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Abstract

Clinical decision support system (CDSS) represents the latest technological transformation in

healthcare for assisting clinicians in complex decision-making. Several CDSS are proposed to deal

with a range of clinical tasks such as disease diagnosis, prescription management, and medication

ordering. Although a few CDSSs have focused on treatment selection, medication selection along

with dosing selection remained an under-researched area. In this regard, this study presents one of

the first studies in which a CDSS is proposed for clinicians who manage patients with end-stage

renal disease undergoing maintenance hemodialysis, almost all of whom have some manifestation

of chronic kidney disease-mineral and bone disorder (CKD-MBD). In this thesis, we have en-

deavored to complement both consensus-based domain knowledge (reflecting general framework

provided in clinical practice guidelines) and experiential knowledge of domain experts (that can be

acquired from clinical cases). Clinical Practice Guidelines provide a general framework to guide

clinicians but lack operational details. In this regard, this thesis addresses the problem of how to

complement case-base and domain model in order to generate domain compliant complex recom-

mendation generation that reflect both clinicians’ consensus-based training as well as clinician’s

experience?

The primary objective of the system is to aid clinicians in dosage prescription by levering

medical domain knowledge as well existing practices. The proposed CDSS is evaluated with

a real-world hemodialysis patient dataset acquired from Kyung Hee University Hospital, South

Korea. Our evaluation demonstrates overall high compliance based on the concordance metric

between the proposed CKD-MBD CDSS recommendations and the routine clinical practice. The

concordance rate of overall medication dosing selection is 78.27%. Furthermore, the usability

aspects of the system are also evaluated through the User Experience Questionnaire method to
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highlight the appealing aspects of the system for clinicians. The overall user experience dimension

scores for pragmatic, hedonic, and attractiveness are 1.53, 1.48, and 1.41, respectively. The service

reliability for the Cronbach’s alpha coefficient greater than 0.7 is achieved using the proposed

system whereas the dependability coefficient of the value 0.84 revealed a significant effect. The

proposed CDSS serves as a valuable tool in selecting appropriate treatment regimens based on

domain knowledge and past experiences. It also helps in reducing the cognitive load of clinicians

at the point of care. Furthermore, it can also be used as an educational resource for training

purposes.
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Chapter 1
Introduction

The main focus on this dissertation is to propose a hybrid knowledge modeling framework through

which both explicit knowledge (domain model) and implicit knowledge (cases) can be used in a

complementary manner for complex recommendation generation tasks. In this regard, chronic

kidney disease - mineral and bone disorder (CKD-MBD) treatment case study is selected for

demonstrating the efficacy of the proposed approach. Moreover, the proposed approach is used

for developing a clinical decision support system (CDSS) that is thoroughly evaluated from both

system-centric and user-centric perspectives.

1.1 Background

Clinical decision support systems (CDSSs) play an important role in enhancing the overall ca-

pabilities of healthcare providers [1, 2]. In a rapidly changing healthcare landscape, CDSSs are

emerging as inevitable applications for informed decision-making. CDSSs are software applica-

tion systems that provide time-critical, valuable, and relevant information to doctors, paramedical

staff, and patients in order to help them deal with complex medical cases. CDSSs are sophisticated

systems that encompass a variety of tools, such as alerts/reminders to the caregivers, knowledge

extraction from clinical guidelines, medication and test ordering, diagnosis automation, and pre-

scription management [3].

1.1.1 Benefits of Clinical Decision Support System (CDSS)

CDSSs provides assistance to medical practitioners in critical decision-making pertaining to pa-

tients’ medical situations. The adoption of computerized systems in healthcare has a positive

impact on the quality of patient care. In this regard, CDSSs provide medical practitioners with the

1



CHAPTER 1. INTRODUCTION 2

necessary support in terms of pointers to relevant domain knowledge, highlighting relevant patient

information, and decision support to deal with complex situations requiring expert intervention

[4]. Although most CDSSs are geared towards medical professionals, some systems also provide

support to the patients in terms of education and awareness regarding their medical condition.

It is widely indicated in the literature that CDSSs can positively impact the overall quality of

healthcare by leveraging state-of-the-art technologies which result in effective and efficient deci-

sion management without hindering the established clinical/healthcare workflows. In this regard,

it is of the utmost importance that CDSSs provide services without becoming overtly bothersome

to the clinicians [5,6]. Therefore, the usability aspects of CDSSs are also an important considera-

tion. The application of these systems can be justified on the basis of their impact on the following:

increased quality of service, reliable and transparent decision support, real-time situational aware-

ness, enhanced health outcomes, user satisfaction e.g., of healthcare personnel and/or patients, and

time-saving [7]. In this study, we designed a CDSS to assist the management of chronic kidney

disease–mineral and bone disorder (CKD–MBD) in patients undergoing maintenance hemodial-

ysis. The kidneys keep blood levels of electrolytes including calcium and phosphate within the

normal range by finely handling their urinary excretion. Dysregulation of serum calcium, phos-

phate, and parathyroid hormone (PTH) begins far before reaching end-stage renal disease, even

when kidney function is declined by half [8]. Importantly, biochemical abnormalities are closely

interrelated to altered bone turnover and mineralization, and vascular calcification, leading to frac-

tures [9, 10] and cardiovascular disease [11], both of which are serious and highly prevalent

morbidities in dialysis patients. CKD–MBD is an insidious pathological process complicated in

CKD that encompasses biochemical abnormalities, bone abnormalities, and vascular calcification.

Kidney Disease: Improving Global Outcomes (KDIGO) guidelines recommend serial assess-

ments of serum phosphorus, calcium, and PTH and present their target ranges [12]. However,

these three key laboratory values are hard to control within the target range at the same time

despite technical advancements in dialysis-related apparatus and the introduction of new medica-

tions. Indeed, more than half of patients on dialysis do not achieve recommended target ranges of

serum phosphorus, calcium, and PTH levels [13]. Since maintaining serum phosphate, calcium,

and PTH within target ranges may reduce cardiovascular events and mortality [14, 15] in ESRD
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patients, their optimal control is of paramount importance. One of the major barriers to correct lab-

oratory abnormalities is that the medication prescribed to control one parameter may cause other

parameters to fall out of the target range. To help clinicians prescribe the best set of medications,

we developed a computerized decision support system which provides recommendations mostly

regarding medication adjustment based on domain knowledge and past patient cases. A generic

process flow for the CKD–MBD evaluation and treatment is presented in Figure 1.1.

Figure 1.1: A generic process flow for the chronic kidney disease–mineral and bone disorder
(CKD–MBD) treatment regimen selection.

1.1.2 CDSS for CKD-MBD Treatment

As CKD–MBD is not a single disease entity but encompasses a variety of altered mineral and bone

metabolisms, a patient is initially evaluated for CKD–MBD by measuring serum calcium, phos-

phate, and PTH levels, and examining ectopic calcification with lateral abdominal radiography

and echocardiography. Then, considering CKD–MBD status and associated clinical situations, an

appropriate treatment plan consisting of dietary modification and medications is established. The

objective of the proposed CKD–MBD CDSS is to assist clinicians in the selection of an appropriate
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treatment regimen, i.e., medication selection and dosage recommendations for the management of

CKD–MBD in ESRD patients. In this regard, we have focused on the expert-in-the-loop approach,

i.e., clinicians provide essential domain knowledge for decision modeling and recommendation

generation.

1.2 Case-based Reasoning (CBR)

1.2.1 An overview of CBR

Case-based reasoning (CBR) provides a methodology for solving computational problems through

analogy with past solved cases [16,17]. CRB can be applied to an array of different computational

problems hence it is versatile and its recommendations are inherently interpretable by the domain

expert [17, 18]. The main approach adopted in CBR is to model past successful experiences

through cases. A case captures a problem component and a solution component with an optional

outcome component as well [17, 19]. The problem component specifies operating conditions

under which a solution is required. The solution component deals with providing solutions that

resolve the given problem [20]. The outcome component is useful when success of a solution

can be quantified and supplied along with the proposed solution for subsequent reuse for a similar

problem. In CRB, the reasoning is applied on the basis of cases and similar cases are selected with

an operating assumption that the cases which are similar to each other would have similar solutions

[20]. Unlike record retrieval operational in database where given a formal query an exact solution

is provided that is already available in the database. In CBR, it is not assumed that exact solution

should be already available in the case-base, therefore, an approximate solution may be selected

that can be further fine-tuned on the basis of peculiar details of the test case [21]. The similar

selected case should be relevant, therefore, the notion of similarity is an important consideration

in CBR. In this regard, CBR provides flexible solutions due to employed approximate reasoning.

Furthermore, the CBR methodology can be applied to different kinds of data such as tabular data,

images, textual data, etc [16]. In this thesis, we have used CRB for tabular data that is comprised of

patients’ measurements of laboratory test results along with prescribed medications. The outcome

component is added to each case based on each treatments efficacy as recorded by the system.
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1.2.2 Past events as Cases

The CRB methodology encodes past events as cases. Past events result in both positive experi-

ences and negative experiences in terms of the efficacy of their solutions for given problems [17].

Generally, those cases are deemed relevant that have had resulted in positive experiences. But it

is also argued that similar cases with negative experience enrich the case-base and point towards

potential choices that needs to be avoided [17, 22]. The problem of encoding cases with most im-

portant aspects of past experiences is a non-trivial task and should be performed carefully. In this

regard, the task of feature selection also plays an important role as it identifies a set of suitable fea-

tures that have statistically meaningful impact on the decision [17]. Moreover, the domain expert

may also be consulted to identify the core aspects of their past experiences so as to model CBR

as closely to the operational conditions as possible. In Figure 1.2 a generic CBR framework is

depicted that is comprised of a number of steps. A new case essentially specifies a computational

problem to be solved, based on the problem represented in the form of a case, a set of similar

cases are retrieved from a case-base. This case-base serves as a memory where different cases are

stored. The case-base has an important role in the CBR as it specifies the problem and solution

space for the application.

1.2.3 Components of a Case

A case representation can take many forms, in this thesis, we have selected a feature-based rep-

resentation as the required source data is already stored in an structured form within hospital’s

information management system. As earlier mentioned, a case is composed of problem and solu-

tion components whereas the problem component may be characterized by a set of features that

encompass the necessary aspect of the problem to be solved [23–26]. In the treatment for CKD-

MBD patients, the scope of the problem deals with patients’ laboratory test results. Therefore,

with consultation with domain experts a set of medical tests are identified that are followed un-

der operational protocols for treatment prescription by physicians. Each medical test is encoded

as a single feature. Moreover, age and gender of the patients are also made part of the problem

component. In this regard, the biographical information and medical test results form the problem

component for our CKD-MBD application. The solution parts is encompass a multi-attribute rec-
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ommendation in which a set of different medications may be prescribed to a patient. Hence, each

feature in the solution component represent a pre-specified medication and its dosage. For such

cases, where a certain medication is not prescribed, the dosage of all unprescribed medication is

set to 0. As aforementioned, a case within CRB methodology can be divided as follows:

• A problem component that provides necessary information e.g. encoded as a set of features

• A solution component that may be comprised of a single feature e.g. disease diagnosis, or a

set of features e.g. medication prescription, that charts a recommended solution for a given

problem.

• An optional outcome component that quantifies the efficacy of the solution through a sub-

sequent feedback

Figure 1.2: Case-based Reasoning (CBR) schematic representation.

Case-base can consists of multiple cases, carefully selected a reference for future reuse [17].

The initial set of cases can be curated with the help of domain experts [21]. Moreover, as men-

tioned earlier, both positive experience and negative experience may be encoded into cases for
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further reuse. In this regard, a recommendation may be comprised for suggestion pertaining to

things advised to do and things not to do. So long a case is used for forming a recommendation,

it is deemed as a relevant case and therefore a methodology maybe devised in which both positive

experiences and negative experiences can be used in tandem for recommendation generation [17].

When positive and negative cases occur one can introduce two sets of cases: C+ (positive)

and C− (negative) cases. Negative cases occur often in the context of decision making where one

has to choose from different alternatives or when advice has to be given.

A CRB framework can be adopated for genreating a recommendation for a wide variety of

scanarios, such as:

• Diagnosis: To perform screening of patients and divide patients who are susceptible of

disease and those that are deemed otherwise.

• Prediction: Given the current health condition of a patient and treatment, the system may

provide prognosis for the wellbeing of patient over a period of time e.g. 5 years outlook of

survivability for a cancer patient undergoing chemotherapy.

