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Abstract

Human pose and activity recognition has been emerged to play critical roles in numerous areas
including entertainment, robotics, surveillance, etc. Here, human pose and activity recognition
refers to the task of recovering the poses of a tracked subject and identifying human activities
from sequential recovered poses. Usually, human poses and activities recognized over a short
duration of time provide inputs to control external devices such as computers and games. Mean-
while, a long-term human pose and activity recognition adapts to proactive computing, human
health-care, and discovering human lifestyles. In order to make an approach of human pose and
activity recognition to be widely used, the convenience to users, the simplicity in installation, and
the reasonable prices for equipment are the main factors to be considered. However, the conven-
tional work of capturing human motion using optical markers with multiple cameras cannot totally
satisfy these requirements, leading to the absence of human pose and activity recognition systems
in daily applications.

Recovering human body poses and recognizing human activities from images obtained by
a monocular camera may be an option. However when taking a 2-D picture of a scene with a
monocular camera, we loose depth information. The appearance of a person in a 2-D image
might pose many possible configurations in 3-D, that affects the results of estimating human body
poses and of distinguishing alternative human activities in 3-D. In this thesis, another solution
is concerned with the uses of a stereo camera: a stereo camera is a single camera consisting of
two lenses to synchronously capture two images with a slight difference in the view angle from
which the 3-D information of a scene can be derived to overcome the limitations of the monocular
image-based approach.

The thesis demonstrates an approach of how to recover 3-D human body poses from stereo im-
ages captured by a stereo camera and an application of this approach to recognize human activities
with the joint angles derived from the recovered body poses. Probabilistic parametric registration
with hidden variables is applied to formulate the pose estimation approach within an efficient and
generalized framework. With a pair of stereo images captured by a stereo camera, first the 3-D in-
formation (i.e., 3-D data) of a human subject is computed. Separately the human body is modeled
in 3-D with a set of connected ellipsoids and their joints: the joint is parameterized with kinematic



angles. Then the 3-D body model and 3-D data are co-registered with the devised algorithm that
works in two steps: the first step assigns the body part labels to each point of the 3-D data; the
second step computes the kinematic angles to fit the 3-D human model to the labeled 3-D data.
The co-registration algorithm is iterated until it converges to a stable 3-D body model that matches
the 3-D human pose reflected in the 3-D data. The demonstrative results of recovering body poses
in full 3-D from continuous video frames of various activities present an error of about 60–140 in
the estimated kinematic angles. The proposed technique requires neither markers attached to the
human subject nor multiple cameras: it only requires a single stereo camera.

As an application of the proposed human pose recovery technique in 3-D, an approach of how
various human activities can be recognized with the body joint angles derived from the recovered
body poses is presented. The features of body joints angles are utilized over the conventional
binary body silhouettes and hidden Markov models are utilized to model and recognize various
human activities. The experimental results show that the presented techniques outperform the
conventional human activity recognition techniques.

Thesis Supervisor: Young-Koo Lee
Title: Professor
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Chapter 1

Introduction

1.1 Human Pose and Activity Recognition and Focused Research

During the last decade, automatically recognizing human poses and activities from the data ac-

quired by sensor devices such as video sensors or attached sensors has emerged as an important

research with applications in many areas. Here human pose recognition aims at recovering a hu-

man pose (i.e., a configuration of the human body) and human activity recognition (HAR) aims

at recognizing a human activity (i.e., a pattern of movements of the human body) of a tracked

person. Once the poses of a person changing overtime are known, the information about the body

part motion is subsequently available to infer what people is doing. Thus, combining human pose

recognition with a HAR engine allows us to obtain more information about human states, besides

the relative position of the body limbs specified by a pose.

In general, there are two main kinds of human pose and activity recognition systems. One is

a non-optical sensor based system, which uses wearable sensors. The other is an optical system

(i.e., video sensor based), which uses video cameras to obtain images and applies image processing

techniques to reconstruct human poses and recognize human activities from the acquired images.

In non-optical systems, the wearable sensors are attached to an exoskeleton or a suit around the

human body to measure the motion of separated body limbs. The motion information is sent back

to a computer, commonly throughout wireless connections, to recover whole human body poses

1



CHAPTER 1. INTRODUCTION 2

and to provide classifying features to distinguish human activities. Different kinds of wearable

sensors have been concerned with this regard including a gyroscope to measure angular velocity

or an accelerometer to measure acceleration of human body parts. So far, various commercial

products to capture human motion using wearable sensors have been developed. For instance,

MVN-Inertial motion capture was introduced by Xsens [5] and Gypsy by Meta motion [2].

Conventional optical systems to acquire human motion commonly use markers. Basically, the

users are required to wear optical markers, so that the cameras can locate the position of the human

body parts where the markers are attached. To avoid the effects of occlusion, additional cameras

are installed at different locations. The number of the cameras might be up to several hundreds to

make sure the full coverage around the human subject. In this system, the kinematic parameters

of human poses are estimated using the relative locations of the detected markers. For instance,

the kinematic angles at the knee joint are estimated based on the 3-D coordinates of the detected

markers at the ankle, knee, and crotch. The main advantages of the method are fast processing

speed and high accuracy. For example, capturing human body poses via VICON [4] exhibits a

recording frame rate up to 240 frames-per-second that is enough to capture human activities with

fast movements. Thus, such systems have been investigated mostly for pose estimation not for

HAR.

Currently, markerless systems that estimate human information including poses and activities

from a sequence of images without the needs of wearing markers or attached sensors are receiving

more attention. Some attempts to develop marker-less systems to estimate human information

from a sequence of monocular images or 2-D RGB images. Because the 3-D information of the

subject is lost, the efforts to reconstruct the 3-D motion of the subject from only monocular images

face difficulties with ambiguity and occlusion that lead to inaccurate results [147]. Therefore, other

marker-less systems use multiple cameras to capture 3-D human motion. Through such systems,

the 3-D information of the observed human subject is captured from different directional views,

thereby providing better results of recovering human motion in 3-D [61, 72]. However, many
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cameras may require complicated setup with extra software and hardware to support the transfers

of large video data from multiple cameras over a network. Thus, there are always some tradeoffs

between the flexibility of using a single camera and the ability to get the 3-D information using

multiple cameras.

It is possible to obtain useful information including depth data with a stereo camera, which

consists of two lenses integrated into a unified device. A stereo camera achieves depth perception

in a manner similar to human eyesight. The depth information is generally reflected in a 2-D

image called a depth image in which the depth information is encoded in a range of grayscale

pixel values. With the flexibility in installation and convenience to users, a system to capture

human pose and activity information using a stereo camera could be applicable to a wide range of

applications.

An important area where the human information acquired by a stereo camera could be valuable

is the field of human computer interaction (HCI). In this area, 3-D motion information is utilized

to model a user by a set of joints and limbs. The motion of these joints and limbs provides efficient

features to recognize human activities, which are used as inputs to control external devices such

as computers and games. In conventional ways, the devices such as keyboards, joysticks, and

trackballs have been the most popular techniques for acquiring the inputs from a user. However,

such controllers may create a big gap between human intention and an action that a person needs to

do to enter a command, requiring a user a training process to get familiar with the devices. Directly

capturing human motion and using this motion to understand user’s commands are therefore better

options, especially for games and multimedia applications.

In healthcare applications, tracking the movements and activities of individuals may allow

clinicians and family members to detect events such as dangerous falls by elderly family members,

or monitor the activities of patients for diagnosis of disease. In security, a markerless system to

track human motion and activity is utilized in surveillance, in which we expect an automated

system to monitor people without using markers or attached sensors.



CHAPTER 1. INTRODUCTION 4

Robotics is another domain that requires human pose and activity recognition to obtain human

commands. Humans are used to make communication throughout moving their hands, head, and

the rest of their body. Thus, a robot, which only senses limited information from video data,

cannot understand and interact with a user well. A component with its helps to exploit high

level information about human poses and activities from video data plays a critical role in the

developments of interactive robots.

With regards to these applications, using a stereo camera and its derived depth image is an op-

tion presented in this thesis work to develop a system to recognize both human poses and activities

in 3-D. The overview of different systems and our focused research is illustrated in Fig. 1.1.

1.2 Previous Approaches

Although there are increasing interests in a single-camera based system advanced with depth-

sensing ability (i.e., a stereo camera in our regard) to recognize human poses without using mark-

ers or wearable sensors, obtaining human body poses in 3-D directly from depth images is not very

straightforward. Some remarkable challenges commonly arise such as the uncertainty of detecting

human body parts from depth images, high dimensional kinematic parameters to model a human

body, and the arbitrary appearances of human poses in 3-D.

Previously, most studies have been investigated to overcome these difficulties with the use of

the nonparametric-based approach [27, 29, 96]. In this approach, one tries to generate a number

of human pose exemplars where each is mapped to a specific depth image throughout retrieval

features. Correspondingly, the retrieval features of query images are also extracted and compared

against the exemplar images with their poses to find the best matching. All possible exemplars

of poses can be stored in a database in advance [147]. However, this requires us a huge number

of exemplars and an efficient method to organize and retrieve the poses from a database. If pose

exemplars are created during human pose estimation, one needs to limit the number of created

poses such as learning human movements [57]. Few studies have been attempted the parametric-
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Non-optical Based with

Wearable Sensors

Optical Based with Video

Sensors

Marker Based Markerless Based

Human Pose/Activitiy
Recognition System

Multiple-view Based
Single-view Based with

Monocular Camera

Single-view Based with

Stereo Camera

Focused Research

Figure 1.1: Different systems to estimate human poses and activities and our focused research.

based approach in which a parametric-based formulation is established and mathematical tools

are applied for estimating human poses from stereo images without the needs of creating exemplar

poses for matching.

