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Abstract

Blind source separation (BSS) is a method of separatingriienlying source signals from their
mixtures, without or little information about the origiredurces or the mixing process. Blind sig-
nal separation relies on the independence criteria ofr@igiources. There are different methods
of blind source separation: Singular value decompositiyincipal components analysis, Inde-
pendent component analysis etc. Recently, blind sourcaratgn by Independent Component
Analysis (ICA) has gained considerable attention in theaesh areas such as pattern analysis,
multimedia and medical signal processing. ICA has somerémtalisadvantage which can be
solved by incorporating more information about the desgedrce into the contrast function as
is done in the case of constrained independent componelysena

Related to every action, there is an electrical activityMgetn the neurons of the brain. This
activity can be monitored using invasive or non-invasivehteques. Electroencephalogram
(EEG) and Magnetic resonance imaging (MRI) are the two commmm-invasive techniques.
EEG measures electrical activity of brain at the surfaceeafthwith millisecond temporal res-
olution. Whereas, MRI can measures magnetic activity asthiéace of head with millimeter
spatial resolution. The signals obtained with each of the twodalities, BSS methods can be
applied to find the sources / signals of interest.

In neurophysiological signal analysis, artifact rejestiac EEG signals is an important re-
search area. Application of ICA for this purpose has someritt disadvantages e.g., source
ambiguity, un-ordered independent components and largdeuof independent components.

Some time a priori information about the desired sourcesagable and can be utilized in the



extraction process. A complete artifact rejection systesmfEEG signals based on constrained
independent component analysis is proposed. The propgséehscan remove artifacts (e.g.,

BCG, EOG) from EEG signals measured inside MRI. The systesrsbme peculiar advantages
compared to the conventional system e.g. completely adiomudifact rejection system and any

number of artifacts can be rejected at the same time.

Evoked potentials (EP) is the brain activity obtained byragang the EEG activity time-
locked to the presentation of some sort of stimulus like alissomatosensory, or auditory. P300
is a positive evoked potential (EP), elicited approximaB800ms after an attended external stim-
ulus. P300 can be used in brain control interface (BCI) apfibtns. Until now, P300-based BCI
has been slow, as it is difficult to detect a P300 responseoutitaveraging over a number of
trials. An algorithm based on constrained independent comipt analysis for P300 extraction
is proposed, which can extract only the relevant compongnihdorporating a priori informa-
tion. The extracted P300 IC is segmented, averaged, ansifiddsinto target and non-target
events by means of a linear classifier. The method is fagapte] computationally inexpensive
as compared to conventional averaging and ICA based methods

Some times the a priori information about the desired corapbh pattern is in frequency
domain. Extracting an IC in specific frequency range has napplications like in medical
diagnostic, brain computer interface (BCI) etc. The obeions are in time domain and a priori
information is in fourier domain. Combining the two is a difflt task, there is no algorithm in
bio-signals analysis that can extract IC of specific fregyaange. An algorithm is designed to
accomplish this task. The performance of the proposed itigoiis presented by extracting the
alpha signal from EEG data.

Spatiotemporal data; where sources are present in botle spattime. Underlining inde-
pendence criteria of ICA is difficult to met in both the domsiithe conventional ICA algorithm
extract sources of the one domain distorting the sourcelleirother domain. Few Spatiotem-
poral algorithms are available those have their own disatdgges e.g., source ambiguity, large

number of independent and manual selection of independenpanents. | have proposed an



algorithm which tries to overcome the disadvantages of tiwentional as well as the existing

spatiotemporal algorithm.
In short, in this thesis new constrained blind source séjparalgorithm are presented along
with their potential applications. Also, constrained B§raach is used to solve the existing

problems in non-invasive brain signal analysis.
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Chapter 1

| ntroduction

1.1 Oveview

Blind source separation (BSS), is a method of separatingrider lying source signals from the
observations, which are the mixtures of the original sosjregéthout or little information about
the original sources or the mixing process. Consider a sicedapicted in Fig. 1.1, there are
some sourceSy, S», S3, S4, S, producing the signals and some sensors at some distanfacésur
of head) from these sources measuring them. Depending afistamce from the sources each
sensor will measure different mixtudé,, Xo, X3, X4, X,, of the sources. Assume that we have
no idea of the nature of the sources and the mixing processvarare asked to estimate the
original source signals from the mixtures only, then thia [dind source separation problem.

Blind signal separation relies on the assumption that tlidetying sources are independent.
The Central limit theorem (CLT) states that adding the sesirnakes the mixture gaussian. Blind
source separation techniques transforms a set of datauge)xhto another set of data where the
signals are independent of each other i.e., estimatesgihatisignals. The transformation cri-
teria is to increase the independence between the mixtlihese are different methods of blind
source separation: Singular value decomposition, P@hecipmponents analysis,Independent
component analysis etc.

Recently, blind source separation by Independent Compdmatysis (ICA) has gained con-
siderable attention in the research areas such as pati@gsignh multimedia, speech recognition

systems, telecommunications and medical signal proagps&y adding the whitening process
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as a preprocessing stage, ICA not only de-correlates thalsigput it also employs higher-order
statistics to separate independent components. ICA finebribwgonal components compared
to principal component analysis (PCA), which is based oomsgorder statistics, that can only
find orthogonal components.

Various ICA algorithms has been developed which uses numserontrast functions for op-
timization e.g., contrast function based on kurtosis, n&gpy etc. ICA has some inherent
disadvantage i). source ambiguity ii) undetermined vaeanof independent components etc.
The problem mentioned above can be solved by incorporatioge imformation about the de-
sired source into the ICA contrast function. A proceduréecatonstrained ICA uses Lagrange
method to incorporate constrains.

There are numerous brain imaging technique e.g., electepdralogram (EEG), magnetoen-
cephalogram (MEG) and functional magnetic resonance ingg@IRI). The data obtained from
these techniques are multi-channel data, ICA or consuldi@é are ideally suited for their anal-
ysis. However, ICA analysis of the brain imaging data hastéitions. The procedures and
new algorithms based on constrained ICA has been presantbdsis for EEG and fMRI data

analysis.

1.2 Problem Statement and Challenges

Highly complex and center of the human nervous system isrthia.blt is made of a network of
billions of neurons. There is an electrical communicatietwen these neurons through synaptic
connections for each and every activity of a human being. firastional understanding of the
human brain, study of these communications is very imptrt&he procedure to record these
electrical activities can be grouped into two categoriesasive techniques and non-invasive
techniques. Electroencephalogram (EEG) and Magneticaese imaging (MRI) are two the
non-invasive technigues used to study brain. EEG measilgesieal activity at the surface

of the head with millisecond temporal resolution and MRI sweas magnetic activity at the
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Figure 1.1: Brain signal analysis: Blind source separapi@blem

surface of head with millimeter spatial resolution. Eves tivo modalities can be combined for
superior spatiotemporal resolution. In addition to fuoicéil understanding the EEG and fMRI
signals can be employed for numerous applications like,icabdiagnostics, brain computer
interface applications, Telecare and U-health applioatiend brain games (games played simply
by thinking).

In non-invasive techniques (EEG and fMRI), the sensors &eed at the surface or around
the head at very close distance. For each activity of the hutagge number of sources (neu-
rons) are active. Each sensor is measuring a mixture of thetsaties from sources and each
sensor measures a different mixture depending upon isndistfrom the sources. This scenario
is depicted in Fig. 1.1. As these are non-invasive techsigore has no idea about the sources
and the mixing process that has taken place inside the héwdefbre, brain signal analysis can
be treated as a blind source separation problem. The flowatttagf human brain signal analy-
sis is given Fig.1.2. In the field of pattern analysis anddignal analysis ICA is very favorable

choice and is extensively used. However, when applying I€értifact rejection in EEG signals
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Signal Processing Flow for Brain Signals
I

k4
Control Signal

Conversions and Preprocessing and Feature / Pattern i
Amplification  [?] Artifact Rejection [ 7|  Extraction [ 7] CXraction/
Detection
B + +
Data Acquisition l:.larflacs to Applications
irlueal games
SySlem Mechanical Assistance eic.

S

]Feed back

Figure 1.2: Flow diagram of brain signal analysis

it has some inherent disadvantages e.g., source ambiguoiyrdered independent components
and large number of independent components. With theségpngbautomated complete artifact
rejection system from EEG signals based on ICA can not besddviEvent related potentials
(ERP) is an EEG signal that is time locked averaged accortdirspme external stimulus like
auditory or visual stimulus. It is an important control sigjin BCI applications. Conventional
methods, large number of averaging and conventional ICAemdhke whole process very slow
and hard to be used in BCI applications. Similarly, Therecases where the requirement is
to extract a component with known frequency range. Exingcéin independent component in
specific frequency range is important and has many appitaike in brain computer interface
(BCI) and multimedia applications. For today’s BCI applicas common control signals are
alpha signal or mu signal, for these signals only known imfatiion is their frequency range. The
signals are in time domain and a priori information is in Feudomain. It is always challenging
to fusion the information in two different domain, to our b&sowledge there is no algorithm
for bio-signals analysis that can extract independent coapt of specific frequency range. The

other noninvasive technique (i.e., fMRI) produces seqeearidmages of brain. These sequence
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of images (spatiotemporal data) has interesting sourcéméas well as in spatial domain. Ex-
tracting the temporal as well spatial sources are cruciafMiiRl analysis. However, there are
cases, where underlining independence criteria of ICA fiicdit to met. In such cases, the
conventional ICA algorithm extract sources of the one donlistorting the sources in corre-
sponding domain. Other available algorithm for spatioterapdata has their own disadvantages
e.g., source ambiguity, large number of independent anduataelection of independent com-
ponents.

Briefly, the focus of this thesis is to present solutions ®hoblems of EEG and fMRI data
analysis. Various, new approaches and new algorithm haee pm@posed based on constrained

blind source separation to handle the difficulties of bragmal analysis.

1.3 Contributions

In bio-signal analysis some times a priori information isitable about the desired sources. The
a priori information is utilized in proposing a completeifaitt rejection system from EEG signals
[1],[2]. The proposed system is based on the constrainegpemtlent component analysis, it can
remove artifacts (e.g., BCG, EOG) from EEG signals measusede MRI. The proposed system
has some peculiar advantages compared to the conventigstense.g. automatic complete
artifact rejection system, any number of artifacts can lected at the same time. In an other
application, a priori information about the desired evetdated potential (P300) has been utilized
in constrained ICA to exact the P300 signal from EEG data. drbposed solution overcomes
the problem associated with the conventional method wibmising results.

An algorithm which take frequency information as constr&irextract the independent com-
ponent in the desired frequency band is proposed. The peafure of the proposed algorithm
is presented by extracting the alpha signal from EEG datae peiformance of the proposed
algorithm is compared with the conventional methods. Tlsalte indicate better performance

of the proposed algorithm. This algorithm is a valuable tholdito the tools available for BSS
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applications.

For spatiotemporal data analysis, an algorithm for spatigioral data which tries to over-
come the disadvantages of the conventional as well as sgraporal algorithm is presented.
With the proposed algorithm one or subset of independenpooents in both the domains can
be extracted with out affecting the independent componiarttse corresponding domains. Bet-
ter performance of the proposed algorithm is proved witHiegiion on simulated as well as real
life applications.

In short we can summarize our contributions as follows
e Automated, complete artifact rejection system in electcephalogram (EEG) signals.
¢ An algorithm for the analysis of spatiotemporal data, itglaation for real life data

¢ Algorithm to extract independent components in specificdb#a application for real life

data

e Constrained blind source separation based extractionrafalcsignals like P300 for ap-

plications like Brain control interface (BCI) is also prased.

1.4 Structure of the Dissertation

e Chapter 2 provides the mathematical preliminaries reduivaunderstand this thesis.

e Chapter 3 provides basic information about the brain im@gchniques (i.e., EEG, MEG
and fMRI.)

e Chapter 4 describes a complete solution for artifact rigjecin electroencephalogram
(EEG) signals.

e Chapter 5 describes the constrained spatiotemporal indepé component analysis and

its application for fMRI images.
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Constrained Blind Source Separation of Human Brain Signals

Contributions

Artifact Removal
from EEG Signals

New Applications of

Existing Methods —y Constrained ICAto |
solve the problems

P300 Extracti
Independent Constrained > - EEér;ngLOaTs
Component Independent
Analysis (ICA) —» Component
Analysis
(cICA) | Analysis of fMRI

New Algorithms and
their applications

"| Image Sequences

— 1. Constrained ]
Spatiotemporal ICA

Extraction and

2. Augmented ICA ¥ Localization of
alpha signals

Figure 1.3: Contributions; block diagram
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e Chapter 6 describes the extraction of a independent comparfiesome particular fre-

guency range using augmented independent component ianalys
e Chapter 7 constrained independent component analysid kagaction of P300,an ERP.

e Chapter 8 concludes this thesis and provides the possitulgefdirections.



Chapter 2

Blind Sour ce Separation

The mathematical preliminaries required to understandé#sic concepts of independent com-
ponent analysis (ICA) and constrained Independent commaaalysis (constrained ICA) is
presented in this chapter. Knowledge of these conceptsrneriant for understanding the con-

cepts presented in this thesis.

2.1 Mathematical Preliminaries

2.1.1 Vector and Matrix Gradient

Consider a scalar valued function g of m variables- g(w1,...,w,) = g(w). Thew =

(w1, ..., wy, )t is a column vector. The vector gradient of functiponan be written as.

9y
w1
0g .
- 2.1
| (2.1)
99
Own,

The notationg—fv is the shorthand for the gradient, other commonly used iootvould beVv

or V4. The second order gradients of a functipwith respect tav can be written as

Pg _9%g
52 ow? U OQwiwm
g
— = 2.2
0% ... P
Owmw1 owz,
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The above matrix is called the Hessian matrix of the functiow). This matrix is always

symmetric. These concepts can be generalized to the waitord functions.
g1(w)
gw)=| (2.3)

In(W)

The first order derivative of with respect tow known agacobian matrixof g can be written as

991 Ogn
6 Owy e owy
g . . .
s _ ; . : 2.4
ow ' ' (2.4)
O .. 9gn
Owm Owm

The Jacobian matrix is sometimes denoted/py
Now, consider a scalar-valued functigiof the elements ofvzn matrix W = (w;;). Similar

to the vector gradient, the matrix gradient can be written as

9g 9g
P owir 7 Owin
g . . .
— : . : 2.5
OW - - (2.5)
9 ... _9g
awml OWmn

2.1.2 ThelLagrange Method

The most common and prominent method to take the constiaititsaccount is the Lagrange
multipliers method. The lagrange method can handle probisitin both equality and inequality

constraints. The general form with which the lagrange nettheals is given as follows:
minimize f(X), subject to g(X) <0, h(X)=0 (2.6)

where f(X) is an objective functionX is a matrix or a vector of the problem argumerg6X)

are the inequality constraints ahdX) defines the equality constraints. Lagrange method does
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not directly deals with the inequality constraints therefthey are converted onto equality con-
straints by introducing the the slack variabies.e., g(X) = g(X) + z. Based on this transfor-

mation equation 2.6 can be written as:
D(X, 1 As 2) = f(X) + p'g(X) + 2[EX]P + Mh(X) + Lh(X)2 @7)

wherep = [u1,...,um])t @andX = [Ag,...,\,]" are two sets of lagrange multipliers, is
the scalar penalty parametéf|| denotes Euclidean norm ardgdy||.|| is the penalty term that
ensures that the optimization problem remains in the camdidf local convexity assumption

(VixI > 0).