• Planning: Device treatment regimens for a patient based on successful results of patients

having similar conditions.

• Physician selection: Given a set of patient’s signs and symptoms, recommend a suitable

physician for further consultation.

1.2.4 Case Representation

The case representation is one of the most important consideration in designing a CBR solu-

tion [27]. Case representation deals with explicitly stating different aspects of problem and solu-

tion components so that similar cases can be searched and reasoning operation can be performed

in order to generate a solution [27]. In this regard, the necessary context of the encoded experience

also need to be recorded. Generally, a case is represented as feature-value pairs [28]. A feature

represents an entity or a quantifiable concept that can take on a number of distinct values as ap-

plicable in the domain such as color of skin. In this example, the skin color is a concept that is

associated with a set of several possible distinct values, restricted by the application domain [29].
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Therefore, case represent should closely model concepts and their corresponding values for a

given application domain. Moreover, explicitly characterizing different features also specify what

kind of values these features can take on e.g. a numeric value may not be applicable for a feature

expecting a nominal value [29–31]. Please note that in literature, the word feature and attribute

are used interchangeably. Therefore, we may also switch between these words. A complete case,

may represent one encounter of patient or multiple encounters can be accounted into a single case.

Therefore, it is also important to specify the scope of a case. In this thesis, one encounter of a

patient, i.e. a single visit, constitutes a case. Table 1.1 depicts one case with feature-value pairs

for problem and solution components. As it can be seen that feature value representations are, in

fact, just an attribute-value vector. More precisely, it can be stated as follows:

Definition 1 For a given set U of objects, an attribute A assigns to each object O ∈ U some

value taken from a set dom(A), the domain of A.

1.2.5 Case Base for case storage

The case-base serves as a collective memory of the recommendation system. Generally, cases

are placed in the case-base in an unordered manner [16]. It is effectively a repository of cases

that define the scope of problems that can be effectively resolved with a set of solutions already

available in the case base. Adapting a solution from existing solutions retrieved from the case-base

is not handled by the case base [32].

Definition 2 A case base is a collection of cases.

The major consideration in designing a case-base is to effectively retrieve similar cases, there-

fore, indexing plays an important role in case base designing. Moreover, based on the nature of

applicable, case-base may contain cases in a flat file structure, unstructured textual documents or

images [16, 33]. In this thesis we are dealing with heterogeneous data such as laboratory test re-

sults, biological information, and medication dosages, therefore, a flat file structure is selected for

case representation.

In this thesis we are dealing with heterogeneous data such as laboratory test results, biological

information, and medication dosages, therefore, a flat file structure is selected for case representa-

tion.
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Table 1.1: A sample case specifying problem and solution components
Case
Attributes PTH Albumin Calcuim Phosphate Calcification Cinacalcet ClacitriolPro CalcitriolIV Paricalcitol Calcium

Carbonate
Calcium
Acetate Sevelamer Lanthanum

Sample
Case 641 4 8.4 8.6 Yes 24 0 0 10 0 1000 3200 0

Case
Components

Problem Component
(measurements for laboratory test results)

Solution Component
(medication dosages that can be prescribed by the physician)

1.2.6 Case Retrieval

The CBR is a passive modeling approach i.e. once an input case is received then the case-base

is searched for relevant candidate solutions. Therefore, the case retrieval strategy is of profound

importance in the CBR methodology [16, 34–36]. The notion of case similarity may differ with

respect to the nature of cases stored i.e. in case of tabular, the feature similarity may play an im-

portant role in defining the notion of similarity whereas for the problem of content-based image

retrieval the notion of similarity would be based on different characteristics of stored images that

are not pre-coded into features. Moreover, the selection of similarity measure is also informed

by the nature of features i.e. nominal features, numeric features, or a mixed set of features [16].

The objective of case retrieval task is to find a solution that is most suitable candidate for a given

problem. Since, no explicit model is available that be directly be used for generating a suitable

solution, therefore, all the cases stored in the case-base are traversed in order to specify the context

through which a single relevant solution or a set of relevant solutions may be selected [37–39]. In

order to define an ad-hoc context of relevance, the similarity of features present in the problem

component of the new case are matched with that of features stored in the case-base. As a con-

vention, if two cases are similar then the similarity score is 1 else it is 0 for the given feature and

then the accumulated score of all the features is taken as a proximity of an stored case with that

of the new case [16, 37, 40]. Once a set of stored cases are identified, they define a solution scope

in which a set of candidate solutions can be further refined or provided directly to the decision

maker.

Definition 3 Let CB be a set of objects and p be an object; then some s of CB is a nearest

neighbour to p if there is no object in the CB that has a higher similarity to p than s.

The nearest neighbor cases are deemed more suitable for providing solution to the given prob-

lem with an assumption that the solutions to similar problems can be reused. The notion of similar-

ity can be extended from the domain knowledge perspective, as it is proposed in this dissertation.
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1.2.7 Reuse and Adaptation

Once a set of candidate solutions are identified and retrieved then these can be used for generating

solution to the new problem. The reuse of solution of previous cases mean that certain aspects

of their solutions can be reused e.g. for a medication prescription problem, a set of common

medicines selected from previous cases can be suggested to a physician for a treatment selection

task [23, 25, 41]. For complex problems comprised of multiple-attributes of a recommendation,

i.e. as medication prescription, the previous experiences provide a partial solution that is required

to be incorporated along with external knowledge that may not be part of the case base [41]. It

is rare that a retrieve solution is directly applicable to a new case, except from cases where the

retrieved case is very similar to the new case. In general, the retrieved solutions are adapted within

the context of the new case e.g. a patient maybe allergic to a certain medication, therefore, an

alternative needs to be prescribed for the patient although the medication had positive effect on

similar patients. The recommendation adaptation can be done either manually or automatically.

In this thesis we propose a hybrid case adaptation technique that automatically incorporates two

different models (i.e. on different levels of granularity) to generate a complex recommendation

that is composed of multiple attributes.

In an abstract way the CBR problem-solving procedure (as shown in Figure 1.2) can be de-

scribed by the following steps:

1. First explicitly characterize past experiences through encoding them into cases

2. Select a similarity assessment technique that can efficiently compare new case with stored

cases in the case-base

3. Select relevant cases (single case or a set of cases) that can provide a solution for the given

new case

4. Adapt the retrieved solutions to the specific needs of the new case

Unlike database retrieval where an exact solution is sought for a given query, in CBR the

reasoning provides an approximate solution to a queried problem, therefore it doesn’t guarantee

the exact solution (as it may not be available in the case-base) [?, 42]. With the added flexibility
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of selecting relevant solutions that can be adopted for the queried problem, the CBR is more

closer to experience-based human thinking and it serves as a competitive approach to address an

array of computational problems. Once an adapted solution is validated by the domain expert,

then the new solution becomes part of the case-base in this manner the knowledge evolves and

new knowledge is accumulated over time. It may give rise to problem of extended search time,

once the case-base becomes large, and redundant or obsolete knowledge, these aspects are not

within the scope of this thesis. Hence, the feedback mechanism provides flexibility to the CBR

framework to include solutions that were not part of the initial case-base. It is one of the key

advantages of CRB methodology in which through the feedback loop an incremental learning takes

place. CBR is applied in a wide variety of applications such as energy optimization [43], injection

molding manufacturing [44], recommendation of baking products [45], diagnosis of mobile phone

faults [27], internet of things [46], and real state valuation [47], among others.

1.2.8 Medical Case-based Reasoning

This section mentions describes some of the typical applications of CBR in medical and healthcare

domain. It is to indicate where CBR methodology can be of use and what aspects in each applica-

tion are suitable for the methodology. In medical domain, disease diagnosis and prescription are

very common, and the way they seem to be approached by physicians and nurses, diagnoses tend

to be based on previous experiences and on evidences. These reasoning approaches are consistent

with CBR [36,38,48]. CRB methodology is successfully applied to a number of medication appli-

cations such as supporting explainable artificial intelligence for breast cancer [49], risk prediction

in surgery [50], and medication management [51], among others.

In medical applications there is an intrinsic connection between the diagnosis and prescription

tasks [48]. CRB can be used to address both of these tasks or it can be used in a diagnosis and

prescription management pipeline along with other modeling approaches [52–54]. Such a config-

uration can be considered as a hybrid approach. Another way to characterize a hybrid approach is

when different modeling techniques are used in parallel to solve a common problem i.e. a single

model fails to provide a complete high quality solution. In this thesis, we have opted for the latter

case of hyrbdization, where two different models at different levels of granularity are combined
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in such a manner that a domain-compliant complex solution (multi-attribute recommendation) can

be generated as shown in Table 1.1.

1.3 Role of hybrid approach in decision modeling

Machine learning model’s for classification and regression tasks are based on inductive learning

in which specific data instances are used to determine general outcomes e.g. benign or malignant

tumor classification or dosage estimation for radiotherapy, etc. In this regard, the induced model

is a generalization of the specific examples in the training dataset.

Different machine learning algorithms applied on the same training dataset generally result in

different models due to the consideration of different inductive biases while learning the resultant

model. The prior knowledge incorporated into the learning strategy of the model is called inductive

bias that enables the model to select a specific set of functions [55].

For example in CBR the operating assumption is this that cases that are closer to each other

in the problem space would also be close in the solution space. Therefore, a new case with an

unknown solution (e.g. a label for a diagnosis problem) is placed in a close proximity to a set of

cases that taken on a certain label e.g. benign tumor, then the test case may be labeled as a benign

case as well. This is an example of inductive bias used in algorithms that source solutions from

nearest neighbors.

In order to improve the robustness of the final output a set of multiple independent models are

employed. The prediction that is common across all the models in the set is regarded as the final

outcome. Therefore, the hybrid approach generally used in designing machine learning algorithms

deals with configurations in which different models interact with each other i.e. bagging, boosting,

stacking, etc. The output of each model is compatible with that of the other model in the solution

space, therefore, through various aggregation operators e.g. weighted majority voting or mean can

be directly applied to obtain the final outcome. One important distinction between the aforemen-

tioned model hybridization and the proposed hybridization approach is in the incompatibility of

the model’s outcome. The domain model provides a consensus-based generic recommendation

that lacks operational details while the case-based reasoning provides detailed recommendation

but may lack the compliance with the consensus recommendation. In this regard, the important
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overall contribution of the proposed approach is hybrid both the models in such a manner that the

resultant recommendation with compliant with the domain knowledge and also contains opera-

tional details to make the recommendation actionable.

Hybrid techniques along with case-based reasoning are proposed to deal with complex cases,

e.g. [56] used case-base reasoning along with Bayesian reasoning for prescription recommenda-

tion, [57] used hybrid case-base maintenance strategies that take into account both addition and

deletion of cases in the case repository. These approaches work under an assumption that the in-

dependent models provide comparable recommendations that can be directly compared and a final

recommendation can be generated based on an aggregation operation. Our proposed approach

deals with a novel situation where two models provide recommendation at different level of gran-

ularity and therefore can not be directly aggregated. In this case, recommendation from model

2 is adapted with respect to recommendation from model 1, essentially generating a sequential

pipeline of case hybridization.

1.4 Motivation

DSSs have become ubiquitous in clinical settings. CDSS support in a wide variety of cognitive-

intensive decision making tasks such as disease diagnosis and medication prescription. There are

either expert-driven approaches or data-driven approaches to model knowledge required for med-

ical decision making. In this thesis, we endeavor to synthesize both in a complimentary manner

for complex decision making tasks.

Medical domain is characterized by complex interaction of multiple contributing factors and

scarcity of data, where domain experts prefer automated decision support approaches that are

domain compliant and have higher degree of transparency in the decision making process.

The overall motivation of the proposed approach is to provide both higher-level of domain

compliance along with higher-degree of transparency in the decision making process. Following

are some of the key benefits of the proposed methodology and system:

1. Align consensus-based domain knowledge and experience-based routine clinical practice

for multi-factor recommendations.
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2. Provide recommendation for complex cases with inherent data scarcity issues.

3. Provide transparency and knowledge-based interpretability for the domain expert in recom-

mendation generation.

4. Reducing cognitive-load on the physician with intuitive and reliable decision support sys-

tem.

5. Patient Improvement Indicator provides treatment efficacy assessment based on patient’s

physiological status after the treatment.

6. Valuable educational resource for medical trainees for handling complex CKD-MBD cases

with evidence from clinical practice.