In another aspect, previous researches of video-based HAR were concerned separately with

human pose recognition. Without pose information, a video-based HAR system used parametric

method with hidden Markov models (HMMs) and binary silhouette features, started from the early

work of Yamato et al. [146]. Although binary silhouettes are commonly employed to represent

a wide variety of body configurations, they also produce ambiguities by representing the same

silhouette for different poses from different activities, especially for those activities that are per-
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formed toward the video camera. Thus, the binary silhouettes do not seem to be a good choice to

distinguish different activities.

1.3 Motivations

The ultimate goal of this thesis is to develop a system to exploit information about a person appear-

ing in a sequence of depth images acquired by a single stereo camera. The level of information

varies from the articulations of people in video to the understanding of their activities. Such

discovered information will be valuable to many aforementioned applications such as human-

computer interaction, health care, and surveillance.

For the pose estimation goal, as discussed in Section 1.2, most of previous studies proposed

to recover human poses from depth images are based on the nonparametric approach with the

requirements of creating template poses for matching. This motivates us to look for a parametric-

based method to directly estimate human poses from stereo images. Parametric-based registration

of a human model to video data using hidden variables (e.g., point-to-point assignments) [78, 82]

might be a solution, however, how to formulate this method to estimate human poses from depths

has not been developed. Thus, in this regard, we want to investigate more on the registration

method with hidden variables to derive an efficient and flexible algorithm that allows us to integrate

information from depths and RGB images for the task of human pose recognition. The developed

technique will be valuable not only in our approaches but also in future work of recognizing human

poses from different kinds of video data.

The other goal of our work is to implement an efficient HAR with the data captured by a stereo

camera. However, binary silhouettes of a human body in conventional video-based HAR do not

seem good enough features due to the ambiguity of 2-D information. As the human body consists

of limbs connected with joints, if one can recover human poses from video images, one can form

much stronger features with joint angles to improve HAR. This motivates us to look for a HAR

system using joint angles of human poses recovered from depth images. With such a system, we
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are able to achieve two objectives: firstly, the information about a tracked person in depth images

is enriched with the understanding of human activities; Secondly, we expect an improvement in

the recognition rates of the proposed HAR.

1.4 Proposed Human Pose and Activity Recognition from Stereo Im-

ages

We estimate a depth image to get 3-D information of a human subject from a pair of stereo images.

We present technical challenges of recovering a 3-D human pose from a depth image as an ill-

posed problem. We formulate a probabilistic registration problem of the kinematic parameters

of a human body model from a depth image with the uses of hidden variables (i.e., body part

labels). Our defined probabilistic framework is generalized with regards to different cues from

RGB and depth images including smoothness constraints, RGB likelihoods, geodesic constraints,

and reconstruction errors. Although the defined problem is complicated with the high-order priors

and likelihoods of random variables, we can take advantage of inference methods that have been

discovered in machine learning (see Appendix A). Here, we suggest a solution of finding an

optimal pose via variational expectation maximization (VEM) to fit the defined articulated body

model to depth information.

Subsequently, as an application of our technique in HAR, a sequence of kinematic angles is fed

into HMMs as classifying features to distinguish different human activities of a tracked subject.

We examine our proposed HAR with hundreds of stereo sequences to validate whether it is able

to get better recognition rate than that of the conventional HAR approaches using body silhouette

features.
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1.5 Thesis Organization

We provide the thesis organization in Fig. 1.2 and the introductory of subsequent thesis chapters

as follows.

• Chapter 2 presents how to model a human body and overviews of the conventional ap-

proaches regarding the recovery of 3-D human body poses and HAR from video.

• Chapter 3 presents our derived method to estimate human poses from stereo images.

• Chapter 4 describes how the body poses recovered from stereo images and their joint angles

can be used for HAR.

• Chapter 5 presents the experimental results validating our proposed system to recognize

human poses and activities from stereo image sequences.

• Chapter 6 concludes the thesis with our contributions and the directions of future re-

searches.
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Chapter 2

Related Work

2.1 3-D Human Body Model

In general, a 3-D human model is constructed by the combination of a kinematic model to control

body movements and a shape model to form a body shape.

2.1.1 Kinematic model

A kinematic model is represented by a tree consisting of body segments (i.e., a human skeletal

model). Two segments are connected by a joint to allow rotation movements. As the well known

result, the number of parameters necessary for a full rotation might have up to three degrees of

freedom (DOF). In total, the number of kinematic parameters of the whole human body varies from

20 DOF to 60 DOF, dependent on separated studies [13, 87, 104]. Each DOF is parameterized

by alternative ways including rotation matrix, Euler rotation angles, quaternion, and exponential

maps. As frequently used in a human skeletal model, the shoulder is parameterized by three DOF

and the elbow is parameterized by just one DOF. However, it is obviously that two DOF of the

shoulder are related to the movements of the upper hand (attached to the humerus) meanwhile

the other DOF of the shoulder controls the movements of the lower hand (attached to the radius).

10
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Thus, we can reduce one DOF at the shoulder and increase one DOF at the elbow, still ensuring

the movements of the body hands. Similarly, two DOF are used at every joint of of a human

body. Such a configuration provides much convenience in implementation with the same number

of DOF in each body joint [61, 72].

In another aspect, most kinematic models are assumed with a fixed length of body segments.

To deform a human model suited with various human body shape, there have been efforts proposed

to initialize a human body from images and video [21, 30]. If 3-D visual hulls of a tracked person

are available, the underlying skeletal structure is able to be discovered, enabling us to obtain the

length of each segment body part [21, 26, 30]. Other approaches require a manual initialization to

resize a model [15] or estimate a human structure from a maker-based tracking system [120]. Fully

discovering human skeleton structure and human appearances still remains challenging, requiring

further investigations in future.

2.1.2 Shape model

A shape-model is designed to approximate the body shape of a tracked subject. There are two

main kinds of shape models: one is a part-based model and the other is a whole-body model.

Part-based model

A part-based model represents each part of a human body by rigid objects attached to a segment of

a kinematic model. Due to the rotation of each part around a joint, an instance of a human model

is posed in 3-D. So far, numerous approaches have yielded success to apply part-based models

for human pose estimation and human motion tracking, although such models might tolerate arti-

facts at body-joints where some of the model surfaces are missing. A simple implementation of

part-based models was common with the use of cylinders, cones [40, 72], ellipsoids [61], and poly-

hedron [83]. Others modeled a human body with more complicated surfaces such as superquadric

surfaces [51, 55].
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Whole-body model

A whole-body model considers a single deformable surface to cover the entire shape of a human

body. Such model aims at avoiding the missing information at the body-joint in the part-based

model. The commonly used representations include a mesh of polygons [11] and a soft object

which is expressed by a level set function in 3-D [102, 101]. The whole-body model originates

in graphic areas with its applications in animation and virtual reality. Currently, the uses of such

a model have been extended to estimate both human poses and shapes from image and video

[9, 10, 98]. However, the complexity of creating an entire surface of a human body and the

requirements of high accuracy of input sources (e.g., 3-D laser scanner) are the concerns which

need to be considered with the implementations of this model.

2.2 Related Work of Human Pose Recognition

In general, there are two main approaches of human pose recognition, namely the nonparametric-

based approach and the parametric-based approach. The nonparametric-based approach gen-

erates a number of human pose configurations where each configuration is mapped to specific

features of observations (e.g., RGB images, depth images, or 3-D data). The features of query

observations are extracted and used to search for the most matching poses. Alternatively, the

parametric-based approach predefines the human body with a set of parameters related to the lo-

cations of body joints, the kinematic rotational angles, and the sizes of body parts. Then the model

is fitted to the observations of video data to recover human body poses.

2.2.1 Nonparametric-based approaches for human pose recognition

Pose retrieval

One branch of method using this approach stores a large number of human pose exemplars and

their matching futures in a database [62, 63, 96, 129]. Corresponding, the features from the queries



CHAPTER 2. RELATED WORK 13

are estimated and used for retrieving the most suitable poses from a database. Thus, feature

extraction and retrieval techniques become essential elements in this regard.

For 2-D images captured by a monocular camera, the internal and external contour and the bi-

nary silhouette of a human body can be utilized as the descriptors for each 3-D pose [8, 88, 110].

For the visual hulls of a human body derived from multiple cameras with multiple directional

views, directly comparisons might become intractable with regard to a huge number of 3-D points

belonging to a visual hull. Thus, alternative methods have been proposed to capture just essential

features of observations. The 3-D Haarlet [36] presented an efficient feature due to its simplifica-

tions in calculation and its discriminant properties in classification. Linear Discriminant Analysis

(LDA) [17, 148] and Average Neighborhood Margin Maximization (ANMM) [139] were used

along with Haar features to reduce the dimensions of features for matching.

For a stereo camera, a set of stored poses and their corresponding depth images are compared

with a depth image derived from a stereo camera to find the best matching pose. In [147], about

100,000 human poses, presenting most appearances of the human body in 3-D, were created and

stored in an exemplar database. However, with a large number of human body poses, this method

requires an efficient algorithm to organize and retrieve the poses stored in the database, such as

parameter sensitive hashing [106, 117, 136].

Sampling

To avoid generating all possible human poses, a limited number of generated poses are limited

using extra information such as cues from images, temporal information, and motion templates

learned from specific activities. With a sequence of monocular images recorded with a normal

camera, a probabilistic model is designed to establish the relationship between the human poses

and the cues from images like color, contours, and silhouettes. Machine learning techniques such

as sampling by the Monte-Carlo method [76] were applied to find the human body pose most

probabilistically compatible with the information given in the images. The convergence speed
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of MCMC was ensured by decomposing the Markov chain into a series of local transitions of

each portion (e.g., face or limb). However, as the depth information is lost (i.e., the 3-D object

is projected into a 2-D image), there will be an ambiguity of reconstructing a 3-D human pose

from a monocular image. The appearance of a human subject in an image might correspond to

many possible configurations of the human pose in 3-D. Due to this limitation, most previous

researches based on a monocular image concentrated only on detecting the human body parts

[64, 89, 105, 107, 109, 142]. The location of body parts were found by nonparametric belief

propagation algorithms [122].