2.1.3 Independent and Uncorrelated Variables

Independence can be defined as: consider two scalar rand@hleav; andwv,, knowing some
thing about one variable does not give any sort of infornmagibout other variables then the two

variables are said to independent. Mathematically we céte as:

p(v1,v2) = p(v1)p(va) (2.8)

wherep(v1, v2) is the joint pdf of the two variables andv; ), p(v) are the marginal pdf of the
two scalar variables. In words the equation 2.8 stats th#teijoint pdf of variables is equal to
the product of the their marginal pdf then the variables agependent.

On the other side, if the covariance between two random bladds zero they are said to be
uncorrelated. The uncorrelatedness is a weaker concepththandependence. Mathematically

uncorrelatedness can be written as:
cov(vi,ve) = E{(vy — 01)(v2 — 52)'} =0 (2.9)

wherev, U5 are the mean values of the random variables.
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2.1.4 Nongaussan isIndependent

The Central Limit Theorem, a classical result in probapititteory, tells that the distribution
of a sum of independent random variables tends toward a igaudistribution, under certain
conditions. Thus, a sum of two independent random varialdeslly has a distribution that is
closer to gaussian than any of the two original random vlsalBased on this theorem on can

say that nongaussian is independent.

2.1.5 Measuresof Nongaussianity

A guantitative measure of nongaussianity of a random vierian be kurtosis or negentropy.
Assume the random variable under consideration is cen{eezd-mean) and has variance equal

to one.

2151 Kurtoss

Kurtosis, the fourth order cumulant can be a measure of n@sjnity. The kurtosis of a random

variabley can be defined as:

kurt(y) = E{y"} — 3(E{y*})? (2.10)

As we have assumed thatis of unit variance, the right-hand side of above equatiom loa
written asEy?* — 3, indicating that kurtosis is a normalized version of therfounomentEy*.
kurtosis is zero for a gaussian random variable becauseotitehfmoment for them equals to
3(Ey?)%. Therefore, for most (but not quite all) of nongaussian cand/ariables the kurtosis
is nonzero. Kurtosis can be both positive or negative. Randariables that have a negative
kurtosis are called subgaussian, and those with posititesia are called supergaussian.

In practice, using Kurtosis as a measure of nongaussiaagyshme drawbacks. The main
problem is that kurtosis can be very sensitive to outlietslf8 value may depend on only a few
erroneous or irrelevant observations in the tails of th&ibigion. In other words, kurtosis is not

a robust measure of nongaussianity.
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2.1.5.2 Negentropy

The other very important and mostly used measure of nonigaitysis given by negentropy.
Negentropy is based on differential entropy. A slightly rified version of differential entropy
is used to obtain a measure of nongaussianity that is alwaysegative and zero for a gaussian

variable. This measure is called negentropy. Negenttbjzydefined as follows:
J(y) = H(ygauss) — H(y) (2.11)

whereygauss is a Gaussian random variable of the same covariance mattheaandom vari-

abley. In addition to have nonnegative valuse and zero for Gansgidable, Negentropy has
the additional interesting property that it is invariant ilavertible linear transformations [4] [5].
A very useful approximation of negentropy were developethipyarinen. These approximation
were based on the maximum-entropy principle:

/4

J(y) = Y kilB{Gi(y)} — E{Gi(v)}]? (2.12)

i=1
wherek; are some positive constants, anit a Gaussian variable ofy is zero mean and

unit variance random variablé:; are nonquadratic functions [5].

2.2 Independent Component Analysis

Consider a situation where there are number of signals ediity some physical sources (for

simplicity consider four sources), for example, peopleagpey in the same room, thus emitting

speech signals; different brain areas emitting electdaals; or mobile phones emitting their

radio waves. Assume that there are four sensors at diff@@sitions, so that each records a
mixture of the original source signals with slightly diféet weights. Denote the observed signals
by x1(t), z2(t), x3(t) andx4(t) ands (t), s2(t), s3(t) andsy(t) the original signals. The;(t)

are the weighted sums of the(t), where the coefficients depend on the distances between the
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sources and the sensors:

wl(t) ansl(t) =+ algsg(t) =+ a1333(t) + a1434(t)
wg(t) = 1(t) =+ a2232(t) =+ a23$3(t) + a2434(t) (213)
r3(t) = az151(t) + azzsa(t) + azzs3(t) + azasa(t)
$4(t) a4131(t) =+ a4232(t) =+ a4333(t) + a4434(t)

wherea;; are the unknown mixing weights. The weights are unknownptiginal sources are
unknown as well as those cannot be recorded directly. Adumtriition, consider the waveforms
in Fig. 2.2. These are linear mixtures of source signals shiowFig. 2.2(a). Our task is to
find the original signals from these mixtures. This is thadblsource separation (BSS) problem.
We can safely assume that the matrix made by mixing coeffignis invertible (i.e., full rank

matrix). Thus there exists a matW with coefficientsw;;, such that we can separate them as:

+ wi2wa(t) + wizws(t) + wiazra(t

+ woaa(t) + wazxs(t) + waaxa(t

) (t) (t) (t)
) (0 (0 (0 .10
) + wsaxa(t) + wazzs(t) + waawa(t)
) + wap2(t) + wazws(t) + wagzs(t)

One approach to solving this problem is to assumed}{at are statistically independent at each
time instantt. Independent component analysis (ICA), a method for findinderlying factors
or components from multivariate (multidimensional) sttial data, based on the information
of independence and nongaussianity can estimatewhich allows us to separate the original
source signals;(t) from their mixturese;(¢). Fig. 2.2(b) gives the signals estimated by the ICA
method. As can be seen, these are very close to the originalessignals.

The above example can be extended to number of sources s(t) =
(s1(t),s2(t)) ..., sm(t)T and n number of multi-channel observationsx({) =
(z1(t),22(t),...,2,(t))T). The Linear ICA equations for these sources and mixtures ca

be written in vector form as:

X(t) = As(t) (2.15)
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Figure 2.2: The original source signhals and the recovegthfs using ICA.
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where the matrix4 of sizen x mrepresents linear memory-less mixing channels. The ICé-alg
rithm, based on the independence criterion and non-gaudistribution of under lying sources,

must find a separating or de-mixing matrix such that
s(t) = Wx(t) (2.16)

whereW = [wy, Wy, ..., W,] is the un-mixing matrix of sizen x n. For the complete ICA, the
number of channels are assumed to be equal to the number eflying independent sources

i.e., n=m. General implementations of ICA can be found inliteeature [6, 7, 8].

2.3 Ambiguities of ICA

In ICA model k=As) presented above has following ambiguitids: The variances (energies)
of the independent components can not be determi@ed.he order of the output independent

components can not be determindthe details about these ambiguities can be found in [8].

2.4 Constrained Independent Component Analysis

The conventional ICA algorithms have some limitations litkee output number of components
are equal to observations. This is big drawback in case gélaumber of observation channels.
The conventional ICA got extended by Lu and Rajapakse swthaitly a desired source or a
subset of sources can be found. They named it as a constrigiedVith the constraints in

place, the constrained ICA deals with the following miniatinn problem:

mazximize : C(y)

subject to : g(y :W) <0, h(y:W)=0

(2.17)

where((y) is the ICA contrast functiony; = w’x is the estimated outpup is a positive
constant,w is a zero mean and unit variance Gaussian variagBle)(= logcosh(.)) is a non-

guadratic function as defined in [8],
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gly W) =(g1(y : W), 92(y : W),...,g.(y : W)) is the inequality closeness constraint and
h(y : W) = (hi(y : W), ho(y : W), ..., hy(y : W) constrains the outputs to have a unit vari-
ance (equality constraints). Transform the original irediiy constraintsg(y : W) < 0 into

equality constraints with a vector of slack variabies: (z1, 29, . . . , 2,)¢, we have
Gy :W)<0 & gi(y:W)+zf=0 (2.18)
let
9i(y : W) +27 = Gi(y : W)

gy : W)= (gi(y : W), galy : W),...,du(y : W))!

Using the augmented Lagrangian function as described hyeffijation 2.17 can be written as

(2.19)

follows:

D(W,pu,Az) =C(y) + ptg(y : W) + 2v[|g(y : W)|2

(2.20)
FATh(y : W) + 14||h(y : W)||?

wherep = (1, pio, - - -, p)t @ndX = (A1, Ao, ..., \,)¢ are the vectors of Lagrange parameters,

~v(> 0) is the penalty parameter aifid| denotes the Euclidean norm (dot product). let

Gy : W, p,z) = p'g(y : W) + 37]|&(y : W)||?
H(y : W,A) = ATh(y : W) + 37|[h(y : W)|?
Therefore equation 2.20 can be written as:

FT(W,u,\z)=C(y) + G(y: W,u,z) + H(y : W, ) (2.21)

Our goal is to findmin{I'(W, u, X,z) : W,z} i.e., minimize the final cost function w.A"V

andz. We can rewrite our goal as follow:
min{LT'(W, u, A\, z) : W,z} = min{min{l’'(W, u, \,z) : z} : W} (2.22)

First, lets analyzenin{I'(W, u, A, z) : z to eliminatez from the problem. From equation 2.21

we have;

min{T' (W, pu,A\,z) :z=C+min{G(y : W, pu,z):z} + H (2.23)
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For simplicity remove index inside the function, rewrii&y : W, u, z) as follow:

Gly : W,p,z) = Zuf{ ilgit 2] + 5709 + 271}
i=1 . (2.24)
; Gi(W, i, z;) or > Gi(z)

=1 =1

Q

The functionG;(z;) is a quadratic function of variable?, differentiating w.r.t. toz? the mini-

mizer comes to b@; + vg; + vz = 0 i.e., 27 = —% —g;. If (—— — g;) < 0then clearly

2

z; = 0 minimizesG;. So the optimal value of? is given by

K _ K
42 = v 9 s B (2.25)
0 9i > -4
placing this optimal value into the equation 2.24 and aftitla calculation the optimal value of
Gi(z) comes out to be:

Il A
_ﬂ 9i

IN

Gi(+7) = (2:26)

QI‘: 2[®

102+ g 9> —

2
$v9? + pig; can be written Iikez%(ui +79i)* — % therefore the above equation can be written

as

Gile7) = g-{maz{0, i+ 0} 1) (2.27)
Therefore

min{G(y : W, p)} = Z{ maz{0, 11; +vg:(y : W}H? — i3} (2.28)

Lets denotenin{G(y : W,u)} = K(W,u). After eliminating the slack vectors, equation

2.21can be written as:
L(W,p,A) =C(W) + K(W, p) + H(y : W, A) (2.29)
By partially differentiating the objective functidnw.rtw i.e. ViyI' = ViyC+Vw K+Vyw H

VwH = X.Vywh(y : W) +~h(y : W).Vwh(y : W)
= (A +~h(y : W)).Vwh(y : W)
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0 L e

u VG = #="
VwK =3 {V,Gi(2)).Vwg} where Vo i g >
i=1

~
V4. Gi = max(0, \g, + 11;)
= maz{0,7g + p*}.Vwg
= (1" + maz{-p',7}).Vwyg
Learning of the weights is achieved through a Newton-likernéng process and Lagrange pa-

rameters through the gradient-ascent method.

Wit = Wy — ()71’
pc+1 = max{—px, 78(y : W)} (2.30)
Ak+1 = A +7h(y : W)
wheren is the learning weight. More details of the optimization ggdure can be found in
[20],[11][9].

24.1 LessCompletel CA

The problem of finding the less number of components, whiehsgbspace of the original ICs,
than those originally mixed in the signal is addressed ts+tesnplete ICA. In 1996, Cao and Liu
proved [12] that the criterion of statistical independeiscimsufficient for extracting a subset of
original sources. One-unit ICA algorithms based on deftgimcess can extract ICs one by one
[13][14], the process can be treated as a sequential soligtiextract a subspace of ICs. Cichocki
et al. claimed that the enhanced nonlinear PCA with a whitgprocess was able to extract less
number of ICs than the sources [15]. However, the necessaprqressing (whitening) stage
results in failure of separation due to data distortion whleconditioned mixing matrices or
weak sources are involved.

Negentropy has been used as a measure to separate ICs fiomakeires [6][14] because
underlying sources are normally considered non-Gausgtan.the Gaussian signals the value

of negentropy is zero, negentropy is always nonnegativadarguassian signals [16]. One can
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project the data onto a low dimensional space by maximiziegrniarginal negentropies and thus
can finds the structure of non-Gaussianity in the projectiaf}. The fastiICA algorithm based
on negentropy, proposed by Hyvrinen [6], can separate a&sobkCs in parallel manner, but the
interference caused by an explicit de-correlation proeées each iteration is too rigid to orient
the learning process toward the correct convergence tréherefore, the uncorrelation among
estimated ICs is introduced as constraints to prevent s@nhbeihg converged at all the outputs
[6]. The contrast function for the less-complete ICA witmstraints can be defined as:
. . :

mazimize J(y) = — Z; J(ys) (2.31)

subject to hij(yi,y;) = (BE{yiy;})? =0 Vi, j=1,2,....Li# ]
whereJ (y;) ~ p|E{G(y;)}—E{G(v)}]? is the contrast function [8][18] is a positive constant,
G(.) is a nonquadratic function andis a Gaussian variable having zero mean and unit variance.
The constraints in Equation 2.31 can be included into thérasthfunction using lagrange meth-

ods and it can be optimized according to procedure mentionselction 2.4.

2.4.2 |CA with Reference

The one-unit ICA algorithms extracts one source at a timneeetraction of the sources depends
on the contrast function used. If negentropy is used as aagirftinction, the one unit algorithm
will extract a source with maximum entropy. When one desirssurce other than the maximum
entropy then one unit ICA (section 2.2) is of little use.

In blind source extraction applications, most of the timé/ane particular component or
a set of components are desired. Previously, additionatlitons, sparse decomposition of
signals [19] and fourth order cumulants [20], have beenrpm@ted into the contrast function
by using to find the desired components. However, if the ddsiumber of sources or their
density types are unknown then the components obtained issetul. If some information about
the desired sources is available then that it can be incatpdrinto the ICA contrast function

[9] as a priori information. a priori information referred to as reference signal carries some
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information about the desired source. It does not need to firefact match, but it should be
close enough to point the algorithm into the direction of aipalar IC. Let the reference be

r(t) = (ri(t),r2(t),...,m:(t))*. The closeness constraint for single IC can be written as
gi(W;) = e(Wx, ;) =€ <0 (2.32)

wheree is some closeness measure between the estimated ouftgiand the reference signal
r;. The number of column oV = |wy,wo, ..., w,] in the case of ICA-R will be equal to the
number of reference signals i.a5k. Both the output and reference signal must have zero-mean
and unit variance. The closeness threshold parameterdagatenyS. The optimization equations

will become:

!

e T =~ ;1 ) (2.33)
subject to : g(y :W) <0, h(y:W)=0

wherel is the number of sources to be extractgdW) are the inequality constraints ahdW)

are the equality constraints. The constrains are includdthe contrast function according to

the procedure mentioned in section 2.4 by using the augdmgeange method. The equation

2.33 will become:

! 2 2

. maz” i +Yigi(wi), 0y — pj 1

= Y () - RO SO st w) - W) (2.3)
i=1 v

Equation 2.34 is the final contrast function that needs tmmopéd. Newton-like learning process

can be used to learn the weights and Lagrange parametengjthttoe gradient-ascent method.
Wii1 = Wi — 1 < 5(W) > Iy Rxx ? (2.35)

wheren is the learning weigh§(W) is a vector equals t o) 1 Sl(wl))t in which s;(w;) =
ﬁiE{ng (yi)} — %MZ-E{g’y’_2 (w;)} — i forVi=1,...,1 obtained from the Hessian matiiy,
< . > represents a diagonal matrix whose off-diagonal elemeatalbzeros and the diagonal is

given by the vector inside and the gradiéqu,(,2 is given as:

Ty =< 5> E{C, (y)x"} - % < w> BE{g,(W)x'}— < A > E{yx'} (2.36)
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whereG’y andg;, are the first derivatives af(y) and(g(W) with respect to the corresponding

y; In y.The learning of Lagrange multipliegsand\ can be found using gradient ascent method

prt1 = mar{0, —pp+ < v > g(y : W)}
Akl = A+ <y > h(y : W)

(2.37)

More details of the optimization procedure can be found 67,[11][9].

