as an enabling component for the ontology editor (i.e., Protege) [51]. It is designed to be

implemented as a plug-in for different ontology editors provided they support the hooks

implemented in the developed plug-in. The recovery component on top of all other com-

ponents should provide ontology recovery services. For details on recovery procedure

and validation of recovery output, please refer to [51]. The recovery process is still not

mature as the proposed recovery is only valid for structure level recovery of ontology;

however, there is still no system available that can work for both structure and instance

level recovery that will also guarantee smooth operations of web service using this ontol-

ogy.

Change history log records all the changes after time-indexing them as per the de-

sign pattern in the CHO. Time-indexing helps in recovering the ontology into a previous

consistent state [53]. Managing ontology changes during evolution is also helpful for a

CHAPTER 4. APPLICATIONS OF CHANGE HISTORY LOG 58

new user to get understanding of the changes made. In addition to change reason, an-

notations can also be added with all the logged changes and associated artifacts to help

understanding the changes in ontology, data, and application [52]. The log can also be

used to understand the semantics of change on the available ontology constructs.

4.2 Visualization

The Visualization module is responsible for visualizing the ontology, ontology changes,

and their effect on ontology. This visualization is in graph like structure rather then tree

like structure, because the ontology with class and sub-class hierarchy can also have as-

sociative relationships with other classes [58]. Figure 4.1 is an interface for visualizing

ontology and visually navigating through its different states. Ontology components (such

as concepts and their relationships) as well as the changes made in the ontology are vi-

sualized. Effects of these changes, for example, how it evolved to the current state, are

emitted by navigating through the life of ontology.

In order to visualize changes, the ontology change parser processes the requested

ChangeSets and their corresponding changes. The changes are reverted or implemented

on the ontology with the help of recovery module to take ontology to a previous or next

state. The TouchGraph API is extended for graph drawing in order to visualize the graph

view of the ontology structure. Resources, such as classes, are depicted as nodes. These

nodes are connected through properties, which are depicted as edges. The direction of an

edge depicts the direction of the relationship among the nodes.

CHAPTER 4. APPLICATIONS OF CHANGE HISTORY LOG 59

Number of filters are supported in the graph view, such as zooming in and out of the

graph and fish-eye view. A modified version of the Spring graph drawing algorithm [64]

is implemented in the visualization that ensures aesthetically good looking graph struc-

ture and well separated nodes. The playback and play-forward features where not only the

ontology but the changes can also be navigated are provided using the proposed scheme.

The visual navigation of changes and change effects on ontology helps in analyzing the

trends (Figure 4.1). Starting from the very first version of the ontology, the user can play

the ontology changes and their effects on ontology and resources. The changing concepts

are highlighted and color coded to reflect the changes. For example, the deleted concepts

fade out and the new additions gradually appear in the graph. This improves understand-

ing of the evolution history of ontology.

Ontology visualization tools and plug-ins are available in abundance. None demon-

strates ontology evolution and change visualization. New breed of ontology visualization

tools can be implemented using change history log to visualize different ontology states.

Such a visualization of change effects on ontology can help in temporally tracing the on-

tology changes and better understanding the evolution behavior of ontology [53]. When

a user requests to visualize ontology at a particular time instant, all changes after that

time interval are reverted back and the older version of the ontology is regenerated and

visualized.

CHAPTER 4. APPLICATIONS OF CHANGE HISTORY LOG 60

Figure 4.1: Graph visualization of ontology with change history playback feature. Users
can visually navigate through the ontology changes.

CHAPTER 4. APPLICATIONS OF CHANGE HISTORY LOG 61

4.3 Mapping Reconciliation

Mappings among systems, web services, and ontologies are required to translate query

and/or share information [17, 46, 62, 67]. When ontology evolves from one consistent

state to another then its mapping with the other ontologies are no more reliable and query

execution and information exchange over such mappings among web services will pro-

duce unpredictable results. So when an ontology having mappings established with other

ontologies evolved then there is also a need for re-establishment of these stalled mappings

(see Figure 4.2).

Providing reliable mappings among evolving ontologies is a challenging task [89].

There is no such solution for re-engineering the broken mappings among the evolved

ontologies except to completely re-establish the mappings. To re-establish the mappings

among small ontologies is not an issue; however, if ontologies like Google Classification ,

Wiki Classification , Association for Computing Machinery (ACM) Classification Hierar-

chy , and Mathematics Subject Classification (MSC) Classification Hierarchy evolve with

even minor changes, then complete re-establishment of mappings among such ontologies

is a time consuming process. To solve this problem in time efficient manner, the intro-

duction of CHL [52] containing all the changes (reason for ontology evolution), can play

an important role.

Consider two ontologies are mapped and they exchange information based on the es-

tablished mappings. Now one or both the ontologies are changed (evolved) to another

state. In this case the already existing mappings are not reliable and also became stale.

The mappings between these two ontologies also need to evolve with the evolving on-

CHAPTER 4. APPLICATIONS OF CHANGE HISTORY LOG 62

tologies to be up to date. The scenario is discussed in two cases; (1) One of the mapped

ontologies evolves, (2) Both the ontologies evolve from one consistent state to another.

In both cases the mappings also needs to evolve to accommodate the mappings for the

changed resources and eliminate the staleness from the already established mappings and

facilitate information exchange among web services.

To reconcile the mappings in time efficient manner and remove the stalled mappings,

use of CHL entries for both the ontologies have been proposed. It helps to identify the

changed resources from both ontologies and establish mappings for these changed re-

sources and update the old mapping. The need is to only extend the method for calcu-

lating Semantic Affinity (SA) by incorporating the change information from CHL. The

details on mapping reconciliation is discussed in next chapter as well as please refer to

[57].

Though this proposed process for reconciliation of mapping will reduce time; how-

ever, this raise another problem for accuracy of reestablished mappings. A need is to

come up with such a technique that not only reduce the time for mapping reconciliation

but also produce the same amount of accurate mappings that systems like; Falcon [46],

Lily [104], AgreementMaker [19], and TaxoMap [41] generates.

4.4 Query Reformulation

Query written over one schema does not give correct results when executed over another

schema [48]. It needs to be reformulated in order to fulfill the schema requirements.

CHAPTER 4. APPLICATIONS OF CHANGE HISTORY LOG 63

Figure 4.2: Ontology O1 and O2 having mappings, Ontology O1 have evolved from state
O1 to state O1’, so the previous mappings are no more reliable as there are different
changes introduced in O1’.

CHAPTER 4. APPLICATIONS OF CHANGE HISTORY LOG 64

Same is true for ontology, when ontology evolves from one consistent state to another

then the query written over previous state needs to be reformulated to extract required

results from the ontology [62]. The author in [62] proposed a five phase query reformu-

lation procedure for evolved ontologies. The main modules of the procedure are: capture,

instantiate, analyze, update, and respond (for details please refer to [62]). They evalu-

ated the system using two different versions of Conceptual Reference Model (CRM) [21]

ontology. The main idea behind this work is to maintain the changes that are reason for

evolution in a repository and later used these changes for query reformulation. Very re-

cently SPARQL Protocol and RDF Query Language (SPARQL) based push technique is

proposed to broadcast notifications to change listeners [92].

One of the limitations of this system is that it was only tested over two specific ver-

sions of CRM ontology, so its scalability is a question mark, not only for other ontologies

but also for different versions of CRM ontology. Secondly, the structure for logging the

ontology changes is also not suitable for query reformulation over more than two ver-

sions of ontologies at the same time as its hard to extract the changes from the log that

correspond to a particular state of ontology. CHO logs all the ontology changes in atomic

manner and also keep the changes separate from those that correspond to different state

of ontology. The notion of ChangeSet has been introduced that bundles all the ontology

changes together that are the cause of evolution from one state to another. So this separate

ChangeSet instances helps in proper reformulation of query for required version/state of

ontology. Figure 3.13 of Section 3.3 is an example of ChangeSet instance with the

corresponding changes that cause the ontology O1 evolved to O1’ state as shown in Fig-

ure 4.2.

CHAPTER 4. APPLICATIONS OF CHANGE HISTORY LOG 65

Consider a SPARQL query (given in Figure 4.3) written over Ontology O2 shown in

Figure 4.2 using a web service. This query will retrieve all the instance of class Car form

Ontology O2 in descending order of their names.

SELECT ?technicalDocument ?documentName WHERE {
?technicalDocument a :Technical_Document .
?technicalDocument :hasName ?documentName }
ORDER BY DESC(?documentName)

Figure 4.3: SPARQL query for extracting TechnicalDocument instances from ontology.

Let’s consider that Ontology O2 has evolved to another state Ontology O2’, now the

same query from same web service will not be able to extract the information from On-

tology O2’. For this purpose, the need is to reformulate the query for the newer state

of ontology. The query is reformulated using change history information extracted from

CHL using SPARQL queries given in Figure 4.4. This query extracts the ChangeSet

instance where the changes are stored. The query given in Figure 4.5 will extract changes

using the ChangeSet instance information from CHL.

SELECT ?subject ?object WHERE {
?changeSet a :Change_Set .
?changeSet :hasTimestamp ?timeStamp }
ORDER BY DESC(?timeStamp)

Figure 4.4: SPARQL query for extracting ChangeSet instance.

After extracting the information from CHL using above queries, the first query is

rewritten as given in Figure 4.6. This changed query will now get the required informa-

CHAPTER 4. APPLICATIONS OF CHANGE HISTORY LOG 66

SELECT ?change ?changedName ?oldName WHERE {
?change :isPartOf "changeSet" .
?change :hasOldName ?oldName .
?change :hasChangedName ?changedName .
FILTER regex(?oldName, "Car") }

Figure 4.5: SPARQL query for extracting the changes of a ChangeSet instance.

tion from the evolved state of ontology O2’.

SELECT ?technicalDocument ?documentName WHERE {
?technicalDocument a :TechnicalDocument .
?technicalDocument :hasName ?documentName }
ORDER BY DESC(?documentName)

Figure 4.6: SPARQL query for extracting the changes of a ChangeSet instance.

4.5 Change Prediction

For conflict resolution as well as for future change prediction, the logged changes can

be of good help. The changes logged in CHL [52] are simple changes that do provide

lots of open space for change patterns. See Figure 4.7, after every new class addition a

class renaming changes are due. The same way after every property addition, property

renaming and setting its domain and range is occurring. So these patterns can be extracted

and can be used in conflict resolution and next change prediction that indirectly help the

dependent applications and services. Using these frequent patterns can help in having a

better understanding of the ontology development. Figure 4.7 is an example of mining

frequent patterns from some of the changes logged.

CHAPTER 4. APPLICATIONS OF CHANGE HISTORY LOG 67

Figure 4.7: Mining frequent change pattern from logged changes.

4.6 Collaborative Ontology Engineering

The ontology as by definition are shared, so changes made to any instance of ontology

should also be reflected to all other instance of an ontology. To support this concept of

collaborative ontology engineering, a sophisticated and formal structure for change man-

agement is required that can bundle the changes of a specific change session and later

propagate the changes to all the other instances as shown in Figure 4.8 where the changes

of Ow and Ox are propagated to O1, O2, and O3.

In this chapter, potential applications of CHL are discussed. In addition, the suggested

solutions are also presented that can be used to minimize the effects of ontology evolution

on the dependent data, applications, systems, and services. Next chapter, mainly focus

on the procedure of capturing ontology changes during ontology evolution (i.e., during

a change session). In addition, the procedure for mapping reconciliation based on the

captured changes is also presented in detail.

CHAPTER 4. APPLICATIONS OF CHANGE HISTORY LOG 68

Figure 4.8: This figure represent the scenario of collaborative ontology engineering and
the use of CHL in this scenario.

Chapter 5

Change Capturing and Mapping

Reconciliation

This chapter explains the process of change listening and logging in CHL. Ontology

change capturing process is responsible for capturing all the ontology changes and log-

ging them in CHL. The captured changes are then used for reconciling the stalled mapping

in a performance efficient manner. The detail procedure for mapping reconciliation is pre-

sented in this chapter. For example (see Figure 3.13), where different changes including

ClassAddition andRangeAddition instances are logged in CHL. These logged changes

are then used for the purpose of mapping reconciliation. The final outcome is the recon-

ciled mapping with better performance than the existing systems. Although, the reference

implementation of CHL is coupled with mapping reconciliation; however, it is designed

to be independent of change log implementations.

69

CHAPTER 5. CHANGE CAPTURING AND MAPPING RECONCILIATION 70

5.1 Change Capturing

As discussed in Chapter 2, change traceability and mapping reconciliation are essential

ingredients of ontology change management systems. A semantic structure for represent-

ing ontology changes is presented in Chapter 3 and a comprehensive workflow for change

traceability and mapping reconciliation is presented in this chapter. Consequently, this

chapter is organized into two major sections: In the first section, Change Capturing pro-

cedure is introduced that detect ontology changes of a change session and log it in CHL.

The second section of this chapter explains the detail mapping reconciliation procedure

for design and development. For better understandability, the algorithmic workflow is

also provided.

The proposed framework has been envisioned as an enabling component for ontol-

ogy editors. The framework itself does not provide ontology editing services, rather it

implements listeners (specific to an ontology editor) to monitor and log changes. The

framework is implemented for ontologies defined in Resource Description Framework

Schema (rdfs) and all variants of Web Ontology Language (OWL). Various components are

implemented in the framework to perform tasks related to change history management.

For example, the Change Logger component preserve the changes. The component based

framework architecture is given in Figure 5.1, whereas a detailed description of these

components is given in [51]. To validate the working of the proposed framework, a Tab-

Widget plug-in, ChangeTracer Tab, for ontology editor i.e., Protege has been developed.

Details of various modules are given below.

CHAPTER 5. CHANGE CAPTURING AND MAPPING RECONCILIATION 71

Figure 5.1: The figure shows overall architecture of the proposed system for change cap-
turing and reusing the changes for mapping reconciliation.

CHAPTER 5. CHANGE CAPTURING AND MAPPING RECONCILIATION 72

5.1.1 Change Listener

The Change listener module consists of multiple listeners which actively monitor vari-

ous types of changes applied to the ontology model in Protege. Table 5.1 presents all

the listeners implemented using the Protege OWL API. ProjectListener listens for project

related changes. One of its main functions is to listen for save or close commands to save

the active ChangeSet instance in CHL. KnolwedgeBaseListener is the most used listener

for capturing the changes which are also triggered by the other listeners. This listener

overlaps with ClsListener, ClassListener, SlotListener, and PropertyListener. FacetLis-

tener also overlaps with the ClsListener, ClassListener, SlotListener, and PropertyLis-

tener; however, it also provides additional axiom related change information. The In-

stanceListener overlaps with the KnolwedgeBaseListener for capturing the instance level

changes. When a change is committed, its corresponding listener collects the necessary

contextual information, such as change agent, target, and updated value.