7. Preventing accidental dosage errors by generating appropriate alerts to the physician.

1.5 Problem Statement

Clinical cases provide us with operational details of the medication prescription. These operational

details are in terms of what medicines are prescribed along with their dosages. These clinical cases

reflect the subjective experience of particular clinicians. In order to generate recommendations for

complex cases (i.e. multi-attribute recommendation), we need to know operational details of the

recommendation as well as general consensus of the decision makers (i.e. a domain model)to deal

with such cases as provided in clinical practice guidelines and other such clinical references.

The challenge faced in this regard is due to the incomparable level of granularity of informa-

tion provided by the domain model and information provided in clinical cases. Domain knowledge

acquired from clinical practice guidelines is in abstract form and for complex problems it results

in partial models that are not expressive enough to provide a detailed recommendation such as

medical dosing support. Clinical Practice Guidelines provide a general framework to guide clin-

icians but lack operational details. How to incorporate expert-model in case-based reasoning for

domain compliant complex recommendation generation e.g. medication prescription?

• Active case base partitioning: A clinical case base is a homogeneous entity in while all

cases are indistinguishable until a test case is provided. Therefore, at the stage of case
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acquisition there is little guidance to specify what type of cases are required and whether

the case-base at hand is capable of providing solutions to certain types of problems (e.g.

rare events)?

• Multi-level case selection: Once the suitable partitions in the case base are identified a

priori. All the cases within a partition have same degree of membership i.e. for a given

test case, a partition is selected to provide a set of candidate cases, then all cases within that

partition are retrieved to provide candidate solutions. It is important to note that cases within

the partition denote both positive experience and negative experience. Without explicitly

stated information about the outcome of the cases, how to utilize the longitudinal case data

to infer the outcome associated with each case so that a final set of reference cases are

selected?

• Hybrid case-adaptation: Domain model provides a general framework that is agreed upon

by decision makers but for complex cases it lacks operational details. The required oper-

ational details are available in clinical cases but they reflect the subjective experience of a

particular decision maker. In this regard, the major challenge is how to align knowledge

provided by the domain model and supply operational details sourced from relevant clinical

cases?

Specifically, the main aim of this thesis is to address the following challenges:

1. How to a priori identify distinct neighborhoods within a single clinical case base?

2. How to identify reference cases within a set of candidate case?

3. How to combine incomparable models providing knowledge at different levels of granularity

for a consolidated recommendation generation?

1.6 Key Contributions

The key contributions of the thesis are as follows:



CHAPTER 1. INTRODUCTION 16

1. Leverage domain knowledge to actively partition the case base in an a priori manner for

distinct neighborhood identification for case insufficiency detection.

2. Leverage case outcome information from the feedback for candidate solutions selection

3. Leverage domain knowledge with selected cases for recommendation generation e.g. med-

ication dosage.

4. The proposed system is validated on real-world clinical cases of CKD-MBD patients.

5. Evaluation of usability aspects to demonstrate higher user experience utility for clinicians.

In order to address the aforementioned points, the study is designed in a collaborative manner

in which both domain experts (i.e., clinicians) and knowledge engineers work in tandem to realize

the proposed CDSS. The domain experts provide the relevant domain knowledge, which is in turn

modeled and enhanced by knowledge engineers. Most of the CDSSs in the domain of CKD are

based on black-box machine learning models [58–60]. Systems built on such models are generally

applied for diagnostic applications where the system provides a prediction along with a confidence

score [61, 62]. Although black-box models generally exhibit higher accuracy, such data-driven

models have limited utility due to sparsity of data, such as in the case of medication intake where

a small subset of medications are prescribed more frequently than the others. Therefore, in this

thesis, we have focused on hybrid knowledge modeling to combine expert knowledge with that

of clinical cases of patients for decision support in medication recommendations. The abstract

idea of the proposed case-based hybridization approach is depicted in Figure 1.4. The proposed

approach is comprised of three major operations, i.e., case-base partitioning, case selection, and

case adaptation. The major emphasis of the proposed approach is to synthesize abstract domain

knowledge with specific domain cases in order to generate a comprehensive recommendation for

a complex scenario.

The main contribution of the study is a proposed hybrid methodology that combines both ex-

plicit knowledge (i.e., acquired from domain experts in the form of a partial domain model) and

implicit knowledge (i.e., in the form of clinical cases) for complex multi-factor recommendations.

Therefore, the medication and dosing selection for CKD–MBD patients is adopted as a case study.

The proposed approach is based on the CBR framework, which imitates a clinician’s thinking and
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attempts to solve new problems by reusing solutions that have been used to address similar prob-

lems in the past. CBR works with specific cases from past scenarios and adapts the outcomes and

experiences to an unseen problem. The greater interpretability of the recommendation is a key

benefit of the CBR framework. Therefore, clinicians can easily evaluate the CDSS recommenda-

tion and follow the line of reasoning followed by the system. Major differences in this case from

a conventional CBR are the development of a domain model and the leveraging of it for case-base

partitioning. The case selection is further refined using reference case selection using a Patient

Improvement Indicator (PII). A hybrid approach is used for case adaptation using domain based

rules and statistical techniques, such as interquartile range. The domain model only partially cap-

tures the solution component (i.e., only medication selection is covered by the domain model), we

therefore demonstrate how to utilize the partial domain model in conjunction with clinical cases

for medication dosage selection. Figure 1.3 summarizes key challenges and their proposed solu-

tions. In this regard, both the domain model and clinical cases are employed in a complementary

manner through the hybridization pipeline proposed in this thesis. The proposed pipeline can be

applied to any other medical treatment domains that include medication prescription and dosing

adjustment.

Figure 1.3: Summarized challenges along with proposed solutions and their benefits
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1.7 Thesis Organization

This dissertation investigates the syntheize between domain knowledge and data-driven ap-

proaches i.e. case-based reasoning for complex recommendation tasks. More specifically, the

aim of this research is to explore approaches that can leverage the expert-based partial domain

knowledge model into case-base partitioning, case selection and case adaptation tasks.

This dissertation is organized into following chapters:

• Chapter 1: Introduction. In this chapter we provide the overview of the role of decision

support systems and their importance in clinical decision making tasks. Moreover, we pro-

vide the overall motivation of the thesis along with the key contributions of the proposed

approach.

• Chapter 2: Related Work. In this chapter, we survey the related work in the domain of

expert-based knowledge acquisition approaches for medical decision making tasks along

with related work on medical prescription methodologies employing both expert-driven and

data-driven approaches.

• Chapter 3: Proposed Methodology. In this chapter the focus on the acquiring domain

knowledge from experts and utilizing the acquired decision model for active-based partition-

ing, case, case selection and case adaptation. Moreover, this chapter also covers automated

knowledge generation through feature selection.

• Chapter 4: Experiments and Discussion. This chapter provides details of two types of

experimentation i.e. system-centric and user-centric. Moreover, the relevance of the results

for clinical decision making are also underlined in this chapter.

• Chapter 5: Conclusion and Future Directions. This chapter concludes the dissertation

along with identifying future research directions for extending the hybrid knowledge mod-

eling research.
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Figure 1.4: Abstract diagram depicting the role of domain knowledge and clinical cases in the
proposed approach.



Chapter 2
Related Work

2.1 Chapter Overview

Medication management is a tedious and error-prone task for both clinicians and patients. Deep

learning-based approaches are generally employed for processing unstructured data, such as med-

ication images and clinical texts, for the purpose of correctly identifying medication information.

To reduce medication identification errors by the patients, deep learning-based techniques are

leveraged that aid in prescription pill identification from mobile images [63–67]. Similarly, deep

learning techniques are also successfully applied to the task of medication and dosage extraction

from clinical texts, such as clinical notes [68–70] and social media texts [71–73]. Moreover, some

studies have explored deep learning applications for medication selection focusing on drug–drug

interaction [74], dosage selection from free clinical text processing published literature [33] [75],

and electronic health records [76], selecting discharge medications based on patient information

documented in admission notes [77], among other sources. The aforementioned approaches bene-

fited from training models on a huge amount of data and/or leveraging pre-trained models already

available for similar tasks. However, one major hurdle that limits the application of black-box

models in clinical practice is the lack of the interpretability of these approaches [78–80]. Re-

search taxonomy of the proposed hybrid case-based approach is provided in Figure 2.1.

Alternatively, the proposed hybrid case-based approach provides interpretable medication se-

lection and dosage adjustment recommendations given the small amount of clinical data with

reasonably acceptable accuracy. Therefore, in this section, we focus on those aspects of the CDSS

that are within the scope of the proposed methodology, such as expert knowledge acquisition,

medication selection and dosing adjustment.

20
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Figure 2.1: Research Taxonomy - Hybrid knowledge modeling for case selection and adaptation

2.2 Hybrid-Case Based Reasoning: Knowledge Acquisition

A mind-map-based knowledge acquisition process is proposed by Yu et al. [81] for the treatment

of thyroid nodules. The authors proposed a consultative process between domain experts and

knowledge engineers in which a domain model is produced. A number of clinical practice guide-

lines (CPGs) pertaining to the thyroid nodule treatment are analyzed by the domain experts and,

subsequently, an iterative decision tree (DT) model is generated by the knowledge engineers for

automating the decision-making process. The CDSS was evaluated using retrospective medical

records of 483 patients. The authors reported 78.9% concordance between the CDSS recom-

mendations and routine clinical practice. A similar modeling approach is adapted by Choi et

al. [82], in which a CDSS for heart failure diagnosis is proposed. The authors proposed a hybrid

knowledge modeling approach in which both expert-driven and data-driven models are consoli-

dated into a single model. In this regard, the Classification and Regression Tree (CART) model

is used to build a decision tree from patients’ medical records. Moreover, the resulting model is

combined with the DT model produced by the domain expert. The authors reported higher accu-

racy of the combined model as compared with both the expert-driven model and the data-driven

model. Hussain et al. [83] proposed a knowledge validation and verification approach for such

cases when multiple stakeholders are involved in the knowledge modeling process and diverse

sources are consulted. A hybrid approach was used which consists of both the domain expert
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knowledge as well as patients’ medical records. The resulting CDSS is used for the treatment

of oral cavity cancer patients. It was observed that knowledge verification is an important aspect

of expert-based knowledge modeling to address issues raised due to various inconsistencies, e.g.,

non-standard terminologies. The authors evaluated four different knowledge acquisition scenarios

and reported higher classification accuracy for the hybrid approach with formal knowledge verifi-

cation. A knowledge based CDSS was proposed by Afzal et al. [84] for treating cancer patients.

In this regard, an automated knowledge acquisition approach was proposed to acquire relevant

data from head and neck cancer patients’ unstructured documents. Finally, a CART model was

used for treatment regimen prediction. The authors reported 69.0% accuracy in correctly selecting

the treatment recommendation with respect to routine clinical practice. Bach et al. [85] proposed

a clinical dashboard to facilitate co-decision making in the management of non-specific low back

pain patients. The system collects data from questionnaires and wearable devices to make predic-

tions about the course of non-specific low back pain treatment. A case-based approach is used to

provide personalized recommendations for patients. The knowledge acquisition and recommenda-

tion process are primarily based on pain management guidelines, consultation with clinicians, and

past patient cases. Ali et al. [86] proposed a multi-modal-based interactive authoring environment

for expert knowledge acquisition that is also shareable. A case study on oral cavity lesions treat-

ment plan generation was presented in which expert-based knowledge in the form of a mind-map

was converted into a set of medical logic modules. In this study, the authors attempted to automate

the process for shareable knowledge creation in a user-friendly manner. The proposed system was

evaluated from both system-oriented and user-oriented aspects. Wit et al. [87] evaluated clini-

cal rules in a standalone pharmacy-based CDSS for hospitalized and nursing home patients. The

authors investigated the utility of clinical rules for reducing prescription errors. The knowledge

acquisition process for creating clinical rules was based on guidelines that are developed by both

pharmacists and physicians. The main objective of the study was to evaluate the clinical signifi-

cance of automated alerts in routine clinical practice. In this regard, the relevance was determined

whether or not the pharmaceutics contacted the physician for each alert. The authors reported that

the average efficiency of the CDSS was low, whereas a few clinical rules have an efficiency of

greater than 10%. A number of factors contributed to the low efficiency of the system, such as
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alert fatigue and the daily recurrence of previously evaluated alerts, etc.