The measure of closeness can take any form, such as meandguaor (MSE), correlation
or any other suitable closeness (or similarity) measuresut implementation of the algorithm,
we have used MSE as a measure of closeness and to adjusteftie thresholding parameter

we used the same procedure mentioned in [9].



Chapter 3

BSSfor Brain Imaging Applications

Related to every action there is an electrical activity lsetmwthe neurons of the brain. With the
advancement of science it is now possible to measure thesemsignals. The techniques used
to measure these activities can be invasive or non-invagien-invasive brain imaging tech-
niques are well suited for human brain recordings. The mgasive brain imaging techniques
could be electroencephalogram (EEG), magnetoencepbato@viEG) and magnetic resonance
imaging (MRI). The EEG, MEG or MRI data is multichannel datadacan be quite well de-
scribed by ICA model. ICA and constrained ICA has proved todry effective tools to extract
the essential features from the data to allow an easier gept&tion or interpretation of their

properties.

3.1 Electroencephalogram, Magnetoencephalogram and Func-

tional M agnetic Resonance | maging

The human brain is very complex and is the center of the nerggstems. All human activities
are controlled by the brain. From structural point of viethas white matter which is covered
by the gray matter, then comes the skull and skin. Approxigat0'® to 10'' neurons are

there in the white matter; which is the basic informationgassing units. There is communi-
cation between the neurons for every activity. The commatitio is done by transmitting very
short bursts of electrical signals generated by actionnpiaie. The receiving neurons transform

these potentials to postsynaptic potential that are loimgeluration. Single action potentials

23
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and postsynaptic potentials are very weak and cannot betddtas such by present noninvasive
measurement devices. Fortunately at any given time, thévelly longer and strong postsynaptic
potentials tend to be clustered in the brain. Such a clusteluge enough total electric current
that it can be detected by noninvasive methods. The pokatisigibution on the scalp can be
measured by placing electrodes on it, which is the method insSEEG. On the other hand, MEG
measure the magnetic fields associated with the current.

The electric current of the brain can be modeled in diffevesys however the current dipole
model is the most often used. It assumed that at any givert pbitime the electric activity
of the brain can be modeled by small number of dipoles. Thetrgdeand magnetic potentials
produced by these dipoles is strong enough that it can beurszhen the surface of head. EEG
is used extensively for monitoring the electrical actiwigithin the human brain. It is the most
widespread technique used to study the brain functions. &f(e used for the measurement
of continuous activity as well as for evoked potentials. iBsaspontaneous electrical activity
over a short period of time, recorded with multiple eleceé®glaced on the scalp, is termed
as continuous EEG. Evoked potentials involves averagirgelBG activity time-locked to the
presentation of a stimulus of some sort like visual, soneatsary, or auditory. Typical temporal
resolution of EEG is in the range of millisecond. Normallg thumber of electrodes used for
EEG recording are in range of 20 to couple of hundred. Theimomtis EEG signals have very
low signal to noise ratio. Evoked potentials are even matd/gmaller than continuous EEG.

Different brain areas between the measuring devise andsthareed dipole have different
conductivities. These different conductivities causargag effect in EEG. However, this effect
is not present in the case of magnetic field resulting in mughdr spatial resolution of MEG
compared to EEG. The information content of MEG is essdytifle same as that of EEG
but with higher spatial resolution. MEG is mainly used fosiobacognitive brain research. To
measure the weak magnetic fields of the brain, supercomdugtiantum interference devices
(SQUIDs) are needed. The measurements are carried out iasithgnetically shielded room.

The superconducting characteristics of the device areagteed through its immersion in liquid
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helium, at a temperature 6f269°C [8].

Functional magnetic resonance imaging (fMRI) is an MRI siteat measures the change in
blood flow and blood oxygenation (collectively known as helgramic response) related to neu-
ral activity in the brain. The firing of the neurons requiregrgy, blood releases oxygen (energy)
to them at a greater rate than to inactive neurons througlotigmamic response. Hemoglobin
is diamagnetic when oxygenated but paramagnetic when deosyed [21]. The magnetic reso-
nance (MR) signal of blood, BOLD (Blood oxygen level depemiisignal, is therefore slightly
different depending on the level of oxygenation. Inside MI: with magnetic susceptibility
sensitive parameters, changes in the BOLD contrast can bsuredl. The changes are very
small however based on statistical techniques active largias for a particular task can be dis-
tinguished. Almost all current fMRI research uses BOLD asedhmd of determining the active
brain regions for a particular task.

EEG has temporal resolution in the range of millisecondsfi&ti has spatial resolution in
the range of millimeters. By combining these two brain inngginodalities the functionality of
the brain can be studied as higher spatiotemporal resnlutowever, simultaneous recording is
hindered by the fact that the EEG artifacts like imagindgacts, ballistocardiogram and electro-
occulogram get amplified inside MRI scanner. For EEG studliegle MRI scanner careful

consideration of these artifacts is very important.

3.2 Basic|CA Modd Validity

ICA or constrained ICA statistically extract independeatirges from EEG or MEG without
regard to physical location or configuration of the sourceegators. EEG or MEG is assumed
to be the output of a number of statistically independentspatially fixed potential generating
dipoles, these dipoles can either by spatially restrictedidely distributed [22].

The ICA or constrained ICA techniques appear ideally suibegherforming source separa-

tion in domains where, i) statistically independent sowigaals are present, ii) linear mixing at
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the sensors is instantaneous, iii) mixing and the indepnctamponents (ICs) are stationarity,
iv) number of independent sources signal is the same as théeruof sensors. The indepen-
dence criterion is a statistical relation between the annbdi of the recorded signals. It mainly
depends on the experimental conditions and not on the maghor physiology of neurons.
One can safely assume that EEG or MEG recordings is a linedurnaiof statistically indepen-
dent brain processes. The time instance of EEG and MEG sigaal be considered separately
[23]; the quasi static approximation of Maxwell equationdds as their energy lies below 1 kHz.
The propagation of the EEG and MEG signals is immediate fwitlany time-delays) and the
instantaneous mixing is valid. In 1995, Blanco [24] disadsthe nonstationarity of EEG and
MEG signals. The data are considered as random variablest¢h BCA algorithms, and their
distributions are estimated from the whole data set. Theeethe nonstationarity of the signals
is not really a violation of the assumptions of the model. ldegr, The assumption of stationarity
of the mixing matrixA agrees with widely accepted neuronal source models [2b][R26tails
about the validity of ICA model for EEG and MEG signals can berfd in [8]

Itis believed that for every task only certain areas of beaimactive and there is a connection
/ communication between them to achieve the task i.e. fonatiprincipal of brain is localization
and connectionism. Consistent with this principles, [2F}the first time for fMRI data suggested
that the multifocal brain areas activated by performanca p$ychomotor task should be unre-
lated from the brain areas whose signals are affected g@si Mackeown and his colleagues
made the following assumptions for fMRI data analysis by J§Aach separate processes may
be represented by one or more spatially-independent coempgneach associated with a single
time course of enhancement and/or suppression and a contpoae, ii) the component maps
is assumed to be a fixed spatial distribution of possibly lapging, multifocal brain areas of
statistically dependent fMRI signal influence, iii) the gooment map distributions are spatially
independent and hence uniquely specified, iv) The maps wilhlependent if active voxels in
the maps are sparse and mostly non-overlapping, v) thexaas8viRI signals are the linear sum

of the contributions of the individual component procesge=ach voxel. Based on these assump-
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Figure 3.1: ICA can separate the fMRI into independent camepbmaps and activation wave-

forms

tions, An ICA algorithm can decompose the fMRI signals, rded during the performance of
tasks, into a number of independent component maps andagsgiciated component activations

[28]. The process is illustrated in the Fig. 3.1.

3.3 Summary

In this chapter basic knowledge about brain imaging tearegdias been presented. This chapter
also provides information on how the the EEG and MEG dataldulfie requirement of basic
ICA model. Finally, some examples of ICA and constrained &pplication of EEG and MEG

and their reference are provided for further insight.



Chapter 4

Artifact Rgectionin EEG signals

Integration of electroencephalography (EEG) and funetiomgnetic imaging (fMRI) resonance
will allow analysis of the brain activities at superior teongl and spatial resolution. However
simultaneous acquisition of EEG and fMRI are hindered byetifieancement of artifacts in EEG.
The most prominent of which are Ballistocardiogram (BCGJ &tectro-oculogram (EOG) arti-

facts. The situation even gets worse if evoked potentigsreasured inside MRI for their minute
responses in comparison to the spontaneous brain respdnstss chapter, a new method of
attenuating these artifacts from the spontaneous and évek&s data acquired inside a MRI
scanner using constrained independent component analithig priori information about the

artifacts as constraints will be discussed. With the predagchniques of reference function
generation for the BCG and EOG artifacts as constraintsnéwe approach presented in this
chapter performs significantly better than the averagethetrisubtraction (AAS) method. The
proposed method could be an alternative to the conventl@#famethod for artifact attenuation

with some advantages. As a performance measure we haveediieich improved normalized
power spectrum ratios (INPS) for continuous EEG and cdioglecoefficient (cc) values with

outside MRI visual evoked potentials for visual evoked EE@@mpared to those obtained with
the AAS method. The results show that the new approach is effaretive than the conventional

methods, almost fully automatic, and no extra ECG signalsmesments are involved.

28
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4.1 Introduction

Simultaneous acquisition of electroencephalography (E&@ functional magnetic resonance
imaging (fMRI) holds promise toward mapping brain actedtiat superior spatiotemporal reso-
lution. EEG provides temporal resolution in the order ofiteédcond and fMRI provides spatial
resolution in mili-meter scale: researchers believe tbatlining these two imaging modalities
is a critical requirement to decipher the functions of thaif29, 30, 31, 32, 33].

However, one of the limitations in the simultaneous actjoisiof EEG and fMRI is that EEG
signals measured inside the MR scanner get significantlyptad by artifacts: most significant
of which are gradient, ballistocardiogram (BCG) and elecitulogram (EOG) artifacts. It is
known that the gradient artifact is due to changing fMRI n&tgnfields, BCG artifact due to
the tiny movement of EEG electrodes inside the MRI scannealme of the pulsatile changes
in blood flow tied to cardiac cycle and EOG artifact by the mmoeet of eyes of the subject. It
has been reported that the magnitude of these artifactsds imigher compared with the alpha
rhythm of EEG [34, 35, 36, 37].

Most approaches used to date for the BCG and EOG artifaesti@j can be grouped into
three main classes: (i) averaged artifact subtraction (AA8thods, (ii) adaptive filtering tech-
nigues (AFT) and (iii) independent component analysis dhgsecedures (ICAP). The AAS
method was first proposed in [34] and lately the concept optia weighting to the original
procedure to reduce the time variability in the BCG templatas introduced by [31]. In this
method, an artifact template for each channel was obtaigeal/éraging the artifacts per each
heart beat and then was subtracted from the correspondiftg didhals. The standard AAS
method is the most common technique used in available cooimhepftwares for artifact atten-
uation. Attempts have been made using this procedure npfanspontaneous EEG but also to
recover the visual evoked potentials measured during fNRJ 89]. One critical requirement for
AAS is the simultaneous acquisition of ECG to identify eaehithbeat. However, as the ECG is
a non-stationary signal and gets affected by the magnelitdgewell, this method is associated

with less representative templates. The AAS method is atspalar method for attenuating the
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gradient artifact [35] in addition to the above mentioned@&rtifact.

A concept of adaptive (median) filtering was proposed by f@6fjenerate more accurate
templates for the artifacts. Attempts for real time artifattenuation have also been made. In
one such attempt, motion sensors were used to measure ttherfoaments and the adaptive
filters were utilized to remove the artifacts [37]. ImproV8@G artifact attenuation technigue
using an efficient heart beat detector was proposed by [4Q¢riKalman filtering of EEG signals
for the BCG artifact attenuation has been done by our grolip [4sually these adaptive filtering
techniques assume known variances and therefore reqteremee channels for generating the
artifacts.

An interesting alternative to the above mentioned techesdior neurophysiological signal
analysis applications are procedures based on ICA [42435). ICAis a well established tech-
nique for blind source separation. It extracts statidiicedependent components when linear
memory-less mixing is the fundamental assumption [4, 76618, 8]. In the field of biomedical
signal analysis, researchers have used ICA for differetifaetr attenuation from spontaneous
EEG data such as line artifact, EOG artifact and BCG artifd¢t 43, 44]. Some researchers
have used ICA for artifact attenuation from evoked potésitmaeasured inside MRI [48, 45]. In
2006, a comprehensive study [49] has been conducted omnetiffeonventional ICA algorithms
to evaluate their performance for the BCG artifact atteiondtom EEG signals measured inside
MRI. However standard implementations of ICA have somediiaatages associated with them:
(i) the number of ICs are equal to the number of observatioreking the subsequent manual
IC selection very cumbersome and subjective, (ii) neitherénergies nor the signs of ICs can
be predefined, (iii) ordering of ICs is random and (iv) po#isjbof breaking up of the artifacts
into multiple ICs, making the selection task even difficidtowever, in comparison to the AAS
methods, ICAPs has shown to produce improved results anddalsiot require separate ECG
measurement.

In general, for neurophysiological signal analysis we aramterested in the complete set of

ICs but only few ICs are of interest: artifact ICs. We can astthese ICs by incorporating some
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Figure 4.1: Schematic diagram of our proposed artifachattBon procedure using constrained
ICA

a priori information about the artifacts into the ICA algorithm. Gtmained ICA [9] uses the
augumented Lagrangian method to incorpoeageiori information about the signal to be sought
as constrains in the ICA contrast function. With constrdif@A one can extract only a subset of
ICs thus overcoming the disadvantages of the conventi@ral Application of temporally con-
strained ICA to attenuate the EOG and line artifacts from E&@ measured inside MRI) and
BCG artifact from MEG data respectively have been explorefbB]. The non-stationary effect
of BCG artifact in EEG measured inside MRI is not present an¢ase of MEG recordings. To
the best of our knowledge, attenuation of the BCG and EO@&aetsi from EEG (spontaneous as
well as evoked) measured inside MRI with constrained ICAr@dbeen attempted before. In the
frame work of blind un-mixing, if the BCG and EOG artifacteassumed to be linearly mixed
into the EEG measurements and saangriori knowledge is available or can be extracted form
EEG data thewonstrained ICA with referencghould extract them as ICs. In the work presented
in this chapter, we present an artifact attenuation mettased on constrained ICA for sponta-

neous as well as visual evoked potential EEG signals medsuwsi&le MRI. The advantages of
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this method are: (i) single artifact template is not reqiiileus overcoming some requirements
associated with the AAS methods, (ii) it does not require BBY> measurements or any extra
information, (iii) we can overcome the problems of the catignal ICA as mentioned above),
(iv) with our proposed methods, various references for threstained ICA can be generated
from the EEG data, (v) several artifacts can be attenuatékdeasame time and (vi) with this
method not only artifacts but also any desired informatian be extracted from the dataaf
priori information is available or if some traces of desired infation, which can be used as
priori information, can possibly be extracted from the data. Withpgrocedure presented in this
chapter, BCG and EOG artifacts are successfully attenuatediitaneously and automatically,
from the EEG signals measured inside MRI. In this chapterjllwstrate the effectiveness of
our technique for artifact attenuation with comparativeutts. For spontaneous EEG signals,
we evaluated our technique by examining the EEG signals awepspectrums before and after
artifact attenuation. We have compared the performanciastgae standard AAS method. The
higher normalized power spectrum ratios (INPS) for the traimeed ICA method indicate better
performance compared to the standard AAS method. Similiwdyhigher correlation coefficient
values (cc) calculated between the VEPs obtained from ttsdeuEEG signals and to those
obtained with the constrained ICA and the standard AAS nekthdicates better performance of
the constrained ICA method. The significance of our appraatat we have proposed the use
of constrained ICA for the first time for BCG and EOG artifaattenuation from EEG (spon-
taneous as well as evoked) measured inside MRI. We have aipoged three techniques for
the reference function generation from the EEG data. Ouwiteeslearly demonstrate that the
proposed approach is more effective, convenient, fullpmaitic (except for careful generation
of reference functions in the first two proposed techniques) outperforms the conventional

techniques. Some patrtial results have been reported irotiference proceedings [1, 51].
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4.2 Methodology

Details about the independent component analysis (ICA)camdtrained ICA (cICA) can be
found in sections 2.2 and 2.4 respectively. We need to atemaultiple artifacts so constrained

ICA with multi-reference is used.