Besides, the approximation inference with particle filter [40, 71, 80, 118, 119, 141] was the

most common techniques when sampling the whole distribution space of high dimensional random

variables (30-D∼40-D space of kinematic parameters) of human poses seems infeasible. Particle

filter takes into account past results of human pose estimation to determine the next samples [50]:

only a limited number of human poses at the time index t that are close to the human body pose

estimated at the time index t-1 were generated. The effects of smoothing the motion trajectories

from the past to future into the accuracy of particle-filtered human tracking were fully evaluated

in [77, 100]. The drawback of this method is that with the limited number of generated poses,

the accuracy of estimating human body poses tends to be low. In the opposite case, with the

increased number of generated poses, the time needed to search for an appropriate human pose

gets prolonged.

2.2.2 Parametric-based approaches for human pose recognition

3-D pose reconstruction from 2-D points

In this method, the articulated human body model is reconstructed from some detected regions

of the human body in monocular images using inverse reconstruction 3-D from 2-D [14, 28, 42,

75, 126]. Additionally, anatomical constraints to obtain an appropriate human body skeleton were

established to reduce the ambiguity of human poses, resulting a fast reconstruction of a human
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body pose [145] from a 2-D image.

Optimization fitting of whole body model

A function is established to connect information from images with kinematic variables of human

poses such that an estimated pose will correspond to an optimal root of this function. Typically,

the information in monocular images with different directional views is combined to reconstruct

the 3-D data of a human subject. Integrating the 2-D cues from each image with the data from

multiple cameras, Gupta et al. [56] demonstrated that their system can solve the problem of

pose estimation even within self occlusion. In [72], Knossow et al. analyzed the properties of

the extremal contours of elliptical cones, then analytically derived the non-linear expressions of

contour velocities that can be further used to minimize the differences between model contours

and contours extracted from binary image silhouettes. The shortcomings of these methods are

shown by the fact that they work separately on a single image. The outcomes also need to be

combined in an additional stage to obtain the precise 3-D model parameters.

Meanwhile, with another form of representation of 3-D data, a cloud of 3-D points, in [102],

the authors modeled the human body with an isosurface, called the soft object. The shape of

the soft object was controlled by the kinematic parameters of the human model. The least-square

estimator was used to minimize the differences between the soft object and the cloud of 3-D points,

consequently finding the human body pose most fitted with 3-D data. In other studies, an entire

mesh of a human body was deformed to fit with 3-D data of a human body [23, 137].

Manifold embedding

Rather than directly processing on images, some algorithms assume that the 3-D data are already

available with 3-D voxels. To reconstruct human body poses, the 3-D data of voxels are embedded

into a higher dimensional manifold. In [124], the authors presented a method to segment the 3-D

voxels into different body parts and registered each part by one quadric surface to reconstruct the
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articulated human model. To segment the 3-D voxels, they mapped the voxels’ coordinates into

a new domain using the Laplacian Eigenmaps where they could discover the skeleton structure

(1-D manifolds) of the 3-D data. Based on this skeleton structure, they could assign the 3-D

data to corresponding human body parts using probabilistic registration. Some other methods like

ISOMAP [31, 127], Locally Linear Embedding [111], or Multidimensional Scaling [35] are also

available to recover the human skeleton structure of the 3-D voxels.

Registration with hidden variables

The registration using hidden variables is the conventional method that has been applied to find a

transformation to fit a set of points to others [78, 82]. In this case, the hidden variables presented

the point-to-point correspondences between two datasets. In [38, 61], authors assumed that the

3-D data were drawn from a mixture Gaussian distribution where each cluster of the distribution

represented a part of a human model. The kinematic parameters were found by maximum likeli-

hood estimation with marginal integration over hidden variables. In [22], hidden variables were

introduced to identify the mesh region where each 3-D point was cast to. For noisy and partial

3-D data of stereo images, it is able to extend this method of registration by exploiting information

from depths and RGB images to recover human body poses, as being presented in this thesis work.

2.3 Related Work of Human Activity Recognition

For a specific video domain, a method for HAR starts with the extraction of features from images

and comparing them against the features of various activities. Thus, activity feature extraction,

modeling, and recognition techniques become essential elements in this regard. Approaches for

modeling and recognizing activities are separated into two subcategories: the nonparametric-

based approach extracts key features from a frame sequence and uses these features to query the

best matching from stored activity exemplars; The parametric-based approach models dynamics

of an activity and learns the modeling parameters from training data. The evaluation of fitting a
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frame sequence to alternative models specifies the activity label associated with this sequence.

2.3.1 Nonparametric-based approaches for human activity recognition

The early work of the nonparametric-based approach started with a monocular image. In [19],

binary silhouettes of the human body in a 2-D sequence were extracted and aggregated into an

image, namely a motion energy image (MEI). If a weight was assigned to an image with regard to

its chronological order, an image resulted of aggregation was called a motion history image (MHI).

Correspondingly, MEI and MHI images were then utilized for the matching of two sequential

images. However, two closed sequences easily created similar MEI and MHI images, leading to

the ambiguity of distinguishing different activities. The other authors segmented a body contour of

a person in a single 2-D image to build a surface in 3-D space (x, y, t), correspondent to a sequence

of images of a specific activity [54]. The retrieval features of a 3-D surface were extracted from

geometric measurements such as areas, peaks, and curvatures. In [46, 103], authors illustrated a

human motion in a lower dimensional space, but this method has been better used for analyzing

the motion characteristics rather than for classifying human activities. Presenting another method

to reduce dimensions of observations [7], Abdelkader et al. located a set of 2-D points in each

frame and combined the information from all sequential frames to construct a 3-D deformable

model, which was used for classification.

The drawback of the nonparametric-based approach is stated that it only obtains good results

with recognizing simple and short-time activities [131]. Also, there is not much attention from

research communities to utilize 3-D data because the template of a 3-D object moving over time

will be aggregated in a 4-D space-time, leading to the difficulties of extracting retrieval features to

characterize an activity.
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2.3.2 Parametric-based approaches with HMMs for human activity recognition

HMMs are the most common video-based model of human activity that have been applied for

parametric-based HAR. For instance, in [146], a binary silhouette-based HAR system was pro-

posed to transform the time sequential silhouettes into a feature vector sequence through the binary

pixel-based mesh feature extraction from every image. Then, the features were utilized to recog-

nize several tennis actions with HMMs. In [24], a silhouette matching key frame-based approach

was applied to recognize forehand and backhand strokes from tennis videos. Regarding binary

silhouette-based features, Principal Component Analysis (PCA), a feature extractor based on the

second-order statistics, is most commonly applied [93, 94, 132]. After applying PCA, some top

PCs (i.e., eigenvectors) are chosen to produce global features representing most frequently mov-

ing parts of the human body in various activities. In [93, 94], the authors utilized PC features

from binary silhouettes and optical flow-based motion features in combination with an HMM to

recognize different view-invariant activities.

Recently, more advanced HAR techniques have been introduced in terms of new features and

more powerful feature extraction techniques such as Independent Component Analysis (ICA) of

body silhouettes [132, 133]. Although binary silhouettes are commonly employed to represent

a wide variety of body configurations, they also produce ambiguities by representing the same

silhouette for different poses from different activities, especially for those activities that are per-

formed toward the video camera. Thus, the binary silhouettes do not seem to be a good choice to

represent human body poses in different activities. In this regard, more efficient features exploited

from the depth information should be a solution to get better results of human activity recognition.



Chapter 3

Recovering Human Body Poses from

Stereo Images

In this chapter, we present a technique of estimating 3-D human body poses from a set of sequen-

tial stereo images. We developed a new algorithm based on the parametric-based approach to

estimate human body poses directly from stereo images without using a set of temporary poses for

matching. Among methods concerning this approach, our implementation is based on the model-

to-data registration with the uses of hidden variables to indicate body part labels, as introduced

in Section 2.2.2 of Chapter 2. The rest of this chapter is organized as follows. In Section 3.1,

we describe our methodology. The main algorithm of recovering human poses from 3-D data is

presented in Section 3.2 and summarized in Section 3.3.

3.1 Methodology

The step-by-step processing stage of our system is briefly described in Fig. 3.1. In the prepro-

cessing step, we estimate the disparity between the left and right images taken by a stereo camera.

The 3-D location of the observed subject is reconstructed using disparity values and represented

19
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Disparity Image
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 3-D Human 
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     Body Pose

(a) (b) (c) (d) (e)

Figure 3.1: Our proposed method of estimating a 3-D human body pose from stereo images. (a)

A set of stereo images. (b) Estimated disparity image. (c) Labeling the body parts of the 3-D data.

(d) Fitting the 3-D model with the 3-D data. (e) Final estimated body pose.

by a cloud of points in 3-D. To fit the 3-D model to the given 3-D data, we perform co-registration

with VEM in two steps: VE-step and model fitting (M-step). The VE-step assigns each point

to one ellipsoid and the model fitting step fits the ellipsoids to their corresponding points. This

process is iterated by minimizing the discrepancies between the model and the observation, finally

recovering the correct human pose. The details of our co-registration algorithm are discussed in

Section 3.2.