The aforementioned studies performed knowledge acquisition for developing the expert-driven

model. The main focus was on the completeness of the model, i.e., the developed expert knowl-

edge model is sufficient for providing a recommendation for a given task, e.g., treatment selection.

The main advantage of the proposed hybridization approach is that it can synthesize partial domain

models, i.e., the domain model is used only to provide abstract level generic recommendations.

The abstract recommendation is refined using clinical cases that are relatively easy to acquire as

compared to rigorously constructing a detailed domain model for complex recommendations such

as medication selection and dosing adjustment. Moreover, the proposed approach of synthesizing a

partial domain model with clinical cases is also more practical where codified domain knowledge,

e.g., clinical practice guidelines, are not sufficiently available for the task at hand. For example,

in the domain of CKD–MBD management, the leading guidelines do not provide a detailed rec-

ommendation model for dealing with medication selection and dosing prescription. Therefore,

general pointers are extracted through domain experts to construct a generic model as per the rec-

ommendations of the guideline, while the specialization of the recommendation is aided through

the clinical practice of the clinicians in the form of specific cases. Therefore, the main role of the

proposed approach is to combine the abstract domain model with that of specific clinical cases for

final multi-factor recommendation generation. Table 2.1 provides a summarized comparison of

related techniques for knowledge acquisition for domain model construction.

2.3 Hybrid-Case Based Reasoning: Medication Selection

A CDSS for the management of CKD–MBD in patients with ESRD who receive maintenance

hemodialysis has the potential to improve different stages of prescription, such as medication ini-

tiation, modification, monitoring, or discontinuation [56, 88, 89]. Furthermore, it is reported that

the usage of CDSSs improves overall adherence to clinical practice guidelines and streamlines the

decision-making process of clinicians [90]. Vogel et al. [91] compared the effectiveness of an

outpatient renal dose adjustment alert through a computerized provider order entry (CPOE) CDSS

and a CDSS providing alerts to pharmacists. The authors concluded that both types of CDSS

resulted in low rates of potential medication errors. In prescriber-based CDSSs, a pre-defined pro-
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Table 2.1: Literature comparison of related knowledge acquisition techniques for clinical decision
support systems

Reference Area of Application Objective Characteristics Limitations

[39] Thyroid nodules Treatment

* Knowledge-based system
modeling
* Expert driven domain model
* Retrospective evaluation

*Complete knowledge model is
difficult to acquire
* Model evolution requires domain
expert involvement

[40] Heart disease Diagnosis
*Hybrid knowledge model
* Interpretable decision making
* Retrospective and pilot study

*Difficult to express domain
consensus for complex cases
* Combined model is prone to
overfitting

[41] Oral cavity cancer Diagnosis

*Hybrid knowledge model
* Model consistency evaluation
through formal methods
* Retrospective evaluation

*Complete domain model is
difficult to acquire for complex
decision tasks
*Combined model is prone to
overfitting

[42] Head and neck cancer Diagnosis

*Automated knowledge
acquisition from documents
* Interpretable decision model
* Offline and online evaluation

*Domain expert involvement is
required for data quality
validation
* Resulting model does not
incorporate domain knowledge
that is not reflected in selected
data

[43] Low back pain Treatment

*Co-decision making model
* Implicit knowledge modeling
through case-based framework
* Reference group selection
based on positive outcome

*Clinical guidelines are not
integral part of the case-based
model
* Data acquisition through
wearable devices is unreliable,
and self-reporting data are
subjective

[44] General healthcare
Wellness
management

*Framework for domain model
enrichment
* Wellness concept model for
health management
* Model evaluated using
nominal group technique

*Only SNOMED CT is used for
standard terminology
harmonization
* Model evolution requires domain
expert involvement

[45] Standard medical care Treatment

*CDSS based on clinical rules
for pharmacy application
* Automated alerts for
prescription error reduction
* Retrospective evaluation

*Difficult to express domain
consensus for complex cases
* Model evolution requires domain
expert involvement
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cess map is used to aid in the decision-making of medication prescription and dosing. Hellden et

al. [92] evaluated the impact of a CDSS on the general practitioners’ (GPs) experience of drug

dosing. The information-gathering process included a questionnaire and a focus group discussion.

The study presented favorable evaluations by GPs in terms of ease of use and overall usefulness

in medication dosing. Furthermore, primary care physicians have reported higher acceptance of

simple graphical user interfaces, along with task-oriented clear navigation and concise advice.

Pirnejad et al. [93] proposed a methodology for appropriate drug therapy recommendations for

kidney transplant patients based on clinical knowledge as well as international recommendations.

Niazkhani et al. [94] proposed a context-aware CDSS for managing drug-laboratory interactions

in order to reduce medication errors. The main focus of the study was to develop a user-friendly

CDSS to accommodate drug-laboratory interactions (DLIs) while reducing the alert fatigue of

clinicians. The knowledge base was based on DLI-rules that were extracted from pharmacology

references and clinicians’ direct input. The overall efficacy of the system was evaluated using the

“Questionnaire for User Interface Satisfaction”. Shemeikka et al. [95] proposed a CDSS to sup-

port prescriptions of pharmaceutical drugs in patients with reduced renal function. The proposed

system was integrated with an electronic health record system (EHR) used in both hospitals and

outpatient facilitates. The evaluation of the system was based on a usability questionnaire and

the frequency of system logging. The main focus of this research was to integrate the CDSS in

the Janus toolbar for appropriate drugs therapy recommendations. Awdishu et al. [96] proposed

a CDSS for supporting medication prescription for CKD patients. The system targeted 20 med-

ications and aided clinicians in the drug therapy discontinuation or dosage adjustment for adult

patients with impaired renal function. Medication alterations were based on reviewing primary lit-

erature and CPGs, among other resources. The authors reported that the proposed CDSS achieved

favorable results in providing guidance on new prescriptions. Ting et al. [56] proposed a hy-

brid case-based reasoning approach for medication prescription recommendations. In this regard,

the proposed approach combined results from case-based modeling and Bayesian reasoning using

a set of heuristic rules. Highly recommended medications were those that were selected by both

models. The main focus was on utilizing the clinical experience of physicians along with modeling

clinical knowledge in the form of a Bayesian network. Medication prescription recommendation
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is a non-trivial task that includes the selection of medication from among a number of alternate

medications. Furthermore, medication dosage selection adds to the complexity of the task. For

such complex scenarios, clinical practice guidelines (CPGs) do not sufficiently capture the wide

range of suitable recommendations. Therefore, most of the studies utilizing domain knowledge

can only provide medication selection recommendations. In the proposed hybridization pipeline,

we demonstrate an approach which involves combining an abstract domain model with that of

clinical cases for medication dosing estimation. In this regard, the proposed approach combines

an expert-based model for medication selection and a statistical technique, such as an interquartile

range (IQR), for medication dosage estimation. Table 2.2 provides a summarized comparison of

related techniques for medication prescription.
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Table 2.2: Literature comparison of related medication prescription techniques for clinical deci-
sion support system

Reference Area of Application Objective Characteristics Limitations

[50] Kidney disease
Medication
Selection

*CDSS based on pre-defined process
map
* Outpatient renal dose adjustment
using CDSS
* Retrospective evaluation

*Difficult to express domain
consensus for complex cases
* Model maintenance requires
domain expert involvement

[51] Primary healthcare
Medication
Selection

*A two-step drug recommendation
through CDSS
* Integrated into Janus web solution
* Evaluation through questionnaire
responses and focus group

*Complete domain model is difficult
to acquire for complex decision
tasks with multiple preferences
* Clinical experience of different
clinicians for dosing
recommendation is not integral
part of the CDSS

[52] Kidney patients
Medication
Selection

*CDSS for potential drug–drug
interactions (pDDIs)
recommendation
* Knowledge base construction for
pDDIs alert generation
* Prospective evaluation

*The knowledge does not provide
medication dosing
recommendation
* Difficult to express domain
consensus for complex cases

[53] Kidney patients
Medication
Selection

*Context-aware CDSS for
drug–laboratory interactions (DLIs)
* Knowledge base for DLIs
recommendations
* Prospective cross-sectional
evaluation using real clinical
patient data

*Complete domain model is difficult
to acquire for complex decision
tasks with multiple preferences
* Difficult to maintain complex
rule-based models, e.g., medication
adjustment

[54] Kidney patients
Medication
Selection

*Drug prescription for reduced renal
function patients
* CDSS is integrated in Janus toolbar
* Evaluation using questionnaire
technique

*Clinical experience of different
clinicians for dosing
recommendation is not integral
part of the CDSS
* Clinical experience of medication
selection is not reflected in the
model

[55] Kidney patients
Medication
Selection

*CDSS for drug therapy
selection/discontinuation
* Different alerts are designed based
on multiple domain sources
* Prospective evaluation using
randomized control trial

*The CDSS does not provide
medication dosing
recommendation
* Knowledge maintenance for new
medications would pose a major
challenge

[46] Standard medical care
Medication
Selection

*Data-driven hybrid model using
case-based reasoning and Bayesian
reasoning, execute in parallel
* Heuristic rules to combine results
from both models

*The CDSS does not provide
medication dosing
recommendation
* Complete domain model is difficult
to acquire for complex decision
tasks reflecting multiple
preferences



Chapter 3
Proposed Methodology for Hybrid Case-based Modeling

This chapter deals with elaboration of our proposed hybrid knowledge modeling approaching

for case selection and adaptation. In this regard, first we provide an overview of the proposed

methodology. We specify the steps required to construct a domain model and also touch upon our

strategy of incorporating the domain model into the case-based reasoning framework. Afterwards,

we elaborate on the three key steps of our methodology i.e. active case base partitioning, multi-

level case selection and hybrid case adaptation. Lastly, we discuss details of the CKD-MBD CDSS

that is designed on the basis of our methodology.

3.1 Overview of Hybrid Case-based Reasoning

3.1.1 Extract, Transform, Load (ETL) pipeline for data acquisition

Relevant data are generally available in disparate form i.e. data in electronic medical records, clin-

ical notes, medical images, etc. In this regard, all the relevant data are brought from multi-sources

and forms into a staging area where it can be processed and transformed into a standard form.

Extract operation, retrieves data from multiple sources while transform converts into a standard

form. Finally, load operation brings the data from a staging area into a centralized repository. The

proposed CDSS takes into account the laboratory and imaging test results of patients and assists

clinicians in selecting an appropriate treatment regimen. Treatment recommendations in terms of

medication selection and dosage adjustment are based on similar patients and domain knowledge.

The proposed hybrid approach is illustrated in Figure 3.2. The expert knowledge is codified into

a hierarchical structure such as a DT and it is utilized for partitioning the past clinical cases into

multiple groups. Each case is composed of two components, i.e., problem component and solution

28
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Figure 3.1: Proposed methodology at a glance.
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component, represented by X and Y. The problem component represents measurements for mul-

tiple laboratory test results such as PTH, phosphate, and albumin-corrected calcium levels along

with the status of vascular calcification in the body. The solution component specifies different

prescribed medications along with the dosage. A new patient encounter, Xt, is treated as a test

case and assigned one of the recommendation groups.

Moreover, each medication recommendation group is denoted by Ti, where i refers to the num-

ber of pre-specified partitions by the domain experts, and k represents any specific partition that

contains Xt. In the proposed CKD–MBD CDSS, the entire case base is divided into 33 mutually

exclusive partitions, starting from T1 up to T33 (refer to Table 4.3). X0 and Y0 represent cases

from partition Tk that are treated as similar cases for the given Xt. Moreover, a subset of reference

cases, m, are selected from the Tk partition containing n cases where m ¡ n. All similar cases are

assigned an outcome value based on the PII and only those cases are selected as reference cases

that have a PII > 0. Reference cases along with domain knowledge-based adaptation rules are

used for prescription recommendation denoted by ˆY. ˆY represents a set of selected medications

along with their dosage range, e.g., Medication <Cinacalcet>: = 25 mg/day–50 mg/day. The

IQR is used for estimating dosage ranges for multiple selected medications. The prescription rec-

ommendation is provided to the clinician that may further refine the dosage. Afterwards, a final

prescription, Y”, is provided to the new patient case, Xt.