5.1.2 Change Logger

The changes captured by the listeners are logged with conformance to CHO. All the

changes are handled at the atomic level. This aspect covers both atomic changes, such as

deleting a single concept, as well as complex scenarios e.g., deleting a sub-tree involving

multiple concepts. Atomic change are easy to handle. In contrast, compound changes are

sometimes harder to implement. For instance, deleting a ChangeAgent class will also

impact its subclasses. As a result, every change requests has to be handled at atomic level.

Logging component ultimately plays a critical role in maintaining atomicity of changes,

and undo or redo operations, in case of a failure. Logging component uses CHO specifi-

CHAPTER 5. CHANGE CAPTURING AND MAPPING RECONCILIATION 73

Change Listener Description
ProjectListener Listens all the project related events: like sav-

ing, closing, form changed, and runtime class
widget created.

KnowledgeBaseListener Helps in listening changes related to the model.
It overlaps in its provided methods with all the
listeners listed below.

ClsListener Helps in capturing the class, sub-class, and
super-class level changes.

ClassListener Similar to ClsListener, it helps in capturing the
class, sub-class, and super-class level changes.

SlotListener Helps in capturing the slot, sub-slot, and super-
slot level changes.

PropertyListener Helps in capturing the class property, sub-
property, and super-property level changes.

FacetListener Helps in capturing the changes, such as restric-
tions, on frames.

InstanceListener Helps in capturing changes related instances
and individuals.

Table 5.1: List of change listeners implemented in the Change Capturing plug-in to listen
and log ontology changes.

CHAPTER 5. CHANGE CAPTURING AND MAPPING RECONCILIATION 74

cations for persistent storage of changes.

5.1.3 Parser

The job of Parser is to: 1) Parse CHL for all the ChangeSet(s) instances that corre-

spond(s) to the open model in Protege on user request. 2) Parser is also used to communi-

cate with the CHL and stores the changes. 3) The parser is also responsible for extracting

the changes from CHL for the mapping reconciliation procedure.

Figure 5.2 shows the SPARQL queries for parsing the ontology changes form CHL.

These queries are executed on the CHL from Parser module to extract all the changes

corresponding to a specific ChangeSet instance. The first query extracts the ChangeSet

instances in time order, and then based on user needs, appropriate ChangeSet instance

is selected and its corresponding changes are extracted from the CHL. Afterwards the de-

tails of these changes are extracted. The queries are important for the purpose to extract

the changes from CHL, which are used in mapping reconciliation.

5.2 Reconciliation of Ontology Mappings

Mappings are defined between two ontologies at a time; one is called the source ontology

and the other being called the target ontology. The proposed scheme for mapping rec-

onciliation in dynamic/evolving ontologies is time efficient and eliminates staleness from

the mappings. It uses ontology changes of evolving ontologies to reconcile the mappings.

It is based on the concept of CHL [52] that contains all the ontology changes that hap-

CHAPTER 5. CHANGE CAPTURING AND MAPPING RECONCILIATION 75

pen to an ontology during evolution. The change log is required for the reason to know

which of the ontology resource has changed and resulted in unreliable existing elements

in mappings. The unreliable mappings are because of the changed resources and need

re-alignments. For this reason, the changes in dynamic ontology need to be maintained

persistently for their later use, such as query reformulation, ontology recovery, and change

prediction [54], and in this case for mapping reconciliation. So basically the proposed

scheme (for architecture see Figure 5.3) for reconciliation of ontology mapping has two

main components; 1) Change History Log to maintain all the ontology changes in a se-

mantic structure and 2) Mapping Reconciliation process to eliminate unreliable mappings

from the existing mapping and re-establish mapping for the dynamic ontologies.

5.2.1 Mapping Reconciliation Procedure

As discussed above, there are different algorithms available to establish mappings be-

tween ontologies [5, 17, 46, 67, 76, 104]. The existing systems do provide the facility for

re-establishment of mappings between dynamic ontologies after their evolution; however,

they start the mapping re-establishment process from the scratch which is time consum-

ing operation. The proposed contribution is to use the change entries of ontology (after

evolution) stored in the CHL [52] for reconciliation of mappings between ontologies,

which not only helps to eliminate staled mappings but also takes less time to reconcile

mappings in dynamic/evolving ontologies. In this approach, the focus is to only concen-

trate on the changed resources between the evolved ontologies. The approach is most

suitable for large sized ontologies having hundreds and thousands of resources, for exam-

ple; when reconciling mappings (after change) among Mrinkman, GTT, GEMET, NALT,

CHAPTER 5. CHANGE CAPTURING AND MAPPING RECONCILIATION 76

(Algorithm 1 - Mapping Reconciliation Algorithm) Mapping reconciliation
algorithm for ontology mapping using ontology changes stored in Change History
Log (CHL).
Input: Ontologies O1 and O2 for mapping reconciliation.
Input: Ontology change information (i.e., ∆1 and ∆2) from CHL of both
ontologies, i.e., ∆1 ∈ O1 and ∆2 ∈ O2.
Constant: A resource matching threshold is defined as ψ = 0.70
Output: Set of mappings for the changed resources and then updated in the
original mappings file.
1. /* Check for change of resources in CHL of both the mapped ontologies and
read the changes in ∆*/
2. if ∃∆ u ∃∆.O1.CHL.NewChanges then
3. /* Read the changes in ∆1 */
4. ∆1 ← {x|〈CHL∆, x〉Change}
5. endif
6. if ∃∆ u ∃∆.O2.CHL.NewChanges then
7. /* Read the changes in ∆2 */
8. ∆2 ← {x|〈CHL∆, x〉Change}
9. endif
10. /* Delete all the mappings from the original mapping file that are subject to
change because of change in the mapped resources. This method takes both ∆1 and
Delta2 as optional parameters and use if a change exist in CHL and retrieved in ∆
*/
11. Execute.delete(Mappings, [∆1], [∆2])
12. /* Start mapping reconciliation procedure by calculating semantic affinity */
13. if ∃∆1.Change u ∃∆2.Change then
14. /* Calculate semantic affinity using changed resources of both the
ontologies */
15. R−Map[][]← SemanticAffinity(C1 ∈ O1,∆1, C2 ∈ O2,∆2, ψ)
16. else-if ∃∆1.Change t ∃∆2.Change then
17. /* Calculate semantic affinity using changed resources of one changed
ontology represented as ∆′ */
18. R−Map[][]← SemanticAffinity(C1 ∈ O1, C2 ∈ O2,∆

′, ψ)
19. endif
20. /* Update the original mapping file with the reconciled mappings for the
changed resources.*/
21. Execute.delete(Mappings,R−Map[][])
22. end

CHAPTER 5. CHANGE CAPTURING AND MAPPING RECONCILIATION 77

Google Classification, Wiki Classification, ACM Classification Hierarchy, and MSC Clas-

sification Hierarchy. The larger the size of ontology the better and more time efficient the

approach is against any of the above discussed algorithms. Detail procedure is given be-

low.

5.2.2 Re-establishing Mappings

Consider the scenario given in Figure 5.3, where two ontologies are mapped and they

exchange information based on the established mappings. Now suppose that one or both

ontologies change (evolve) to another state (see Figure 5.3). In this case the already ex-

isting mappings are of no more use as they are not reliable and also became stale. So the

mappings between these two ontologies need to evolve with the evolving ontologies to be

up to date. To elaborate it further, two different cases are considered.

Case 1: If one of the ontologies evolves from one state to another then its mapping with

other ontologies becomes unreliable as there will be a definite change in the re-

sources mapped with the other ontology. To reconcile the mappings between these

ontologies, mappings should be reconciled. Instead of completely re-initializing

the mapping process from the scratch, which is a time consuming process. CHL

entries are used to figure out the changed resources in the evolved ontology. Then

use only these changed resources from CHL in mapping reconciliation process to

map it with the other ontology and simply update the previous mappings with the

new one and remove the staled mapping entries. In this case, the need is to only

extend the method for calculating the Semantic Affinity (SA) by incorporating the

CHAPTER 5. CHANGE CAPTURING AND MAPPING RECONCILIATION 78

SA(C1, C2,∆2, ψ) C1 Resource from Ontology O1

C2 Resource from changed Ontology O2

∆2 Change information from CHL of Ontology O2

ψ User defined threshold for resource match

change information from CHL. So the modified method, including parameters, is

given below;

Case 2: Consider the second case where both the ontologies evolve from one consistent

state to another as demonstrated in Figure 5.3. This is also the worst case scenario

in terms of execution time for mapping reconciliation. In this case the mapping also

needs to evolve to accommodate the mappings for the new changed resources and

eliminate the staleness from the already established mappings. Again, there is no

need to completely re-establish the mappings between both ontologies like existing

systems which is a time and resource consuming process; instead, the need is to

reconcile mappings for the changed resources. As given in Figure 5.3, both ontolo-

gies O1 and O2 have evolved. To reconcile the mappings between the evolved on-

tologies and remove the staled mappings in time efficient manner, the CHL entries

are used for both ontologies to identify the changed resources from them. Based

on identified changes, mappings are reconciled for these changed resources, the old

mappings are updated, and the unreliable (staled) mappings from the previous map-

pings are removed. This is not only a time efficient technique but also eliminates

the staleness from the mappings that need to be updated for reliable communication

and exchange of information between systems and/or services.

The inputs for this module are; (also shown in Figure 5.3) the evolved ontologies

CHAPTER 5. CHANGE CAPTURING AND MAPPING RECONCILIATION 79

SA(C1,∆1, C2,∆2, ψ) C1 Resource from Ontology O1

∆1 Change information from CHL of Ontology O1

C2 Resource from Ontology O2

∆2 Change information from CHL of Ontology O2

ψ User defined threshold for resource match

O1 and O2, the CHL entries for both ontologies O1 and O2 for ontology O1 and for

ontologyO2 respectively. The pervious mappings between these two ontologies are

also updated in the proposed algorithm (see Algorithm 1) execution. The SA is

calculated by incorporating the change information from the CHL. So the modified

method including parameters is like given below.

∆1 and ∆2 are the changes of both ontology contained in the CHL. For calculating

the SA, these changes are required and extracted from the CHL using SPARQL

queries given in Figure 5.2. To get the latest changes, first the ChangeSet in-

stances are extracted and sorted in descending order of their timestamp defined

in the CHO and the top most ChangeSet instance is selected. Afterwards, all the

changes corresponding to the selected ChangeSet instance are retrieved from the

CHL.

After the process of reconciliation, the staled parts of mappings are removed from

the overall mappings. It is updated with the new changed mappings, as shown in Fig-

ure 5.3, with color blue in the mappings and underlined. This process of reconciliation of

mappings not only eliminates the staleness from the mappings but is also more time and

memory efficient (as it just focuses on the changed resource) that makes it more suitable

for systems and services dealing in information exchange.

CHAPTER 5. CHANGE CAPTURING AND MAPPING RECONCILIATION 80

This chapter focused on the design and development of a change capturing proce-

dure. The captured changes are logged in CHL. Later the changes are retrieved from

CHL and used for mapping reconciliation. The procedure for mapping reconciliation is

also presented in detail with two scenarios. The next chapter is on the implementation of

the proposed procedures. It also discusses the experimental results of proposed scheme.

Moreover, the proposed systems are also compared with existing systems and discussion

on results comparison is also provided.

CHAPTER 5. CHANGE CAPTURING AND MAPPING RECONCILIATION 81

SELECT ?changes ?timeStamp
WHERE { ?changes docLog:isPartOf changeSetInstance .
?changes docLog:hasTimeStamp ?timeStamp }
ORDER BY DESC(?timeStamp)

SELECT ?changedTarget ?isSubClassOf
WHERE { Resource docLog:hasChangedTarget ?changedTarget .
Resource docLog:isSubClassOf ?isSubClassOf }

SELECT ?change ?changedTarget ?isSubClassOf ?isSubPtyOf ?hasPtyType
?oldName ?changedName ?hasDomain ?hasRange?timeStamp
WHERE { ?change docLog:isPartOf changeSetInstance .
OPTIONAL {?change docLog:hasChangedTarget ?changedTarget} .
OPTIONAL {?change docLog:isSubClassOf ?isSubClassOf} .
OPTIONAL {?change docLog:isSubPropertyOf ?isSubPtyOf} .
OPTIONAL {?change docLog:hasPropertyType ?hasPtyType} .
OPTIONAL {?change docLog:hasOldName ?oldName} .
OPTIONAL {?change docLog:hasChangedName ?changedName} .
OPTIONAL {?change docLog:hasDomain ?hasDomain} .
OPTIONAL {?change docLog:hasRange ?hasRange} .

.

.
?change docLog:hasTimeStamp ?timeStamp }
ORDER BY DESC(?timeStamp)

Figure 5.2: SPARQL query for extracting changes corresponding to the ChangeSet and
then extracting their relevant details.

CHAPTER 5. CHANGE CAPTURING AND MAPPING RECONCILIATION 82

Figure 5.3: Shows the overall framework for reconciliation of mappings in dy-
namic/evolving web ontologies. It also shows the process of ontology change storage
and reuse for mapping reconciliation process.

Chapter 6

Implementation and Results

This chapter provides the details on building a framework for tracing ontology changes.

This helps in automatically detecting and logging all the changes, triggered by the change

request from ontology engineer. The focus is to develop a generic framework for tempo-

ral traceability of ontology changes during evolution. For this a repository is required to

record all the changes. For this a semantic structure for representing ontology changes

is developed to keep track of changes. It can also provide facility to make the ontology

changes temporally traceable. The repository helps in providing mapping reconciliation

facility discussed in Section 6.2.

The proposed framework is implemented as a plug-in for ontology editing tool pro-

tege [78]. There are different ontology tools available, as discussed in Chapter 2, Table 2.2

and also discussed in [13, 27]. The selection of plug-in development for protege is based

on the analysis of the existing tools and the facilities available in them. Keeping the

observations in mind, the opinion is on Protege’s simplicity of use, flexibility, richness,

effectiveness, and its adoptability by research community [13, 27, 78]; it is the best suited

83

CHAPTER 6. IMPLEMENTATION AND RESULTS 84

tool to be considered.

6.1 Change Capturing

The Bibliography ontology is used for the development and testing of the plug-in. First

of all, the results of the plug-in for change capturing are provided using the Bibliography

ontology.

There exists systems that also facilitate the change capturing facility to compare the

developed plug-in with. However, these systems have some limitations for capturing all

the changed information. The existing systems, such as a Protege plug-in ChangesTab

[66], another Protege plug-in V ersionLogGenerator [84], ChangeDetection [84],

and ChangeCapturing [81] provide the change capturing facility. The proposed plug-in

(ChangeTracer) is compared withChangesTab, V ersionLogGenerator,ChangeDetection,

and ChangeCapturing to analyze its change capturing capability. For this, 35 differ-

ent changes covering all four different categories (i.e., Change in Hierarchy, Change

in Class, Change in Property, and Other Changes) were made to the Bibliography on-

tology. ChangeTracer, ChangesTab, and V ersionLogGenerator were configured

with Protege, ChangeCapturing with NeOn Toolkit (http://www.neon-toolkit.org/), and

ChangeDetection was used as a stand alone application. Out of these 35 changes,

ChangesTab captured 28 changes, V ersionLogGenerator captured 28 changes,ChangeDetection

captured 33 changes, ChangeCapturing captured 32 changes, whereas the proposed

plug-in i.e., ChangeTracer captured 32 changes. The graph representing these results

is given in Fig. 6.1, where the y-axis represents the number of changes captured and the

CHAPTER 6. IMPLEMENTATION AND RESULTS 85

x-axis represents the total number of changes made.