4.2.1 Design of Reference Functions for Artifacts

The BCG artifact is known to be non-stationary and vary ce&tmchannel in its timing and
waveforms, making difficult to generate a single refereeogpiate. The reference signal genera-
tion depends on the application area and the type of thelsigeavants to extract. In the field of
electromagnetic brain signal analysis, a trace of desigguhk(i.e., artifact) is available at some
instance. For example, in the case of artifact rejectiom ntlorphologies and relative timings of
contaminating eye blinks or movements can easily be defivath automated fashion from the
observed EEG data. Here we propose three different teobsiiugenerate the reference signals
as described below. While designing a reference signahtsEOG artifact from EOG channel,

note the fact that this channel is also affected by BCG.

1. CH-Reference (CH-R)
A filtered EEG channel that is most representing the BCGaatttifs taken as the refer-
ence for BCG and the EOG channel is taken as the second re&r@he BCG artifact
is prominent in all electrodes and there shape is betteesepted in the EEG channels
compared to the ECG channel. Therefore, the channel thabss mpresenting the BCG
artifact can be used directly as a reference for the BCGaattiinder the assumption that

the variation of the BCG artifact in the rest of channels isr insignificant.

ri(t):f(qj(t)) i=1,2,...,k j=1,2,...,l (4.1)

wherei is the number of reference signals used, (two in our impleatiem i.e., k=2),g

the recorded signal; the channel numbet,the total number of channels recorded ghd
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denotes a transformation such as filtering. Each referamuetibnr;(¢) depends on the

selected channel.

2. Template Train-Reference (TT-R)
As mentioned above it is difficult to make a single templatdlie BCG artifact. However,
if a train of templates at approximate timings is taken adereace then the variation in
the shape of the template with respect to time can approgignae accommodatedh this
technique a filtered EEG channel that is most representieg®8G artifact is converted
into a train of templates and used as a reference for BR&ference signal only needs
to have some traces of the desired signal, in this case thexpmte timing and the

representative shape information is retained (as showigirdi3).

ri(t +v) = f(g;(t +v))
v=[-a,—a+1,..,b if f(gi(t) ==Y
t t+b
- (4.2)
ri(t) =0 Otherwise
i=1,2,...k j=1,2...,1

whereTY is the selected threshold valueandb are the number of samples selected before
and after the time at which the threshold is crossed. The variabis a set that indicates
the total number of samples assigned at each thresholdngosafter the assigning the
samples to the reference signal timis updated ta + b. The typical values ofi andb in

our implementation are in the range of 10 to 15 and 350 to 3§fectively.

3. PC-Reference (PC-R)
PCA which is based on second order statistics finds orthdgomaponents. It is believed
that EEG and artifacts are not orthogonal [42]. The use of R@#not completely sepa-
rate eye-movement artifacts from the EEG signals, espgeidlen they have comparable

amplitudes and even it can distort the signal if the artifamterlap with the signal [52].
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The BCG artifact, which vary in amplitude and form with theheate and blood pressure
[29] and also overlap with the true EEG signals, are verydiiffito remove with PCA. In
[53], the performance of PCA and ICA for the BCG artifact redn EEG spike data
measured inside MRI is presented and it is suggested thap&Ziarms significantly better
than PCA. The general observation about the artifacts tstlieg have much higher am-
plitude as compared to the EEG signals, although the ardplitd the signals in different
channels vary significantly i.e., ranging between ©60@o 15.V. The energy spectrum of
the BCG artifact is localized in time because it reflects ieardctivity and cycle. Inside
the MR, average energy of the artifacts is greater thanahatie EEG signals. With PCA
(which decomposes the signals on the basis of variancehi®ohighly amplitude varying
data, we cannot collect all the artifacts variance in the fiws® components. However if
we project the EEG data onto the two major principal comptnéhose corresponding
to the highest eigenvalues) the projected data shouldgeptr¢he general features of the
BCG and EOG artifacts. Therefore in this technigla¢a projected on the two major PC'’s

are used as reference signals for the BCG and EOG artifacts

po(t) = Ex(t) with pe(t) = [pes (), pes(t). ..., pen (1))

ri(t) = pe;(t) 1=1,2,...,k (4.3)

whereE is a matrix of eigenvectors of the covariance matrixXdf, with one signal per
row. pcis a vector of projections on the eigenvectors arisl the number of principal

components selected.

The reference signals from any one of the above techniquisna@an square error (MSE) as a

closeness measure, the inequality constraj(if¢) in equation (4) become:

aw) = E{wlx—r)?}-¢<0

ga(w) = E{(W'x—r)’}—£<0

gW) = (a1(w),g2(w))" <0 (4.4)
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where( is a threshold parameter. The first two techniques of refergeneration require some
user intervention in terms of selecting and designing tfereace signals, making the proposed
techniques semi-automatic. However, with PC-R the refarés generated automatically with

no arbitrariness.

4.2.2 Artifact Attenuation with the Proposed M ethod

The total number of channels used for data recording wer@@2¢of which the 29 channels
were used for EEG, one channel was allocated for EOG and tw6@6& signals. We recorded
the ECG channels but those were not used at any stage ottdifanuation. The focus of this
chapter was the attenuation of BCG and EOG artifacts thex¢fi@ recorded EEG data was free
of gradient artifact. The EEG data recorded was filteredH®.530Hz) with the Butterworth
filter of order 4 and zero phase distortion to remove the nsiggh as line artifacts. The 29
channel filtered EEG data denoted %) was centered and whitened. The reference signals
for the artifacts were generated using one of the techniguesented in section 4.2.1. The
reference signals were also centered and whitened. Theattatg with the reference signals
were then given to the constrained ICA algorithm. The 1Gs,(§) recovered by the constrained
ICA correspond to the artifacts. The ICs were projected badk the measurement space to
determine the mixing matrixA = X St. Wheret represents the pseudoinverse. The artifacts

attenuated EEG signal§. were obtained by
X.=X - AS. (4.5)
In the case of evoked potentials averaging according totéiweimgs was done to recover VEPs.
The schematic diagram that depicts the whole process isrsholrig. 4.1.
4.2.3 PerformanceCriteria

In order to assess the performance of artifact attenuatimumoproposed techniques, we have

used the following performance criteria for the continuand evoked EEG.
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1. Spontaneous EEG signals
The performance of the proposed constrained ICA method @& Rrtifact attenuation is
evaluated by comparing the normalized power spectrumsréiitP S) with those obtained
from the standard AAS procedure (i.e., the Allen’'s methd®)PS is a commonly used
measure for evaluating the performance of BCG artifachatidon in EEG data [54]. The

higher values of INPS indicate better performance. The IlR&pressed as

2{\;1 Plbefore—cICA

INPS = (4.6)

l]\il JDZafterfcICA

whereN is the number of harmonics of the artifact aRgis the spectral power at tHg

BCG component. In our calculations we have used N = 10, ththtiSundamental ECG
frequency (approximately 1.1 Hz) and four harmonics artugted. The 2048 point FFT
at the sampling frequency of 1KHz is performed for spected¢dations. Furthermore,
the performance is evaluated visually by inspecting theicion in power at the artifact

related frequencies after artifacts attenuation.

2. Evoked potentials
In the case of visual evoked potentials, VEPs are recovesigm) the standard AAS pro-
cedure and our proposed constrained ICA method. For viesgkection both are plotted
against the VEPs from the outside MRI EEG data, which is cmmed as a gold standard.
For analytical comparison the Pearson correlation coefftsi(cc) are calculated between
the VEPs obtained from outside MRI EEG data and VEPs obtairncthe standard AAS

method and those obtained by the constrained ICA method.

4.2.4 Experimental Setup

Spontaneous EEG data and visual evoked potentials upokestteaard reversals (1 or 2Hz) were
acquired from six volunteers (mean age of 26.6) with no hystd neurological and psychiatric
disorders, recruited from an academic environment. We a$égI-compatible 32-channel EEG

recording system (Brain Amp MR, Brain products GmbH, Gery)dar EEG data acquisition
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inside a 3.0 T magnet of the whole body MRI scanner (Magnum Id€dinus, Korea), thus
from the MRI related artifacts only the BCG artifact is inédcin the EEG signals. The EEG
electrodes (Ag-AgC1) and lead wires were made of non-magmetterial to reduce the magnetic
field effect on the electrodes. The distance between the EfpGand the EEG amplifier was
approximately 1m, and the EEG amplifier was placed at theardrside of the magnet. The
EEG signals were amplified and then transformed into opsicgials in the EEG amplifier, to be
transmitted to the EEG data acquisition system placeddritsie MRI shield room. The EEG
data acquisition system has 16 bit depth with the voltagelutéen of 100nV and the dynamic
range of 3.2mV. The typical sampling rate used in this chaptes 1 KHz and the bandwidth
of the band pass filter was 1-60Hz. All the EEG recordings vperdormed with the standard
10-20 uni-polar system referenced to the FCz electrodectiglde skin impedance was kept
below 1K Ohm. To minimize motion artifact in EEG on the scalgcérode of the subject, we
tightly fixed the EEG cap on the scalp using adhesive tapath&more, to minimize the motion
artifacts of the EEG lead wires between the EEG cap and the &&gdifier, we fixed the lead
wires to a supportive structure using plastic ties. Theysprdsented in chapter was approved by
the institutional ethics review committee of Kyung Hee Uamsity, Korea, and written informed

consent was obtained from each subject.

4.3 Results

4.3.1 Spontaneous EEG

An example of a 5-s epoch of the multi-channel scalp EEG dmmbinside MRI is shown in
Fig. 4.2(a). The BCG and EOG artifacts shown by a rectandndarcan be seen throughout the
normal EEG. The reference signals for constrained ICA i®ggrd using one of the techniques
mentioned in the section 4.2.1. For the CH-R, one of the EE4BIoél is used as reference signal
for BCG artifact and EOG channel is used as reference for BRGEDG artifacts. Although

the plot is not given in Fig. 4.2 due the space constraintsydélults are given in table 4.1. For
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the TT-R technique, a reference for BCG is obtained from ttennel O1 and for both the BCG
and EOG artifacts it is derived from the EOG channel accgrtlinthe equation 4.2. lllustration
of the method is shown in Fig. 4.3. The two recovered ICs ayed with the corresponding
reference signals are shown in Fig. 4.4. In the PC-R teckenithe two principal components
with the highest eigenvalues are selected and the datacf@djen these components are used as
two references. The two recovered ICs, in our case, are ttogecped back into the measurement
space and subtracted from the original EEG signals acaptdiaquation 4.5 to get artifact atten-
uated signals. Comparative results of artifact attennatiane representative channel, when the
reference functions are generated from different chanmgtsy the TT-R technique, are shown
in Fig. 4.5. All the channels after artifact attenuatiorference function generated using TT-R
and PC-R, are shown in Figs'. 4.2(b) and 4.2(c) respectivgpon comparing Fig. 4.2(a) with
Figs 4.2(b) and 4.2(c), it is clear that the artifacts relateBCG and EOG are attenuated. The
artifacts are assumed to be linearly mixed with normal baaitivities and have high amplitudes
therefore the energy associated with frequencies (1-6&lajed to the artifacts is much higher
compared with those of normal brain activities. The powarcspim plots of channel O2, be-
fore and after artifact attenuation, is shown in Fig. 4.6isTigure clearly demonstrates that the
power at frequencies related to the artifacts is signiflgaetduced after artifact attenuation. For
comparison, we have implemented the standard AAS methodiewuated the artifacts. The
guantitative and comparative results of the proposed proeeare summarized in table 4.1. The
gain in the INPS values for the constrained ICA method cjellstrate the effectiveness of our
proposed method compared to the AAS method. A performancganson in terms of INPS
values between the constrained ICA method with the PC-Rnhtquk for reference generation
and the PCA attenuation method (where only the first two PEsabtracted from the data) is
presented in table 4.2. The INPS values for the constrai@@dhethod lies in the range of 8.2 to
12.8. However, for the PCA method it lies in the range of 3.4Q¢’. We observed that the INPS
values with the PCA method for some channels are even lesghbtof the AAS method. We

also observed distortion in the EEG signals if the artifartsattenuated with the PCA method,
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as observed by other researchers [52].

4.3.2 Visual Evoked EEG

In the case of evoked potentials, the VEPs were obtained fhenartifact attenuated EEG sig-
nals averaged according to the event timings. For comparibe VEPs from the EEG signals
acquired outside MRI under the identical experimentalrsgitare taken as the gold standard.
The VEPs from some representative channels, before andaafiiact attenuation against the
outside VEPs are shown in Fig. 4.7. Results clearly depattttie VEPs obtained after artifact
attenuation are much similar to those of outside MRI VEP% ddwalues are computed to mea-
sure the similarity of the VEPs after correcting a few msewetdelay of the VEPs inside MRI,
as performed by other groups [38, 39]. The cc values for the&/&ter artifact attenuation using
constrained ICA lies in the range of 0.5 t0 0.9. It is cleat tha recovered VEPs is much similar
to the outside VEPs. The occipital P1 and N1 peaks can beifigerat similar latencies in both
recording conditions. The P1-N1 complex was detected iceaks. To test our technique against
the standard AAS method, we have implemented the AAS methddahbtained the VEPs. The
VEPs acquired with both the techniques are compared witbutsde MRI VEPs and the plots
with corresponding cc values are shown in Fig. 4.8. Visugpéttion of the VEPs as well as the
cc values indicate that the constrained ICA method perfdretter than the AAS method. The
cc values for the constrained ICA and AAS method against titgide VEPS for six subjects are
given in table 4.3. The values are higher for the constral@4 illustrating the effectiveness
of the constrained ICA method for artifact attenuation for evoked potentials compared to the

standard AAS method.