3.1.1 Stereo camera and stereo image processing

Stereo camera

Through several million years of human evolution, stereopsis is one of the unique functions in

the human vision system, allowing depth perception: it is a process of combining two images

projected to two human eyes to create the visual perception of depth. Learned from the human

stereoscopic system, a stereo camera was invented to synchronously capture two images of a

scene with a slight difference in the view angle from which depth information of the scene can

be derived. The depth information is generally reflected in a 2-D image called a depth image
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in which the depth information is encoded in a range of grayscale pixel values. Since its first

commercial product in 1950s, Stereo Realist, introduced by the David White Company, there have

been continuous developments of a stereo camera until now with the latest products such as a

digital stereo camera, Fujifilm FinePix Real 3-D W1 [1] and a stereo webcam, Minoru 3-D [3].

Lately, 3-D movies, in which depth information is added to RGB images, have received a lot of

attention with the latest success of a film, Avatar released in 2009. Watching 3-D movies and 3-D

TVs with the special viewing glasses is becoming a part of our lives these days.

In this work, a stereo camera is valuable for human pose estimation. We employ the stereo

camera Bumblebee 2.0 of Point Grey Research [6] to capture stereo image pairs, as shown in Fig.

3.2. Bumblebee 2.0 camera is equipped with two Sony 1/3” progressive scan CCDs, Color/BW

sensors, which are able to capture an image with a resolution of 640×480 and 1024×768 and with

a speed of 20∼40 frame per second (FPS). The IEEE-1394a FireWire interface is used to connect

a stereo camera with a computer with a bandwidth of 400Mb/s. Also, the camera is supported

with integrated functions to pre-calibrate recorded images against distortion and misalignment.

Stereo computation

The computation of stereo information is the preliminary processing step necessary to recover 3-D

information from a pair of stereo images. The displacements between two images are presented as

a depth image containing the disparity values. With an ordinary searching technique, it exhausts

O(n3) computation to obtain the complete disparity values, assuming that the size of the image

is n2 [60, 90, 114]. We use the fast stereo matching algorithm, Growing Correspondence Seeds

(GCS) [25], which requires only a small fraction of the disparity space to improve speed and

accuracy. The computation complexity becomes O(kn2) with k ≪ n compared with searching

the entire disparity space at O(n3). Moreover, if the background is partially eliminated, we can

reduce the searching time on the sparse regions. The approach we apply for the background

modeling and removal is described in [140].
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Figure 3.2: Stereo camera Bumblebee 2.0 of Point Grey Research.

Then, the depth image is sampled by a grid to reduce the number of points in the observed

data and avoid extensive computation, as depicted in Fig. 3.3(b). To obtain the 3-D data, the depth

value Z of each point is computed by

Z =
fb

d
(3.1)

where f is the focus length, b is the base-line, and d is the disparity value. The two remaining

coordinates X and Y are given by

X =
uZ

f
, Y =

vZ

f
(3.2)

where u and v are the column and row index of a pixel in the depth image.

3.1.2 3-D human body model

Our 3-D human model is reconstructed by the combinations of a kinematic model using two DOF

at each body joints (see Section 2.1.1) and a part-based model of ellipsoids (see Section 2.1.2).

In the computation of transformation, we formulate the equation of an ellipsoid [61] in the 4-D

projective space as

q(X) = XT QT
ϑST DSQϑX − 2 = 0 (3.3)

where D = diag[a−2, b−2, c−2, 1] configures the size of the ellipsoid, S locates the center of the

ellipsoid in the local coordinate system, Qϑ is the skeleton-induced transformation, and X =
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(a) (b) (c)

Figure 3.3: Computing the 3-D stereo data. (a) Depth image. (b) Sampling on the grid. (c) 3-D

data.

(a) (b) (c)

Figure 3.4: 3-D human body model. (a) Skeleton model. (b) Computation model with ellipsoids.

(c) Human synthetic model with super-quadrics.
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[x, y, z, 1]T is the coordinate of a 3-D point. We choose b = a and c ≥ a to simplify the Euclidean

distance computation from one point to an ellipsoid. The 4x4 transformation matrix Qϑ is a matrix

function of ϑ = (ϑ1, ϑ2, ..., ϑn) where ϑ1, ϑ2, ..., ϑn are the n kinematic parameters that control

the position of each ellipsoid in the model. Qϑ is not only a single transformation, but it relates

to a kinematic chain of transformations through each body part. The joint between two adjacent

parts has up to three rotational DOF, while the transformation from the global coordinate system

to the local coordinate system at the human hip requires six DOF (i.e., three rotations and three

translations). We separate Qϑ to a series of independent primitives that only depend on a single

parameter,

Qϑ = Qn(ϑn)Qn−1(ϑn−1)...Q1(ϑ1) (3.4)

where Q1(ϑ1),Q2(ϑ2), ...,Q6(ϑ6) are of six DOF of the global transformation and Qi(ϑi) =

TriR(ϑi) with i > 6 is the local transformation from one coordinate system i to the other i + 1.

Tri is the translation matrix determined by the skeleton architecture and R(ϑi) is the rotation

matrix around the x−, y−, or z−axis. We can set Tri to be the identity matrix I4×4 if we want to

add more than one DOF to a joint.

The whole body configuration is depicted in Fig. 3.4. There are 14 segments of the body,

nine joints (two knees, two hips, two elbows, two shoulders, and one neck), and 24 DOF (two

DOF at each joint [61] and six free transformations from the global coordinate system to the local

coordinate system at the hip). Each body part may contain several ellipsoids. However, to simplify

the computation, we use only one for each.

For better display and to create a synthetic human model for simulations, we also designed a

model using super-quadrics as shown in Fig. 3.4(c). The equation of the super-quadric surface

[37, 124] without any transformation is expressed as(
x

a0

)2

+

(
y

b0

)2

=

(
1 +

sz

c0

)(
1−

(
1− 2z

c0

d
))

0 ≤ z ≤ c0 (3.5)
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where a0, b0, and c0 determine the size of the super-quadric along the x-axis, y-axis, and z-axis,

respectively.

3.1.3 Distance from one point to an ellipsoid

The distances between a set of points to an ellipsoid are used to measure the differences between

the 3-D data and the model. For simplification, the function q(X) defined in (3.3), which ap-

proaches zero at the ellipsoid surface and becomes larger when the point moves away from the

ellipsoid, has been defined as the algebraic distance [102]. However, due to variation that is re-

lated to direction (e.g., with the prolate spheroid, the algebraic distance gets smaller as the point

moves toward the poles), the algebraic distance cannot exactly reflect the measurement, especially

for thin ellipsoids (usually representing limbs). In addition, Horaud et al. [61] proposed an alter-

native distance, the datum distance; however, as it requires normal vectors, it is very difficult to

calculate this distance from the data gathered by a stereo camera alone.

The Euclidean distance, equal to the distance from one point to its nearest point in the ellipsoid

surface, is rarely used because it requires solving a sixth-degree polynomial equation [58]. In this

work, with the symmetric ellipsoid model, the calculation of Euclidean distance can be simplified:

first of all, rather than computing Euclidean distance in the global coordinate system (x, y, z),

the point X0(x0, y0, z0) can be transformed to the local coordinate system (x′, y′, z′) that holds

the ellipsoid. In Fig. 3.5, let P be the plane that contains a point X0 and the major z′-axis of

the ellipsoid. The intersection between the plane P and the ellipsoid will be an ellipse. The

computation of the Euclidean distance to an ellipsoid is reduced to find the distance between a

point X0 and an ellipse lying in P with only a fourth-degree polynomial equation that has an

analytical solution enabling us to calculate its roots.

Moreover, the kinematic parameter ϑ = (ϑ1, ϑ2, ..., ϑn) in (3.3) is updated by the gradient

descent method in Section 3.2.2. Therefore, at each step, the point X0 moves to X0 + dX0 with a

small change dX0 in the local coordinate system (x′, y′, z′). Corresponding, Xt, the nearest point
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Figure 3.5: The Euclidean distance from a point to an ellipsoid.
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of X0 in the ellipsoid surface, also moves to Xt + dXt, which can be calculated from X0, dX0,

and Xt with some multiplication and addition.

The mathematical details of finding the nearest point in an ellipsoid surface to a given point

are described in Appendix D.

3.2 Estimating 3-D Human Body Pose from 3-D Stereo Data

This section presents our algorithm to estimate 3-D human body pose from the 3-D stereo data.

First, we establish a comprehensive conditional probabilistic distribution between the human pose

specified by the kinematic parameter ϑ = (ϑ1, ϑ2, ..., ϑn) and the given 3-D data and RGB image.

Then, we show how to estimate the optimal kinematic parameter ϑ∗ that maximizes the distribution

by the VEM algorithm. The estimated parameter ϑ∗ will correspond to the most suitable human

pose with the given information.

3.2.1 Probabilistic relationship between the model parameters and the stereo data

We use D = (X1, X2, ..., XM ) to denote M points of the 3-D data and I for the RGB image. Since

our model is created with multiple ellipsoids, the supplementary variables are introduced to deter-

mine to which part of the body (i.e., ellipsoid) each point should belong. Let V = (v1, v2, ...vM )

denote the body part assignments or labels of each point. The posterior probability of the label V

and the model parameter ϑ given the 3-D data and RGB image is expressed by

P (V, ϑ|I,D) ∝ P (V )P (I|V )P (D|V )P (D|V, ϑ). (3.6)

The elements of (3.6) are sequentially defined in the following sections.
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Smoothness energy

The smoothness prior P (V ) is derived in the form of the Potts model [20],

P (V ) =

M∏
i=1

∏
j⊂Ni

P (vi, vj) (3.7)

where Ni is a set of neighbors of point i and P (vi, vj) is,

P (vi, vj) =

 eγ if vi = vj

1 if vi ̸= vj
(3.8)

where γ (in our case γ = 0.5) is a real positive constant. P (vi, vj) is used to drive the label of

each point toward the same label of its neighbors. This causes the labeling results to become

smooth and eliminates the outliers. The simplest way to locate the neighbors bounded by the

radius d of one point is via a mask. We predefine the binary mask based on the distance d and

perform an operation via the AND operator with the binary silhouette to find the neighbors of each

point. We set d = 2 for all of our experiments.