Protege internally implements different listeners (see Table 5.1) that report when

a change occurs in the open ontology model. (ChangeTracer), ChangesTab, and

V ersionLogGenerator implement these listeners and capture the changes that are trig-

gered by Protege. However, when certain events are triggered, such as element deletion

(i.e., Class, Property, Individual), then the element is first deleted and later the event is

notified. Due to this reason, the deleted element’s information is missed and not cap-

tured by the plug-ins (ChangeTab and V ersionLogGenerator). This also happens with

ChangeCapturing.

In the proposed plug-in, to handle this issue, difference is computed for the new

model and the old model at the time of element deletion event, which provides the in-

formation about the deleted element. Another issue with Protege is that for Datatype

property range addition, deletion, and modification, there is no event notification. So

these changes are misidentified. As visible from the Figure 6.1, that ChangeDetection

captured more changes than the others; however, its performance heavily depends on the

types of changes. For example, if the changes are always of element modification in an on-

tology then the ChangeDetection will misidentify them. Moreover, ChangeDetection

cannot identify a sequence of changes.

To get more concrete results, the experiment are repeated for 20 times with 35 dif-

ferent and random changes. Details and results of these experiments are given in Ta-

ble 6.1 and its graph representation is given in Fig. 6.2. Total of 700 different changes

were made. Out of these 700 changes, 663 (i.e., 94.71%) changes were detected by

CHAPTER 6. IMPLEMENTATION AND RESULTS 86

Figure 6.1: Comparison of ChangeTracer against ChangesTab,
V ersionLogGenerator, ChangeDetection, and ChangeCapturing. X-axis rep-
resents the number of changes applied to ontology, whereas, y-axis represents the
changes captured by the respective systems.

CHAPTER 6. IMPLEMENTATION AND RESULTS 87

ChangeTracer, 632 (i.e., 90.28%) changes by ChangesTab, 645 (i.e., 92.14%) changes

by V ersionLogGenerator, 629 (i.e., 89.86%) changes by ChangesDetection, and 667

(i.e., 95.28%) changes by ChangesCapturing. The results clearly show that the pro-

posed plug-in (i.e.,ChangeTracer) has outperformed theChangesTab, V ersionLogGenerator,

andChangeDetection in terms of change capturing. In comparison withChangeCapturing,

the proposed system has almost the same results. However, against theChangeCapturing,

the proposed plug-in uses difference() method of Model class from Jena API to capture the

missing changes, whereas, the ChangeCapturing always misses certain changes [81].

It is also very important to capture all the changes in an ontology not only to make the

information model complete, in addition, if required to use the changes for recovery or

mapping reconciliation purpose then the complete set of changes applied are necessary.

For this purpose, an exhaustive testing of the proposed plug-in on Ontology Meta Data

Vocabulary (OMV) ontology [43], Semantic Web Research Community (SWRC) ontology

[96], Conceptual Reference Model (CRM) ontology [21] and the standard dataset of Se-

mantic Web Technology Evaluation Ontology (SWETO) [70] is provided in Appnedix A,

Section A.1.

6.2 Mapping Reconciliation

This section discusses in detail about the results achieved for mapping reconciliation

based on the changes captured and logged in CHL. Using CHL, the existing mapping

systems are extended to use the change entries for mapping reconciliation. The exten-

sions are proposed to the existing mapping systems, i.e., Falcon [46], H-Match [17],

CHAPTER 6. IMPLEMENTATION AND RESULTS 88

Specifications Change
Tracer

Changes
Tab

Version
Log Gen-
erator

Change
Detection
Plug-in

Change
Capturing

No of Experi-

ments

20 20 20 20 20

No of Changes per

Experiments

35 35 35 35 35

Total Changes 20 * 35 = 700 20 * 35 = 700 20 * 35 = 700 20 * 35 = 700 20 * 35 = 700

Changes

Captured

663 632 645 629 667

Average 94.71 90.28 92.14 89.86 95.28

Table 6.1: Comparative Analysis of Change Detection Approaches i.e., ChangesTab,
V ersionLogGenerator, ChangeDetectionP lug − in, and ChangeCapturing against
the proposed ChangeTracer.

Figure 6.2: Shows the average result of 20 experiments with 35 different changes us-
ing ChangeTracer, ChangesTab, V ersionLogGenerator, ChangeDetection, and
ChangeCapturing.

CHAPTER 6. IMPLEMENTATION AND RESULTS 89

FOAM [22], Lily [104], AgreementMaker [19, 20], Prompt [76], and TaxoMap [41].

The results comparison of the proposed extensions against the existing systems verifies

that the amount of time required for reconciliation of mappings using the proposed ex-

tensions is far less than the existing systems. The data sets used in these experiments

are; Mouse, Human, Mrinkman, GTT, GEMET, and NALT ontologies, available online

at (http://oaei.ontologymatching.org/). Other data sets such as Health and Food ontol-

ogy , People+Pets ontology , ACM and Springer ontology, HL7 Classes ontology, and

openEHR Classes ontology have also been used for systems’ detail comparison.

The experiments are all conducted on a machine with 2.66 GH Quad Core processor

and 4 GB of main memory. The experiments are carried out for both cases explained in

Section 5.2 (i.e., Reconciliation of Ontology Mappings). In all the experiments, a con-

stant similarity value of ψ 0.70 is kept as a matching threshold. Numbers of iterations in

most of the systems are kept as default but in case of FOAM [22] it is set to 7 iterations

per execution; however, it does not affect the results as systems are not compared with

one another for accuracy. These experiments are by no means the comparison of existing

systems, but are in fact the comparison of each individual system with the proposed ex-

tensions to that individual system.

The experiments are conducted in two modes, i.e., changes are considered at complex

and at atomic level [54]. Complex change is a change that consists of several atomic level

changes e.g., deletion of super class will result in complex change including the deletion

of all the subclasses of that super class. Atomic change is a simple change e.g., renaming

a resource. In these experiments, changes are mostly the introduction of new resources in

the domain ontologies. Figure 6.3 is the confirmation of issue identified in this research

CHAPTER 6. IMPLEMENTATION AND RESULTS 90

and it uncovers the limitations of the existing systems by not focusing on mapping evo-

lution and its effects. The existing systems take more time for regenerations of mappings

with both; complex changes and atomic changes. 25 complex changes in each version of

ontology used in the experiments shown in Figure 6.3-A are introduced, while the atomic

changes for each ontology version used in Figure 6.3-B are given in Table 6.4.

6.2.1 Comparison using Complex Changes

To test the existing systems with the proposed extensions to the systems, 25 random

changes (complex) are introduced to different ontologies used for the experiments. These

changes made the ontologies (listed in Table 6.2) evolve from one consistent state to an-

other. In these experiments, the ontologies are considered in full i.e., the structure and

with its instances. As discussed above, 25 complex changes are made to every version of

the ontologies effecting both structure and instances. The existing algorithms (mentioned

above) and proposed extensions to these algorithms are all tested for both cases/scenarios.

Case 1: In this scenario, only one of the ontology evolved from one state to another while

the second ontology remained unchanged. Falcon, H-Match, Lily, and TaxoMap are

first checked for initial mapping between the ontologies, then for re-establishment

of the mappings due to the changes in ontology. Afterwards, the proposed exten-

sions were applied for the changed ontologies to reconcile the mappings. As dis-

cussed earlier, the existing algorithms start from scratch, so these systems mostly

they take more time than the previous mapping process as shown in Table 6.2.

The proposed extension to existing algorithms using CHL [52], only considers the

CHAPTER 6. IMPLEMENTATION AND RESULTS 91

Figure 6.3: Figure 6.3-A shows the mapping and Re-establishment of mapping results
with respect to time for Mouse and Human ontology using Falcon [46] and H-Match [17]
with complex changes. Figure 6.3-B shows the Mapping and Re-establishment of map-
ping results with respect to time for Mouse and Human ontology using FOAM [22], Fal-
con [46], Lily [104], AgreementMaker [19], and Prompt [76] with atomic changes.

CHAPTER 6. IMPLEMENTATION AND RESULTS 92

changed resources and reconciles mappings for the changed resources. Proposed

extensions (see Table 6.2) showed better performance than the existing systems.

The amount of the computation time (shown in Table 6.2). The last set of four rows

in Table 6.2 shows better performance of proposed extensions against the existing

systems. The results show that extensions using the CHL drastically reduced the

computation time for reconciliation of mappings in dynamic ontologies.

Case 2: In this scenario, both ontologies evolved from one consistent state to another.

Falcon, H-Match, Lily, and TaxoMap are first checked for initial mappings be-

tween the ontologies, then for re-establishment of mappings due to the changes in

both ontologies. The algorithms are tested again for re-establishment of mappings

and then their implementation with the proposed extensions. These algorithms start

from scratch so they take more time than the previous test (shown in Table 6.3) as

against the proposed extensions that only consider the changed resources and rec-

oncile mappings for the changed resources. Proposed technique helped in saving

large amount of the computation time (shown in Table 6.3). The set of 4 last rows

in Table 6.3 gives the evidence of better performance against the existing systems.

The results in both Table 6.2 and Table 6.3 show that extensions using the CHL re-

duce the computation time for reconciliation of mappings for both cases in dynamic

web ontologies.

CHAPTER 6. IMPLEMENTATION AND RESULTS 93

Mapping Systems Mouse Onto vs.
Human Onto

Brinkman Onto
vs. GTT Onto

GEMET Onto vs.
NALT Onto

Falcon Mapping Time 8.89 m 32.40 m 51.33 m
H-Match Mapping
Time

10.76 m 39.13 m 1.12 h

Lily Mapping Time 13.22 m 34.03 m 52.65 m
TaxoMap Mapping
Time

11.08 m 33.41 m 52.65 m

Falcon Re-Mapping
Time

9.17 m 33.36 m 52.43 m

H-Match Re-Mapping
Time

11.86 m 40.47 m 1.14 h

Lily Re-Mapping Time 14.15 m 35.51 m 52.91 m
TaxoMap Re-Mapping
Time

12.73 m 34.09 m 53.76 m

Extended Falcon Re-
Mapping Time

1.08 m 3.11 m 5.36 m

Extended H-Match
Re-Mapping Time

1.42 m 2.78 m 7.31 m

Extended Lily Re-
Mapping Time

1.93 m 4.08 m 6.73 m

Extended TaxoMap
Re-Mapping Time

1.87 m 3.64 m 5.92 m

Table 6.2: Computation time analysis of Falcon [46], H-Match [17], Lily [104], and
TaxoMap [41] for mapping, re-mapping, and reconciliation of mappings with proposed
extensions to Falcon, H-Match, Lily, and TaxoMap using Change History Log when one
of the mapped ontologies changes.

CHAPTER 6. IMPLEMENTATION AND RESULTS 94

Mapping Systems Mouse Onto vs.
Human Onto

Brinkman Onto
vs. GTT Onto

GEMET Onto vs.
NALT Onto

Falcon Mapping Time 8.89 m 32.40 m 51.33 m
H-Match Mapping
Time

10.76 m 39.13 m 1.12 h

Lily Mapping Time 13.22 m 34.03 m 52.65 m
TaxoMap Mapping
Time

11.08 m 33.41 m 52.65 m

Falcon Re-Mapping
Time

9.87 m 34.63 m 53.71 m

H-Match Re-Mapping
Time

12.35 m 41.55 m 1.17 h

Lily Re-Mapping Time 15.43 m 37.20 m 54.97 m
TaxoMap Re-Mapping
Time

13.21 m 35.93 m 55.36 m

Extended Falcon Re-
Mapping Time

2.36 m 5.06 m 9.48 m

Extended H-Match
Re-Mapping Time

2.96 m 4.88 m 12.39 m

Extended Lily Re-
Mapping Time

3.45 m 6.75 m 10.37 m

Extended TaxoMap
Re-Mapping Time

2.97 m 6.09 m 10.18 m

Table 6.3: Computation time analysis of Falcon [46], H-Match [17], Lily [104], and
TaxoMap [41] for mapping, re-mapping, and reconciliation of mappings with proposed
extensions to Falcon, H-Match, Lily, and TaxoMap using Change History Log when both
the mapped ontologies changes.

CHAPTER 6. IMPLEMENTATION AND RESULTS 95

Ontology
Versions

Human Mouse Health Food People+Pet ACM
Ontol-
ogy

Springer
Ontol-
ogy

Version1 Original Original Original Original Original Original Original
Version2=
Version1 +
Changes

283 166 169 122 120 109 176

Version3=
Version2 +
Changes

112 201 153 161 172 133 114

Version4=
Version3 +
Changes

123 198 145 114 109 141 106

Table 6.4: Ontology versions and the number of atomic changes applied to one version
that transforms ontology to another version. All the ontologies are listed in 1st row. Nu-
meric values are the number of changes of current version against the previous version of
ontology.

6.2.2 Comparison using Atomic Changes

This section describes the experimental results when the data sets with changes at atomic

level are tested with the existing systems and with proposed extensions to the existing

systems. For these experiments, only the structures of ontologies are considered for the

mapping procedures and no individuals (instances) are used. Table 6.4 shows different

versions of data sets and the number of atomic level changes between these versions.

The existing systems, i.e., Falcon [46], FOAM [22], Lily [104], AgreementMaker [20],

Prompt [76], and the proposed extensions are tested on these data sets for the following

two cases.

Case 1: In the first case, only one of the mapped ontology evolved from one state to an-

other while the second ontology remained unchanged. The existing systems were

CHAPTER 6. IMPLEMENTATION AND RESULTS 96

first checked for initial mappings between the ontologies and for re-establishment

of mappings after the changes in the ontology. Afterwards, the proposed extensions

are applied for mapping reconciliation between the changed ontology. The existing

systems and proposed extensions are all tested in detail using the data sets given in

Table 6.4 and their results for Case 1 are shown in Figure 6.4. The execution time of

these systems varies against one another (see Figure 6.4) due to different matching

schemes used in their implementation. Execution time shown in Figure 6.4 is all in

minutes and fractions of minutes. Each graph of Figure 6.4 shows the results of ex-

isting systems and the proposed extensions on a particular data set with its different

versions.