4.4 Summary

The use of ICA for artifact rejection in an effective techudgin the field of bio-medical signal

analysis. However, because of the disadvantages mentiotied introduction section there are
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Figure 4.2: Attenuation of artifacts from spontaneous E&€ardings. (a) EEG recordings inside
MRI: 29 channels, contaminated with the BCG and EOG artfastindicated by a rectangular
box, (b) EEG recordings after artifact attenuation usirggh-R technique and (c) EEG record-

inac aftar artifact attentiation ricina the PC-R techniarie



Table 4.1: INPS(dB) values for the constrained ICA withelifnt ref. function generation techniques and the AAS miktho
Constrained ICA method
CH-R TT-R PC-R AAS method
Sub. | 01 02 P8 FC6| O1 02 P8 FC6| O1 02 P8 FC6| O1 02 P8 FC6
S1 5.9 5.8 5.9 72| 96 101 87 101|112 123 112 121 21 32 35 49
S2 7.0 6.3 6.3 74| 89 6.8 8.7 94| 118 120 126 118/ 31 45 51 6.7
S3 7.1 6.2 5.8 80| 86 111 118 92| 154 128 127 109 39 48 52 69
sS4 5.6 6.1 6.9 101| 98 101 9.6 104|114 137 148 124/ 31 44 51 6.8
S5 5.7 5.8 5.3 78| 86 108 91 88| 103 137 112 114/ 67 62 59 7.1
S6 6.4 5.7 6.6 73| 97 113 101 10.3| 156 11.6 142 108 46 35 46 6.1

Mean 6.3 6.0 6.1 8.0 9.2 10.0 9.7 9.7 | 12.6 12.7 12.9 11.6| 3.9 4.4 4.9 6.40

SD +0.66 +0.25 +0.58 +1.10| +0.56 +1.66 +£1.18 +0.66| +£2.3 +09 +14 +065| £16 +1.1 +£0.8 =+0.8

Arewwns vy

A7



Table 4.2: INPS(dB) values for constrained ICA with the P@R function generation technique and the PCA method.

Constrained ICA method PCA method
Sub. F3 P4 o1 02 P8 CP2 CP6 F3 P4 o1 02 P8 CP2 CP6
S1 9.3 7.9 112 123 112 8.6 124 1.3 7.2 8.0 9.2 11.0 53 9.1
S2 71 72 118 120 126 79 111 43 69 83 84 107 49 749
S3 8.9 7.1 154 128 127 8.1 11.8 4.7 7.2 8.7 8.9 103 5.1 8.8
Mean | 8.4 8.4 12.8 12.4 12.2 8.2 11.§ 34 7.1 8.3 8.8 10.7 5.1 8.6
SD +12 +04 423 404 408 404 40.65| +0.85 402 404 404 =404 402 =406

Arewwns vy

ev



Table 4.3: Correlation coefficients between the outside /& the VEPs after artifact attenuation with the constichiCA

and the AAS method.

)

Constrained ICA Method AAS Method

Sub. C3 P3 (OX1 02 P8 CP6| C3 P3 o1 02 P8 CP6
S1 0.90 0.93 0.88 0.64 0.89 0.83 0.70 0.83 0.73 0.72 0.80 0.81
S2 083 08 077 079 087 053 044 061 082 071 086 0.53
S3 0.65 0.73 0.70 0.77 0.64 0.69 0.57 0.78 0.67 0.62 0.77 0.64
S4 066 032 081 088 075 082 046 063 081 086 065 0.67
S5 0.56 0.75 0.87 0.76 0.89 0.8% 0.63 0.71 0.85 0.60 0.80 0.84
S6 069 054 082 08 084 050 059 013 044 043 055 0.59
Mean | 0.72 0.68 0.81 0.78 0.81 0.70 0.57 0.70 0.72 0.66 0.74 0.69
SD +0.13 +£0.22 40.06 +0.08 +£0.1 +0.16| +0.10 40.10 +0.15 40.14 40.12 +0.12

Arewwns vy
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Figure 4.3: EEG signals inside MRI (dotted) and the deriveférence functions (solid) using
the TT-R technique.

difficulties to neither standardize nor automate the ICAduhartifact attenuation procedures.
In the study presented in this chapter, we have introducdthples standardized and almost
automatic way of attenuating the BCG and EOG artifacts gemebusly from the EEG signals
measured inside MRI. The technique uses constrained ICAanmitriori information about the
artifacts as references or constraints. Since constrdiDAdshares the same measure as that
of fastICA [6] i.e., negentropy, it enjoys all the benefitsIGAP in addition to its own unigue
advantages as discussed in the introduction section. |[Betdmparisons and analysis indicate
that our proposed technique significantly reduce the attifaompared to the standard AAS
procedure. Furthermore it does not require additional nreasents as in the case of AAS and
AFTs: rather our technique derives its reference functiomfthe data itself. The procedure can
be extended to any number of artifacts or any desired infoomdy introducing the multiple

number of reference functions.
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Figure 4.4: The two extracted ICs (solid) and the normalizgdrence functions (dotted).
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Figure 4.5. Comparison of artifact attenuation at the EE@nalel P4, before(dotted) and after

artifact attenuation (solid), when refs. generated froffedint channels using the TT-R.
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Figure 4.6: Power spectrum plots of channel O2,(a) referé&mctions generated using the TT-R

and (b) PC-R techniques, before (dotted) and after artéfienuation (solid).

The role of reference functions for constrained ICA is teedirthe algorithm into the direc-
tion of desired ICs. Therefore, reference function geimamathould depends on each application
area. In the area of artifact rejection in EEG data, tempamelmorphological information about
the artifact is useful. In this chapter, we have introdudede ways of generating the reference
functions for the constrained ICA algorithm. In our firsthaue (CH-R), we used a channel
that is severely affected by BCG artifact and the EOG chaasekference functions. For EEG
measured inside MRI scanner the artifacts not only get dieghlbut also their relative timing
and shape get distorted. As mentioned in table 4.1, it didarethe overall INPS values but
the improvement is not very significant as compared to AASbse of the different morpho-
logical distortions of artifacts for each channel. The ofimaitation of the CH-R method is that
some useful information may also be discarded. In our secosithod (TT-R), we kept only
the approximate timing and representative shape infoomdtr the BCG from one EEG chan-
nel and for BCG and EOG artifacts from EOG channel. The INH&egimproved because in
this case more accurate information about the artifactpreméded as compared to the previous

method. To include more information, about the represietéiming and morphological infor-
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Figure 4.7: Visual evoked potentials at (a) P4, (b) O1, (c)ad@ (d) P8 channels, the response
outside MRI (dotted), inside MRI without artifact attenigat (thin solid), and after artifact at-

tenuation(thick solid). The reference functions generasing the PC-R technique.
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mation, into the reference function we relied on the basiecttire of PCA (i.e., projections on
the maximum variance bases preserving general timing amdhmlogy). Based on this idea the
PC-R technique gave us the best results as presented irttablglthough we have shown three
different ways of generation of reference functions witbgressively improving results, other
variations could be used depending on the application area.

Previously, various methods for artifact rejection [34, 83, 38, 39] in EEG recording have
been proposed. For example, the BCG artifact induced by ulsatile parenchyma brain mo-
tion can be reduced using the standard AAS method [34]. Biriiethod a noise template is
estimated by averaging every channel with epochs timeelb¢k the complex ECG waveform
and slow baseline trends are removed using Linear regressioe estimated noise template is
then subtracted from each 1-s section of EEG. However ththadesuffers from less represen-
tative templates. Motion sensor signal was utilized in aapse filter scheme to remove the
motion-related artifacts [37]. The BCG and motion affecttdG are very much non-stationary
as we have proved and the artifact attenuation methods depexh on the accuracy of the
corresponding template. Constrained ICA with our desigméelrence functions perform better
because we identify the artifacts as independent compe1iE2s). Then we subtract them form
the EEG recordings, after projecting them back to the measent space, to get the artifact
attenuated EEG signals. Based on the results we have mdsenthis chapter, our proposed
scheme outperforms the current standard schemes with samaerdent features.

In the work presented in this chapter, we have validatedemimtique only with the BCG and
EOG artifacts in the data. We believe that constrained IC drie proposed reference function
generation schemes could be an effective tool for attemgdtie BCG and EOG artifacts from
EEG data measured inside MRI. The proposed technique cadilitdte the simultaneous EEG
and fMRI studies involving continuous as well as evoked oasps of the brain. If the gradient
artifact is present even after its removal using the AAS metlassuming that it is independent,

it can further be attenuated with the proposed method bygdegj a reference function for it.



Chapter 5
Constrained Spatiotemporal | CA For Spatiotempor al

Data

In general, Independent component analysis (ICA) is assizdi blind source separation tech-
nigue, used either in spatial or temporal domain. The dpatidemporal ICAs are designed
to extract maximally independent sources in respectiveaitasn The underlying sources for
spatiotemporal data (sequence of images) can not alwaysarargeed to be independent, there-
fore spatial ICA extracts the maximally independent spatiarces, deteriorating the temporal
sources and vice versa. For such data types, spatiotenmi@halries to create a balance by
simultaneous optimization in both the do-mains. Howeves, dpatiotemporal ICA suffers the
problem of source ambiguity. Recently, con-strained ICAGA) has been proposed which
incorporates a priori information to extract the desiredrse. In the study presented in this
chapter, we have extended the c-ICA for better analysis aticiemporal data. The pro-posed
algorithm, i.e., constrained spatiotemporal ICA (conetrd st-ICA), tries to find the desired in-
dependent sources in spatial and temporal domains withumees@ambiguity. The performance
of the proposed algorithm is tested against the conventspadial and temporal ICAS using sim-
ulated data. Furthermore, its performance for the reaispatporal data, functional magnetic
resonance images (fMRI), is compared with the SPM (coneeatifMRI data analysis tool).
The functional maps obtained with the proposed algorithveabmore activity as compared to

SPM.

51



5.1. Introduction 52

5.1 Introduction

Independent component Analysis (ICA), a blind source sgjmar (BSS) method based on higher
order statistics, decomposes the linear memory-lessaigars into their underlying maximally
in-dependent sources and their corresponding mixing i®{gh 6]. There are two conventional
modalities in which ICA can be used to decompose the spaijmeal data into a set of spatial
or temporal ICs i.e., spatial ICA and temporal ICA. SpattaAlfinds underlying independent
spatial sources and the mixing matrix contains correspandet of time sequences; temporal
ICA finds independent temporal sequences and the obtaingdgmnatrix gives the correspond-
ing set of spatial modes. With the success of ICA in medigalali processing there is a strong
interest in ICA for the analysis of spatiotemporal data,dMRI images. fMRI is a non-invasive
technique used to study spatiotemporal brain functionsoth besearch and clinical areas [55].
It can measure small changes in the MR signal caused by shaailges in blood oxygenation
level, when specific areas of brain are performing the giask {56]. By acquiring successive
images from multiple slices of head in time, image intensayiation at each voxel represent
the blood oxygenated level dependent (BOLD) response teemgask. Therefore, it is possible
to determine active brain regions for a given task by cotirejaeach voxel signal in MR image
sequences to the experimental paradigm. The spatial tesoin fMRI images can go up to
1mm, making it a preferred technique for accurate sourcailmation.

In 1998, McKeown et al. [27] for the first time introduced ICérffMRI data analysis, with
the as-sumption that fMRI data is a mixture of spatially ipeledent components. Biswal and his
colleagues [57] applied the ICA in the temporal domain foRIMIn-mixing. So far, most of the
applications of ICA for fMRI are based on ICA using the spatiede (Spatial ICA). However
the choice of spatial or temporal ICA is controversial: Camgon and discussion on the under-
lying assumptions for the use of spatial and temporal ICANsmyin [58]. Some authors have
also applied ICA on the fMRI data in the complex domain [599sidering that the phase infor-
mation which is normally discarded in usual ICA applicatfpovides vital information. ICA has

been successful in the identification of various sourceadigim fMRI [48] which are considered
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challenging for the second order techniques such as ctorekand regression analysis.

The foremost assumption for ICA application is that the ulyiteg sources should be in-
dependent. However, for spatiotemporal data like fMRI immagquences it is difficult to fulfill
this independence criterion for both the spatial and teadmiomains (i.e., independent sources
in spatial domain as well as independent sources in temparagin). In such cases, spatial
or temporal ICA tries to find a set of maximally independenirses in one domain at the cost
of their corresponding unconstrained set of sources in tiner @omain. Lately, Spatiotemporal
ICA [60, 61] has been proposed to create a balance by joimptiynizing the sources in spatial
and temporal domains. Stone and his colleagues [60, 61kste)that skew symmetric source
distribution is more realistic assumption for fMRI studieSuzuki et. al. [62] also assumed a
skew symmetric distribution in his study. In 2002, Seifidizd his team used a combination of
spatial and temporal ICA to analysis the spatiotemporal [&8]. They first used the spatial ICA
to locate a region of interest and finally temporal ICA to fihé temporal response of human
auditory cortex. However, for the higher dimensional dia IMRI, spatiotemporal ICA gives
large number of independent components making the subseguoelysis very complicated and
subjective. In other words, there exists source ambiguity€As in the conventional spatial,
temporal, and spatiotemporal modes.

The existing ICA models are blind source separation methitbtdsy do not take advantage
from the a priori information that might be available abdw desired source. In the case of
fMRI data, the paradigm information is vital. The conventbICAs use this information for
sorting the ICs found instead of utilizing it in the un-migiprocess. Recently, Lu and Rajapakse
introduced an algorithm, constrained ICA, [9] that can ipomate a priori information in the un-
mixing process. In temporal mode, this algorithm has begtiegpfor fMRI data analysis [9].
Constrained ICA has also been applied for artifact remos@hfEEG signals [2]. However
constrained ICA, which is the same as the spatial or temp@alexcept that it includes the
constraints in the cost function, also suffers from the sdis@dvantage as of spatial or temporal

ICAi.e., the maximal independent component in one domaihdateriorated components in the
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Figure 5.1: The schematic diagram of the constrained gpatjgoral ICA.

corresponding domain.

As mentioned above, there exists a problem of source antpiguhe case of spatiotemporal

ICA. In case of, constrained ICA source identification pemblis solved by incorporating the a

priori information. However, the performance of earlier fpatiotemporal data is better than

the later. Considering the spatiotemporal nature of fMRadee extend constrained ICA into

constrained spatiotemporal ICA (constrained st-ICA) fivats independent, yet desired tempo-

ral and spatial sources thus solving the source ambigudilem for spatiotemporal data. The

proposed method is based on the singular value decompoé8MD) and cascade of two sim-

plified one unit ICA-R blocks as shown in the schematic diagFag. 5.1. The performance of

the algorithm against the conventional ICAs is tested usliregsimulated data. To analyze the

performance for real spatiotemporal data, it is appliedMBF data and its results are compared

to those of the conventional fMRI data analysis tool i.eatiStical Parametric Mapping (SPM).

The functional maps obtained with the pro-posed algoritlereal more active brain regions

compared with the SPM. Based on the results we stronglyeetieat the proposed algorithm

could be used for spatiotemporal data analysis.
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5.2 Independent Component Analysis

Independent component Analysis (ICA) is a stochastic ntettiat assumes that a linear

memory-less observation matrX = (xi,xs,...,X,)" can be decomposed into underlying
set of independent sourcB8s= (sq,ss,...,s,)! i.e.,
S = XwW
or X = SA (5.1)

whereA is the mixing matrix andW is the unmixing matrix. General implementations of ICA
can be found in the literature [8, 46, 6, 7].

If the observation matrix contains image sequence thentiequé.1l can be written as
X = SAT!. whereS represents the independent spatial sources®nd (ti,...,t;)" are

the corresponding independent time courses/aade diagonal scaling parameters.

5.2.1 Spatial ICA and Temporal ICA

he observation matri’ can be decomposed inl8 = UDV! using singular value decom-
position, whereU is anm x m eigenimage matrix})/ is ann x n matrix of corresponding
eigensequences, alitlis am x n diagonal matrix of singular values. By retaining theingular

value we can reduce the rank of the matrix.
X~X = OUDV (5.2)

Spatial ICA assumes that the x k eigenimage matri{U can be decomposed intospatially
independent componers= (sy, . ..,s,)!. The corresponding time courses can be obtained as
follows.