Image likelihood

Some partial regions in the RGB image can provide extra information to identify the body com-

ponents. Generally, the image likelihood term is derived as

P (I|V ) =
M∏
i=1

ϕ(I|vi). (3.9)

One might utilize the shape of the binary silhouettes or texture information to detect body

parts. In our approach, we apply face detection to locate the head. Potential face areas are as-

certained by detecting skin in the HSV color space and thermal infrared domains [34]. Some

regions lying outside the binary silhouette or having unsuitable shapes (too small or appearing

to be limbs) are considered outliers and removed. Estimation of the binary silhouette that relies

only on background subtraction is not enough to obtain the correct result due to the effects of
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(a) (b) (c)

Figure 3.6: Binary silhouette extraction. (a) Input image. (b) Background substraction. (c) Refined

silhouette.

lighting conditions and shadows. As shown in Fig. 3.6, after the stereo computation, based on the

estimated distance between the person and the camera, some pixels remaining outside the ranges

are removed to refine the silhouette. ϕ(I|vi = head) evaluating the likelihood of point i to be

assigned the label ’head’ gets a value of ec (c = 1) for the pixel marked as ’faces’ and a value of

one in other cases.

Together with face detection, an additional function f(xi) (related to the concept of soft objects

[102]) is defined to estimate the torso location. If we let the center of the body Obody lie at a

middle point between the center of the face and the center of the silhouette. f(xi) is computed in

the following way:

f(xi) = κe−d(xi) (3.10)

where d(xi) is the algebraic distance from the point xi = [x, y, 1]T to the ellipse with the centroid

Obody and κ (κ = e) is a positive constant. In the coordinate system attached to the origin Obody,

d(xi) = xiTQT
e DeQexi − 1 where De and Qe are the 3× 3 matrices that determine the shape and

orientation of the ellipse. The likelihood for identifying a single point as ’torso’ is given by

ϕ(I|vi = torso) =

 f(xi) if d(xi) ≤ 1

1 otherwise.
(3.11)
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O

body


(a) (b)

Figure 3.7: Illustration of the factors that affect label assignments. (a) Image likelihood for de-

tecting the face and torso. (b) Geodesic distance preserved with human movements.

Pairwise geodesic relationship among 3-D points

The Euclidean distance between any two points is only preserved within a rigid object. With a

non-rigid object like the human body, the Euclidean distance will be changed due to the non-

linear deformations of various body parts while the object is moving. However, with regard to the

geodesic distance between a pair of points in space, this distance always retains its value during the

movement of a human body. The preservation of geodesic distance has been successfully applied

by the ISOMAP algorithm [127] to determine the manifold of high-dimensional data in a lower

dimension. Here, we attempt to represent the geodesic relationships between each point and others

in our probabilistic model. Some constraints are established to restrict the probability of incorrect

label assignments. Assigning the pixels into groups called cells, as illustrated in Fig. 3.8, can help

us save the computational time. All of the elements belonging to the same cell receive the same

geodesic constraints. The geodesic distance between two cells is approximated by the shortest

path distance in a graph using Dijkstra’s algorithm [43]. The compatible probability P (D|V ) of

the 3-D data with the geodesic constraints is given by
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(a) (b)

Figure 3.8: Assigning points into cells. (a) Sampling on the grid. (b) Points grouped by cells.

P(D|V ) =

M∏
i=1

Mc∏
jc=1

Pgeo(D|vi, vjc)

Pgeo(D|vi, vjc) =

 e−α d(vic , vjc) < dmin(vic , vjc)

e−β d(vic , vjc) > dmax(vic , vjc)
(3.12)

where ic is the cell that holds pixel i, d(vic , vjc) is the geodesic distance between the cell ic and

jc, Mc is the number of cells, and α and β are two positive constants. Two values, dmin(vic , vjc)

and dmax(vic , vjc), define the lower and upper bounds for the geodesic distance between a pair

of labels. Two related labels that are too far or too close are penalized to decrease the belief in

those labels. The constant values α and β are taken to be α = β = 0.04Mc/Mvjc , limiting

the maximum number of cells which can ascertain to the label of the pixel i to 4% of the total.

The maximum number of cells receiving the same label vjc , Mvjc , appears in the denominator

as a normalized constant to ensure that
∏Mc

jc=1 Pgeo(D|vi, vjc), the total effect to the pixel i, is

approximately invariant to the size of body parts.
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Reconstruction error

To co-register the ellipsoid model with the observations, we need to minimize the differences

between them. The last term accounts for the compatible probability between the model specified

by ϑ and the data D consisting a set of points X1, X2, ..., XM . Let’s denote d(Xi, ϑ, vi) as the

Euclidean distance between a point Xi(xi, yi, zi) and an ellipsoid vi, as we already discussed in

Section 3.1.3. P (D|V, ϑ) is defined as

P (D|V, ϑ) =
M∏
i=1

e−
d2(Xi,ϑ,vi)

2σ2 (3.13)

where σ denotes the variance (σ2 is chosen to be 0.1 in our experiments). The distance between the

point Xi and the ellipsoids is also one of the factors that decides the body segment of Xi. Hence,

in a sequence of frames, the estimated model from the current frame presents a good initial model

to derive the label on the next frame.

3.2.2 Estimating the model parameters

Our main goal is to find the optimal kinematic parameter ϑ∗ that maximizes the posterior proba-

bility of ϑ given the data. This problem can be rewritten as

ϑ∗ = argmaxϑ
∑
V

P (V, ϑ|I,D) (3.14)

where V is considered the latent variable in this framework. The VEM algorithm is a good choice

for estimating the optimal values of the probabilistic problem with the appearances of unobserved

variables (see Appendix C). By introducing the distribution Q(V ) over the variable V [18], the

problem in (3.14), equivalent with maximizing
∑

V logP (V, ϑ|I,D), can be decomposed into

argmaxϑ,Q
∑
V

Q(V ) log
P (V, ϑ|I,D)

Q(V )

−
∑
V

Q(V ) log
P (V |ϑ, I,D)

Q(V )
. (3.15)
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The VEM algorithm is an iterative procedure whose each iteration consists of the following

two main steps:

i) Assuming that the current value of ϑ is ϑold , the VE-step approximates the posterior distribution

P (V |ϑ, I,D) as

Q(V ) ∝ P (V |ϑ, I,D). (3.16)

ii) The M-step maximizes

EQold(V )[logP (V, ϑ|I,D)] (3.17)

with respect to ϑ where Qold(V ) is found from the previous VE-step.

We provide the technical details of the VE-step and M-step in the next sections, 3.2.2 and

3.2.2.

The VE-step

The true distribution of P (V |ϑ, I,D) in (3.16) is intractable to compute. Therefore, we perform

the mean field approximation of P (V |ϑ, I,D) by Q(V ), which can be expressed as,

logP (V |ϑ, I,D) ∝
M∑
i=1

fi(vi) +
M∑
i=1

∑
j⊂Ni

fij(vi, vj)

+
M∑
i=1

Mc∑
jc=1

gij(vi, vjc). (3.18)

In this equation, f(vi) is the sum of the logarithms of the image likelihood term in (3.9) and

the reconstruction error term in (3.13). f(vi, vj) is determined by the logarithm of the compatible

probability from the Potts model in (3.7). The pairwise g(vi, vjc) is determined by the logarithm

of the geodesic potential in (3.12), such that

g(vi, vjc) = logPgeo(D|vi, vjc). (3.19)
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As in [130], the belief qi(vi) = P (vi|ϑ, I,D) is iteratively updated until convergence:

qistep+1(vi) =
1

Zistep(vi)
exp{

Mc∑
jc=1

∑
vjc

qjcstep(vjc)gij(vi, vjc)

+
∑
j⊂Ni

∑
vj

qjstep(vj)fij(vi, vj) + fi(vi)} (3.20)

where qjcstep(vjc) = E[qjstep(vjc)] is an average belief of all pixels j ⊂ the cell jc and Zstep(vi) =∑
vi
qistep(vi) is a normalization factor. To reduce the amount of computation required, set

qjcstep(vjc = ε) = 1 for the maximum probability of the cell jc pertaining to the ellipsoid ε and

qjcstep(vjc) = 0 for vjc ̸= ε. fi(vi) is used to initialize the value of qi(vi) in the first iteration, where

qi0(vi) =
1

Zi0(vi)
exp{fi(vi)}. (3.21)

In Fig. 3.9, we show the results of running the VE-step on two examples in which the label

of each point is selected by the label with the maximum belief. At the first iteration, using only

the image likelihood and the distance provides incorrect labeling results because some pixels be-

longing to an arm are near to the torso or the head. After the VE-step converges (three or four

iterations), we obtain a correct labeling assignment.