Each graph of Figure 6.4 consists of 5 pairs, making 10 bars in total. Each alter-

native pair is the results comparison of the proposed system against the existing

system. 1st bar of each pair shows the execution time of the existing system on

each version (differentiated using colors) of the ontology, while the 2nd bar of each

pair shows the execution time for the proposed extensions for different versions of

the ontology. One very obvious pattern visible in each graph of Figure 6.4 is that

the execution time of proposed extensions on starting versions of ontologies is al-

ways same or a fraction greater (max by 24 seconds) than the existing systems. It

is because, if the ontologies are matched for the first time, in this case, the pro-

posed system carries out complete mapping procedure in addition to looking for

the changes from the CHL and existing mappings. The detailed experimental re-

sults shown in Figure 6.4 validate that the proposed extensions drastically reduce

the time required for reconciling ontology mappings for Case 1.

CHAPTER 6. IMPLEMENTATION AND RESULTS 97

Figure 6.4: Detail comparison of the proposed extensions against Falcon [46], FOAM [22], Lily [104], AgreementMaker [19],

and Prompt [76] on combination of 7 different data sets are given. This Figure shows the results for Case 1. Each graph i.e., A, B,

C, D, E, and F shows the existing systems’ results in comparison to the proposed extensions. Each graph consists of 5 pairs making

10 bars in total. Alternative pair is the results comparison of the proposed system against the existing system. 1st bar of each pair

shows the execution time (y-axis shows execution time) of the existing systems, while the 2nd bar shows the execution time for the

proposed extensions. Each packet of every bar (stacked column) in the graphs with different colors show the execution time consumed

by the existing systems and the proposed extensions for reconciliation of mappings between various versions of the ontology. In these

graphs; Hu=Human, Mo=Mouse, Fo=Food, He=Health, ACM=ACM, Sp=Springer, and PP=People+Pets are used as abbreviations

for ontology names where V represents the version with number on it e.g., HuV2 represents Human ontology and its 2nd version.

CHAPTER 6. IMPLEMENTATION AND RESULTS 98

Case 2: As explained earlier, in this case, both ontologies evolved from one consistent

state to another. Case 2 is also the worst case for the proposed system as mapping

reconciliation procedure will look for changes in both ontologies and also execute

the mapping reconciliation procedure for both ontologies. The existing systems are

first checked for initial mappings between the ontologies, then for re-establishment

of mapping using the changes in both ontologies. For mapping reconciliation, the

existing systems with the proposed extensions are tested using the evolved ontolo-

gies. Both the existing systems and the proposed extensions are tested in detail

using the data sets given in Table 6.4 with all their changes. The results of detail

experiments for Case 2 are shown in Figure 6.5. Execution time shown in Fig-

ure 6.5 is all in minutes and fractions of minutes.

Each graph of Figure 6.5 represents the results of the existing systems and the pro-

posed extensions on a particular data set with its different versions. Each graph

of Figure 6.5 consists of 5 pairs making 10 bars in total. Each alternative pair is

the results comparison of the proposed system against the existing system. 1st bar

of each pair shows the execution time of the existing system on each version (dif-

ferentiated using colors) of the ontology, while the 2nd bar of each pair shows the

execution time for the proposed extensions for different versions of the ontology

the same as Case 1. The detailed experimental results shown in Figure 6.5 validate

the claims made in this research. This facilitates the process of interoperability and

information exchange between web services. Thus the services are not suspended

for longer durations due to evolving ontologies.

CHAPTER 6. IMPLEMENTATION AND RESULTS 99

Figure 6.5: Detail comparison of the proposed extensions against Falcon [46], FOAM [22], Lily [104], AgreementMaker [19],

and Prompt [76] on combination of 7 different data sets are given. This Figure shows the results for Case 2. Each graph i.e., A, B, C,

D, E, and F shows the existing systems results in comparison to the proposed extensions. Each graph consists of 5 pairs making 10

bars in total. Each alternative pair is the results comparison of the proposed system against the existing system. 1st bar of each pair

shows the execution time (y-axis shows execution time) of the existing systems, while the 2nd bar shows the execution time for the

proposed extensions. Each packet of every bar (stacked column) in the graphs with different colors show the execution time consumed

by the existing systems and the proposed extensions for reconciliation of mappings between various versions of the ontology. In these

graphs; Hu=Human , Mo=Mouse, Fo=Food, He=Health, ACM=ACM, Sp=Springer, and PP=People+Pets are used as abbreviations

for ontology names where V represents the version with number on it e.g., HuV2 represents Human ontology and its 2nd version.

CHAPTER 6. IMPLEMENTATION AND RESULTS 100

6.2.3 Effects of Change Type

The time for reconciliation of mappings between ontologies depends on the types of

changes made. A single change introduced may have cascading effects on the existing

resources or may result in several induced changes [27]. The proposed approach depends

on number of changes. The more the number of changes in an ontology, the higher will

be the mapping time for the proposed approach; however, still less than the original algo-

rithms. Mostly, the cascade effects and induced changes are due to the change at higher

level of hierarchy and are less frequent once domain ontology gets matured [27, 39].

One of such cases is also visible in Figure 6.6 (x-axis = no of tests, y-axis = minutes)

in bar 3rd comparison of Figure 6.6-A and Figure 6.6-B. Figure 6.6-A shows the results

for complex type changes while Figure 6.6-B shows the results for atomic changes. 1st

bar in Figure 6.6-A and Figure 6.6-B is the original time of all the algorithms for es-

tablishing the mappings between Human and Mouse ontology while the remaining bars

are the time results for the reconciliation of mapping with the proposed extensions using

CHL. In Figure 6.6-A, set of 25 random changes (complex) are introduced to each version

of the ontology. In Figure 6.6-B, changes (atomic) listed in Table 6.4 are introduced to

each version of the ontology. In 3rd bar combination of Figure 6.6-A and Figure 6.6-B,

cascading effects make the reconciliation procedure take more time than the other recon-

ciliation tests with the proposed extensions. Nevertheless, even with the cascade effects

and induced changes, the proposed approach takes less mapping computation time than

the original algorithms.

CHAPTER 6. IMPLEMENTATION AND RESULTS 101

Figure 6.6: 6.6-A shows the mapping and re-establishment of mapping results for Mouse and Human ontology with complex

changes. First bar combination is the result of original Falcon [46] and H-Match [17] while remaining bar combinations are the results

of the proposed extension. The 3rd bar shows the time increase due to the cascading effects of changes. 6.6-B shows the mapping

and re-establishment of mapping results for Mouse and Human ontology with atomic changes. The 1st bar combination is the result

of original Falcon [46], FOAM [22], Lily [104], AgreementMaker [19], and Prompt [76] while remaining bar combinations are the

results of the proposed extension. In 6.6-B, again the the 3rd bar combination shows the time increase due to the cascading effects of

changes. The same effects are also visible in the 3rd row of the tabular view of results in Figure 6.6-B against the 2nd and 4th rows.

CHAPTER 6. IMPLEMENTATION AND RESULTS 102

6.2.4 Memory Utilization

In addition to time efficiency of proposed algorithm, it has also proven to be space effi-

cient. This is due to the fact that for mapping reconciliation procedure as against the ex-

isting systems, at any particular instant of time, loads ontology from one side and changes

from another side. The changes are far lesser in size than the original ontology. The pro-

posed systems’ runtime memory usage is compared with the existing systems memory

usage. The results (see Table 6.7) show that the proposed system memory consumption is

lesser than the existing systems. Moreover, as the proposed system takes lesser time than

the existing systems, so the memory consumption is also for shorter interval of time in

comparison with the existing systems. Table 6.7 shows the results of memory consump-

tion of proposed extensions to existing systems against the existing systems’ traditional

approach. Human and Mouse ontologies original versions and changed versions shown

in Table 6.4 are used for this purpose. Efficient memory utilization using proposed exten-

sions for mapping reconciliation in changed ontologies are highlighted in Table 6.7.

6.2.5 Reconciled Mapping Accuracy

Though, it is not the focus of this research; however, accuracy of generated mappings is

an important issue. The proposed extensions reduce the amount of time required for the

mapping reconciliation; however, it is also important to test its effects on the accuracy of

reconciled mappings. In this section, detail results related to reconciled mapping accu-

racy is given (see Table 6.5). All the discussions in this section are based on atomic level

changes and the accuracy of reconciled mappings with the help of atomic changes; the

details of these atomic changes are given in Table 6.4. The results in Table 6.5 show the

CHAPTER 6. IMPLEMENTATION AND RESULTS 103

Figure 6.7: Space consumption analysis of Falcon [46], H-Match [17], Lily [104], and
TaxoMap [41] against the systems with proposed extensions using CHL during the map-
ping reconciliation procedure. All the memory size is represented in KBs, whereas all
the memory usage values are the peak memory usage values recorded during systems
execution.

CHAPTER 6. IMPLEMENTATION AND RESULTS 104

percentage (round off percentages are given) of overall mappings found after reconcilia-

tion procedure. The mappings found by the original mapping systems are considered as

the total possible mappings while the mapping found with the proposed extensions are

compared against the original mapping system’s results. The details of data sets and the

mapping systems that have been used for the experiments are also given in Table 6.5.

During the logging process, each and every ontology change is logged in CHL, this also

results in establishing/reconciling redundant mappings (that already exist in the original

mappings) and are removed from the final list of reconciled mappings. The formula used

to calculate the percentage is simple and is given below.

Percentage accuracy of reconciled mappings =

(No of reconciled mappings / No of original system mappings) ∗ 100 (6.1)

Most of the mapping systems developed are mainly focusing on the accuracy of the

mappings and the accuracy of mapping is more critical when the services or information

systems dealing with information from healthcare domain. To investigate about the ac-

curacy of reconciled mappings, healthcare domain ontologies i.e., HL7 Classes ontology

and openEHR Classes ontology have been used with their two different versions for map-

ping and mapping reconciliation. These ontologies have been tested using FOAM [22],

Falcon [46], AgreementMaker [20, 19], and Lily [104] and their results are compared

with results from proposed extensions to these systems (see Table 6.6). The changes used

in these tests are also atomic changes and the numbers of changes introduced in different

versions of the ontology are listed in Table 6.6. Like Table 6.5, it is also visible in Ta-

ble 6.6 that the mappings found after reconciliation procedure is less than those found by

CHAPTER 6. IMPLEMENTATION AND RESULTS 105

Ontology1 Ontology2 Changes Ext-
FOAM

Ext-
Falcon

Ext-
AgrMaker

Ext-Lily

HumanV1 MouseV1 Original 100% 100% 100% 100%
HumanV2 MouseV2 283 vs. 116 96.50% 96.50% 96.00% 96.00%
HumanV3 MouseV3 112 vs. 201 93.50% 95.00% 94.00% 95.00%
HumanV4 MouseV4 123 vs. 198 97.00% 97.00% 97.00% 97.00%

HumanV1 HealthV1 Original 100% 100% 100% 100%
HumanV2 HealthV2 283 vs. 169 97.00% 98.50% 98.00% 99.00%
HumanV3 HealthV3 112 vs. 153 96.50% 96.00% 97.00% 97.00%
HumanV4 HealthV4 123 vs. 145 99.00% 100% 100% 100%

HealthV1 FoodV1 Original 100% 100% 100% 100%
HealthV2 FoodV2 169 vs. 122 98.50% 100% 100% 100%
HealthV3 FoodV3 153 vs. 161 97.00% 98.50% 99.00% 99.00%
HealthV4 FoodV4 145 vs. 114 98.50% 99.50% 99.00% 100%

ACMV1 SpringerV1 Original 100% 100% 100% 100%
ACMV2 SpringerV2 109 vs. 176 99.00% 100% 100% 100%
ACMV3 SpringerV3 133 vs. 114 98.50% 99.50% 99.00% 99.50%
ACMV4 SpringerV4 141 vs. 106 99.50% 100% 100% 100%

Table 6.5: Shows mapping accuracy results of proposed extensions to the mapping sys-
tems against the original mapping systems. The results in this table are given for Hu-
man, Mouse, Health, Food, ACM, and Springer Ontologies and for the mapping process
FOAM [22], Falcon [46], AgreementMaker [19], and Lily [104] are used. The results are
not showing that the proposed extensions achieved 100% of mapping accuracy; however,
these results shows the percentage of results (accuracy) achieved by proposed extensions
in comparison to the original systems when the original systems re-establish the complete
mappings.

CHAPTER 6. IMPLEMENTATION AND RESULTS 106

the original systems. In addition, these tools also have some deficiencies in finding exact

match for the concepts in the ontology. For instance, when HL7 Classes ontology using

SNOMED CT (O1) as a base line was matched with another HL7 Classes ontology using

HL7 RIM (O2) as its base model and Event concept from O2 is mapped with the Event

concept of O1. However, they both have different semantics. The same way, Event con-

cept from O2 have same semantics as Clinical F indilgs in O1; however, they are not

matched by the above matching systems.

To overcome the decrease in accuracy of reconciled mappings, two points has been

focused to work on. 1) The level of information with the changes has been increased.

With every class change (except class deletion), extra information i.e., it’s super class and

sub classes has also been provided during reconciliation procedure. The same way with

every property change (excluding property deletion), additional information of domain

and range has been provided. Improvements have been found in the accuracy of recon-

ciled mappings; however, this additional information has also introduced an increase in

the mapping reconciliation time. 2) The reason is not only the additional information;

there are also semantic conflicts that cannot be resolved without expert intervention as

discussed above i.e., for Event concept of HL7 Classes ontology. Currently, the focus is

on knowing the missing mappings and reasons for the missing mappings that will help to

optimize the proposed system for mapping accuracy as well.

Change capturing capability of proposed scheme is evaluated in this chapter. For this

purpose, the proposed plug-in is also compared with 4 existing systems for their change

capturing capability. Once the changes are logged in CHL then these are used for recon-

ciliation of mappings. The process for mapping reconciliation using atomic and complex

CHAPTER 6. IMPLEMENTATION AND RESULTS 107

Mapping
Systems

Ontology1 Ontology2 Ontology
Changes

Mapping
Time

No of
Mappings
Found

FOAM HL7V1 openEHRV1 Original 18.23 min 16
Ext-FOAM HL7V1 openEHRV1 Original 18.57 min 16
FOAM HL7V2 openEHRV2 103 vs. 166 19.30 min 19
Ext-FOAM HL7V2 openEHRV2 103 vs. 166 4.03 min 17

Falcon HL7V1 openEHRV1 Original .58 min 18
Ext-Falcon HL7V1 openEHRV1 Original 1.01 min 18
Falcon HL7V2 openEHRV2 103 vs. 166 1.18 min 20
Ext-Falcon HL7V2 openEHRV2 103 vs. 166 .26 min 19

AgrMaker HL7V1 openEHRV1 Original 1.17 min 18
Ext-
AgrMaker

HL7V1 openEHRV1 Original 1.24 min 18

AgrMaker HL7V2 openEHRV2 103 vs. 166 1.49 min 20
Ext-
AgrMaker

HL7V2 openEHRV2 103 vs. 166 .41 min 18

Lily HL7V1 openEHRV1 Original 1.45 min 17
Ext-Lily HL7V1 openEHRV1 Original 1.49 min 17
Lily HL7V2 openEHRV2 103 vs. 166 2.09 min 19
Ext-Lily HL7V2 openEHRV2 103 vs. 166 .49 min 18

Table 6.6: Shows mapping accuracy results of proposed extensions to the mapping sys-
tems against the original mapping systems using HL7 Classes Ontology and openEHR
Classes Ontology. In these tests, only two versions of the said ontologies are used. For
mapping process FOAM [22], Falcon [46], AgreementMaker [19], and Lily [104] are
used.