A comprehensive recommendation scenario depicting key stages of the proposed recommen-

dation system is depicted in Figure ??. A patient’s laboratory and imaging tests are evaluated

through the domain model, and an abstract recommendation is subsequently generated based on

the patient’s type, i.e., negative for cardiovascular calcification (type-II), and patient’s group, i.e.,

T1. A set of similar cases are acquired from the case-base pertaining to both type-II and T1 pa-

tients. Each retrieved case is assigned a case outcome score using the PII. A set of references

cases are selected i.e., cases having a PII > 0. Prescribed medications of the selected cases are

processed using both adaptation rules acquired from domain knowledge, such as “start or increase

medication class A”, “maintain medication class B”, and “decrease or stop medication class C”,

etc. IQR is applied on prescribed medication dosages when generating lower and upper bounds,

e.g., medication A1: 25 mg/day–50 mg/day, where A1 is one of the medications in medication
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Figure 3.2: Schematic representation of the proposed hybrid knowledge modeling approach.
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class A. Adaptation rules are used for medication class level recommendations, i.e., initiation/-

continuation/discontinuation of a medication class, while clinical cases are used for estimating the

lower and upper bounds of dosages for specific medications.

The major advantages of the proposed approach are as follows:

1. Domain theory-based patient categorization enhances the confidence of clinicians

2. Each group is denoted by a variable-sized neighborhood

3. Easily identifiable patient groups that have an insufficient number of associated clinical

cases

4. Easily identifiable treatment regimens that are effective for similar patient cases

5. Medication dosage adjustment support based on domain theory along with evidence from

past clinical cases

6. The enhanced interpretability of the medication selection and dosage adjustment recom-

mendation by clinicians

A multi-level data flow diagram (DFD) of the proposed CKD–MBD CDSS is shown in Fig-

ure 3.3. The proposed CDSS is composed of three main tasks, i.e., case-base partitioning, case

selection, and case adaptation. An abstract domain model is used to partition the case-base in

a pre-determined set of groups, i.e., abstract recommendations. One major advantage of eager

partitioning is the active identification of those partitions that lack a sufficient number of clinical

cases in the case repository. Case selection deals with retrieving similar cases for a given test

case and selecting a set of reference cases from the selected partition. Finally, case adaptation is

applied to a set of reference cases with the help of adaptation rules. Adaptation rules are based on

domain knowledge. The IQR is used as a measure of statistical dispersion of the selected medica-

tion dosages. In this regard, a final recommendation is generated specifying the lower and upper

bounds for the dosage values.
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Figure 3.3: Data flow diagram depicting the relationship between processes and data..
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3.1.2 Active Case Partitioning through Domain Knowledge

Domain knowledge (DK) plays a critical role in the development of CDSSs. It primarily deals

with specifying key concepts and the relationships among the concepts. In the proposed system,

DK is used for a priori partitioning of the case-base into multiple patient groups. The process of

DK acquisition and codifying it into a domain model is depicted in Figure 3.4. DK is also used

for generating generic medication intake recommendations that are also used in case adaptation

operations for medication selection. The benefits derived from active case partitioning include the

variable size of each partition (i.e., neighborhood size is not defined a priori) and, as the relevant

cases are localized, this therefore reduces the run-time processing for retrieving similar cases

every time a new test case is received. Algorithm 1 specifies the main steps for active case-base

partitioning, provided as follows:

Algorithm 1: Active Case-base Partitioning
Input : KB− Rules , CB− Case Base
Output: Partition P = T1, T2, T3, ..., Tn

1 for ∀ c ∈ CB do
2 rule = reasoing(c);
3 rule = rule[1].code;
4 p[rec] = c;
5 end
6 for ∀ pt ∈ P do
7 if pt.length <= θ then
8 flag(pt)
9 end

10 rule = rule[1].code;
11 p[rec] = c;
12 end
13 return P

The final output of the knowledge acquisition process is a domain-decision model that is sim-

ilar to a DT structure. Over the course of multiple consultations, the domain experts develop a

domain-decision model based for the most part on KDIGO CKD–MBD guidelines [12]. The

domain model provides sufficient knowledge to group patient casebase into multiple categories.

The domain model is converted into production rules of the form IF-THEN. Figure 3.4 illustrates

a mind-map depicting a domain model for CKD–MBD patients. As recommended in the KDIGO

guidelines, all hemodialysis patients are subject to lateral abdominal radiographs and echocar-
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Figure 3.4: Knowledge engineering process of domain model construction and active case-base
partitioning.
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Table 3.1: Relevant clinical parameters and their target ranges.
Clinical Parameter Target Range
PTH (type-I patient) 150 - 300 pg/mL
PTH (type-II patient) 130 - 600 pg/mL
Phosphate 3.5 - 5.5 mg/dL
Albumin-corrected
Calcium

7.5 - 10.2 mg/dL

diography in order to evaluate vascular and valvular calcification, respectively. The severity of

vascular calcification is graded on the abdominal aorta by a validated method [97], while valvular

calcification is assessed in a dichotomous manner, i.e., its presence or absence. In the proposed

CDSS for CKD–MBD management, hemodialysis patients are broadly categorized into two types

based on the degree of ectopic calcification (as shown in Table 3.1): type-I patients who have

valvular calcification or at least a moderate degree of vascular calcification (calcification score >

5 out of 24), and type-II patients who are negative for valvular calcification and have a mild degree

of vascular calcification (calcification score<= 5) at most. The novel approach of the proposed

CDSS is that a strict target range of PTH is set for type-I patients, whereas a relatively lenient tar-

get range of PTH recommended by KDIGO is set for type-II patients. Patient type categorization

is performed by domain experts through the consultative method as mentioned in Section 2.1 as a

part of the domain knowledge acquisition process.

In this regard, the resultant domain model accommodates both types of patients. There are

three key attributes to the domain model, i.e., PTH, albumin-corrected calcium, and phosphate

levels in the body (Figure 3.5). Furthermore, there are in total 33 patient groups identified by the

domain experts. Each group is associated with a generic recommendation. A template for the

multi-factor generic recommendation is provided in Table 3.2. ‘Dialysate Calcium Concentration’

is a non-medication factor that can be modified according to the partition to which the patient

belongs. The recommendation against each factor is provided in general terms, such as whether

to initiate (or increase) a particular medication/dialysate calcium concentration or discontinue (or

decrease) the medication/dialysate calcium concentration.

Table 3.3 provides a generic recommendation template. As it can be seen from the table, each

factor can take on one of the available treatment options.
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Figure 3.5: Mind-maps for expert-based domain models for (a) type-I and (b) type-II CKD–MBD
patients along with (c) a sample mind-map structure for representing a CPG-based domain-model
(Ca refers to albumin-corrected calcium).
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Table 3.2: A sample generic recommendation.
Management Class Treatment Options

Calcimimetics
Start or Increase
Cincalcet

Calcitriol Stop Calcitriol
Vitamin D and Analogs Stop Vitamin D and Analogs

Calcium-based Phosphate Binder
Stop Calcium-based Phosphate
Binder

Non-Calcium-based Phosphate
Binder

Start or Increase Non-Calcium-based
Phosphate Binder

Dialysate calcium
concentration

Reduce dialysate calcium
concentration by 0.25 mmol/L

Table 3.3: Generic Recommendation Template.
Management Class Available Options

Calcimimetics
[Start or Increase Cinacalcet], [Decrease Cinacalcet],
[Stop or Decrease Cinacalcet], [As it is]

Calcitriol
[Start or Increase Calcitriol], [Stop Calcitriol], [Decrease or Stop Calcitriol],
[Consider Calcitriol], [As it is]

Vitamin D and Analogs
[Consider Vitamin D Analogs], [Decrease or Stop Vitamin D Analogs],
[As it is]

Calcium-based Phosphate Binder
[Start or Increase CPB], [Stop CPB], [Decrease or Stop CPB],
[As it is]

Non-Calcium-based Phosphate
Binder

[Start or Increase NCPB], [Stop NCPB], [Decrease or Stop NCPB],
[As it is]

Dialysate calcium
concentration

[Increase by 0.25 mmol/L], [Reduce by 0.25 mmol/L],
[Maintain Current Calcium Concentration]

Active case partitioning through domain knowledge serves two purposes, i.e., it partitions

cases into multiple groups, and it also provides generic medication intake recommendations for

each category (refer to Table 4.3). It is also important to note that one of the main objectives of the

domain model construction is to include CKD–MBD guidelines in the decision-making process.

The overall domain model for type-I and type-II patients has resulted in 432 production rules (see

Figure 3.5). The production rules are useful in automating the reasoning process and maintaining

the knowledge base.
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3.1.3 Reference Case Selection Using the PII

One of the important contributions made in this paper is the development of the PII as a case

scoring function. The main objective of the PII is to provide a summarized view to the clinician

regarding the overall health status of the patient, i.e., patient-important outcome. The PII is com-

prised of three individual factors i.e., PTH, calcium, and phosphate levels in the body. A patient

may visit multiple times over the period of treatment, and at each visit the aforementioned three

clinical measurements are used to calculate the PII. The operation of PII computation is depicted

in Figure 3.6 and the formula for its calculation is provided in Equation (1).

PII =

∑m
i Ci

m
(3.1)

where, m refers to the total number of clinical measurements, i refers to the i-th measurement,

C refers to a Boolean value, i.e., either 0 or 1. Each Ci value refers to a binary decision, i.e.,

whether the given test results are within a target range or not. For example, for patients with at least

a moderate degree of vascular calcification (i.e., patient type-I), the ideal PTH level is between

150 300 pg/mL [57] [98], while target ranges of phosphate and albumin-corrected calcium are

3.5 5.5 and 7.5 10.2 mg/dL, respectively.

The PII is bounded between 0 and 1. PII values closer to 1 indicate a better patient important

outcome, as depicted in Figure 3.6. The PII differs for different patients: seeing as the normal

range of PTH varies with the type of patient, PII is therefore calculated accordingly. All the

patient cases are assigned their respective PII values, except for corner cases, such as a patient

having only a single encounter or the latest encounter of the patient. These cases are treated as

corner cases because no subsequent patient encounter is available to calculate the PII value. It is

important to note that for evaluating the efficacy of medication dosage prescribed on encounter i,

the laboratory test results from the subsequent patient encounter, i + 1, are required, as shown in

Figure 3.6. Algorithm 2 provides main steps for case selection through feedback as follows:

The PII is used to differentiate cases based on their outcome, i.e., whether the patient’s condi-

tion (indicated by laboratory test results) improved given a certain prescription or not. The main
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Figure 3.6: The Patient Improvement Indicator (PII) for selecting reference cases.

purpose is to select a set of reference cases that have a positive impact on the outcome, i.e., im-

provement is recorded in the patient’s laboratory test results. Equation (1) is used to assign an
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Algorithm 2: Case Selection based on feedback
Input : C− Partitioned Cases
Output: C

′
Referenced Cases

1 for ∀ c ∈ C do
2 if coutcome! = Null then
3 coutcome ← fetchPII(c)
4 else
5 if t! = Null then
6 indicator = eval(ct, Ref)
7 end
8 end
9 result+ = indicator

10 end
11 cout = result/len(result) ;
12 cprev = fetchpii(c);
13 Cselected+ = c;
14 return Cselected

outcome score to a clinical case. An important contribution of the PII is to refine case selection

operation, i.e., select cases among similar cases based on their outcome. The refined selection pro-

vides a set of reference cases for medication dosage estimation. A similar approach was adopted

by Bach et al. [85], whereby the authors initially retrieved a set of similar patients in the domain

of low back pain therapy recommendations, and later a reference patient group was identified for

further recommendation tuning. The reference group was comprised of patients with positive out-

comes, such as decreased pain, improved pain self-efficacy, and better mood. In the case of the

CKD–MBD domain, treatment prescription (i.e., medication and dosage selection) for a similar set

of patients may vary as per the clinicians’ decisions. The PII is therefore used to qualify different

prescribed past treatments according to their efficacy.

3.1.4 Case Adaptation through Domain Knowledge and Clinical Cases

The main objective of the case adaptation operation is to provide medication intake recommenda-

tions to the physician. In this regard, domain knowledge and reference cases (i.e. cases selected

after identifying their positive impact on patients’ psychological measurements) are used for gen-

erating recommendations as shown in Figure 3.7. As stated earlier, domain knowledge is used for

both case-base partitioning as well as generic recommendation generation. Case adaptation re-
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Figure 3.7: Medication dosage selection and dosage adjustment based on domain knowledge and
interquartile range (IQR).
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fines the expert-based generic recommendation through processing similar cases and statistically

analyzing the co-occurrence of medication dosages. Case adaptation is the final step in the pro-

posed methodology, through which a more precise treatment recommendation is generated that

deals with both medication selection and dosage recommendation. Table ?? shows an example of

a sample relationship between the generic recommendation and dosage recommendation.