The M-step

Once the distribution of the random variable vi has been obtained, the kinematic parameter ϑ

becomes the solution of the following optimization problem:

argmaxϑEQ(V )[logP (D|ϑ, V )]. (3.22)

Here, the components independent of ϑ in (3.6) are eliminated. By taking the logarithm of

P (D|ϑ, V ), (3.22) can be rewritten as

−argmaxϑ

Nε∑
ε=1

M∑
i=1

qi(vi = ε)d2(Xi, ϑ, vi = ε) (3.23)
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(a)

(b)

Figure 3.9: The results of running the VE-step on two examples (a) and (b). Corresponding from

left to right: the initial human models, the label assignments found by the first iteration of the

VE-step, and the last iteration.
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where Nε is the number of ellipsoid, d(Xi, ϑ, vi = ε) = ∥Xi − Zi(ϑ)
ε∥2 , and Zi(ϑ)

ε is the

nearest point of Xi lying on the surface of the ellipsoid ε . We formulate (3.23) in an alternative

way as

argminϑ

Nε∑
ε=1

M∑
i=1

qi(vi = ε)∥Xi − Zi(ϑ)
ε∥2. (3.24)

For simplification of the M-step, set qi(vi = ε) = 1 for the maximum probability that the point

i pertains to the ellipsoid ε and qi(vi) = 0 for vi ̸= ε. The least square problem with a nonlinear

function like (3.24) can be efficiently solved by the Levenberg-Marquardt method. This estimator

requires the computation of the Jacobian matrix J of Zi(ϑ)
ε with respect to ϑ [84, 91, 125] that is

explained in Appendix E.

3.3 Chapter Summary

In this chapter, we have presented our marker-less system to recover human body poses in 3-

D from depth images acquired by a single stereo camera. We have described our methodology

including how to estimate the 3-D data of a depth image, how to create a human body model,

and how to register the human body model to the 3-D data. We estimated the pixel displacements

of stereo image pairs to reconstruct 3-D information. We modeled the human body with a set of

ellipsoids connected by kinematic chains and parameterized with rotational angles at each body

joint. To solve our registration problem minimizing the difference between the human model

and the information in a depth image to recover a human pose, we derive an algorithm based

on VEM with two-step iterations: assigning the 3-D data to different body parts and refining the

kinematic parameters to fit the 3-D model to the data. The algorithm is iterated until it converges

on the correct pose. The experimental results validating our proposed method are correspondingly

presented in Section 5.1 and Section 5.2. Subsequently, the pose recognition is applied to estimate

human poses from a sequence of depth images and the joint angles of a sequence of estimated

poses are utilized in Chapter 4 to recognize different activities.



Chapter 4

Human Activity Recognition Using

Body Joint Angles

A general method for video-based HAR starts with extracting key features from images and com-

paring them against the features of various activities. Thus, activity feature extraction techniques

play important roles in this regard. In this chapter, we present how various human activities can

be recognized with the new features of body joint angles derived from the body poses recovered

from stereo data. The features of body joints angles are utilized over the conventional binary

body silhouettes and HMMs are used to recognize various human activities. The chapter is orga-

nized as follows. In Section 4.1, we compare the process involved the binary silhouette- and joint

angle-based HAR. Section 4.2 and Section 4.3 describe the characteristics of binary silhouette fea-

tures and of joint angle features, respectively. An HMM with its roles in training and classifying

sequential features is introduced in Section 4.4. Finally, we summarize the chapter contents in

Section 4.5.

37



CHAPTER 4. HUMAN ACTIVITY RECOGNITION USING BODY JOINT ANGLES 38

4.1 Binary Silhouette- and Joint Angle-based HAR

In general, 2-D binary silhouettes of human body shapes are the most common representations

of human activity that have been applied for parametric-based HAR [24, 93, 94, 132, 133, 146]

(see Section 2.3.2). The top flow of Fig. 4.1 shows the typical processing components of the

binary silhouette-based HAR. Once the binary silhouettes are obtained from RGB images, some

prominent features, obtained through the feature extraction process such as PCA or ICA, are then

applied to a recognition technique of HMMs to train and recognize various human activities.

Recently, more advanced HAR techniques have been introduced in terms of new features

and more powerful feature extraction techniques. Although binary silhouettes are commonly

employed to represent a wide variety of body configurations, they also produce ambiguities by

representing the same silhouette for different poses from different activities, especially for those

activities that are performed toward the video camera. Thus, the binary silhouettes do not seem to

be a good choice to represent human body poses in different activities.

As the human body consists of limbs connected with joints, if one is able to obtain their 3-D

joint angle information, one can form much stronger features than conventional silhouette features

that will lead to significantly improved HAR. From the time-sequential activity video frames, the

joint angles are first estimated by co-registering a 3-D human body model to the stereo information

and then mapped into codewords to generate a sequence of discrete symbols for an HMM of each

activity. With these symbols, each activity HMM is trained and used for activity recognition.

The bottom of Fig. 4.1 shows the basic processes regarding 3-D body joint angle-based HAR. It

indicates that after obtaining the depth images, joint angles are estimated via co-registration and

represented as features to feed into the HMMs to train and recognize different human activities.
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4.2 Binary Silhouette Features in Human Activities

This section describes the method of using PCA and ICA to extract classifying features from

binary body silhouettes. Assume that each image containing a binary silhouette has a size of

h×w. Correspondingly, an image at the time index k is represented by a vector Xk of size 1×D,

where D = hw. There are a total of m extracted independent components (ICs) or principal

components (PCs) with a size of 1×D, e1, e2, ..., em extracted by ICA or PCA from the training

dataset. We can calculate a PCA or ICA projection Fk of Xk when projecting Xk on m extracted

components E = (e1, e2, ..., em)T using

Fk = XkE+, (4.1)

where E+ is the pseudoinverse of the extracted components. The representation Fk has a number

dimension much smaller than that of Xk, consists more compact information, and is therefore

used as the replaced features of binary silhouettes. A set of features corresponding to a sequence

of frame 1, 2, ..., T is expressed by {F1, F2, ..., FT } where Fk is computed from equation (4.1).

4.2.1 Principle component analysis of body silhouettes

Given the set of training images X = (X1, X2, ..., Xn)
T , the objective of PCA [99] is to find a

set of bases wi (or the weight vectors) to preserve as much information as possible of X when we

project X onto the space spanned by the bases wi. Here, the data are supposed to have a zero mean

(i.e, the mean has been subtracted from the data set). The projection of Xk onto the basis wi is

given by,

X̂k = wT
i Xkwi. (4.2)

As the results of conventional work [41, 95], the value of the weight vector wi minimizing the

square of the differences between Xk and X̂k, ∥Xk − X̂k∥2, is obtained by

Cxwi = λwi (4.3)
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where Cx = E{XXT } is the covariance matrix of X. Obviously, equation (4.2) states that wi is

the eigenvector of the matrix Cx. In PCA, just important eigenvectors corresponding to the largest

eigenvalues of Cx are retained to form a projection space [69, 144]. A total of m largest eigenvec-

tors [w1, w2, ..., wm]T are used to formulate the bases EPCA of PCA. Due to the uncorrelation of

extracted PCs, equation (4.1) is simplified by

Fk = XkE+
PCA = XkET

PCA. (4.4)

We show some PC examples of binary silhouettes estimated using our training data in Fig 4.2.

Here, these PCs all present the global shape of the whole human body.

Figure 4.2: Eight PCs from all activity silhouettes.

4.2.2 Independent component analysis of body silhouettes

Assume that observed images are a linear mixture of some original sources of images. The goal

of ICA is to recover the original sources from a set of training images. If the observed images

of a training dataset are presented as X = (X1, X2, ..., Xn)
T and the original sources as S =

(S1, S2, ..., Sm)T , an assumption that X is a linear mixture of original sources is stated by

X = AS (4.5)
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Figure 4.3: Eight ICs from all activity silhouettes.

where A is the mixing matrix with size (n × m). The ICA algorithm is used to compute the

(m×n) demixing matrix W = [w1, w2, ..., wm]T to recover all original signals from the observed

Y = WX (4.6)

where Y = (Y1, Y2, ..., Ym)T and each separated output image is Yi = wT
i X. Usually, before

mixed to form observations, the original signals tend to be mutually independent together. This is

the underlying fundamental to formulate the basics of the ICA algorithm: the ICA algorithm aims

at finding the demixing matrix W to make Yi independent as much as possible and thus converge

toward one of ICs. More essentials of ICA are provided in [65].

Usually, the ICA algorithm is performed on the m extracted PCs of the training data. There-

fore, the corresponding ICs are found by

EICA = WEPCA (4.7)

Some examples of extracted ICs depicted in Fig. 4.3 reveal the fact that ICs focus more on local

body components, commonly activated in human movements. Thus IC features seem better than

PC features in terms of distinguishing different human activities.
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For ICA, an equation to compute representation Fk of projecting Xk on the space spanned by

the extracted ICs is obtained from (4.1) with some simplifications

Fk = XkE+
ICA = Xk(ET

ICAEICA)
−1ET

ICA

= XkET
PCAW−1. (4.8)

4.3 3-D Joint Angle Features in Human Activities

4.3.1 Location tracking of a moving subject

In Chapter 3, we developed a method to estimate human body poses from stereo data of a subject

performing activities in a fixed location. In this work, concerning with recovering human body

poses of a subject moving in the horizontal (e.g., walking) and vertical direction (e.g., sitting), we

have added a tracking step to locate the subject’s position. The subject’s location is used to remove

the artifacts which are a part of 3-D data remaining far from the subject as depicted in Fig. 4.4(b).

Furthermore, face detection is utilized to detect the head and torso areas as depicted in Fig. 4.5

which are used in the labeling step of the co-registration algorithm. Finally, the six parameters

of the global transformation from the global coordinate system to the local coordinate system at

the body hip are computed with the subject’s location obtained by the tracking step, giving higher

precision.