CHAPTER 6. IMPLEMENTATION AND RESULTS 108

changes is tested in this chapter. In addition, the tests are also conducted for both scenar-

ios including change in one ontology as well as in both ontologies. The time consumption,

memory consumption, and reconciled mappings accuracy is also comprehensively evalu-

ated in this chapter. The next chapter provides the conclusions on the research area and

the contributions of this research work in the area.

Chapter 7

Conclusion and Future Directions

This chapter concludes the research work, findings, and contributions of this thesis. The

subsequent sections highlights the research area targeted in this research and the contri-

butions made in this area. At the end, the potential future directions are discussed that can

be worked on to extend this research work.

7.1 Conclusion

Ontologies are usually large, complex structured, and dynamic in nature. The issue with

the complex and dynamic nature of domain ontologies is the lack of formal change repre-

sentation scheme with comprehensible semantics. Changes in ontologies are incorporated

to accommodate new knowledge; however, their effects suspends the usability of depen-

dent applications. The uncontrolled, decentralized, and complex nature of dynamic web

ontologies makes the ontology change management a complex and a collaborative task.

109

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS 110

In this research, the problems of ontology change management are formulated, both

philosophically and empirically. Different change representational schemes exist; how-

ever, they lack in formal and change principles based representation. The base research

methods for ontology change representational scheme are principles of change and gran-

ularity level of change. These are the main focus areas of the proposed conceptualization,

formalization, and representation of change. Based on the formalization and conceptu-

alization, Change History Ontology (CHO) with basic constructs and details has been

developed. It is the backbone representational model of the proposed ontology change

management framework. It acts as a glue to bind different components in the framework

and provide effective storage, retrieval, traceability, recovery, and mapping reconciliation

services. CHO is used to record changes by creating a semantically structured Change

History Log (CHL). The proposed system is developed as a plug-in for the ontology ed-

itor Protege to listen and log all the ontology changes. Moreover, it is configurable with

any ontology editing tool that supports the hooks implemented in this plug-in. The de-

veloped plug-in listen to ontology changes and log them in CHL. The logged changes are

later used for reconciliation of mappings between evolving web ontologies.

The change capturing ability of the proposed ontology change management frame-

work developed as plug-in for Protege is compared with modern state of the art change

capturing systems. The comparison results have demonstrated that the proposed frame-

work has higher accuracy and better change coverage than the existing systems in terms

of change capturing. The captured changes are later used for mapping reconciliation. The

proposed mapping reconciliation algorithm is tested and evaluated exhaustively against

the existing systems for performance, memory utilization, and mapping accuracy. All the

tests and experiments are conducted using different versions of standard ontologies (data

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS 111

sets) available online. It is found that the proposed extensions to the existing systems for

mapping reconciliation have greatly improved the performance and memory utilization of

existing systems. In addition, relatively good accuracy is maintained with the proposed

extensions.

7.2 Contributions

7.2.1 Change History Ontology

Developing a representational structure for maintaining and managing ontology changes

is a crucial task. The main contribution of this research is the development of such struc-

ture, logging ontology changes using the developed structure, and later using the logged

changes for mapping reconciliation. To represent, maintain, and manage the ontology

changes properly; a formally structured and semantically enrich ontological structure i.e.,

Change History Ontology (CHO) is developed in this research. Change History Log

(CHL) uses CHO for storage, management, and effective retrieval of ontology changes.

7.2.2 Change Capturing

For the storage of ontology changes in CHL, change capturing is very important that

can help in automatically log the changes in CHL. Change Tracer is implemented as a

plug-in for Protege to capture ontology changes during its editing session and then log

these changes in CHL. For the accuracy and validity of Change Tracer, it is tested exten-

sively and compared with existing systems, such as Change Tab, Version Log Generator,

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS 112

Change Detection, and Change Capturing. The information completeness for captured

changes of Change Tracer is verified using ontology recovery procedure implementation.

7.2.3 Mapping Reconciliation

Information exchange and interoperability is the key research focus in different research

groups. Mappings between two or more information sources (i.e., ontologies) of web

services are the key for sharing information and achieving interoperability. However, due

to the autonomous nature of services, and discovery of new knowledge in the field, the

domain ontologies evolve which consequently make the existing mappings unreliable and

stale. So mapping reconciliation is required to keep the services functioning for informa-

tion exchange. In this research, extensions to existing mapping systems are proposed by

introducing CHL that enables the functionality of mapping reconciliation in these sys-

tems, in time and memory efficient manner. It only consider the changed resources in

ontologies for mapping reconciliation. The proposed extensions to existing systems are

extensively evaluated using FOAM, Falcon, H-Match, Prompt, Lily, AgreementMaker,

and TaxoMap on verity of different data sets. A drastic decrease in the amount of time

and memory required for reconciliation of ontology mappings is found among dynamic

ontologies compared to the existing systems that re-initiate the complete process. In

addition, no significant variation in the mapping accuracy is found that can restrict the

usability of proposed extensions.

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS 113

7.3 Future Directions

Schema level changes are the main focus of this research; in addition, work on ontol-

ogy changes at instance level can be a good extension to this work. This will involve

the consistency checking and will result in reasoning jobs like validity and verifiability

of instances. Moreover, the proposed scheme is extendable to collaborative environment

which will make it usable for wider research and development community.

In the perspective of mapping reconciliation, variable mapping accuracy in results

of the proposed technique is the main concerning point. This can also be a potential

extension to the research work carried-out in this dissertation. To achieve the same level

of accuracy, two schemes can be adopted.

1 The level of meta information with the changes can be increased which can help in

achieving better accuracy. For example; with every class change (except class dele-

tion), extra information i.e., it’s super class and sub classes can also be provided

during reconciliation procedure. This will also enforce the semantics of changed

resources. The same way with every property change (excluding property deletion),

additional information of domain and range can also be provided. Improvements

can be found in accuracy of reconciled mappings using meta information; however,

this additional information will also result in an increase to the mapping reconcili-

ation time.

2 The reason for loss in accuracy is not only because of the limited meta information;

there are also semantic conflicts that cannot be resolved without expert intervention

as discussed in Chapter 6, Section 6.2.5 i.e., for Event concept of HL7 Classes on-

tology. The work can be started by investigating the missing mappings and reasons

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS 114

for the missing mappings. This will help to formulate a methodology for solving

the mapping accuracy issue.

References

[1] C. E. Alchourrn, P. Grdenfors, and D. Makinson. On the logic of theory change: Partial

meet contraction and revision functions. Journal of Symbolic Logic, 50(1), 1985.

[2] Y. An and T. Topaloglou. Maintaining semantic mappings between database schemas and

ontologies. In Proceedings of Joint ODBIS and SWDB workshop on Semantic Web Ontolo-

gies Databases, volume 5005/2008, Berlin, Germany, Feb 2008. Springer.

[3] K. Arkoudas and S. Bringsjord. Vivid: An ai framework for heterogeneous problem solv-

ing. Artificial Intelligence, 173(15), 2009.

[4] M. Ato, E. Ato, and J. Gmez. Analyzing change among developmental stages with cate-

gorical models. Quality and Quantity, 39(1), 2005.

[5] D. Aumueller, H. H. Do, S. Massmann, and E. Rahm. Schema and ontology matching with

coma++. In Proceedings of the ACM SIGMOD international conference on Management

of data, Baltimore, Maryland, USA, 2005. ACM.

[6] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on context-aware systems. Int. Journal

of Ad Hoc and Ubiquitous Computing, 2(4), 2007.

[7] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. Oiled: A reasonable ontology editor

for the semantic web. In In Proceedings of the 24th German / 9th Austrian Conference on

Artificial Intelligence (KI). LNCS.

115

REFERENCES 116

[8] W. Behrendt, E. Gahleitner, K. Latif, A. Gruber, E. Weippl, S. Schaffert, and H. Kargl. Up-

per ontologies with specific consideration of dolce, sumo and sowas upper level ontology.

Deliverable D121, DynamOnt Project, 2005.

[9] T. J. M. Bench-Capon and G. Malcolm. Formalising ontologies and their relations. In

Proceedings of the 10th int’l conference on Database and Expert Systems Applications

(DEXA’99), Florence, Italy, 1999. LNCS, Springer.

[10] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, 284(5),

2001.

[11] P. B. Bhat, C. S. Raghavendra, and V. K. Prasanna. Efficient collective communication in

distributed heterogeneous systems. In Proceeding of 19th IEEE International Conference

on Distributed Computing Systems (ICDCS), Austin, TX, USA, June 1-4 1999. IEEE.

[12] E. Brynjolfsson and H. Mendelson. Information systems and the organization of modern

enterprise. Journal of Organizational Computing, 3(3), 1993.

[13] S. C. Buraga, L. Cojocaru, and O. C. Nichifor. Survey on web ontology editing tools.

Transactions on Automatic Control and Computer Science, 0(0), 2006.

[14] R. Buyyaa, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing and

emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility.

Future Generation Computing Systems, 5(1), 2009.

[15] S. Castano, A. Ferrara, and G. N. Hess. Discovery-driven ontology evolution. In 3rd Italian

Semantic Web Workshop: The Semantic Web Applications and Perspectives (SWAP), Pisa,

Italy, December 18-20 2006. Deutsche Bibliothek.

[16] S. Castano, A. Ferrara, and S. Montanelli. Evolving open and independent ontologies.

Journal of Metadata, Semantics and Ontologies (IJMSO), 1(4), 2006.

REFERENCES 117

[17] S. Castano, A. Ferrara, and S. Montanelli. Matching ontologies in open networked systems.

Techniques and applications, Journal on Data Semantics (JoDS), 3870/2006, 2006.

[18] H. Chen, T. Finin, and A. Joshi. An ontology for context-aware pervasive computing en-

vironments. Special Issue on Ontologies for Distributed Systems, Knowledge Engineering

Review, 18(3), 2004.

[19] I. F. Cruz, F. P. Antonelli, and C. Stroe. Agreementmaker: Efficient matching for large

real-world schemas and ontologies. PVLDB, 2(2), 2009.

[20] I. F. Cruz, W. Sunna, N. Makar, and S. Bathala. A visual tool for ontology alignment

to enable geospatial interoperability. Journal of Visual Languages and Computing, 18(3),

2007.

[21] M. Doerr, Chair, and Heraklion. Crm, cidoc documentation standards working group.

[22] M. Ehrig and Y. Sure. Foam - framework for ontology alignment and mapping; results of the

ontology alignment initiative. In Proceedings of the Workshop on Integrating Ontologies,

volume 156. CEUR-WS.org, 2005.

[23] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Addison Wesley, 4th

edition, 2003.

[24] J. Engelfriet and G. Rozenberg. Node Replacement Graph Grammars, In Handbook of

graph grammars and computing by graph transformation. World Scientic Publishing Co,

volume 1 edition, 1997.

[25] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan. Schema Mapping Evolution Through

Composition and Inversion. Springer-Verlag, Data-Centric Systems and Applications, Feb

2011.

[26] G. Flouris. On belief change in ontology evolution: Thesis. December 2006.

REFERENCES 118

[27] G. Flouris, D. Manakanatas, H. Kondylakis, D. Plexousakis, and G. Antoniou. Ontology

change: Classification and survey. Knowledge Engineering Review (KER), 23(2), 2008.

[28] G. Flouris and D. Plexousakis. Handling ontology change:survey and proposal for a future

research direction. Technical Report TR-362 FORTH-ICS, Institute of Computer Science,

FORTH., Greece, 2005.

[29] G. Flouris, D. Plexousakis, and G. Antoniou. A classification of ontology changes. In 3rd

Italian Semantic Web Workshop: Semantic Web Applications and Perspectives (SWAP) –

Poster Session, Pisa, Italy, December 18-20 2006. Deutsche Bibliothek.

[30] T. Gabel, Y. Sure, and J. Voelker. Kaon - ontology management infrastructure. Technical

Report D3.1.1.a, SEKT Project: Semantically Enabled Knowledge Technologies, March

2004.

[31] E. Gahleitner, W. Behrendt, J. Palkoska, and E. Weippl. On cooperatively creating dynamic

ontologies. In Proceedings of the 16th ACM Conference on Hypertext and Hypermedia,

Salzburg, Austria, September 6-9 2005. ACM.

[32] E. Gahleitner, K. Latif, A. Gruber, and R. Westenthaler. Specification of methodology and

workbench for dynamic ontology creation. Deliverable D201, DynamOnt Project, 2006.

[33] A. Gangemi. Ontology design patterns for semantic web content. In Y. Gil, E. Motta,

R. Benjamins, and M. Musen, editors, 4th Intl Semantic Web Conf (ISWC), volume 3729,

Galway, Ireland, November 6-10 2005. Springer.

[34] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kauf-

mann Publishers, Inc, San Francisco, USA, 1993.

[35] J. Guo. Using category theory to model software component dependencies. In Proceed-

ings of the 9th IEEE International Conference on Engineering of Computer-Based Systems

(ECBS’02), Lund, Sweden, April 8-11 2002.

REFERENCES 119

[36] T. R. Gurber. A translation approach to portable ontologies. Knowledge Acquisition, 5(2),

1993.

[37] P. Haase and L. Stojanovic. Consistent evolution of owl ontologies. In Proceedings of

the 2nd European Semantic Web Conference (ESWC), Heraklion, Greece, May 29 - June 1

2005. LNCS.

[38] P. Haase and Y. Sure. State of the art on ontology evolution. Technical Report D3.1.1.b,

SEKT Project: Semantically Enabled Knowledge Technologies, August 2004.

[39] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Suciu, and I. Tatarinov. The piazza peer

data management system. IEEE Transactions on Knowledge and Data Engineering.

[40] T. A. Halpin. Information Modelling and Relational Databases: From Conceptual Analysis

to Logical Design. Morgan Kaufman Publishers, 1st edition, 2001.

[41] F. Hamdi, B. Safar, N. B. Niraula, and C. Reynaud. Taxomap alignment and refinement

modules: Results for oaei 2010. In In Proceedings of the 5th International Workshop on

Ontology Matching (OM-2010) collocated with the 9th International Semantic Web Con-

ference (ISWC), Shanghai, China, November 7-11 2010. LNCS.

[42] R. P. Hardie. Physics by Aristotle. eBooks@Adelaide, Adelaide University,

http://etext.library.adelaide.edu.au/a/aristotle/a8ph/index.html edition, 2004.