X = SA,DV?

— ST, (5.3)

where rows ofl', = A,DV! contain corresponding time courses.
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On the other hand Temporal ICA assumes that k& eigensequence matrix can be decom-
posed intok independent temporal componefiis= (t1,...,t;)’. The corresponding spatial

modes can be obtained as follows.
X = UDA!T!
= ST (5.4)

where each column &; = fJ]ADAﬁ contain the corresponding spatial modes.

5.2.2 Spatiotemporal ICA

The Spatiotemporal ICA [60, 61] is based on the assumptiahgbme times underlying spatial
and temporal sources are not completely independent. $e tteses the spatial or temporal ICA
will not produce good results in their corresponding unt@msed temporal and spatial domains
respectively. Spatiotemporal ICA treats the spatial antptal domains equally by maximizing

the following cost function.
hat(We, A) = aH(Y,) + (1 — a) H(Yy) (5.5)

wherelV; is the spatial un-mixing matrix\ is scaling matrixy is the relative weighting factor,
H(Y,) is the temporal entropyY,; = o.(y;) are the cdfs of temporal signalg, = VW, are
extracted temporal signalé/ (Y ) are the spatial entropyys = o5(ys) is the cdfs of spatial

signals andy, = UW, are extracted spatial signals,

5.2.3 Constrained ICA

Whena priori information about the desired source is available, we caorporate this infor-
mation as constrained in the ICA cost function [9]. The crist could be in the temporal or in
the spatial domain depending on the configuration of ICA (Jeral or Spatial) being used. This

constraint referred to as the reference function must sorge information about the desired
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source. During the optimization process it guides the #lgorin the direction of desired inde-
pendent source. Let the referencerfe) = (ry(t),r2(t),...,7x(t))!. The closeness constraint

for single IC can be written as
g(w) =e(w'x, ;) =€ <0 (5.6)

wheres is some closeness measure between the estimated etitpaind the reference signal
The closeness threshold parameter is denoted bire measure of closeness can take any form,
such as mean squared-error (MSE), correlation or any othitabée closeness (or similarity)

measures. One interesting improvement in constrained Eybe found in [64].

5.3 Constrained Spatiotemporal | CA

The spatiotemporal data where the underlying independeritaion is difficult to establish;
the conventional ICA algorithms have some weaknessesatjasr temporal ICA tries to find
the maximally independent components in the spatial or teaiplomains respectively affecting
the components in the corresponding domains, ii) orderinthe® output sources are random
(source ambiguity), iii) the number of sources found for tiigh dimensional data are very
large (such as sequences of fMRI images), making the subsegqunalysis laborious and highly
subjective. The stICA tries to overcome the first above noewetil disadvantage of conventional
ICA by simultaneously optimizing the spatial and tempomnains. However, it suffers from
source ambiguity and large number of de-rived sources fr limensional data; same as that of
conventional ICAs. The cICA finds only a specific or a subsetonirces and also solves a source
ambiguity problem by incorporating a priori information.owever, the clCA being exactly the
same as that of conventional ICA (same contrast functiomesaptimization procedure) else
than it includes some constrains into the contrast funcsigifiers from the above mentioned
first disadvantage of the conventional ICA. In the proposatstrained st-ICA we have tried to
collect the advantages of st-ICA and cICA to overcome thevabmoentioned disadvantages of

conventional ICA.
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In this algorithm, we exploited the salient features of slag value decomposition (SVD)
along with one unit cICA algorithm. The SVD: (i) decomposhe tbservation data into a set
of spatial modes (left singular matrix) and the correspogdiet of temporal sequences (right
singular matrix), (ii) both left and right singular matricare orthonormal and (iii) the rank re-
duction can be done by selecting an appropriate numbkwrettors as mentioned in secti@f.
Based on these properties, corresponding underlying estincthe two domains can be found
independently if some a priori information about the dekigeurce is available. As shown in
Fig. 5.1 there are two simplified/fast clCA blocks, we firspkn the cICA and the simpli-
fications/modifications that come naturally with our progibsonstrained spatiotemporal ICA
algorithm then at the end complete algorithm will be expdin

Let there are: independent source signalg) = [s1(t), s2(t), ..., s, (t)]* andm the number
of observed mixtures () = [z1(t), z2(t), ...z (¢)]*. The a priori information, which represents
some traces of the desired independent source, can beagef@én terms of the reference signal
r(t). The information in the signai(¢) may be incorporated as closeness constraint onto the ICA

contrast function. The closeness constraint for singledCle written as
g(w)=e(w'x, 7) =€ <0 (5.7)

(6) wheree is some closeness measure (e.g. Mean square error or tiomgelalhe closeness
threshold parameter is denoted &y Various ICA algorithms use different contrast functions
depending on the application area in which they are used. edemthe ICA contrast function
based on negentropy is very reliable and flexible. In thamagone unit cICA algorithm there are
two constrains i.e., equality constraints and the ineguabinstraints. Equality constraints are to
keep the unity variance and the inequality constraintsanecorporate the a priori information.
In our case, the input data has inherently unit varianceusechoth the modes are orthonormal;

we don’t need the equality constraints. Therefore the dpétion equation for the constrained
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spatiotemporal ICA is as follows.

mazimize : J(y) = plE{G(y)} — E{G(v)}]? 5.8)

Subjectto: g(w) <0 or g(w)=g(w)+b>=0
whereJ(y) denotes the one-unit ICA contrast function introduced By48&s a positive constant,
v is a zero mean, unit variance Gaussian variaGle) is a non-quadratic function as defined in
[8], g(w) is the closeness constraint mentioned in equation 5.7 @&nthe slack variable. Equa-
tion 5.8 is a constrained optimization problem which canddees by explicitly manipulating for
the optimumb™* through the use of an augmented Lagrangian function. Leguwii the weights
is achieved through a Newton-like learning process.

Cw,p) = J(y) +p'g(w) + 5llg(w)l|?

1

Clw, ) = J(y) — o5 [max?{u+yg(w), 0} —p?]

where(C represents the new contrast function to be optimizeid, the Lagrange multiplier and

(5.9)

~ is the scalar penalty parameter. Learning of the weightdeaachieved through Newton like

learning process.
Wi = wi—(C")7IC!
Wil = Wi —nRG(H")TIC
where

C" = H'Rxx Ruxx=F{xx'}=1

therefore
(5.10)
Wiyl = Wk_n(H//)flc/
W |¥—|
and

C' = pE{xG,,(y)} — suE{xg)(w)}
H = pB{xG! (4)} — SuB{xg/s(w)}

The optimum multipliers can be found by iteratively apptlyitne gradient ascent method.

pi+1 = max{0, p +vg(wy)} (5.11)
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The presented clICA algorithm is simple and fast comparedGd8 @resented by Lu [9]. There
are no equality constrains and matrix inversidy{ ') at each iteration is avoided to achieve
speed [64].

Given the spatiotemporal data, the spatial and temporalemadn be obtained via SVD.
Appropriate data reduction is also done. A priori inforroatiand the appropriate SVD mode
(spatial or temporal) after data reduction are given to ttst GiICA block. The outputs will be
the independent source and the mixing vector of that donfaimm the mixing vector reference
signal for the corresponding independent source in the ditr@ain can be generated as given in
equation 5.12. This reference signal and the other reduv@&lrSode are presented to the sec-
ond cICA block. The output will be the independent comporgdrihis domain, corresponding
to the previously extracted independent component. Cainstl st-ICA, fMRI data as a specific
example, can be described as follows:
step0: The observation matriX contains the fMRI image sequences.
stepl: Reduce the dimension of the observation maXiwsing SVD. FindU andV according
to equation 5.2. The matrikl contains spatial mode afd contains temporal modes.
step2: In the case of fMRI data some a priori information in the pemal domain is readily
available. Generate the temporal reference signfbm that information; inverted fMRI exper-
iment protocol.
step3: Zero mean and normalize the temporal reference signal
step4: Call the simplified constrained ICA block with eigensente matrixV and reference;
as the inputs. Upon convergence the output will be the inugdgret temporal sequence.
step5: To determine the corresponding independent image mautktHe approximate image
mode and used it as the spatial referenge The approximate spatial mode can be found as

follows:

ry = X(TH)™! (5.12)
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Figure 5.2: Experimental protocol for fMRI data collection

wherew; is the un-mixing vector found in step 4 afdis the time sequence recovered.

step6: Zero mean and normalize the spatial referance

step7: Call the constrained ICA block with eigenimage matrix aaférencers as the inputs.
Upon convergence the output will be independent image saowesponding to the independent

temporal sequence found in step 4.

54 fMRI Experiment and Data Acquisition

fMRI data was acquired on a 3.0T MR scanner (Magnum 3.0, Megiorea) using a T2-
weighted EPI sequence (TR = 2850ms, TE = 36ms, flip angle =4X,@! matrix, FOV = 240

X 240 mm, slice thickness = 4mm, voxel size = 3.75 x 3.75 x 4mwi8) 29 transaxial slices
covering the whole brain regions. To minimize motion adifave tightly fixed the head using
sponge in the head coil.

A well-established protocol for alpha activity modulatifor human brain is closing (thus
inducing the alpha activity) and opening (thus supprestiegalpha activity) of the eyes [27].
By adopting this experimental protocol, after several rteéawf dark adaptation, we asked each
subject (5 male, 263 years old) to open his eyes for 30 secmmddose for 30 sec. This cycle
was repeated three times to obtain 60 flash image for one etengkperiment. Fig. 5.2 shows

experimental protocols.
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55 Reaults

55.1 Synthetic Data Set

The performance of the proposed constrained st-ICA alguritvas tested using the simulated
data. Four temporal and spatial sources were generateaas & Fig. 5.3(a). Each temporal
source is of 100 sample points and each spatial source is pf40matrix. As evident in the
Fig. 5.3(a) neither temporal nor spatial sources are inu#gre. These simulated sources are
mixed together to create a spatiotemporal data. The restiipatial ICA and temporal ICA
on this mixture data set are shown in Fig. 5.3(b) and 5.3(spaetively. Both, the spatial
and temporal ICA try to find maximal independent sources éngpatial or temporal domains,
deteriorating the sources in the other (corresponding)ailmmOn the other hand, constrained
st-ICA finds independent sources in two stages with minimigridomain affect. It employs a
priori information so that only the desired sources (cotgrsources) should be extracted from
the two domains. The results of constrained st-ICA are shiowigy. 5.3(d). The results indicate
that the quality of temporal sources obtained with consémist-ICA is superior to those obtained
with spatial ICA and the obtained spatial sources are sop&rithose obtained with temporal
ICA. The reason for this is that the cost function of temparatpatial ICA are designed to find
maximally independent temporal or spatial sources resdcthus effecting the sources in their
cor-responding domains. However, this is not the case Wwithptoposed constrained st-ICA as
explained in detail in the constrained spatiotemporal |@Atisn. Also, the time consumed by
spatial or tempo-ral ICA (Pentium (R) 4 CPU 3.01 GHz, 1GB offR#o derive sources is in the
range of 5 - 6 Sec. whereas, for the constrained st-ICA the torextract the desired source is

in the range of 3.0 - 3.5 sec.

55.2 fMRI Data Set

For real life application, the proposed algorithm is applier fMRI analysis. The fMRI data

col-lected for each individual is realigned and convolveithva Gaussian filter (8 x 8 x 8) for
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Figure 5.3: (a) Simulated Sources (b) The result of spatidl @) temporal ICA, Deteriora-
tions in the corresponding domain are clearly visible. (dh&rained st-ICA gives better results
compared to other ICAs. In (d) first column are the ref. fumtsi used, centre column are the

temporal sources and right column are the spatial sourcesesd.



5.6. Summary 64

smoothing. The data from each individual was processed@gbaon a single volume basis.
Each row of an ob-servation matrix contains an image. The@#¥-stimulation (inverted) (Fig.
2) was used as the initial reference. Independent spatibieamnporal components are recovered
according to the algo-rithm presented above in the comstdagpatiotemporal ICA section.
Once a component map is recovered, it is converted to thegfTdaccording to the Equa-

tion 5.13.

vj= 22 S hreshold (5.13)

0

wherei is the row index,;j is the column indeX§ is the spatial component recovered;
the mean, and the standard deviation of th& row of S. The threshold value selected for our
implementation was 0.6. Details of how to calculate theshodd value can be found in [27].

The time courses (temporal sources) recovered with thetreamsd st-ICA is shown in Fig.
5.4. The time courses have higher correlation with the ONF&tinulation reference (cc = 0.87
0.88) compared to SPM (cc = 0.66 0.75) results. The functiorags (spatial sources) obtained
with constrained st-ICA are compared with those obtaingtd %PM. The results for the slice 14,
15 and 16 for three different subjects are presented in Fig.18 the previous alpha modulation
fMRI experiments, the functional maps are known to haveviigtin the frontal and occipital
regions [65]. The functional maps by constrained st-ICAee\more frontal activities, which is
missed by SPM in most of the cases. The results indicatetibgiro-posed constrained st-ICA

may be a more effective method for fMRI data analysis.

5.6 Summary

In this chapter a new algorithm, constrained-stICA is pemgab The method tries to find the
desired independent spatial and temporal components layaem the input image sequences
into spatial and temporal modes that can be analyzed indepély by incorporating the a priori

information. The conventional ICA algorithms, for datasskte image sequences, try to find

maximum independent component without taking into congidethe fact that if the extracted
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Figure 5.4: Time sequences (solid) obtained with consthst-ICA has higher correlation with
the ref. signal (dotted), inverted ON-OFF stimulation ssgre, compared with those obtained
with SPM.
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Figure 5.5: SPM and constrained spatiotemporal ICA prazktfglR| data. Z-score maps (slice
14,15,16) obtained with constrained st-ICA shows frontaivity which was missed by SPM in

most of the cases.
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IC is not independent how badly the IC in the correspondingnaia may be affected. If the
conventional ICA is applied separately on spatial and taalpdomains obtained with SVD.
There is no way that the output of the two ICAs can be conneoigether as the ordering of the
components is random.

In the study presented in this chapter, we have validategddhfermance of the proposed al-
gorithm by comparing the results of simulated data set viighconventional ICAs. Furthermore
as a real application, we have applied the algorithm on af§dtRI data and the compared the
results with the SPM, which is the conventional techniquefftRI analysis. The results of the
proposed algorithm on the simulated data as well as the fMR thdicate that the proposed

algorithm could be more effective technique for the analgdispatiotemporal data.



Chapter 6
Alpha Source Extraction and L ocalization in EEG

Signals

The alpha activity of brain has a frequency range of 8-12 Hizorter to extract the alpha ac-
tivity from EEG data; in this chapter a new procedure basethd@pendent component analysis
(ICA), which can incorporate tha prior frequency information into the ICA to extract inde-
pendent components in the desired frequency range is peeiseWe named this procedure as
augmented ICA (Au-ICA). The performance of the proposed@dare for alpha extraction has
been compared to that of the conventional band-pass fiterathe scalp alpha power maps and
cortical source maps of the alpha activity. Our results destrate that the alpha power maps and
cortical source maps obtained with our method reveal maraliled alpha generating regions
of brain as compared with the conventional methods. Furibez they match more closely to
the activated regions of brain, mapped using functionalmatig resonance imaging (fMRI) thus
validating our results. We believe that the Au-ICA is a mdfeaive method of extracting brain
activity reflected in the specific frequency range of EEG aignThe results presented here em-
phasize that the proposed method may be used for accurateedocalization or imaging maps

from EEG signals.