Let a pair of parameters [sHt , sBt ] present the location of a human subject where sHt and sBt

are the two 3-D vectors locating the center of the head and the body at the time index t. From

the information of RGB images and 3-D data, we can obtain the approximate values of [sHt , sBt ]

by [rHt , rBt ]: we detect the head region from RGB images and 3-D data by the face detection

algorithm using the Haar features [135] to compute rHt ; We track the body region from RGB

images and 3-D data using the Mean shift algorithm [32, 33] to get a value of rBt . Let ṡHt and ṡBt

be the velocity of the head and body at the time index t. A set of equations established to track

the changes from [sHt−1, s
B
t−1] to [sHt , sBt ] and the relationship between the real human location
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(a)

(b)

Figure 4.4: A sample of (a) 3-D data of a moving person, (b) a noise removal of 3-D data of a

moving subject.
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(a)

Figure 4.5: Detecting head and torso of a sitting person.
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[sHt , sBt ] and the raw estimation [rHt , rBt ] is given by

sHt = sHt−1 + ṡHt τ + υ1 (4.9)

sBt = sBt−1 + ṡBt τ + υ2 (4.10)

ṡHt = ṡHt−1 + υ3 (4.11)

ṡBt = ṡBt−1 + υ4 (4.12)

rHt = sHt + ζ1 (4.13)

rBt = sBt + ζ2 (4.14)

d = ∥sHt − sNt ∥+ ζ3 (4.15)

where υ1, υ2, υ3, υ4, ζ1, ζ2 and ζ3 are random variables drawn from a Gaussian distribution, τ the

time interval between two frames, and d the constant distance between the center of the head

and the center of the body. We update the current subjects’ position [sHt , sBt ] from the previous

estimation [sHt−1, s
B
t−1] and from the observation [rHt , rBt ] by Extended Kalman Filter [108]. The

face and torso regions are then estimated from [sHt , sBt ] by the method presented in [128].

4.3.2 Human pose estimation and joint-angle feature extraction

A step-by-step processing to extract body joint-angle features of a stereo sequence is depicted

in Fig. 4.6. Given a sequence of stereo image-pairs (S1, S2, ..., ST ) where T is the length of

a video activity, the depth data of each stereo frame k are estimated by a method illustrated in

Section 3.1.1 of Chapter 3. Additionally, to recover the poses of a moving subject, a tracking

algorithm in Section 4.3.1 is applied to locate the changing position of the subject. The step to

recover 3-D human poses from depths is presented in Section 3.2 of Chapter 3: we define our 3-D

human model with a set of connected ellipsoids which are parameterized by kinematic angles; The

angular kinematic angles are adjusted to fit the 3-D model to the observation; Consequently, we

can reconstruct the human poses reflected in stereo images.

As denoted in Section 3.1.2 of Chapter 3, 24 kinematic parameters (ϑ1, ϑ2, ..., ϑ24) of joint
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Figure 4.6: Basic steps of estimating body joint angles of a stereo sequence.

angles are used to model a specific pose. Once we successfully obtain the 3-D human pose for

each video frame, we can utilize its joint angles to represent various human activities effectively.

The estimated joint angles from a video frame of a particular activity form a feature vector Fk =

(ϑ1, ϑ2, ..., ϑ24). Thus, each activity video clip is represented in a sequence of joint angle feature

vectors as (F1, F2, ..., FT ). Therefore, the 3-D joint angle features from video can really contribute

in distinguishing an activity from another, especially those activities that are not discernible with

the conventional binary or depth silhouette-based approaches.

4.4 Training and Recognition via HMM

HMM has been applied extensively to solve a large number of spatiotemporal pattern recog-

nition problems including human activity recognition because of its capability of handling se-

quential information in space and time with its probabilistic learning capability for recognition

[74, 93, 94, 132, 133]. Basically, an HMM is a stochastic process where an underlying process is

usually unobservable but it can be observed through another set of stochastic processes that pro-

duces observation symbols. The graphical structure of an HMM and how to perform probabilistic
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inference on an HMM are described in Appendix B. To learn a video-based human activity in an

HMM, the symbol sequences obtained from the training image sequences of distinct activities are

used to optimize the corresponding HMM. Finally, the trained HMMs are used to calculate the

maximum likelihood for recognition.

Technically, HMM is a collection of finite states connected by transitions. Every state is

characterized by transition and symbol observation probabilities. A generic HMM is expressed

as H = {S, π,A,B} where S denotes possible states, π the initial probability of the states, A

the transition probability matrix between the hidden states and B the observation probability from

every state. If the number of activities is N then there will be a dictionary (H1,H2, ..., HN ) of N

trained models. To estimate HMM parameters, one could use the Baum-Welch algorithm [74].

We choose a four-state and left-to-right HMM in this study to model sequential events of

each human activity. To recognize each test activity, the obtained observation symbol sequence

O = {O1, O2, ..., OT } through the vector quantization process is used to determine the proper

activity HMM from all the trained activity HMMs by means of the highest likelihood as

decision = argmaxi=1,2,...,M{P (O|Hi)} (4.16)

where Hi indicates ith HMM and M number of activities. More details on regarding training and

testing of HMMs for human activity recognition are available in our previous work [132, 133].

4.5 Chapter Summary

We describe how the body poses estimated from depth images and their derived parameters (i.e.,

joint angles) can be used for HAR. We introduce the conventional methods using binary silhouettes

with PCA or ICA for feature extraction. For comparison, we presented experiments performed on

hundreds of video sequences in Section 5.3 to validate whether the presented techniques outper-

form the conventional techniques of HAR using binary silhouette features.



Chapter 5

Experimental Results

We evaluate our techniques proposed in Chapter 3 to recover human poses from stereo images

with simulated and real data in Section 5.1 and 5.2. Then, we present our constructed database

consisting of hundreds of video sequences and their recovered pose sequences of different activ-

ities in Section 5.3. We compare the recognition rates our joint angle-based HAR proposed in

Chapter 4 with binary silhouette-based HAR on an activity database in Section 5.4.

5.1 Experimental Results of Estimating Human Poses from Simu-

lated Stereo Data

In generating the simulated data, we manually defined some joint angle trajectories as depicted by

the dashed lines in Fig. 5.2. Only the rotational angles corresponding to the elbow and shoulder

joints were tested in our experiments; the values of other rotational angles were fixed. From the

predefined angle trajectories, we created a sequence of human poses and their disparity images up

to 110 frames. Some samples of the disparity images are shown in the first and third rows in Fig.

5.1.

We applied our algorithm to recover the human poses from the synthetic disparity images.

49
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Due to the nature of simulated data, the cues of RGB images were not available, so we eliminated

them from computation. Some samples of the recovered human poses are depicted in the second

and fourth rows in Fig. 5.1. To validate our algorithm, we plotted the estimated angle trajectories

as solid lines to compare against the synthetic angle trajectories plotted as the dashed line in Fig.

5.2. The results show the good estimation of the kinematic parameters achieved by our method.

5.2 Experimental Results of Estimating Human Poses from Real Stereo

Data

Experiments were implemented with stereo data acquired by the stereo camera. In Section 3.1.1,

we described the use of the GCS algorithm to extract the disparity image and compute the 3-D

data for each frame. The subjects were asked to perform some distinguishable activities about 2-4

meters from the camera, producing several video sequences. The reconstructed body poses were

validated by visually checking the trajectories of certain joint angles.

In the first experiment, we assessed the movements of elbows in both horizontal and vertical

directions, as shown in Fig. 5.3. In each figure, the sequence of activities is illustrated in a video

stream from top to bottom in a column. Observing the real pictures, the angle changes between the

upper arm and lower arm were approximately 900. In Fig. 5.4, the recovered angle of the second

joint precisely reflects the arm motion in the real data. The joint angles may receive positive or

negative values, depending on the way that two joint angles at the elbow are combined to drive the

arm movements.

In the next test dataset, as shown in Fig. 5.5(a), the activity of the person in the video was

related to the movements of the knee joint. The right leg was lifted until it made a 900 angle

between the upper leg and lower leg, then this was followed by the same motion of the left leg.

The kinematic motion parameters were estimated and are depicted in Fig. 5.7(a). One may notice

that the switching between the two legs happens from frame 70 to frame 80.
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In order to track the changes of two joint angles at the same time, we considered the sequence

of activities in Fig. 5.5(b). We assumed that the whole arm laid along the x-axis and that the

two joint angles of the shoulder were related to the rotation of the arm around the z-axis and x-

axis, respectively. One can observe both trajectories of the two measured joint angles from Fig.

5.7(b), with the upper curves reflecting the rotational angles around the z-axis and the lower curves

reflecting the rotational angles around the x-axis. To explain the meaning of the plot, we visualize

the overall progress in Fig. 5.6. First, the whole arms were rotated around the z-axis from 1800 to

3600 (+π), corresponding to the vertical movement within the frames 1-45. At the second stage,

the second joint angles changed their values from 1800 to 2700 (+π/2), while the arms retained

their positions from frames 45 to 60. Finally, to be horizontally extended to the left or right side,

the two arms were continuously rotated around the z-axis (the first joint angles) from 3600 to 2700

(−π/2) or 4500 (+π/2), corresponding to frames 60 to the end.

To quantitatively evaluate the reconstruction errors of these experiments, we needed to gen-

erate ground-truth using the given data. Applying the same method presented in [56, 76], the

locations of some distinct points (e.g., hands, elbows, or shoulders) were hand-labeled in the RGB

images. We used the 3-D information from these points to calculate the necessary ground-truth

angles between two limbs. The angles reconstructed by the kinematic parameters were compared

against the ground-truth by the average error ϵϑ

ϵϑ =

∑n
t=1 |ϑest

t − ϑgrd
t |

n
(5.1)

where n is the number of frames, t is the frame index, ϑgrd
t is the ground-truth, and ϑest

t is the

estimated angle. In particular, the shoulder movements were related to two kinematic parameters,

and therefore the correct arm directions were validated by measuring the angles between the arms

and the x-axis or z-axis. The coordinate system (x, y, z) in this case had the x-axis and z-axis

aligned with the vertical and horizontal directions of the image plane, respectively. The average

errors of all four experiments are given in Table 5.1.