Algorithm 3: Case Adaptation using Hybrid Approach
Input : DTcode− Decision Tree, C− Selected Cases
Output: R Multi-Attribute Recommendation

1

2 Rec− gen = fetchRec(DTcode) ;
3 for ∀ cat ∈ Rec− gen do
4 action− cat = process(cat);
5 if ation− cat ==′ Start− or − Increase′ then
6 med− dosage = fetch(Cm);
7 end
8 med− size = len(med− dosage);
9 m = sort(med− dosage);

10 mid− index = m(m, 0,mid− index);
11 rangeL = m[median(m, 0,mid− index)];
12 rangeH = m[mid− index+median(m, 0,mid− index)];
13 R.append(rangeL, rangeH);
14 if t! = Null then
15 indicator = eval(ct, Ref)
16 end
17 ; result+ = indicator

18 end
19

20 return R

As it can be seen that dosage recommendation relies on directions from generic recommen-

dations, i.e., whether to select a particular class of medication or not. Moreover, the final dosage

recommendation is based on the most frequent medication and its dosage among high prospect

similar cases. It is important to note that, when using IQR statistics, situations in which similar

cases take on different medication dosages for a given medicine are reflected in the final rec-

ommendation as a dosage range having both lower bound and upper bound values, as shown in

Figure 3.7.
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3.1.5 CKD–MBD CDSS Execution Process

The execution process workflow pertaining to the medication prescription is depicted in Figure 3.8.

Patients are assigned a unique Medical Record Number (MRN) at the registration stage. After-

wards, both current and previous laboratory tests are acquired for patient type selection as well

as patient group identification (through the domain-decision model). The medical laboratory tests

include measurements for phosphate, calcium, albumin, and PTH. A set of reference cases is se-

lected based on the PII of similar cases. Furthermore, if only a single case is available in the

selected case set, then it is provided to the physician without any modification.

When there are multiple selected cases in the set, then a case adaptation operation takes place

that generates a single medication prescription recommendation based on the multiple reference

cases. Before persisting with the medication dosage, the clinician may choose to modify the

contents of the recommendation, such as adjusting the medication dosage from the recommended

one. The system automatically logs the concordance between the generated recommendation and

the clinician’s prescription.

The categorization of patients has two aspects, i.e., patient type selection and patient group

selection. Patient type selection requires medical imaging results such as lateral abdominal ra-

diography and echocardiography in order to determine the degree of ectopic calcification. The

aforementioned imaging tests are conducted once every year. Patients are divided into two types,

i.e., positive for vascular calcification and negative for vascular calcification. Patient group selec-

tion, on the other hand, is performed using the domain model, as shown in Figure 3.10. The group

selection decision is taken every month, i.e., at each encounter with the patient. Furthermore, PTH

laboratory medical results are conducted every three months, and both albumin-corrected calcium

and phosphate tests are performed every month. Current and previous laboratory test results are

required for patient group selection through the domain model. There are 33 different patient

groups identified by clinicians within the scope of CKD–MBD management.

3.1.6 An extended CDSS

The proposed approach is geared towards treatment recommendation. The CDSS can be extended

to include patient diagnosis screening as well in which case the extended CDSS would have two
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Figure 3.8: Process flow for CKD–MBD CDSS pertaining to the treatment regimen selection.
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main tasks i.e. diagnosis screening to identify potential CKD patients. and after a subsequent

patient diagnosis by the physician, treatment module may support physician in selecting a suitable

treatment regimen for the patient. Figure 3.10 depicts an overall concept of a twin-system that

independently provides services for interpretable decision making.

One key benefit of the extended CDSS is that the openly available diagnosis datasets can

be used to extract knowledge from structured (i.e. tabular) data in order to provide interpreable

decision making support in the form of decision rules. In this regard, the source data set is pre-

processed to enhance the quality of data. Moreover, feature selection also needs to be performed in

order to select a subset of most informative features that can be used for constructing decision rules

through machine learning models e.g. decision tree. Once a model is learned then rule extraction

can be performed to get decision rules in the form of IF < X > THEN< Y >. A number of

other considerations may also be incorporated in decision modeling such as the operating cost of

the features being utilized in the decision making.

Automated medical diagnosis is one of the important machine learning applications in the

domain of healthcare. In this regard, most of the approaches primarily focus on optimizing the

accuracy of classification models. In the domain of medical data mining, several intelligent clinical

decision support systems are designed which tend to automate the diagnosis process [6,7]. These

decision systems employ machine learning techniques that assist physicians in the diagnosis and

treatment of CKD in an efficient manner [99–101]. Based on a number of important indicators

such as blood pressure, albumin levels, blood and urea tests, potassium, and other co-morbidities,

e.g., diabetes, cardiovascular disease, etc., a patient is comprehensively assessed for CKD and its

progression. As the earlier diagnosis of the disease onset can improve the chances of patients

to favorably respond to treatment, therefore, most of the automated systems are optimized for

enhancing the overall accuracy of the model [80, 100].

The medical decision support systems that solely focus on predictive performance are far from

the field reality and hence are not unanimously approved by physicians [79]. In this regard, the in-

terpretability of the classification model is stipulated as one of the important requirements among

others for a successful medical decision system [79, 80]. Similarly, the cost factor as a practica-

bility concern for medical decision systems recently gained traction in the medical data mining
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community. Therefore, one of the key research directions pursued by the research community is

to design decision systems that are accurate, interpretable, and cost-effective.

In a number of studies performed on CKD diagnosis, decision tree models consistently pro-

duced results with high predictive accuracy [100–102]. Hence, the main impetus for using tree-

based models in an ensemble technique is two-fold. Firstly, tree models are easy to interpret by the

domain experts, therefore, in domains such as medical diagnosis, it is desirable to assess the valid-

ity of the classification model through visual inspection [79, 80, 103]. Secondly, tree-models that

are based on bagging and boosting techniques tend to produce highly accurate classifiers on small

to medium datasets [61, 99–101]. Hence, tree models are suitable approaches for considering in

an ensemble for a CKD dataset, as they can cater to both types of requirements i.e., interpretability

and accuracy.

Moreover, feature selection is becoming an essential task in building classification models

where the objective is to select a subset of useful features [61, 99, 100, 104, 105]. The notion of

usefulness is based on the worth of a feature in a dataset in terms of its relevancy and redundancy.

There are generally three approaches for feature selection i.e., filter-based approach, wrapper-

based approach, and embedded approach [60,104,106]. In the case of filter approaches, the worth

of a feature is evaluated through univariate statistical approaches such as Chi-Square, Gini index,

information gain, etc. Therefore, feature ranking techniques fall into the filter category. On the

other hand, wrapper approaches generally, construct a set of candidate feature subsets that are

evaluated on a classifier [106]. Embedded techniques are implicitly used by some of the classi-

fiers, such as decision trees, while constructing a model. A number of studies demonstrated that

ensemble-based feature selection techniques generally perform better than non-ensemble tech-

niques [100,104,105,107,108]. Ensemble feature selection approaches are composed of multiple

evaluation functions for quantifying the worth of a feature or a subset of features. In this regard,

multiple types of feature evaluation functions can be used such as univariate techniques, classifi-

cation models, or a set of mixed techniques from the aforementioned categories [100]. Ensembles

can be comprised of both homogeneous and heterogeneous configurations. In this regard, for a ho-

mogeneous configuration, a dataset is horizontally partitioned into multiple subsets where a single

type of the feature evaluation function is executed on each partition [104,108]. On the other hand,
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for a heterogeneous configuration, multiple evaluation functions are executed on the dataset in

parallel, and later their results are combined [104, 105, 108]. Similarly, ensemble feature ranking

approaches can be arranged in either a homogeneous configuration or a heterogeneous manner. In

both cases, a global ranked list of features is obtained based on multiple feature lists produced by

the individual feature ranking functions. One key challenge in this regard is to select a threshold

value which divides the global ranked list into a set of retained and removed features [107].

Most of the studies in the CKD domain assume that the cost of data acquisition is negligible,

therefore, the cost factor associated with each feature is generally ignored [99,102,109]. However,

this assumption may not hold in many real-world medical applications where a patient is required

to undergo multiple tests such as urine analysis, electrocardiogram, blood culture, etc., and the

tests may vary in terms of incurred cost. Therefore, feature selection methods for CKD diagnosis

applications may take into account the cost factor as well. Recent studies reported significant

scholarly work on developing chronic kidney disease diagnosis and management systems. Recent

studies reported significant scholarly work on developing chronic kidney disease diagnosis and

management systems [58,60,61,99–101,110–116]. Please refer to [117,118] for details on cost-

sensitive model construction and knowledge extraction from structured data for CKD diagnosis.
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Figure 3.9: Medication selection and dosage adjustment scenario based on the proposed approach.
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Figure 3.10: Extended CDSS for patient screening and medication recommendation



Chapter 4
Experiments and Discussion

4.1 Experiments Overview of Hybrid Case-based Reasoning

In this chapter we elaborate extended the chronic kidney disease case study for group-based fea-

ture cost and unlike model-based feature scoring, we consider filter measures such as symmetric

uncertainty, chi-squared and Relief for feature weight-age calculation.

The CKD–MBD CDSS is evaluated using two perspectives, i.e., system perspective and user

perspective. In the case of the system perspective, the evaluation is performed in terms of com-

pliance between the CKD–MBD CDSS medication recommendation and routine clinical practice.

The usability aspects of the proposed system are evaluated in terms of recommendation generation,

assistance in preventing accidental dosage errors, and serial trend visualization of key measure-

ments such as PTH, phosphate, and albumin-corrected calcium.

4.1.1 System-Centric Evaluation

To validate the system, we performed an experiment in which we established a concordance be-

tween the CDSS generated recommendations and that of physician’s prescribed medication. We

have 850 clinical cases extracted from 66 patients (each patient had at most 13 encounters) from

Kyung Hee University Hospital, Seoul, South Korea. The gender ratio of the patients was 70:30,

where 70% of the patients are male. Furthermore, the distribution of clinical cases between type-I

and type-II patients are 374 and 476, respectively.

51
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Domain Model Compliance

The domain model is primarily based on KDIGO CKD–MBD guidelines. As mentioned earlier,

the generic recommendation is based on the domain model; therefore, it is worthwhile evaluating

the compliance between the routine practice and the domain model. The recommendation consists

of general directions for clinicians regarding the initiation, modification, or discontinuation of a

certain medication class, as indicated in Table 3.2. The evaluation results, as provided in Fig-

ure 4.1, show the overall compliance between the clinical cases and the generic recommendation.

It can be seen in Figure 4.1 that in general most of the recommendation factors have complied with

the routine clinical practice as well. Therefore, the domain model-based generic recommendation

plays an important role in the dosage estimation task.

Figure 4.1: Cardinality of compliance among domain model and routine clinical practice for mul-
tifactor recommendations.

Figure 4.2 shows a breakdown of the compliance rate of six medication classes that are part

of the overall recommendation. In the non-compliant cases, “decrease” slightly dominated, e.g.,

the system recommended to “maintain” while the clinician decreased the dosage. A confusion

matrix based on the compliance evaluation between domain model and routine clinical practice

is provided in Figure 4.3. “Maintain” remained the most dominant label in the recommendation

across the medication classes. The average discrepancy across all the medication management
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classes for the “start/increase”, “maintain”, and “stop/decrease” out of 850 cases is 97.50 cases,

42.16 cases, 82.83 cases, respectively. Moreover, NCPB had major discrepancies among all the

medication classes, specifically in the “start/increase” recommendation.

Figure 4.2: Compliance among different medication management classes along with dialysate
calcium concentration.

Figure 4.3: Confusion matrix indicating compliance between domain model and routine clinical
practice.
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Evaluation for Dosage Recommendation

The medication dosage recommendation is the main objective of the CKD–MBD CDSS. In this

regard, both domain knowledge and similar past cases are used to assist clinicians in dosage pre-

scription. The clinical case-base consists of 600 cases whereas 250 cases are used to evaluate

the recommendation system’s efficacy with respect to the routine clinical practice of clinicians.

There are 107 cases for type-I patients and 143 cases for type-II patients in the test dataset. Table

4.1 provides evaluation results based on the test data, indicating concordance between the dosage

recommendation and clinical practice.