6.1 Introduction

Numerous attempts have been made to elucidate the gemeddttire brain activities. In late

1920's Berger did the first EEG recording. The recorded s$igaa a 10 Hz frequency, later

68
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named it as the alpha rhythms. This signal is clearly preseBEG recorded at the occipital
area of the 95 percent of the normal adults and have a freguamge of 8 to 12 Hz. It is
characterized by being blocked by visual input or mentairetis well as by drowsiness or sleep
[66].

The alpha rhythms are an important phenomena of the braih:omg the physiological
nature but also their sources are important. Numerousestudive been carried out to find the
sources of the alpha activity of the brain. The alpha rhytiaege been localized within the
primary and secondary visual area of occipital and partiyepaoccipital cortex [67] using the
multichannel EEG and MEG.

Simultaneous EEG and MEG provides spatio-temporal resolan the range of millisec-
ond and centimeter. whereas, simultaneous EEG and fMRig@svesolution on the order of
milliseconds and millimeter scale. Owing to the better igpmporal resolution, simultaneous
EEG and fMRI gives new prospects to the source localizatamticularly to study the brain
functions in resting state [68]. In 2002, Goldman [69] cottéd a study involving simultaneous
EEG and fMRI for the first time. In this study, after removiing tartifacts from the EEG, average
alpha powers for the four channels containing occipitattebeles were calculated. A voxel-wise
correlation was perfomed with alpha power time series abtaby convolving the alpha power
curves with thea prior hemodynamics response. Goldman and his group found oualibtzé
power is negatively correlated to MRI signal in multiple ie@ts of occipital, superior temporal,
inferior frontal, and cingulate cortex and is positivelyradated to thalamus and insula. Lauf and
co-researchers in 2003 [70] also found out a negative ativel between the alpha power and
parietal and frontal cortical activity for the subjects VehBEG are measured with eyes-closed
rest inside the MR scanner. The claims of Goldman were alg@iecby [71] in 2006. How-
ever, mandelkovet. al. [72] claimed that with the current EEG-MRI methodologiesdxh on
correlation analysis: it is difficult to detect the alphattims. His analysis was based on the
cross-spectral coherence between simultaneously ret&8E6E and MRI time series.

Apart from these common approaches, a novel method had eésodeveloped where sta-
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tistically independent sources for the alpha activities sought by an algorithm called mixture
density independent component analysis (ICA) [65]. Siteelrain waves is a mixture of var-
ious electrical activities of the brain processes, if thghalwave is assumed as one of sources
contributing to the mixture linearly, ICA can separate thgha wave from the rest of the brain
waves. Another study conducted by feige [73] using ICA, waitien versus closed eyes and
auditory stimulation versus silence condition, found owerse relationship between EEG alpha
amplitude and BOLD signals in primary and secondary viussds They concluded that a cor-
relation with some time lag between the thalamus and in tkerian midbrain is an indicative of
some activity preceding the actual EEG change by some sscond

The standard implementations of one unit ICA algorithm cenaet a single IC. However,
the recovered IC is favored by the used contrast functiona pfiori information about the
desired independent source is available, we can use tlmauriafion to force the ICA algorithm
to converge in the direction of desired source. Constrai@éd[9] is an approach to incorporate
the a priori information into the ICA contrast function. Based on the steained ICA Ahn and
his colleagues tried to map the alpha activity [74]. Howekiergeneration of a reference function
is a difficult task when only frequency range of the desiraate® is known.

In this study, the desired independent source (alpha ggtivas a frequency range of 8-12
Hz, the onlya priori information available about the desired source. we propasew method
called augmented ICA (Au-ICA) to use this information torext the alpha activity from the
EEG signals as shown in Fig. 1. The proposed algorithm caa@&{Cs in any desired frequency
range. The performance of the proposed method for the ¢ixtnaaf the alpha activity has been
compared to that of the conventional band-pass filterings dlpha power maps are constructed
to compare the identified focal regions of the brain resgmeadior alpha activity. The results
indicate that alpha power maps are far more focalized wighpitoposed method. To further
analyze the results, the cortical source maps are constrw@ distributed source imaging. The
cortical source maps are validated by independent fMRIyaig(fMRI data collected with the

same protocols) to find the activated regions of brain. Osulte clearly show that the localized
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Figure 6.1: Schematic diagram of Au-ICA

alpha sources from the Au-ICA better match the alpha aetilveggions of fMRI, thus indicating
that Au-ICA can extract the alpha rhythms from EEG recordingpre effectively than the con-
ventional approaches. We believe that the signal extmactithen frequency range of the desire
source is known, based on the proposed method is an effegiju®ach as a pre-processing tool

toward more accurate EEG source localization.

6.2 Methods

6.2.1 Experimental Design

The alpha rhythms are apparent when the eyes of subjectase icl full awake condition and
they got suppressed with opening of the eyes. For alphaitgathodulation, we have adopted
a well-established protocol as presented by henning [#1thik study, five healthy volunteers
participated (5 males, 263 years old). The subjects’ medical history did not show amgsoof
attention-related or sleep disorders. In the first expantaieprotocol, after several minutes of
dark adaptation, each subject was asked to open his eye8 fmc3and then close for 30 sec on

acoustical cues. This cycle was repeated three times for&E@VIRI experiments, which were
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Figure 6.2: Experimental protocols used to acquire the data

conducted separately.
The second experimental protocol was designed to moniealipha activity in the natural
settings. The same subjects’ was asked to close their emgthout the experimental period of

3 min. Fig. 6.2, shows these two experiment protocols.

6.2.2 Acquisition of EEG and fMRI Data

A 32-channel EEG recording system (BrainAmp, Brain Prosl@inbH, Germany) was used to
acquire EEG data using the first and second experimentalqmigt Continuous EEG recordings
were performed with the sampling rate of 1kHz and low-pagsréd at 40Hz. All EEG record-
ings were performed with the standard 10-20 uni-polar systferenced to FCz. The ground
electrode was positioned between Cz and Fz. Electroderskiedance was kept below 1K ohm.
To minimize motion artifacts in EEG on the scalp electrodethe subjects, we tightly fixed the
EEG cap on the scalp using the adhesive tapes.

The fMRI data were acquired on a 3.0T MR scanner (Magnum 3dliMis, Korea) using
a T2-weighted EPI sequence (TR = 2850ms, TE = 36ms, flip anfe, 64 x 64 matrix, FOV
= 240 x 240 mm, slice thickness = 4mm, voxel size = 3.75 x 3.7&x#¥) with 29 transaxial
slices covering the whole brain regions. To minimize motiotifact, we tightly fixed the head
using sponge in the head coil. During the data acquisitianused only the first experimental
protocol (i.e., opening and closing of the eyes). The peisMRI experiment was to validate

the localized sources of the alpha activity identified indhgha power maps and cortical source



6.2. Methods 73

maps of EEG.

6.2.3 Augmented I ndependent Component Analysis

Let us denote the multi-channel observationsxby) = (z1(t), z2(t), ..., z,(t))" and the un-
derlying source components Bit) = (s (t), s2(t), ..., sm(t))7.
X(t) = As(t) (6.1)

where the matrix4 of sizen x mrepresents linear memory-less mixing channels. Detaith-ma
ematical explanation about ICA is provided in Chapter 2. ®he-unit ICA algorithms extracts
one source at atime, the extraction of the sources deperttie contrast function used. If negen-
tropy is used as a contrast function, the one unit algorithithextract a source with maximum

entropy.
J(y) = p[E{G(w'x)} — E{G(v)}]? (6.2)

where J(y) is the contrast function(s is the non-quadratic function andbeing the gaussian
random variable as defined by the [6]. When one desires aesaiher than the maximum
entropy then conventional ICA based on above contrast ifamés of little use. Ifa priori
information about the desired source is available, com&dal CA [9] can be employed to extract
that source. However, when the only known information alteeitlesired source is the frequency
range then it is very difficult to generate the reference tiong required by the constrained ICA,

due to phase matching problems. In such cases, the follgevowedure can be adopted to extract
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the IC in the desired frequency range.

1.Zero mean and whiten the data to get z.
2.Choose an initial vector w of unit norm.
3.0ptimization equations
J(y) = [E{G(y)} = E{G(v)}]* (Negentropy)
g—v‘{, = yE{zg(w'z)} (The output is constrained to have unit variance)
where ¢ is the used nonlinearity
F(z) = E{zg(w'z)} + 8w =0 (Contrast function after using Lagrange Multiplier)
g_f, = E{zz'g (w'z)} + (I
Using the newton learning method.
Aw:n% (After some simplifications the update equation)
w — E{zg(w'z)} — E{g/(w'z)}w.
. P=wWz.
. q=f(p). where f is the filtering operation.
. w= inv(zq ).
- w=w/|wll.
. go to step 3 untill convergence.

. s=f(wz).

© 0 N O Ot

wherep is the signal at each iteratiom is the signal after the filtering process at each
iteration ands is the independent component in the desired frequency rebgtils about op-
timization equations in step 3 can be found in [8]. The coffits of the filter are designed
according to frequency range for which independent compoisesought and used during the

filtering process in the above mention procedure accordintye schematic diagram shown in
Fig. 6.1.
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6.24 Analysisof fMRI Data

The SPM99 software [75] was used for an individual analy§i#irl data. The standard pro-

cedures for realignment, normalization, and spatial shiogt(10mm FWHM) were performed.

The reference function was designed according to the prbtars a box-car function. It is be-

lieved that the alpha activity reflected in the blood oxydiemalevel-dependent (BOLD) effect

is negatively correlated with the alpha modulation protecas this observation is supported
by many recent studies [70, 65, 71]. In accordance with tipeeeious studies, we have also
analyzed fMRI data in the same way: the negative correlatiaps were obtained akj®.001,

uncorrected.

6.3 Reaults

6.3.1 Alpha Signal Extraction from EEG Signals

Fig. 3, show a set of representative results of conventiandl proposed method respectively.
Fig. 6.3(a), shows the extracted alpha waves (indicated avisolid black line) from the O1
channel signal (gray line) using bandpass filtering, wherdg. 6.3(b) shows the Au-ICA ex-
tracted alpha (a black line) superimposed on the same atigignal. In both Figs. 6.3(a) and
6.3(b), the onset of alpha activity due to eye-closing (datkected with the protocol 1) is clearly
discernable. Figs. 6.3(c) and 6.3(d), show the similarltesuhen the data was collected with
the protocol Il. In both cases, Au-ICA extracted alpha sigrsow more distinct alpha spin-
dles in comparison to the alpha waves extracted by the baedjitering. Fig. 4, shows the
power spectrum plots of some representative EEG channeds wocessed with the proposed
method (black) and bandpass filtering (gray). The variatidhe magnitude spectrum (8-12 Hz)
from channel to channel compared with the conventional otktearly indicating the superior

extraction performance of the Au-ICA method.
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Figure 6.3: Recovered alpha signal in black superimposédldeoraw EEG signal in gray from the
channel O1. (a) and (b) EEG acquired with the experimenopobt, (¢) and (d) EEG acquired

with the experimental protocol Il
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Figure 6.4: Power spectrum plots of alpha signals recoweitdAu-ICA (black) superimposed

on those recovered with bandpass filtering (gray).

6.3.2 EEG Alpha Power Maps

The alpha signal extraction performance of the proposetiades estimated by comparing the
alpha power maps with the conventional method. To plot thbabower maps, the extracted
alpha signal is projected back into the measurement spaté¢hancontributions of the alpha

signal to all the observed channels are determined as feillow

a=X SiJr
(6.3)

R=as
where,} is the pseudo inverse ari@l is a matrix of contributions of the extracted alpha in all
the channels. The alpha power maps are plotted fronRtmeatrix with the help of the BESA
software [76]. Fig. 6.5, shows a set of alpha power maps fromsubject. Fig. 6.5(a), shows
the alpha power maps with EEG data (protocol I) processeduheind-pass filtering. Fig. 6.5(b),
shows the alpha power maps from the Au-ICA extracted alpiaats of the same subject. More

localized alpha power sources are clearly noticeable in &(b). Fig. 6.5(c), shows the alpha
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(a) Bandpass filtering (b) Augmented ICA (c) Bandpass filtering (d) Augmented ICA

Figure 6.5: Alpha power maps obtained via BESA. (a) and (b§ daquired with the protocol I,
(c) and (d) EEG acquired with the protocol II.

power maps from the band-pass filtered EEG data with the gobth Fig. 6.5(d), shows the
alpha power maps from the Au-ICA extracted alpha EEG sigriatem the independent EEG
experiments using the protocols | and Il, similar and cdasispower maps were obtained using

Au-ICA as shown in Figs. 6.5(b) and 6.5(d).

6.3.3 EEG Cortical Source Maps

The alpha power maps represent the alpha power distribotidihe scalp, whereas the cortical
source maps indicate the actual current sources relatéa talpha activated regions. To inves-
tigate the spatial correspondence of the alpha sourcemebtaith Au-ICA, we compared the
cortical source maps to the fMRI activation maps obtainedSPM99 [75].

Figs. 6.6(a) and Fig. 6.6(b), show cortical source maps ftioenband-pass and Au-ICA
extracted alpha EEG signals from the same eyes-closeddpgespectively. The functional maps
of fMRI in Fig. 6.6(c), indicate that the associated alphtivated regions include the frontal and
occipital lobes which are consistent with the localizechar@ the cortical source maps of EEG

using Au-ICA. Similarly Figs. 6.6(d) and 6.6(e), shows tlegtical source maps from the band-
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pass and Au-ICA extracted alpha EEG signals with the expariad protocol Il respectively. Our
results confirm that the alpha sources in Figs. 6.6(b) an@pate more focal than those in Figs.
6.6(a) and 6.6(d). The cortical maps of EEG data using Au-EB8w alpha activated regions
involving the frontal and occipital lobes that spatially tetathe alpha power maps as shown in
Figs. 6.5(b) and 6.5(d).

Note that the activated visual cortex in Fig. 6.6 is not duthtovisual stimulation, but due
to the alpha activity: as mentioned earlier (Section 6.thé)activated regions are negatively

correlated with the protocol.

6.4 Summary

Blind source separation and extraction techniques holthg®toward biomedical signal analy-
sis. However, there is always a need of extracting only tterésting sources priori informa-
tion about the interesting sources is available at some sthgrocessing. For the EEG analysis,
normally the frequency range of interesting signals is kmawadvance. In this chapter, we have
proposed a method based on ICA, named as augmented ICA athataorporate tha priori
information about frequency to extract only the independemponent that lie in the desired
frequency range of EEG signals i.e., alpha rhythms.

There have been many studies using EEG, fMRI, and simultenE& G-fMRI [70], yet gen-
eral consensus has not been made on the true sources of elpfts. aHowever, the studies by
[69] and [70] reported multiple regions (occipital, pagieand inferior frontal lobes) are respon-
sible for the generation of alpha activities, based on tigatiee BOLD of fMRI. Our findings in
the work presented in this chapter match very closely toethegions, supporting our approach.

Our results, more focalized alpha power and cortical mapggest that Au-ICA seems to
be capable of extracting the desired frequency range signate effectively from raw EEG
data than the conventional methods. The results also sutigeéshe conventional band-filter

based approaches to extract alpha (or any other specifigeineg range) in EEG signals might
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(d) Bandpass filtering (e) Au-ICA (f) fMRI activation maps

Figure 6.6: EEG cortical source maps, (a) and (b) with EE@ daguired with the protocol I,

(d) and (e) with the protocol II. fMRI activation maps for tata acquired with the protocol |
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not reveal the true source generating areas of the bramo(ah they seem to recover the al-
pha generating regions which are very much blurred and gadarecause they work on each
EEG channel independently. In contrast, Au-ICA treat al BEG signals simultaneously in the
process of extracting the independent component.