[43] J. Hartmann, R. Palma, and Y. Sure. Omv - ontology metadata vocabulary. In in: C. Welty

(Ed.), ISWC 2005 - In Ontology Patterns for the Semantic Web, volume 3729, Galway,

Ireland, November 6-10 2005. Springer.

[44] J. Heflin, J. Hendler, and S. Luke. Coping with changing ontologies in a distributed envi-

ronment. In In Proceedings of the Workshop on Ontology Management of the 16th National

Conference on Artificial Intelligence (AAAI), Florida, USA, July 18-22 1999. AAAI Press.

REFERENCES 120

[45] I. Horrocks. Ontology engineering: Tools and methodologies. tutorial in semantic days 07.

[46] W. Hu and Y. Qu. Falcon-ao: A practical ontology matching system. Journal of Web

Semantics, 6(3), 2008.

[47] S. M. Huff, R. A. Rocha, B. E. Bray, H. R. Warner, and P. J. Haug. Anevent model of

medical information representation. JAMIA, 2, 1995.

[48] J. ichi Akahani, K. Hiramatsu, and T. Satoh. Approximate query reformulation based on

hierarchical ontology mapping. In Proceedings of International Workshop on Semantic

Web Foundations and Application Technologies (SWFAT), Nara, Japan, March 11-12 2003.

Online.

[49] D. Jones, T. Bench-Capon, and P. Visser. Methodologies for ontology development. In

J. Cuena, editor, IFIP XV IT & KNOWS, Budapest, Hungary, 1998. IFIP.

[50] S. Khan and P. Mott. Differential evaluation of continual queries. Technical Report 2001.11,

School of Computing, the University of Leeds, May 2001.

[51] A. M. Khattak, K. Latif, M. Han, S. Lee, Y.-K. Lee, and H. I. Kim. Change tracer: Tracking

changes in web ontologies. In 21st IEEE International Conference on Tools with Artificial

Intelligence, Newark, New Jersey, USA, November 2-4 2009. IEEE CS.

[52] A. M. Khattak, K. Latif, S. Khan, and N. Ahmed. Managing change history in web on-

tologies. In Fourth International Conference on Semantics, Knowledge and Grid, Beijing,

China, December 3-5 2008. IEEE Computer Society.

[53] A. M. Khattak, K. Latif, S. Khan, and N. Ahmed. Ontology recovery and visualization.

In 4th International Conference on Next Generation Web Services Practices, Seoul, Korea,

October 20-22 2008. IEEE Xplore.

REFERENCES 121

[54] A. M. Khattak, K. Latif, S. Lee, and Y.-K. Lee. Ontology evolution: A survey and fu-

ture challenges. In The 2nd International Conference on u- and e- Service, Science and

Technology (UNESST), Jeju, Korea, December 12-14 2009. LNCS.

[55] A. M. Khattak, K. Latif, S. Lee, Y.-K. Lee, and T. Rasheed. Building an integrated frame-

work for ontology evolution management. In 12th International Conference on Interna-

tional Business Information Management Association, Kulalampur, Malaysia, June 12-13

2009. IBIMA.

[56] A. M. Khattak, J. Mustafa, N. Ahmed, K. Latif, and S. Khan. Intelligent search in digital

documents. In Web Intelligence and Intelligent Agent Technology, IEEE/WIC/ACM Inter-

national Conference on, Sydney, Australia, December 9-12 2008. IEEE Xplore/ACM/WIC.

[57] A. M. Khattak, Z. Pervez, K. Latif, A. M. J. Sarkar, S. Lee, and Y.-K. Lee. Reconciliation

of ontology mappings to support robust service interoperability. In In proceedings of 8th

IEEE Conference on Service Computing (SCC 2011), Washington DC, USA, July 4-9 2011.

IEEE CS.

[58] M. Klein. Change Management for Distributed Ontologies. Phd thesis, Vrije University,

Netherlands, 2004.

[59] M. Klein, A. Kiryakov, D. Ognyanov, and D. Fensel. Finding and characterizing changes in

ontologies. In 21st International Conference on Conceptual Modeling, Tampere, Finland,

October 7-11 2002. Springer-Verlag.

[60] M. Klein and N. Noy. A component-based framework for ontology evolution. In IJCAI

Workshop on Ontologies and Distributed Systems, Acapulco, Mexico, August 9-10 2003.

IJCAI.

REFERENCES 122

[61] M. Lenzerini. Data integration: a theoretical perspective. In Proceedings of the Twenty-First

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Madison,

WI, USA, June 2-6 2002. ACM.

[62] Y. D. Liang. Enabling Active Ontology Change Management within Semantic Web-based

Applications. Mini phd thesis, University of Southampton, 2006.

[63] Y. D. Liang, H. Alani, and N. Shadbolt. Ontology change management in protégé. In

AKT DTA Colloquium, Milton Keynes, United Kingdom, December 2005. University of

Southampton.

[64] C.-C. Lin and H.-C. Yen. A new force-directed graph drawing method based on edge-edge

repulsion. IEEE Computer Society, 1(1), 2005.

[65] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Updating description logic aboxes. In Proceed-

ings of the 10th International Conference on Principles of Knowledge Representation and

Reasoning (KR-06), Lake District, United Kingdom, June 2-5 2006. AAAI.

[66] W. Liu, T. Tudorache, and T. Redmond. Changes tab in protégé.

[67] A. Maedche, B. Motik, N. Silva, and R. Volz. Mafra - a mapping framework for dis-

tributed ontologies. In In Proceedings of the 13th international Conference on Knowledge

Engineering and Knowledge Management, ontologies and the Semantic Web, London, UK,

June 1-4 2002. Springer-Verlag.

[68] A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz. Ontologies for enterprise

knowledge management. IEEE Intelligent Systems, 18(2), 2003.

[69] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness, B. Par-

sia, T. Payne, M. Sabou, M. Solanki, Srini-vasan, and K. Sycara. Bringing semantics to

REFERENCES 123

web services :the owl-s approach. In Presented at the First International Workshop on Se-

mantic Web Services and Web Process Composition (SWSWPC), SanDiego ,CA, USA, July

6 2004. Springer.

[70] B. A. Meza, C. Halaschek-Wiener, A. Sheth, and et al. Semantic web technology evaluation

ontology (sweto), a nsf medium itr project.

[71] G. A. Miller. Wordnet: An on-line lexical database. International Journal of Lexicography,

3(4), 1990.

[72] R. Mizoguchi. Tutorial on ontological engineering: Part 3: Advanced course of ontological

engineering. New Generation Comput, 2004.

[73] N. Noy, A. Chugh, W. Liu, and M. A. Musen. A framework for ontology evolution in

collaborative environments. In International Semantic Web Conference, Athens, GA, USA,

November 5-9 2006. LNCS.

[74] N. Noy and M. Klein. Ontology evolution: Not the same as schema evolution. Knowledge

and Information System, 6(4), 2004.

[75] N. Noy, S. Kunnatur, M. Klein, and M. Musen. Tracking changes during ontology evolu-

tion. In International Semantic Web Conference, Sardinia, Italy, June 9-12 2002. LNCS.

[76] N. Noy and M. Musen. The prompt suite: Interactive tools for ontology merging and

mapping. International Journal of Human-Computer Studies, 59(6), 2003.

[77] N. Noy and M. A. Musen. Prompt: Algorithm and tool for automated ontology merging and

alignment. In Proceedings of the Seventeenth National Conference on Artificial Intelligence

and Twelfth Conference on Innovative Applications of Artificial Intelligence, pages 450–

455. AAAI Press, 2000.

[78] N. Noy and Team. Protg: http://protege.stanford.edu/.

REFERENCES 124

[79] N. F. Noy, R. W. Fergerson, and M. A. Musen. The knowledge model of protege-2000:

Combining interoperability and flexibility. In In Proceedings of the 12th International

Conferenceon Knowledge Engineering and Knowledge Management: Methods, Models,

and Tools (EKAW), pages 17–32. Sringer-LNAI, 2000.

[80] D. Oberle, R. V. andB. Motik, and S. Staab. In Handbook on Ontologies, chapter An ex-

tensible ontology software environment. International Handbooks on Information Systems.

Springer, 2004.

[81] R. Palmaa, O. Corchoa, A. Gomez-Pereza, and P. Haase. A holistic approach to collabora-

tive ontology development based on change management. Journal of Web Semantics, 9(3),

2011.

[82] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic matching of web services

capabilities. In In proceedings of International Semantic Web Conference (ISWC), Sardinia,

Italy, June 9-12 2002. LNCS.

[83] P. Plessers and O. D. Troyer. Ontology change detection using a versioning log. In Proceed-

ings of 4th International Semantic Web Conference (ISWC), Galway, Ireland, UK, Novem-

ber 6-10 2005. LNCS.

[84] P. Plessers, O. D. Troyer, and S. Casteleyn. Understanding ontology evolution: A change

detection approach. Web Semantics Science Services and Agents on the World Wide Web,

5(1), 2007.

[85] C. Preist. A conceptual architecture for semantic web services. In In 3rd International

Semantic Web Conference (ISWC), Hiroshima, Japan, November 7-11 2004. LNCS.

[86] D. Rogozan and G. Paquette. Managing ontology changes on the semantic web.

In IEEE/WIC/ACM International Conference on Web Intelligence, Compiegne, France,

September 19-22 2005. IEEE CS/ACM/WIC.

REFERENCES 125

[87] D. D. Roure, N. R. Jennings, and N. R. Shadbolt. The semantic grid: Past, present and

future. In Proceedings of the IEEE, 93(3), 2005.

[88] A. Shaban-Nejad. A Framework for Analyzing Changes in Healthcare Lexicons and

Nomenclatures. Phd thesis, Concordia University, Montreal, Quebec, Canada, April, 2010.

[89] P. Shvaiko and J. Euzenat. Ten challenges for ontology matching. In Proceedings of the

7th International Conference on Ontologies, DataBases, and Applications of Semantics

(ODBASE), Monterrey, Mexico, August 11-13 2008. LNCS.

[90] B. Smith. Blackwell Guide to the Philosophy of Computing and Information, chapter On-

tology. Blackwell Philosophy Guides. Blackwell Publishing, October 2003.

[91] M. J. Smith, R. G. Dewar, K. Kowalczykiewicz, and D. Weiss. Towards automated

change propagation; the value of traceability. Technical report, Heriot Watt University,

http://www.macs.hw.ac.uk:8080/techreps/docs/files/HW-MACS-TR-0002.pdf, 2003.

[92] Sparqlpush: pubsubhubbub (push) interface for sparql endpoint.

[93] L. Stojanovic, A. Madche, B. Motik, and N. Stojanovic. User-driven ontology evolu-

tion management. In European Conference on Knowledge Engineering and Management

(EKAW), Siguenza, Spain, October 1-4 2002. LNCS.

[94] L. Stojanovic, A. Madche, N. Stojanovic, and R. Studer. Ontology evolution as

reconfiguration-design problem solving. In Proceedings of the 2nd International Confer-

ence on Knowledge Capture (K-CAP-03), Sanibel Island, FL, USA, October 23 - 25 2003.

ACM.

[95] Y. Sure, J. Angele, and S. Staab. Ontoedit: Multi faceted inferencing for ontology engi-

neering. Journal on Data Semantics, 1(1), 2003.

REFERENCES 126

[96] Y. Sure, S. Bloehdorn, P. Haase, J. Hartmann, and D. Oberle. The swrc ontology - semantic

web for research communities. In In Proceedings of the 12th Portuguese Conference on

Artificial Intelligence - Progress in Artificial Intelligence (EPIA), volume 3803 of LNCS,

pages 218–231, Covilha, Portugal, December 5-8 2005. Springer.

[97] S. Tunnicliffe and I. Davis. Changeset. Online, 2005.

[98] M. Tury and M. Bielikova. An approach to detection ontology changes. In First interna-

tional workshop on adaptation and evolution in web systems engineering (AEWSE), Palo

Alto, CA, USA, July 10-14 2006. ACM.

[99] M. Uschold. Building ontologies: Towards a unified methodology. In 16th Annual Confer-

ence of the British Computer Society Specialist Group on Expert Systems, Cambridge, UK,

September 1996. Online.

[100] M. VanAntwerp and G. Madey. Warehousing, mining, and querying open source versioning

metadata. Journal on Metadata Semantics, 2008.

[101] A. Varzi. Change, temporal parts, and the argument from vagueness. Dialectica, 59(4),

2005.

[102] Y. Velegrakis, R. J. Miller, and L. Popa. Preserving mapping consistency under schema

changes. The VLDB Journal, 13(3), 2004.

[103] L. T. Vinh, S. Lee, H. X. Le, H. Q. Ngo, H. I. Kim, M. Han, and Y.-K. Lee. Semi markov

conditional random fields for accelerometer based activity recognition. Journal of Applied

Intelligence, 35(2), 2010.

[104] P. Wang and B. Xu. Lily: Ontology alignment results for oaei 2009. In Ontology Matching

of 8th International Semantic Web Conference (ISWC), Washington DC, USA, October

25-29 2009. LNCS.

127

[105] R. Wasserman. The problem of change. Philosophy Compass, 1(1), 2006.

[106] F. Zablith. Ontology evolution: A practical approach. In Poster at Proceedings of Workshop

on Matching and Meaning at Artificial Intelligence and Simulation of Behaviour (AISB),

Edinburgh, UK, April 9 2009. Online.

Appendix A: Change Tracer Evaluation

A.1 Change Recovery

The aim of this discussion is to validate whether the proposed algorithm for ontology recovery is

correct and can scale up to complex ontologies. Validation and verification of the outcome of the

recovery process is essential and critical. There has to be a mechanism to prove the hypothesis

that the output ontology, after applying the recovery process on top of the CHO, is correct. In

order to quantitatively measure the performance of the recovery algorithm, an evaluation measure

was used which is discussed below.

For the evaluation of the recovery procedure, two different versions of ontology i.e., OV 1

and OV 2 are used. The changes between the versions i.e., C∆ were stored in Change History Log

(CHL) using CHO. 35 different changes were manually incorporated in Bibliography ontology. All

the changes were classified in three categories: (1) Hierarchy level changes, including the changes

having effects on classes, properties, and their constraints, (2) Class level changes, changes re-

sulting from modifications to classes and constraints on classes. These changes also contribute

to changes at hierarchy level, (3) Property level changes, changes resulting from modifications to

properties and constraints on the properties. They also contribute to changes at hierarchy level.

128

129

The number of hierarchy, class, and property changes were 10, 10, and 15 respectively. However,

changes contributing from classes and properties made the number for hierarchy level changes

bigger. After identifying and logging the changes between two versions, an equation for the veri-

fication of recovery procedure has been devised. As the proposed plug-in provides both Rollback

and Rollforward facilities, so the equations for these procedures’ verification are also separated.