Concordance =

∑j
i (System ∩ Clinician)

j
(4.1)

The evaluation procedure is based on comparing the recommended dosage with that of the

clinician’s prescription using Equation (2), where i starts from 1 and j is the total number of

factors in the recommendation, i.e., 10. Seeing as the recommended dosage is based on the IQR,

i.e., 1st quartile and 3rd quartile, in most of the cases the recommendation is therefore in the form

of a range of values, i.e., lower bound of the dosage and upper bound of the dosage. In such cases,

the evaluation is based on whether the prescribed medication dosage is within the recommended

dosage range or not. “In-Range” cases are those in which the prescribed medication is within the

recommended range; otherwise they are regarded as “Out-of-Range” cases. Furthermore, not all

medications are present in all the cases, i.e., Cinacalcet is present in 49 cases out of a total of 250

test cases, and so on. Concordance for Cinacalcet is 85.71%, Calcitriol (po) is 81.81%, Calcitriol

(iv) is 66.66%, Paricalcitol (iv) is 82.24%, Calcium Carbonate is 76.47%, Calcium Acetate is

81.81%,Sevelamer is 76.12%, Lanthanum is 55%, and Dialysate calcium concentration is 98.40%.

As Alfacalcidol does not include any case in the test set, it is therefore not part of the average

concordance calculation. The average concordance of the medication dosage recommendation, as

reported in Table 4.1, is 78.27%.
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Table 4.1: Concordance evaluation for the medication dosage recommendation.
Management
Class

Total
Cases

Present
Cases

In-Range
Cases

Out-of-Range
Cases

Cinacalcet 250 49 42 7
Calcitriol, po 250 11 9 2
Calcitriol, iv 250 15 10 5
Paricalcitol, iv 250 148 122 26
Alfacalcidol 250 0 0 0
Calcium
Carbonate

250 34 26 8

Calcium
Acetate

250 11 9 2

Sevelamer 250 155 118 37
Lanthanum 250 20 11 9
Dialysate Calcium
Concentration

250 246 4

4.1.2 User-Centric Evaluation

The usability of the system is yet another important consideration apart from its efficacy. Systems

that have bad user experiences, such as unnecessary complexity, workflow inconsistency, and dis-

traction, lead to cognitive burdens on the user and results in limited usability. In this paper, we

have also evaluate the usability aspect of the proposed system. The system is evaluated by 11 par-

ticipants with different experience levels and expertise with healthcare applications. The system is

evaluated in an end-to-end manner including tasks such as patient registration to the final recom-

mendation generation and prescription persistence. The CDSS features under evaluation include

user interfaces for recommendation generation, consistency of the user interfaces, timeliness of

the relevant information, visualization of the clinical parameters, medication dosage-related pop-

ups, among others. Participants’ responses are acquired through a widely popular user experience

evaluation questionnaire. Questionnaires are widely used as a research instrument for effective

user experience evaluation. The User Experience Questionnaire (UEQ) compares the level of ex-

perience and assessed scale means of participants with a benchmark dataset of 4818 people across

163 studies on various services [85]. Figure 4.4 lists a number of key items describing a distinct

quality aspect of an interactive product identified by usability experts. UEQ contains six user

experience (UX) aspect scales with 26 items. Items belonging to a specific group are similar in

meaning but represent different aspects of the system for a given aspect scale. The Cronbach’s
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alpha coefficient is a well-known metric for determining the average value per item [119]. Fig-

ure 4.4 demonstrates that the 50 percent mean values are more than or equal to 1.5, confirming the

proposed system’s substantial positive impact on the UX of the participants.

Figure 4.4: Scale mean value per item for multi-aspect user experience (UX) evaluation.

The overall six scales are attractiveness, perspicuity, efficiency, stimulation, and novelty. In

this regard, attractiveness is a pure valence dimension. Furthermore, perspicuity, efficiency, and

dependability are pragmatic quality aspects (goal-directed), while stimulation and novelty are he-

donic quality aspects (not goal-directed). Attractiveness represents an overall impression of the

system. Perspicuity characterizes ease of familiarity with the system, efficiency represents whether

users can solve their task without unnecessary effort. The dependability aspect denotes if user feels
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in control of the interaction. Stimulation represents whether it is an exciting and motivating prod-

uct to use or not. And finally, novelty characterizes whether the system catches the interest of

users or not? As shown in Figure 4.5, the analysis of UEQ support is used to determine the means

of stimulation, attractiveness, perspicuity, dependability, efficiency, and novelty scales [119, 120]

in the 0 to 2 range. The value of the dependability scale is close to 2.0, [121] indicating that the

proposed system induces confidence in the decision-making of the participants.The 95% confi-

dence intervals for the UEQ scale mean are used to evaluate the confidence interval (a measure of

the precision of mean estimation) [122]. The mean confidence scores calculated are 1.452, 1.529,

1.475, 1.581, 1.456, 1.512 for attractiveness, perspicuity, efficiency, dependability, stimulation,

and novelty, respectively, as shown in Figure 4.5. The UEQ tool compares the UX of the proposed

system with that of other services [122]. As indicated in Figure 4.6, the system provides higher

dependability due to the transparency of its decision-making along with the inculcating of domain

knowledge. Moreover, other aspects such as perspicuity, efficiency, and stimulation are also in the

“Good” range, indicating a general acceptance across the participants. The attractiveness aspect

of the system is “Above Average”, while the novelty aspect is also reasonably high, indicating

participants’ interest in using the system [123].

Figure 4.5: User Experience Questionnaire (UEQ) scale values for key 6 aspect dimensions.
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Figure 4.6: CKD–MBD CDSS Benchmark Analysis.

4.2 Discussion

The domain model plays a critical role in the proposed methodology as it guides the case adapta-

tion operation along with providing it with a subset of relevant cases for estimating the medication

dosage. The compliance between the clinical practice and the domain model depends on the

overall compliance rate, which is generally high due to the fact that some of the highly frequent

recommendations have a high compliance rate. In this regard, it is observed that among 33 differ-

ent generic recommendations, only a few of the recommendations are more frequent, as shown in

Figure 4.7. The medication dosage is mostly kept consistent, avoiding abrupt changes from one

encounter to another, which corroborates long-term treatment regimens. Therefore, both T16 and

T17 recommend to “maintain” the medication dosage in general, while suggesting little changes in

the medication selection and dosing. The aforementioned observation also explains the relatively

higher frequency of these two recommendations. The striking gap between real-world practice

and algorithm-directed recommendation lies in non-calcium-based phosphate binders (NCPB). In

most cases, physicians did not increase the dosage of NCPB despite elevated serum phosphate

levels. The side effects of NCPB, which frequently causes nausea, vomiting, and abdominal dis-

comfort, may be behind this lack of increases in dosage. It could also be the case thay physicians

were likely to be reluctant to actively prescribe NCPB due to pill burden, since more than six

tablets a day are required to meet recommendations in some cases. Our results reflect the practi-



CHAPTER 4. EXPERIMENTS AND DISCUSSION 59

cal difficulties of lowering elevated phosphate levels which are encountered by most physicians.

Moreover, in some cases, the serum phosphate levels remained slightly higher than the upper limit

of the target range, prompting the system to increase NCPB dosage while the clinician opted to

maintain the current dosage. This behavior is due to the crisp nature of the rule-base, with little

tolerance for on-the-edge cases.

Figure 4.7: Top 10 frequent generic recommendations.

As recommended by the KDIGO guidelines, dialysate calcium concentration in most cases

was 1.25 mmol/L, and “maintain” was the most frequent recommendation. Since dialysate cal-

cium concentration was usually unchanged, the overall compliance rate was the highest. In a few

exceptional cases of severely low blood calcium levels, “increase” was provided as a last resort. In

the case of medication dosage recommendations, a high level of concordance is found for Cinacal-

cet. This can be explained by Cinacalcet being a single medication option available for prescrip-

tion in the class of Calcimimetics within the scope of the proposed system. In all other medication

classes, there are at least two medication options available, e.g., both Sevelamer and Lanthanum

fall under the medication class of NCPB, whereas the CPB medication class includes medications

such as Calcium Carbonate and Calcium Acetate. In terms of user-centric evaluation, the proposed

system obtained a high score on dependability. This can be attributed to several reasons, such as

adopting domain knowledge in decision making, indicating the selected relevant cases, quantify-

ing patient-important outcomes in the form of the PII, and evaluating the system with real-world
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patient data. The perspicuity aspect of the system, on the other hand, is also underscored by these

results, as the system is user-friendly to navigate and the required information for decision making

is readily available. The attractiveness of the system can be enhanced by improving the user inter-

faces (UI), such as de-cluttering the UI elements from the recommendation panel and demarking

clear boundaries when multiple information panels are displayed in close proximity, such as in the

cases of laboratory test results, prescribed medications, and recommended medications. In terms

of limitations, the proposed system heavily relies on domain knowledge. Acquiring accurate and

consensus-based knowledge from domain experts would therefore pose a challenge when adopt-

ing the proposed methodology where CPGs are not readily available. Furthermore, in the context

medication dosage estimation, all the pre-defined partitions must have member cases associated

with them. In the case of a partition that does not contain any clinical case, the dosage estimation

operation cannot be efficiently performed.

4.2.1 Merits and demerits of the proposed methodology

The proposed methodology is based on a hybrid approach that combines two partial models to gen-

erate a complex domain knowledge compliant recommendation. One model captures the general

level of consensus among the decision makers while the second model provides operational details

of the recommendation generation based on decision makers’ subjective experience. Therefore,

the proposed approach is based on the synergy of two incompatible models that capture different

aspects of the recommendation. In this regard, following are some of the operational aspects along

with merits and demerits of the proposed solutions:

Active case-base partitioning

1. Knowledge acquisition from domain experts is a time consuming task. Without an accurate

domain model the consensus of the decision makers is difficult to obtain. Therefore, it is

one of the critical considerations for the accurate and domain compliant recommendation

generation.

2. Major benefit of the active-case partitioning is to eagerly identify case partitions that have

insufficient number of cases for recommendation generation. Therefore, it guides the case

acquisition process in order to build the initial case base.
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3. Another major benefit of active case-base partitioning is to generate variable size distinct

partitions without specifying partition size by the user. In this manner, a set of candidate

cases are identified where the selection is grounded on domain knowledge and clinical con-

sensus.

Case selection based on feedback

1. Case selection is an important step within the proposed approach. It is specifically designed

to capture longitudinal information available within the case base. A set of reference cases

are selected from candidate cases for recommendation adaptation. One demerit of this ap-

proach is insufficient reference cases where partition size is already small.

2. Due to the inherent interpretability of the recommendation generation process, the decision

maker clearly inspects whether the generated recommendation is based on reference cases

or candidate cases.

3. Reference cases capture with clinical experience of clinicians where the prescribed treat-

ment had positive impact on the patient’s medical condition. This change is measured in

terms of whether the obtained laboratory medical test results are within the reference ranges

or not as compared to the previous encounter?

4. Patient improvement indicator quantifies the efficacy of a prescribed treatment. Along with

case selection, it can also be used for data analytics to show longitudinal impact of various

treatments over a period of time.

Case adaptation based on hybrid approach

1. Case adaptation consolidates multiple recommendations acquired from selected similar

cases (i.e. candidate or referenced cases) and generates a unified recommendation that is

compliant with the overall domain knowledge and also contains the necessary operational

details for actionable recommendation.

2. One major demerit of the proposed case adaptation solution is imprecise recommendation.

For such scenarios where the selected cases are sparse or contain a wide variation in the

solution component, the resultant recommendation becomes general in nature.
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Table 4.2: Merits and demerits of the proposed contributions
Contributions Merits Demerits

Active case-base
partitioning

1. Assist in case acquisition for constructing an initial
case-base
2. Determine status of different partitions and
identify case insufficiency
3. Variable size partitions without user-specified
parameters

1. Involvement of domain experts is time consuming
2. Multiple alternative solutions are difficult to capture in
a decision tree model or data structure
3. Inference time may increase with large number of rules

Multi-level case selection

1. Enhances interpretability of the recommendation
2. Identify positive and negative experiences of the
decision makers to guide future decisions
3. Capture longitudinal trends based on recommendations’
efficacy i.e. positive or negative impact of treatment

1. Fewer data points for statistical operations e.g. point
estimation using regression techniques

Hybrid case adaptation

1. Incorporate domain knowledge in recommendation
generation along with operational details
2. Easily customizable with suitable statistical techniques
based on the dataset
3. Preserve interpretability of the final recommendation
i.e. decision maker can inspect decision making process

1. Imprecise recommendation due to fewer reference
cases
2. Multiple alternative candidate recommendations are
difficult to reflect in the final consolidated recommendation.