We consider that the Au-ICA approach could be more useful @®processing step in the
analysis of alpha activities of EEG and can be extended ta&xbther kinds of brain activities

upon the availability of soma priori information about their frequency range.



Chapter 7

Extraction of Event Related Potentials (P300)

A brain computer interface (BCI) uses electrophysiololg#adivities of the brain such as natural
rhythms and evoked potentials to communicate with somemdtelevices. P300 is a positive
evoked potential (EP), elicited approximately 300ms afteattended external stimulus. A P300-
based BCI uses this evoked potential as a means of commioniagith the external devices.
Until now this P300-based BCI has been rather slow, as iffiedlt to detect a P300 response
without averaging over a number of trials. Previously, peledent component analysis (ICA)
has been used in the extraction of P300. However, the drandifaCA is that it extracts not
only P300 but also non-P300 related components requiringppep selection of P300 ICs by
the system. In this study we propose an algorithm based astraimed independent component
analysis for P300 extraction which can extract only theviaaté component by incorporating
a priori information. A reference signal is generated as #hpriori information of P300 and
constrained ICA is applied to extract the P300 related carepb Then the extracted P300 IC
is segmented, averaged, and classified into target andangettevents by means of a linear
classifier. The method is fast, reliable, computationatigxpensive as compared to ICA and

achieves an accuracy of 98.3% in the detection of P300.

7.1 Introduction

Recently, a new technology has emerged enabling direct coniwation between human brain
and computer, known as brain-computer interface (BCl)s Tdone by utilizing certain electro-

physiological activities that reflect the function of thaior[77]. BCI using non-invasive means

82
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has been a subject of much research and certain naturatmiygiach as alpha and beta-rhythms
have been used for BCI [78][79][80]. However, the main draekousing these natural brain
rhythms in BCI is that they require extensive training fontolling the natural brain waves.
That is why the usage of evoked potentials (EP) for BCl is ppeixtensively researched as they
do not require subject training. P300 is a positive EP thatitited approximately 300ms after
an attended external stimulus.

In 1988, Farwell and Donchin first introduced the idea of g$#300 in BCI. They introduced
some P300 detection methods for BCI such as stepwise disaritanalysis (SWDA), peak
picking, area and covariance [81]. Later Donchin addedrelisovavelet transform (DWT) to
SWNDA [82]. P300 detection usually requires extensive ayiagaand more the number of trials
the better the accuracy and reliability of the BCI system.wkler, increasing the number of
trials increases the processing time for detection, whianie drawback of the P300-based BCI.

Independent component analysis (ICA) has been used forxthecgon of P300 signals in
[83] and [84]. ICA is a statistical technique that is useddparate a mixture of signals into its
components provided that the components are independeatbfother [8]. The main drawback
of ICA is that the number of components is equal to the numbebservations. Therefore, one
has to apply additional signal processing methods to agnenthich components contain the
P300 response. Spatially constrained ICA (scICA) is a ddimé@ source separation technique
which extracts only the relevant sources and has been pidyiased for the detection of P300
in [85]. scICA incorporates a priori information of the tgal P300 spatial distribution. The
spatial distribution is found by running ICA on the availaldata set and creating a template,
which is used as a single spatial constraint to constrainmixing matrix. Hence, one has to
train the spatial constraints before extracting the ddf@00 sources. In this study, we propose
to use constrained ICA described in [9] and [2] for P300 estiom. The advantage of constrained
ICA is that it can extract only the relevant source blindlytheut any training of the constraints
being applied. The potential of constrained ICA has alrdaebn investigated in other areas like

extraction of rhythmic activity [86] and artifact rejeati¢2].
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7.2 P300 Extraction using Constrained | CA

The BCI competition 2003 data set llb [87] provided by the Wadrth center for our experiment
is used. In this data set, the user was presented with a 6 xrikroftharacters. The data set
consists of 64 EEG channels in which the users task was te fmeeharacters in a word that was
prescribed by the investigator. For each character, thedisglay was as follows: the matrix
was displayed for a 2.5 s period and during this time eachacher had the same intensity.
Subsequently each row and column in the matrix was randomgnsified for 100ms. After
intensification of a row or column, the matrix was blank fom# Row or column intensifications
were block randomized in blocks of 12. Each set of 12 interaifins was repeated 15 times
for each character. Each sequence of 15 sets of intensifisatvas followed by a 2.5 s period,
during which the matrix was blank.

The details about the constrained ICA algorithm can be faordhapter 2. The main steps
for our algorithm are described as follows:

1) Bandpass FilteringThe data was bandpass filtered from 0-10 Hz because speciipts
showed P300 to be within this frequency range.

2) Reference Signal Generatiolesigning a proper reference function plays the key role
in the extraction of P300-related ICs. A rectangular pulsgps reference function is designed
for each of the rows and columns separately. When the taogebr column is flashed, after
approximately 300 ms, a P300 signal is generated. Hencey ddsdgning the reference function
for a particular row or column, we assume that it is the ineshtirget and hence the rectangular
pulse is generated in the reference function within 250 1 135 interval after the stimulation
of the particular row or column. Therefore, we get 12 refeeefunctions, one for each row and
column. A general representation of how the reference imés generated is shown in Fig.
7.1 3) cICA: cICA was applied on the block of data by using the referencetfan generated
in order to detect which rows or columns elicited P300 respen As we generated a reference
signal for each row or column, hence in effect we derive 12ft@% the clICA algorithm.

4) Segmentation and Averagingrom the beginning of stimulation of the particular row or
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Figure 7.1: Representation of reference signal generation
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Figure 7.2: Schematic diagram of P300 extraction process

column each IC was segmented into 15 epochs of 650 ms inteandl averaged.

5) P300 Detection:Each averaged segment was correlated with a P300 templagecor-
relation coefficients and maximum amplitude of the averaggginent were used as features to
classify the events into the target and non-target eventinear classifier was designed which
was able to classify the target and non-target events ssfotlgs The feature with the classifica-
tion boundary is illustrated in Fig. 7.4(b).

The schematic diagram of the process is given in Fig. 7.2
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7.3 Results

Before the application of cICA, the existence of P300 wadiomed by averaging target and

non-target events at the electrode channel Cz. Fig. 7.B(ysa portion of the reference signal
generated for a specific row or column. The extracted compsngy using the constrained

ICA algorithm are illustrated in Fig. 7.3(b) and Fig. 7.3(dhe extracted IC containing P300
responses is shown in Fig.7.3(b). It can be seen from thecfidpat P300 can be extracted quite
effectively using this technique. Fig. 7.3(c) shows theamted IC for the non-target event. In
order to increase the reliability and the accuracy of theritlgm we segment the target events
into 15 epochs and perform averaging to improve the SNR.F#{a) shows a comparison of the
resulting P300 from the extracted signal after averagiogpbth target and non-target events.
Using this algorithm, we were easily able to separate thgetasind non-target events by the
means of a simple linear classifier, as illustrated in Fig(l¥). The linear classifier was trained
with 10 target and 10 non-target events. We used 30 targe23@ndn-events in the testing phase
and achieved a 98.3% accuracy. Accuracy can be increasethdfr@ complex classifier was

used.

7.4 Summary

P300 extraction based on constrained ICA gives better peéioce as compared to other meth-
ods such as ICA. In the conventional ICA, signal is decomgdato several components de-
pending on the number of multichannel observations and miogiem do not contain P300

information. In the procedure presented in this chapterstained ICA converges only on that
independent component containing P300 information, thereducing the computation needed
to extract P300 signal without compromising the reliapifihd accuracy of P300 detection and
extraction. With a typical Pentium IV personal computerAl@kes about 45 seconds to ex-
tract all the components whereas constrained ICA run ondheeglata can extract the desired

component in only 2 seconds. Hence, a better communicatiencan be achieved using the
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constrained ICA method in a P300-based BCI system.

Designing the proper reference signal plays a very impbrtda in our extraction algorithm.
The role of reference function is to direct the constrain@4 klgorithm is the direction of the
desired ICs. Therefore, reference signal has to be closeetaé¢sired P300 component. We
have used the rectangular shape as a reference as it is agmyet@te. Because we don't know
which row or column elicits a P300 response, we have designeference signal for all rows
and columns and developed a detection scheme to ascertsi@ tomponents containing the
P300 signal. After finding the demixing matrix there is no skecomputation involved in our
detection and classification scheme since the clICA alguritields that IC closest to the desired
component, hence detection of P300 in the IC is not that diffiéVe were able to classify the

target and non-target events quite efficiently by means ohaple linear classifier.
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Chapter 8

Conclusions and Future Wor k

Blind source separation techniques has many applicatianging from pattern extraction / anal-
ysis, medical diagnostics, image processing to financi@sanalysis. However, blind source
separation based on independent component analysis meeigaeat deal of popularity in the
bio-signal analysis. ICA has been extensively used foedkffit bio-signal analysis applications
like, artifact rejection from EEG for MEG data, analysis @bked potentials and source extrac-
tion. Similarly, ICA has been used for fMRI analysis to fin@ tsources. ICA has been used for
other bio-medical signals like ECG and PCG analysis.

However ICA has some limitations; i) number of output comgrus is equal to the num-
ber of observations, ii)source ambiguity, iii) random oide of the output components, iv) loss
of amplitude information in output components. These diaathges can be over-comed by
incorporating the more information into the basic ICA mod€&his has been achieved in con-
strained ICA algorithm proposed by Lu and Rajapakse. Thepgsed two basic formulation of
constrained ICA, i.e. less-complete ICA and ICA with refare. In the first formulation of con-
strained ICA (i.e., less-complete ICA) the additional imf@ation is incorporated directly into the
ICA contrast function. Whereas, in second formulation IC& with reference) the constrained
ICA algorithm tries to find an independent component closethe provided reference signal
(template signal). The reference signal does need to beqgberfatch of the desired independent
component. The reference signal should carry some infeomaff the the desired output as it
has to guide the algorithm in the desired direction.

Electroencephalogram (EEG) and functional magnetic @soa imaging (fMRI) are im-

90
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portant non-invasive brain imaging techniques. EEG hagoteat resolution in the range of
millisecond range and fMRI has spatial resolution in thegemillimeter. By combining the
two modalities advantages of the two can be combined forysigdthe brain functionality at
superior temporal and spatial resolution. However, thiéaats in EEG recording inside MRI
scanner get amplified to an extent that it makes EEG dataigaflgtuseless. The prominent
artifacts includes imaging artifacts, BCG and EOG artfadtmaging artifacts can be removed
using average artifact subtraction (AAS) methods. Numliestudies has been conducted to
remove EOG artifact from EEG signals measured inside MRIQUSCA. The use of ICA for
artifact rejection has difficulties because of disadvaesagentioned above; The procedure can
neither be standardize nor automated. Through this thadlC& and EOG artifact attenuation
method from EEG signals measured inside MRI is presenteddpter 4. The presented method
is simple, standardized and is almost automatic. The tgakniises constrained ICA withpri-

ori information about the artifacts as references or conggraifihe role of reference functions
for constrained ICA is to direct the algorithm into the diten of desired ICs. In the area of
artifact rejection in EEG data, temporal and morphologicfdrmation about the artifact is use-
ful. In this study, three different ways of generating thierence functions for the constrained
ICA algorithm has been present. The performance of the gexpprocedure is rigorously tested
using quantitative and comparative measures, indicatiadgeétter performance of the proposed
method.

The spatiotemporal data like sequence of images (fMRI deta)interesting sources in both
the temporal as well as in spatial domains. The independefr®aurces in both the domains de-
pends on the experimental conditions and some times itfisulifto maintain those conditions.
The standard ICA algorithm can be used in two different maggsspatial and temporal ICA
modes. The contrast functions of these standard ICA algoriire designed to extract maxi-
mum independent components. For spatiotemporal datap#tialsor temporal ICA tries to find
maximal independent components of one domain deterigrdiia independent components of

the corresponding domain. The other disadvantage is thattémdard ICAs produce very large
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number of ICs for fMRI data. Spatiotemporal ICA algorithnshzeen proposed by J.V. Stone for
spatiotemporal data like fMRI data. The algorithm triesteate a balance by jointly optimizing
the spatial and temporal domains. However, it suffers frooree ambiguity and large number of
ICs. For the spatiotemporal data like fMRI images, a priofdoimation is available like the ex-
perimental protocol. Through this thesis, an algorithmst@ined spatiotemporal ICA has been
proposed. The algorithm find the independent component®tbf the domains with minimal
inter domain effect. Only the desired components are eeatherefore no source ambiguity.
The performance of the algorithm is tested on simulated dsasen the real data fMRI data
set. The results of the proposed algorithm are very encingag

Blind source separation and extraction techniques holdhiz® toward biomedical signal
analysis. Whema priori information about the interesting sources is availabletetlis always a
need of extracting only the interesting sources. In casd=@ Ehe frequency range of interesting
signals is known in advance e.g., we know that the frequesnoye of alpha signals (8Hz 12Hz)
and that of beta signals (18Hz to 20Hz). The constrained I@&rdahm can incorporatea priori
information to extract only the desired IC. However, whemdkailable information is in different
domain than that of signals itself, like in this case avadahformation is in frequency domain
and the EEG signals are in time domain, the basic constrdid@dalgorithm is of little use.
we have proposed a method based on ICA, named it as augm&nredhiat can incorporate
the a priori information about frequency to extract only the indepemnaemponent of desired
frequency range. The performance of the algorithm is shdweelxtracting the alpha rhythms
from EEG data.

A brain computer interface (BCI) is method of creating a camiuation link between the
brain and external computing device. BCI uses natural ajithms or evoked potentials for
communication. Evoked potentials are the averaged EE@isigime locked to external stim-
ulus. P300 is a positive evoked potential (EP), elicitedraximately 300ms after an attended
external stimulus. Until now P300-based BCI has been ratlosv, as it is difficult to detect a

P300 response without averaging over a number of trialhdronventional ICA, EEG signal is
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decomposed into several components depending on the nafbeitichannel observations and
most of them do not contain P300 information, making the alvgrocess slow. In this thesis
P300 extraction based on constrained ICA is presented. BX&Bfction based on constrained
ICA gives better performance as compared to other methadsasiICA. In the procedure pre-
sented in this chapter, constrained ICA converges only aftritidependent component containing
P300 information, thereby reducing the computation ne¢oledtract P300 signal without com-
promising the reliability and accuracy of P300 detectiod extraction. The performance of the
proposed procedure indicate that it will facilitate the @lepment of P300 based BCI systems.
The presented procedures and algorithms have applicatimedical diagnostics, brain com-
puter interface, telecare / ubiquitous health care andhlyaines. The EEG signals must be arti-
fact free so that desired patterns or abnormality in thosere visible. Also, to extract control
signals for BCI applications; the procedures based on insd ICA presented in this thesis
are important. Alpha signal, one of the important EEG sigwaich are present with eyes closed
and fully awake condition. Shape of the alpha tells the divetate of mind and also could be a
control signal in BCI applications. Augment ICA presentedhiis chapter could be an effective
method to extract alpha. telecare or ubiquitous applinat@are becoming reality with the ad-
vancement in science and technology. Based on the proposthadds features extracted or other
signals like P300 or alpha signals can be transmitted ta ddleations for experts opinion. The
source extraction for bothe spatial and temporal domain8f&l data also have applications in
medical diagnostics and tele health and ubiquitous health applications. Another, very inter-
esting application for the ideas proposed in thesis coulatai@ games i.e. playing game through
thoughts. One of the possible future directions is to devalmove mentioned applications based

on the proposed procedures.
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