Roll Back

To roll back the changes from OV 2, subtract all the changes i.e., C∆ from the ontology that caused

OV 2 to evolve from OV 1. This subtraction of the changes from OV 2 were all made using proposed

recovery (RollBack) Algorithm 2. The equation for verification is as under;

OV x ≡ OV 2 − C∆ (A.1)

difference〈OV 1,OV x〉 ≡ ∅ (A.2)

The recovery (RollBack Algorithm) process was applied on OV 2. The recovered version was

stored in another temporary version OV x. The temporary recovered version was checked against

the available version OV 1. OV 1 was differed from the recovered version i.e., OV x and if the differ-

ence was null (empty) then it means that the recovery process for roll back produced correct result.

Roll Forward

To roll forward the ontology from OV 1, add/apply all the changes i.e., C∆ to the ontology that

caused OV 2 to evolve from OV 1. This addition of the changes to OV 1 were all made using the

130

proposed recovery (RollForward) Algorithm 3. The equation for verification of Rollforward

algorithm is;

OV x ≡ OV 1 + C∆ (A.3)

difference〈OV 2,OV x〉 ≡ ∅ (A.4)

The recovery (RollForward Algorithm) process was applied on OV 1. The recovered version

was stored in another temporary version OV x. The temporary recovered version was compared

against the available version OV 2. Furthermore, OV 2 was differed from the recovered version i.e.,

OV x and if the difference was found null (empty) then it means that the recovery process for roll

forward produced correct result.

The difference between two ontology models was calculated using the difference() method

of Model class from JenaAPI . Both versions are also checked using Prompt [77]. Using the

Bibliography ontology, the RollBack and RollForward algorithms have been tested and got

very good results. The details of these results are given in Table A.1, whereas their descriptions

are given below.

For RollBack, the plug-in was tested 12 times and 5 correct results were obtained. The prob-

lems were: (1) when a DomainAddition entry is rolled backed, it is reverted as DomainDeletion.

So the algorithm actually has deleted the domain of some property; however, Protege internally

assigns owl : Thing as domain to all those properties which do not have any domain. (2) When

datatype property is deleted, the range of that property is not captured properly. Because of these

two problems, very low accuracy for Rollback was recorded. These problems were solved and

131

the plug-in was tested for 12 more times. This time, 7 correct results were obtained. Only one

issue was found, i.e., when a property is made as inverse property, the information about the other

property to which this property is made inverse to, is missing. The domain issue was resolved by

letting the domain of a property as empty, range problem by using the difference() method, and

inverse property problem by introducing the hasInverseTo property in CHO. After the corrections,

12 more experiments were conducted and this time 12 correct results were obtained and no issues

with the recovery procedure.

The RollForward was implemented after the RollBack was completely implemented and

all the problems which were faced during RollBack were removed. To justify that the system is

correctly working for its RollForward operation, the RollForward operation was tested on all

the 36 tests which were used to test the RollBack operation. Out of 36 roll forward experiments,

36 correct results were obtained with 100% accuracy, as shown in Table A.1.

To validate that the system was not only tested on biased and controlled data sets, a detail

system evaluation on four standard online available data sets is also provided. The details of all

these experiments are given in the next section.

A.1.1 System Evaluation

In this section, detailed evaluation of the proposed recovery algorithms is presented. The proposed

algorithms were tested with different versions of four different standard ontologies openly avail-

able. The reason for testing the system on four different data sets was to prove that the system is

usable with varity of different ontologies and in uncontrolled envoirnments. Another reason for

132

the test was to cover as many aspects of ontology change as possible. As one can see in Table A.2

and A.3, in different ontologies the concentration of changes are different. For example, OMV

and SWRC ontology have more changes from properties and axiom prospective, SWETO [70] has

more on the class prospective, whereas, the CRM has mixed changes.

It is important to mention the process of logging the changes between different versions of

ontologies. To log the changes in CHL, ChangeTracer was configured with Protege and then

the respective changes were performed to the ontologies to log them in CHL. Details of these

changes, their types, their dependence, their most appropriate sequence, and effects were man-

ually analyzed. For the confirmation of the change analysis between two versions of ontology,

the completeness of the changes, and the correctness of the changes, difference() method of Model

class from Jena API as well as the Compare operation of Prompt [77] algorithm were used. These

logged changes were used for the evaluation of the system which is given below.

Evaluation using OMV

Ontology Metadata Vocabulary (OMV) (http://ontoware.org/frs/?group id=39) [43] is used by

the community for better understanding of the ontologies for the purpose of properly sharing and

exchanging the information among organizations. To achieve this goal, this standard is set and

agreed by the community for sharing and reusing of ontologies. OMV actually provides common

set of terms and definitions describing ontologies, so called ontology metadata vocabulary. OMV

have different versions available online containing different sets of concepts, properties, and re-

strictions. The developed plug-in has been tested on three different versions of OMV. The OMV

versions used for the experimentation are omv-0.6.owl, omv-0.7.owl, and omv-0.91.owl.

133

Table A.2 shows complete details about the types and number of changes among different

versions. These changes comprise class related, property related, and heirarchy related changes,

which were captured and stored in CHL with the help of ChangeTracer. Using these logged

changes, the Rollback and Rollforward procedures with the validity checking using Rollback

and Rollforward techniques presented in Section A.1 and Section A.1 have been applied. All

the recovered versions have been compared with the original version and they all are found error

free.

Evaluation using SWRC Ontology

Semantic Web for Research Communities (SWRC) ontology [96], models key entities relevant

for research communities and related concepts in the domain of research and development. Cur-

rently there are 70 different concepts with 48 object type properties and 46 datatype properties.

The reuse of ontologies for the real realization of semantic web and its continues improvement by

user communities is a crucial aspect. The description and the usage guidelines are provided for

SWRC ontology by the authors to make a complete value of the implicit and explicit facilities.

Two versions of SWRC ontology available online have been used, which are swrc-v0.3.owl

and swrc-updated-v0.7.1.owl. Changes between version swrc-v0.3.owl and swrc-updated-v0.7.1.owl

comprise class related, property related, and hierarchy related changes, which were captured and

stored in CHL with the help of ChangeTracer. Details are given in the Table A.2. Using these

logged changes, the Rollback and Rollforward techniques presented in Section A.1 and Section

A.1 have been applied, and that resulted in recovered versions. All the recovered versions have

134

been compared with the original version and they all are found correct.

Evaluation using CRM Ontology

One of the ontologies used for experiments is the CIDOC Conceptual Reference Model (CRM)

[21]. CRM provides a common language and semantic framework for experts and developers in

the cultural heritage domain and facilitates in sharing the understanding of cultural heritage in-

formation. Multiple versions of CRM are available online . For the evaluation of the proposed

system, two different versions of CRM ontology (i.e., cidoc-crm-3.2.rdf and cidoc-crm-3.4.rdf)

are used.

Changes between cidoc-crm-3.2.rdf and cidoc-crm-3.4.rdf were first captured and stored in

CHL with the help of ChangeTracer. Details of all these changes are given in Table A.3. Us-

ing these logged changes, the Rollback and Rollforward techniques presented in Section A.1

and Section A.1 have been applied. The Rollback from cidoc-crm-3.4.rdf with the help of logged

changes produced a temporary recovered version. The recovered version has been checked against

cidoc-crm-3.2.rdf, both versions are found the same. The Rollforward from cidoc-crm-3.2.rdf

with the help of logged changes produced a temporary recovered version. The recovered version

has been compared against cidoc-crm-3.4.rdf, both versions are found the same with no differences

between them. This shows that the RollBack and RollForward operations on cidoc-crm-3.2.rdf

and cidoc-crm-3.4.rdf are correct.

135

Evaluation using SWETO

Semantic Web Technology Evaluation Ontology (SWETO) is basically an ontology developed as

a benchmark by Semantic Web Community for evaluating the scalability of the available semantic

web tools. More details on SWETO can be found on [70]. Since it is a benchmark ontology for

testing the performance and scalability of semantic web tools, that’s why it has been selected it

to test the scalability and performance of the developed plug-in. Currently, three versions of the

SWETO ontology [70] with names: (i) testbed-v1-4.owl (ii) testbed-v1-3.owl, and (iii) testbed-

v1-2.owl are used for the experiments.

Since three versions of ontology are used, so two set of experiments are conducted. Initially,

the first two versions, i.e., testbed-v1-2.owl and testbed-v1-3.owl are used. All the changes be-

tween these versions are stored in their corresponding log file. The details of these changes are

given in Table 4. Using these logged changes, the Rollback and Rollforward techniques pre-

sented in Section A.1 and Section A.1 have been applied. The Rollback and Rollforward op-

erations on testbed-v1-3.owl and testbed-v1-2.owl are implemented in the same way as discussed

in previous experiments. With this implementation and comparison, all the results observed are

found correct. This shows that the Rollback and Rollforward operations on the testbed-v1-2.owl

and testbed-v1-3.owl are correct. Secondly, the other set of its two versions i.e., testbed-v1-3.owl

and testbed-v1-4.owl are used for the experiments. All the changes between these two versions

are also stored in CHL. The number and types of changes are given in Table A.3. Using these

logged changes, the Rollback and RollForward techniques presented in Section A.1 and Sec-

tion A.1 have been applied. The Rollback and Rollforward operations are applied in the same

way as in the previous steps. The differences of original versions and recovered versions from

RollBack and RollForward are analyzed for verification. The results of all the differences are

136

empty which shows that the Rollback and Rollforward operations on the testbed-v1-3.owl and

testbed-v1-4.owl are correct.

137

(Rollback or Undo Algorithm) This algorithm assumes a pre-defined function,
TimeIndexedSort for sorting member entries of the ChangeSet based on their
timestamp.
Input: An ontology O.
Input: An instance of ChangeSet, S∆ ∈ ChangeSet, which lists the changes
made in the ontology O.
Output: The previous version O′ of the ontology O after reverting the changes
mentioned in S∆.
1. /* Sort member entries of the ChangeSet in descending order of their
timestamp*/
2. TimeIndexedSort(S∆, ‘DESC’)
3. foreach c∆ ∈ S∆ do
4. /* Process resource addition */
5. if c∆ : OntologyChange u ∃changeType.Create then
6. /* Remove the resource(s) which were target of the change */
7. O ← O − {x|〈c∆, x〉changeTarget}
8. else
9. /* Process resource deletion */
10. if c∆ : OntologyChange u ∃changeType.Delete then
11. O ← O + {x|〈c∆, x〉changeTarget}
12. else
13. /* Process modification*/
14. . . .
15. /* Implementation of this algorithm consists of a number of other conditional
statements to check the change type and to process it accordingly, such as for
annotations.*/
16. endif
17. end

138

(RollForward or Redo Algorithm) This algorithm assumes a pre-defined function,
TimeIndexedSort for sorting member entries of the ChangeSet based on their
timestamp.
Input: An ontology O.
Input: An instance of ChangeSet, S∆ ∈ ChangeSet, which lists the changes
made in the ontology O.
Output: The next version O′ of the ontology O after re-implementing the
extracted changes from CHL mentioned in S∆.
1. /* Sort member entries of the change set in ascending order of their timestamp
and select the most recent one*/
2. TimeIndexedSort(S∆, ‘ASC’)
3. foreach c∆ ∈ S∆ do
4. /* Process resource addition */
5. if c∆ : OntologyChange u ∃changeType.Create then
6. /* Re-implement (insert) the resource(s) which were target of the change */
7. O ← O + {x|〈c∆, x〉changeTarget}
8. else
9. /* Process resource deletion */
10. if c∆ : OntologyChange u ∃changeType.Delete then
12. /* Re-implement (delete) the resource(s) which were target of the change
*/
11. O ← O − {x|〈c∆, x〉changeTarget}
12. else
13. /* Process modification*/
14. . . .
15. /* Implementation of this algorithm also consists of a number of other
conditional statements to check the change type and to process it accordingly.*/
16. endif
17. end

139

Roll Back
Details Tests Correct Results Problems Accuracy
Initial Attempts: 12 5 Domain Addition,

Datatype Property
Range Deletion

41.67

First Revision: 12 7 Inverse Property 58.34
Second Revi-
sion:

12 12 Nil 100

Roll Forward
Details Tests Correct Results Problems Accuracy
Total Attempts: 36 36 Nil 100

Table A.1: Change logging validation by implementing Roll Back and Roll Forward.

Ontology Ver-
sions

OMV.owl &
OMV-0.7.owl

OMV-0.7.owl &
OMV-0.91.owl

swrc-v0.3.owl &
swrc-updated-
v0.7.1.owl

Total Changes 38 189 310
Change in Hier-
archy

18 71 131

Change in
Classes

6 34 84

Change in Prop-
erties

25 123 172

Table A.2: Roll Back and Roll Forward procedures’ results for OMV and SWRC Ontolo-
gies.

140

Ontology Ver-
sions

cidoc-crm-3.2.rdf &
cidoc-crm-3.4.rdf

testbed-v1-2.owl
& testbed-v1-
3.owl

testbed-v1-3.owl &
testbed-v1-4.owl

Total Changes 170 124 223
Change in Hier-
archy

94 60 170

Change in
Classes

54 107 193

Change in Prop-
erties

103 14 22

Table A.3: Roll Back and Roll Forward procedures’ results for CIDOC-CRM and
SWETO Ontologies.

Appendix B: List of Publications

B.1 International Journal Papers

1 Asad Masood Khattak, Khalid Latif, and Sungyoung Lee, ”Change Management in Evolv-

ing Web Ontologies”, Knowledge-based Systems, (IF: 1.574), 2012, (In Press).

2 Asad Masood Khattak, Zeeshan Pervez, Khalid Latif, and Sungyoung Lee, ”Time Effi-

cient Reconciliation of Mappings in Dynamic Web Ontologies”, Journal of Knowledge-

based Systems, (IF: 1.574), 2012, (In Press).

3 Asad Masood Khattak, Zeeshan Pervez, Khalid Latif, and Sungyoung Lee, ”Change His-

tory Ontology: A Theoretical Perspective”, Journal of Advance Science Letters (IF: 1.253),

ISSN:1936-6612, 2012

4 Asad Masood Khattak, Zeeshan Pervez, Wajahat Ali Khan, Sungyoung Lee and Eui-

Nam John Huh, ”Automatic System for Rule Learning and Evolution”, Journal of Advance

Science Letters (IF: 1.253), ISSN:1936-6612, 2012.

5 Zeeshan Pervez, Asad Masood Khattak, Sungyoung Lee and Christopher Nugent, ”Pri-

vacy Aware Searching in Cloud Storage with Oblivious Index Based Data Search”, Ad-

141

142

vanced Science Letters (IF: 1.28), 2012

6 Asad Masood Khattak, Phan Tran Ho Truc, Le Xuan Hung, La The Vinh, Viet-hung

Dang, Donghai Guan, Zeeshan Pervez, Manhyung Han, Sungyoung Lee and Young-koo

Lee, ”Towards Smart Homes Using Low Level Sensory Data”, Journal of Sensors (IF 1.77),

ISSN: 1424-8220, 2011.