3. The major benefit of the proposed solution is that the generated solution reflects character-

istics of both the consensus-based general framework for the given scenario and operations

details to make the recommendation more actionable.

4. Furthermore, based on the nature of dataset, the case adaptation can easily extend the pro-

posed solution by incorporating other related techniques for point estimation and/or range

estimation such as regression models or deep learning models.

4.2.2 Evaluation of the proposed methodology

The proposed methodology is evaluated with real world data of chronic kidney disease - mineral

and bone disorder patients i.e. longitudinal records over a 13 month period.The dataset contained

both physiological measurements of the patients and prescribed treatments. A subset of the dataset

i.e. 30%, is used to evaluate the concordance of the proposed methodology with that of routine

clinical practice. In this regard, the generated recommendation of 250 cases are provided to clini-

cians to determine whether the recommendations by the proposed methodology are correct or not?

Therefore, a retrospective evaluation approach is used to determine the efficacy of the proposed

recommendations with an active involvement of the clinicians. Moreover, in order to determine

the impact of the proposed decision support system, 11 clinicians participated in the study and

operated the CKD-MBD CDSS for over a month (as a stand along application). In this evaluation,

the objective is to quantify the overall user experience of clinicians. Although the participants
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have shown willingness to integrate the CDSS into their clinical practice, the user interface of

the CDSS and its seamless integration into the hospital management system remained important

aspects to improve. The interpretability of the CDSS played a major role in attaining trust of the

clinicians, therefore, it is identified as an other important avenue for further enhancement.

Figure 4.8: A sample multi-factor recommendation based on domain model and referenced cases.

4.2.3 Assistance to clinicians in clinical settings

Figure 4.8 depicts two types of recommendations that are provided to the clinician. First one

is recommendation based on domain knowledge. This recommendation is generic in nature and

provides general guidelines to clinicians. Second, recommendation is more specific and provides

operational details for realizing the guideline-based general recommendation based on positive

past experiences as depicted in Figure 4.8. Moreover, Table 4.3 provides a list of 33 categories

against which domain model provides generic recommendations. These categories are identified

through referencing clinical guidelines.

It is important to note that the dosage recommendation is calculated based on the direction

from generic recommendations and high prospect similar cases. In this regard, as indicated in

Table 4.3, the generic recommendation for Calcimimetics is “Start or Increase”, Cinacalcet is

therefore recommended between 25 mg/day and 50 mg/day. Dosage range estimation is based on

IQR of high prospect similar cases.
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Table 4.3: A list of 33 generic recommendations
Rcode Calcimimetics Calcitriol Vitamin D

& Analogs CPB NCPB Dialysate Calcium Concentration

T1 Start or Increase Stop Stop Stop Start or Increase
Reduce by 0.25 mmol/L
If more than 1.5 mmol/L

T2 Start or Increase Stop Stop Stop As it is
Reduce by 0.25 mmol/L
If more than 1.5 mmol/L

T3 Start or Increase Stop
Consider Vitmain

D Analogs
Stop Decrease or Stop

Reduce by 0.25 mmol/L
If more than 1.5 mmol/L

T4 Start or Increase Stop
Consider Vitmain

D Analogs
Stop Start or Increase

Maintain current dialysate
calcium concentration

T5 Start or Increase As it is
Consider Vitmain

D Analogs
As it is As it is

Maintain current dialysate
calcium concentration

T6 Start or Increase As it is
Consider Vitmain

D Analogs
Stop Decrease or Stop

Maintain current dialysate
calcium concentration

T7 As it is As it is
Consider Vitmain

D Analogs
As it is Start or Increase

Maintain current dialysate
calcium concentration

T8 As it is Consider Calcitriol
Consider Vitmain

D Analogs
As it is As it is

Maintain current dialysate
calcium concentration

T9 As it is Consider Calcitriol
Consider Vitmain

D Analogs
Decrease or Stop Decrease or Stop

Maintain current dialysate
calcium concentration

T10 Decrease Consider Calcitriol
Consider Vitmain

D Analogs
Start or Increase As it is Increase by 0.25 mmol/L

T11 Decrease Start or Increase
Consider Vitmain

D Analogs
Start or Increase As it is Increase by 0.25 mmol/L

T12 Decrease Start or Increase
Consider Vitmain

D Analogs
As it is Decrease or Stop Increase by 0.25 mmol/L

T13 As it is Stop
Stop Vitamin D

Analogs
Stop Start or Increase

Reduce by 0.25 mmol/L
If more than 1.5 mmol/L

T14 As it is Stop
Stop Vitamin D

Analogs
Stop As it is

Reduce by 0.25 mmol/L
If more than 1.5 mmol/L

T15 As it is Stop
Stop Vitamin D

Analogs
Stop Decrease

Reduce by 0.25 mmol/L
If more than 1.5 mmol/L

T16 As it is As it is As it is As it is Start or Increase
Maintain current dialysate

calcium concentration

T17 As it is As it is As it is As it is As it is
Maintain current dialysate

calcium concentration

T18 Stop or Decrease As it is As it is As it is Decrease
Maintain current dialysate

calcium concentration
T19 Stop or Decrease As it is As it is Start or Increase Start or Increase Increase by 0.25 mmol/L
T20 Stop or Decrease Start or Increase As it is Start or Increase Decrease or Stop Increase by 0.25 mmol/L
T21 Stop or Decrease Start or Increase As it is As it is Stop Increase by 0.25 mmol/L

T22 Decrease or Stop Stop Stop Stop Start or Increase
Reduce by 0.25 mmol/L
If more than 1.5 mmol/L

T23 Decrease or Stop Stop Stop Stop As it is
Reduce by 0.25 mmol/L
If more than 1.5 mmol/L

T24 Decrease or Stop Stop Stop Stop Decrease
Reduce by 0.25 mmol/L
If more than 1.5 mmol/L

T25 Decrease or Stop Decrease or Stop Decrease or Stop Stop Start or Increase
Maintain current dialysate

calcium concentration

T26 Decrease or Stop As it is Decrease or Stop As it is Decrease or Stop
Maintain current dialysate

calcium concentration

T27 Decrease or Stop As it is Decrease or Stop Stop Decrease or Stop
Maintain current dialysate

calcium concentration

T28 Decrease or Stop As it is Decrease or Stop As it is Start or Increase
Maintain current dialysate

calcium concentration

T29 Decrease or Stop Decrease or Stop Decrease or Stop As it is As it is
Maintain current dialysate

calcium concentration

T30 Decrease or Stop As it is Decrease or Stop Stop Decrease or Stop
Maintain current dialysate

calcium concentration
T31 Decrease or Stop Decrease or Stop Decrease or Stop Start or Increase Start or Increase Increase by 0.25 mmol/L
T32 Decrease or Stop Decrease or Stop Decrease or Stop Start or Increase As it is Increase by 0.25 mmol/L
T33 Decrease or Stop Start or Increase Decrease or Stop Decrease or Stop Decrease or Stop Increase by 0.25 mmol/L
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Table 4.4: A sample medication dosage recommendation with respect to generic recommendation.
Management Class Dosage Recommendation Reference Dosage Range
Calcimimetics:
Start or Increase

Cinacalcet: 25 mg/day–50 mg/day Cinacalcet: 0∼100 mg/day

Calcitriol: Stop Calcitriol Calcitriol, po: 0 ug/day
Calcitriol, po: 0∼2.0 ug/day
Calcitriol, iv: 0∼10 ug/week

Vitamin D and Analogs: Stop
Vitamin D and Analogs

Paricalcitol, iv: 0 ug/week
Alfacalcidol: 0 ug/day

Paricalcitrol, iv: 0∼50 ug/week
Alfacalcidol: 0∼3 ug/day

Calcium-based Phosphate Binder:
Stop CPB

Calcium Carbonate: 0 mg/day
Calcium Acetate: 0 mg/day

Calcium Carbonate: 0∼3750 mg/day
Calcium Acetate: 0∼6000 mg/day

Non-Calcium-based Phosphate
Binder: Start of Increase NCPB

Sevelamer: 800 mg/day
Lanthanum: 0 mg/day

Sevelamer: 0∼13,000 mg/day
Lanthanum: 0∼3750 mg/day

Dialysate calcium
concentration: Maintain current dialysate
calcium concentration

Dialysate Calcium Concentration:
1.25 mmol/L

Dialysate Calcium Concentration:
1.25∼1.75 mmol/L

The main objective of the proposed methodology is to align clinical cases with that of domain

knowledge. In practice, the clinicians may not fully adhere to direction given in the clinical guide-

lines due to a number of reasons such as insurance coverage of the patient, commodities that are

not covered in the scope of the guidelines, unavailability or shortage of certain medications, etc.

These operational aspects that are not within the scope of clinical guidelines are not addressed

in the proposed methodology. Although the methodology can be extended to generate multiple

alternative recommendations based on positive past experiences that show domain-model compli-

ant and non-compliant results. As the stated objective is to align two complementary models on

different level of granularity, the alternative recommendation generation aspect is not explored in

this thesis.



Chapter 5
Conclusion

This chapter concludes the thesis and provides future directions for extending the proposed

methodology.

5.1 Conclusion and Future Research Directions

CDSSs assist clinicians and healthcare providers in both complex decision-making and addressing

routine healthcare tasks. CDSSs process and analyze healthcare data, e.g., laboratory and imaging

test results, in addition to medication history in order to provide prompts and reminders at the

point of care. Applied to CKD–MBD management, CDSSs can assist clinicians in the selection

of appropriate treatment protocols and tailored recommendations based on the status of vascular

calcification. In this study, a hybrid knowledge modeling approach is proposed that incorporates

both domain knowledge and patients’ clinical cases for complex decision making, such as ap-

propriate initiation, modification, monitoring, or discontinuation of the medication. Furthermore,

we propose a PII which provides an overall summary of the patient record over a period of time.

The PII is helpful in identifying past similar cases that have positive patient-important outcomes,

e.g., patient laboratory tests that have improved with the prescribed medication regimen, so that

similar patients may also be recommended the same medication regimens. Medication dosage

estimation is performed on reference cases (acquired from similar patient cases) using the IQR to

assist clinicians in selecting appropriate dosing. The proposed system is evaluated based on 250

clinical cases from hemodialysis patients and the overall concordance is found at 78.27recommen-

dations and the routine clinical practice. A widely used user experience evaluation tool, UEQ, is

used to evaluate the proposed systems’ usability aspects with respect to clinicians. The usability

assessment is based on clinicians who have independently evaluated the system. The dependabil-
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ity and perspicuity of the system scored highly, while its attractiveness remained relatively low

across the participants. This shows that the system provides useful recommendations along with

initiative workflows that seamlessly align with clinical workflows, whereas information displaying

panels can be further improved to de-clutter the user interface. We intend to expand the automated

decision-making framework to other comorbidities of CKD–MBD, such as cardiovascular disease,

osteoporosis, diabetes, among others. Moreover, patient data from multiple medical centers will

be acquired to reflect sufficient diversity of different treatment approaches adopted by clinicians.

Bayesian reasoning along with deep learning approaches are some of the candidate approaches

that will be evaluated for hybridization along with domain knowledge.

This line of research can be extended in a number of directions such as augmenting analysis

of both improved and unimproved similar cases for medication selection as it will provide the

clinician with more information as to what treatment options are not productive in past. More-

over, multiple alternative recommendations can also be explored for a given case. Lastly, apart

from treatment services, disease diagnosis based on interpretable model along with counterfactual

scenarios augmentation can be useful to comprehensively cover the different facets of the CDSS

services.
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ESRD End-Stage Renal Disease

CDSS Clinical Decision Support System
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DLI Drug Laboratory Interactions

EHR Electronic Health Records

DT Decision Tree

IQR Interquartile Range

MRN Medical Record Number

ATT Attractiveness

PQ Pragmatic Quality
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PII Patient Improvement Indicator

ANN Artificial Neural Networks

CART Classification And Regression Trees
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DFS-CT Direct Feature Selection - Combine Threshold
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GA Genetic Algorithm
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LG Linear Regression
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RF Random Forest

SU Symmetric Uncertainty

SVM Support Vector Machine

TG Test Group
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