7 Zeeshan Pervez, Asad Masood Khattak, Sungyoung Lee and Young-Koo Lee, ”SAPDS:

Self-Healing Attribute-Based Privacy Aware Data Sharing in Cloud”, Journal of Supercom-

puting (IF 0.534), pp.11581-11604, ISSN: 0920-8542, January 7, 2011.

8 Asad Masood Khattak, Zeeshan Pervez, Sungyoung Lee and Young-Koo Lee, ”Intelligent

Healthcare Service Provisioning using Ontology with Low Level Sensory Data”, Transac-

tion on Internet Information Systems (TIIS) (IF: 0.164) ISSN: 1976-7277, Vol.5, No 11,

pp. 2016-2034, 2011.

9 Zeeshan Pervez, Asad Masood Khattak, Sungyoung Lee, Young-Koo Lee, ”Achieving

Dynamic and Distributed Session Management with Chord for Software as a Service Cloud”,

Journal of Software (JSW, ISSN 1796-217X), Academy Publisher, 2011.

10 Asad Masood Khattak, A.M. Khan, Sungyoung Lee and Young-Koo Lee, ”Analyzing

Association Rule Mining and Clustering on Sales Day Data with XLMiner and Weka”, In-

ternational Journal of Database Theory and Application , April, 2010.

143

B.2 International Journal Papers Under Review

1 Asad Masood Khattak, Zeeshan Pervez, Khalid Latif, Sungyoung Lee, Young-Koo Lee,

”Ontology Convergence after Evolution”, Journal of Information Science and Engineering,

(IF 0.31), 2012. (Under Review)

B.3 International Conference Papers

1 Asad Masood Khattak, Zeeshan Pervez, Manhyoung Han, Sumgyoung Lee and Chris Nu-

gent, ”DDSS: Dynamic Decision Support System for Elderly”, The 25th IEEE International

Symposium on Computer-Based Medical Systems (CBMS 2012), Rome, Italy, June 20-22,

2012

2 Wajahat Ali Khan, Maqbool Hussain, Asad Masood Khattak, Bilal Amin, and Sungy-

oung Lee, Integration of HL7 Compliant Smart Home Healthcare System and HMIS, 10th

International Conference On Smart homes and health Telematics, 12-15, Italy, June, 2012,

(Accepted)

3 Wajahat Ali Khan, Maqbool Hussain, Asad Masood Khattak, Muhammad Bilal Amin,

Sungyoung Lee, SaaS based Interoperability Service for Semantic Mappings among Health-

care Standards The 8th International Conference on Innovations in Information Technology,

UAE, March 18-20, 2012.

4 Wajahat Ali Khan, Maqbool Hussain, Asad Masood Khattak, Muhammad Bilal Amin,

Sungyoung Lee, Achieving Interoperability among Healthcare Standards: Building Seman-

tic Mappings at Models Level, In Proceedings ICUIMC, Malaysia, Febuary 20-22, 2012.

144

5 Asad Masood Khattak, Zeeshan Pervez, Wajahat Ali Khan, Sungyoung Lee, and Young-

Koo Lee, ”A Self Evolutionary Rule-base”, The 4th International Conference on u - and e -

service, Science and Technology (UNESST’11), Jeju, Korea, December 8 10, 2011.

6 Asad Masood Khattak, Zeeshan Pervez, Khalid Latif, A. M. Jehad Sarkar, Sungyoung Lee

and Young-Koo Lee, ”Reconciliation of Ontology Mappings to Support Robust Service

Interoperability”, The 8th IEEE International Conference on Services Computing (IEEE

SCC 2011), Washington DC, July 4-9, 2011.

7 Asad Masood Khattak, Zeeshan Pervez, Sungyoung Lee and Young-Koo Lee, ”Activity

Manipulation using Ontological Data for u-Healthcare”, The 8th International Conference

on Wearable Micro and Nano Technologies for Personalized Health (pHealth 2011), Lyon,

France, June 29 - July 1, 2011.

8 Iram Fatima, Asad Masood Khattak, Young-Koo Lee and Sungyoung Lee, ”Automatic

Documents Annotation by Keyphrase Extraction in Digital Libraries using Taxonomy”,

FutureTech 2011 Conference, Crete, Greece, June 28-30, 2011.

9 Asad Masood Khattak, Khalid Latif, Zeeshan Pervez, Iram Fatima, Sungyoung Lee and

Young-Koo Lee, ”Change Tracer: A Protg Plug-in for Ontology Recovery and Visualiza-

tion”, The 13th Asia-Pacific Web Conference (APWeb2011), (LNCS Conference), Beijing,

China, April 18-20, 2011.

10 Zeeshan Pervez, Asad Masood Khattak, Sungyoung Lee and Young-Koo Lee, ”CSMC:

Chord based Session Management Framework for Software as a Service Cloud”, The 5th

ACM International Conference on Ubiquitous Information Management and Communica-

tion (ACM ICUIMC 2011), Seoul, Korea, February 21-23, 2011

145

11 Asad Masood Khattak, Zeeshan Pervez, Iram Fatima, Sungyoung Lee, Young-Koo Lee,

”Towards Efficient Analysis of Activities in Chronic Disease Patients”, The 7th Interna-

tional Conference on Ubiquitous Healthcare, Jeju, Korea, October 2010.

12 A. M. Jehad Sarkar, Adil Mehmood Khan, Asad Masood Khattak, S. K. Tanbeer, Young-

Koo Lee, Sungyoung Lee, ”WAST: Web-Based Activity Sampling Tool for Activity Recog-

nition”, In proceedings of the 2nd International Conference on Emerging Database (EDB

2010), pp. 178-183, Jeju, Korea, August 30-31, 2010.

13 Asad Masood Khattak, Zeeshan Pervez, Koo Kyo Ho, Sungyoung Lee, Young-Koo Lee,

”Intelligent Manipulation of Human Activities using Cloud Computing for u-Life Care”,

The 10th Annual International Symposium on Applications and the Internet (SAINT 2010)”,

Seoul, Korea, July 2010.

14 Asad Masood Khattak, Zeeshan Pervez, Jehad Sarkar, Young-Koo Lee, ”Service Level

Semantic Interoperability”, International Workshop on Computing Technologies and Busi-

ness Strategies for u-Healthcare (CBuH 2010)”, Seoul, Korea, July 2010.

15 Asad Masood Khattak, La The Vinh, Dang Viet Hung, Phan Tran Ho Truc, Le Xuan Hung,

D. Guan, Zeeshan Pervez, Manhyung Han, Sungyoung Lee, Young-Koo Lee, ”Context-

aware Human Activity Recognition and Decision Making”, ”12th International Conference

on e-Health Networking, Application Services”, Lyon, France, July, 2010.

16 Asad Masood Khattak, Zeeshan Pervez, Sung-young Lee, Young-Koo Lee, ”After Effects

of Ontology Evolution”, The 5th International Conference on Future Information Technol-

ogy (FutureTech10), Busan Korea, May, 2010.

17 Zeeshan Pervez, Asad Masood Khattak, Sungyoung Lee and Young-Koo Lee, ”Dual Vali-

dation Framework for Multi-Tenant SaaS Architecture”, IEEE 5th International Conference

146

on Future Information Technology, http://www.ftrg.org/futuretech2010, Busan, Korea, May

21-23, 2010.

18 Xuan Hung Le; Sung-young Lee; Phan Truc; La The Vinh; Asad Masood Khattak, Man-

hyung Han; Dang Viet Hung; Hassan, M.M.; Kim, M.; Kyo-Ho Koo; Young-Koo Lee;

Eui-Nam Huh; ”Secured WSN-Integrated Cloud Computing for u-Life Care”,7th IEEE

Consumer Communications and Networking Conference (CCNC), 2010

19 Asad Masood Khattak, Khalid Latif, Sung-young Lee, Young-Koo Lee, ”Ontology Evo-

lution: A Survey and Future Challenges”, The 2nd International Conference on u- and e-

Service, Science and Technology (UNESST 09), Jeju, Korea, December 10 12, 2009.

20 Asad Masood Khattak, Adil Mehmood Khan, Tahir Rasheed, Sung-young Lee, Young-

Koo Lee, ”Comparative Analysis of XLMiner and Weka for Association Rule Mining and

Clustering”, The 2009 International Conference on Database Theory and Application (DTA

09), Jeju, Korea, December 10 12, 2009.

21 Asad Masood Khattak, Khalid Latif, Sung-young Lee, Young-Koo Lee, Manhuyng Han,

and Hyoung Il Kim, ”Change Tracer: Tracking Changes in Web Ontologies”,21st IEEE In-

ternational Conference on Tools with Artificial Intelligence (ICTAI), Newark, USA, Novem-

ber 2009.

22 Asad Masood Khattak, Khalid Latif, Sung-young Lee, Young-Koo Lee, and Tahir Rasheed,

”Building an Integrated Framework for Ontology Evolution Management”,12th Conference

on Creating Global Economies through Innovation and Knowledge Management: Theory

and Practice (IBIMA), Malaysia, pp. 55-60, 29-30 June 2009.

147

B.4 Patents

1 Asad Masood Khattak, Sungyoung Lee, Young-Koo Lee, Hyoung Il Kim and Manhyung

Han, ”Method for Reconciling Mappings in Dynamic/Evolving Web-Ontologies Using

Change History Ontology”, International Patent No. 12/576,342, Oct. 9, 2009.

2 Sungyoung Lee, Asad Masood Khattak, ”Data Processing Method And Apparatus For

Clinical Decision Support System. USA Patent, (2012). (Pending).

	1 Introduction
	1.1 Motivation
	1.2 Approaches
	1.3 Problem statement
	1.3.1 Ontology Change Management

	1.4 Contributions
	1.4.1 Change Representation
	1.4.2 Change History Logging
	1.4.3 Mapping Reconciliation

	1.5 Thesis Organization

	2 Related Work
	2.1 Ontology Evolution Process
	2.1.1 Change Detection and Description
	2.1.2 Inconsistencies Detection
	2.1.3 Change Implementation and Verification

	2.2 Change Management
	2.2.1 Database Change Management
	2.2.2 Ontology Change Managemen

	2.3 Ontology Change Tracking
	2.4 Ontology Change based Mapping Re-establishment

	3 CHO: The Change History Ontology
	3.1 Ontology Change
	3.2 Change History Ontology
	3.2.1 Change Handling
	3.2.2 Change Set
	3.2.3 Provenance
	3.2.4 Change Types
	3.2.5 Temporal Ordering
	3.2.6 Conceptual Design Patterns
	3.2.7 CHO Modeling Language
	3.2.8 Complex Changes

	3.3 Change History Log (CHL)

	4 Applications of Change History Log
	4.1 Ontology Recovery
	4.2 Visualization
	4.3 Mapping Reconciliation
	4.4 Query Reformulation
	4.5 Change Prediction
	4.6 Collaborative Ontology Engineering

	5 Change Capturing and Mapping Reconciliation
	5.1 Change Capturing
	5.1.1 Change Listener
	5.1.2 Change Logger
	5.1.3 Parser

	5.2 Reconciliation of Ontology Mappings
	5.2.1 Mapping Reconciliation Procedure
	5.2.2 Re-establishing Mappings

	6 Implementation and Results
	6.1 Change Capturing
	6.2 Mapping Reconciliation
	6.2.1 Comparison using Complex Changes
	6.2.2 Comparison using Atomic Changes
	6.2.3 Effects of Change Type
	6.2.4 Memory Utilization
	6.2.5 Reconciled Mapping Accuracy

	7 Conclusion and Future Directions
	7.1 Conclusion
	7.2 Contributions
	7.2.1 Change History Ontology
	7.2.2 Change Capturing
	7.2.3 Mapping Reconciliation

	7.3 Future Directions

	References
	Appendix A: Change Tracer Evaluation
	A.1 Change Recovery
	A.1.1 System Evaluation

	Appendix B: List of Publications
	B.1 International Journal Papers
	B.2 International Journal Papers Under Review
	B.3 International Conference Papers
	B.4 Patents

<startpage>19
1 Introduction 1
 1.1 Motivation 2
 1.2 Approaches 5
 1.3 Problem statement 7
 1.3.1 Ontology Change Management 9
 1.4 Contributions 11
 1.4.1 Change Representation 12
 1.4.2 Change History Logging 13
 1.4.3 Mapping Reconciliation 13
 1.5 Thesis Organization 14
2 Related Work 16
 2.1 Ontology Evolution Process 23
 2.1.1 Change Detection and Description 23
 2.1.2 Inconsistencies Detection 25
 2.1.3 Change Implementation and Verification 26
 2.2 Change Management 26
 2.2.1 Database Change Management 26
 2.2.2 Ontology Change Managemen 28
 2.3 Ontology Change Tracking 29
 2.4 Ontology Change based Mapping Re-establishment 30
3 CHO: The Change History Ontology 34
 3.1 Ontology Change 36
 3.2 Change History Ontology 37
 3.2.1 Change Handling 39
 3.2.2 Change Set 41
 3.2.3 Provenance 42
 3.2.4 Change Types 43
 3.2.5 Temporal Ordering 46
 3.2.6 Conceptual Design Patterns 46
 3.2.7 CHO Modeling Language 48
 3.2.8 Complex Changes 51
 3.3 Change History Log (CHL) 51
4 Applications of Change History Log 56
 4.1 Ontology Recovery 57
 4.2 Visualization 58
 4.3 Mapping Reconciliation 61
 4.4 Query Reformulation 62
 4.5 Change Prediction 66
 4.6 Collaborative Ontology Engineering 67
5 Change Capturing and Mapping Reconciliation 69
 5.1 Change Capturing 70
 5.1.1 Change Listener 72
 5.1.2 Change Logger 72
 5.1.3 Parser 74
 5.2 Reconciliation of Ontology Mappings 74
 5.2.1 Mapping Reconciliation Procedure 75
 5.2.2 Re-establishing Mappings 77
6 Implementation and Results 83
 6.1 Change Capturing 84
 6.2 Mapping Reconciliation 87
 6.2.1 Comparison using Complex Changes 90
 6.2.2 Comparison using Atomic Changes 95
 6.2.3 Effects of Change Type 100
 6.2.4 Memory Utilization 102
 6.2.5 Reconciled Mapping Accuracy 102
7 Conclusion and Future Directions 109
 7.1 Conclusion 109
 7.2 Contributions 111
 7.2.1 Change History Ontology 111
 7.2.2 Change Capturing 111
 7.2.3 Mapping Reconciliation 112
 7.3 Future Directions 113
References 115
Appendix A: Change Tracer Evaluation 128
 A.1 Change Recovery 128
 A.1.1 System Evaluation 131
Appendix B: List of Publications 141
 B.1 International Journal Papers 141
 B.2 International Journal Papers Under Review 143
 B.3 International Conference Papers 143
 B.4 Patents 147
</body>