Fig. 5.8 shows the results of testing our algorithm on some free movements. The subjects
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performed complicated activities with all of their arms and legs. Here, we depict only three images

out of the sequence and their estimated poses in the second and third rows with two alternative

view angles. The 3-D locations of the body parts and the correct human poses were successfully

identified. In these experiments, it is more convenient to evaluate the estimated whole body pose,

rather than the local changes of individual limbs. The average distance between each 3-D point and

the nearest ellipsoid of the reconstructed model can be considered the overall error measurement

of the reconstructed pose in each frame. The average distance Dt of the frame t is computed by

Dt =

∑M
i=1 dt(i)

M
(5.2)

where dt(i) is the Euclidean distance from the point i to the nearest ellipsoid and M is the number

of points. The means and standard derivations of Dt in the two last sequences are provided in

Table 5.2.



CHAPTER 5. EXPERIMENTAL RESULTS 53

Figure 5.1: The results of recovering human poses (the second and fourth rows) from the synthetic

disparity images (the first and third rows). The number below each picture indicates the frame

index number.
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Figure 5.2: A comparison between the estimated and the ground-truth joint angles in the simulated

experiments (synthetic data). (a) and (b) show two joint angles of the shoulders. (c) and (d) show

two joint angles of the elbows.
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(a) (b)

Figure 5.3: Real experiments with elbow motion in two different directions. (a) Horizontal move-

ments. (b) Vertical movements. From left to right: the RGB images, disparity images, and recon-

structed human models (front view and +450 view).
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Figure 5.4: The estimation of the second joint-angle trajectories for the left and right elbows

corresponding to: (a) horizontal elbow movement and (b) vertical elbow movement.
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(a) (b)

Figure 5.5: Real experiments with other motions: (a) Knee movements. (b) Shoulder movements.

From left to right: the RGB images, disparity images, and reconstructed human models (front

view and +450 view).

Figure 5.6: The changes in two joint-angles during the movements of the shoulders (experiment

depicted in Fig. 5.5(b)).
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Figure 5.7: The estimation of the joint-angle trajectories for the left and right sides of: (a) knee

movements and (b) shoulder movements.
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Table 5.1: The average reconstruction error (0) of the joint angles of the first four experiments.

Note that these experiments only consider the local movements of some body limbs.

Experiment Evaluated angle Average reconstruction error

Elbow movement (horizontal direction) Upper arm & lower arm
Left 8.21

Right 7.58

Elbow movement (vertical direction) Upper arm & lower arm
Left 6.79

Right 7.64

Knee movement Upper leg & lower leg
Left 8.03

Right 13.81

Shoulder movement

Whole arm & x-axis
Left 5.66

Right 5.72

Whole arm & z-axis
Left 9.08

Right 9.97
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Table 5.2: The mean and standard derivation of the average distance (the average Euclidean dis-

tance between a set of 3-D points of the observed data and the ellipsoids of the reconstructed

model) of the last two sequences.

Sequences Walking Arbitrary activity

Mean (m) 0.062 0.037

Std. Dev. (m) 0.003 0.002

(a) Reconstructed human body poses with the

front view and −450 view.

(b) Reconstructed human body poses with the

front view and +450 view.

Figure 5.8: The qualitative evaluation of the reconstructed human body poses from: (a) walking

sequences and (b) arbitrary activity sequences.
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5.3 Human Activity Database

We built a database of eight different activities (namely, left hand up-down, right hand up-down,

both hands up-down, boxing, left leg up-down, right leg up-down, walking, and sitting) to be

trained and recognized via our 3-D joint angle and HMM-based approach. A total of 15 and 40

image sequences of each activity were prepared to be used for training and recognition respec-

tively. Some samples of pose sequences estimated from different activities are depicted in Fig.

5.9.

5.4 Experimental Results of Recognizing Various Human Activities

with Joint Angle-based HAR and Binary Silhouette-based HAR

We started our experiments with the traditional binary silhouette-based HAR. Table 5.3 and 5.4

show the experimental results of HMM-based HAR utilizing the PC and IC features of binary

silhouettes, respectively. Table 5.5 shows the experimental results of HMM-based HAR using joint

angle features of 3-D body model. We consider 150 features in the feature space of both PCA and

ICA-based approaches. Binary silhouettes were not appropriate to recognize the activities used in

our experiments, yielding a much lower mean recognition rate of 58.12% for PCA and 64.06%

for ICA, as ICA is superior to PCA by extracting the local binary silhouette features [132]. On

the contrary, utilizing the 3-D body joint angle features, we obtained a mean recognition rate

of 92.81%, which is far better than that of the binary silhouette-based HAR. The experimental

results show that the 3-D joint angle features are remarkably superior to the conventionally used

silhouette features. The body joint angle features seem to be much more sensitive toward complex

activities that are not discernable with the body silhouettes.
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(a)

(b)

(c)

Figure 5.9: Samples of pose sequences estimated from (a) right hand up-down (b) both hands

up-down, and (c) left leg up-down activities.
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Table 5.3: Experimental results of PCA-based HAR using binary silhouette features.

Activity Recognition Rate(%) Mean Standard Deviation

Left hand up-down 47.50

58.12 19.03

Right hand up-down 55

Both hands up-down 60

Boxing 20

Left leg up-down 60

Right leg up-down 67.50

Walking 70

Sitting 85
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Table 5.4: Experimental results of ICA-based HAR using binary silhouette features.

Activity Recognition Rate(%) Mean Standard Deviation

Left hand up-down 47.50

64.06 18.03

Right hand up-down 60

Both hands up-down 67.50

Boxing 30

Left leg up-down 72.50

Right leg up-down 72.50

Walking 75

Sitting 87.50
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Table 5.5: Experimental results of HAR using 3-D joint angle features.

Activity Recognition Rate(%) Mean Standard Deviation

Left hand up-down 87.50

92.81 3.65

Right hand up-down 97.50

Both hands up-down 87.50

Boxing 95

Left leg up-down 92.50

Right leg up-down 95

Walking 92.50

Sitting 95



Chapter 6

Conclusion and Future Researches

6.1 Conclusion

6.1.1 Thesis summary

Developing an automatic system to extract information of people from video or images remains

challenging in computer vision. So far, many studies have focused on a human pose recognition

system to acquire an articulation of a human body. But understanding human is not just locating

relative positions of the body limbs specified by a pose. Once the poses of a person changing

overtime are known, the information about the body part motion is subsequently available to infer

what people is doing. Thus combining pose and activity recognition in an engine allows us to

obtain more valuable information about human states.

In this thesis work, we implement a system to recognize both human poses and activities from

depth images acquired by a single stereo camera. Previously, these two tasks are typically done

with a system using optical markers. Such a system is capable of producing kinematic param-

eters of human motion with high accuracy and speed. However, a user needs to wear specially

designed optical markers when running this system. Close to our approach, a single monocular

camera is utilized to capture video data. However, monocular images may not provide enough

66
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information to recover a precise 3-D pose due to ambiguity and occlusion. A makerless system to

recognize human poses and activities from a stereo camera somehow presents several advantages

over previous systems and is receiving increasingly interested.

Reconstructing a 3-D human body pose from depth images recorded by the stereo camera is

implemented in this work by the parametric-based approach. With the addition of hidden variables

(i.e., body part labels), we formulate the technique in a probabilistic reasoning framework with the

combination of various potentials from depths and RGB images. The joint posterior distribution

of kinematic parameters and hidden variables contains various probabilistic elements including

smoothness prior, image likelihood, geodesic distance constraint, and reconstruction error. Here,

the smoothness prior presents the pair-wise probabilistic relationships of each 3-D point with

its neighbors to reduce artifacts. Some body parts able to be detected in RGB images and 3-D

data provide extra information about the label of 3-D points. This information is given by the

likelihood term. If the geodesic distance be a shortest path distance in a graph using the Dijkstra’s

algorithm, the pairwise geodesic relationship establishes geodesic distance constraints of each

pair of 3-D points. Two 3-D points with two corresponding labels that disregard these constraints

(i.e., too close or too far) are penalized to decrease the probability. Finally, the reconstruction

error measures the errors (Euclidean distance) between the ellipsoids of model and the 3-D data

of depths.

Obviously, the pose most suitable with the observed data will correspond to the kinematic

parameter that maximizes the defined posterior probability. Here, VEM algorithm is used for our

optimization problem with the appearance of hidden variable and is derived by a co-registration

with two main steps:

• VE-step estimates the posterior distribution of hidden variables. An exact expression of

this distribution is intractable to compute and is thus approximated by variational inference

method.

• M-step (Model fitting) minimizes the reconstruction error between the model and the cloud
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of 3-D points that is solved by the Levenberg-Marguardt least square estimator.

The co-registration is iterated to minimize the differences between the 3-D model and the

observed data. Finally, it recovers the correct human pose with the estimated joint angles. Through

experiments using synthetic and real data, we demonstrated that our algorithm can reconstruct

human body pose from stereo video even for complicated movements. Analyzing the performance,

we detected an average error of about 6-140 of the estimated kinematic angles and an average

distance (i.e., difference) of about 0.04-0.06m between the reconstructed body model and the

given 3-D data.

At the lower levels of understanding people in video images, our pose recognition system

provides the summarization of the movements of body limbs over time. To gain an understanding

of people in video images, a higher sematic level of information is acquired with a HAR engine.

In our HAR, we first derive the joint angles by co-registering our 3-D body model to the depth

information. Then we map the joint angles into codewords, generating a sequence of discrete

symbols for an HMM of each activity. With these symbols, each activity-HMM is trained and

used for activity recognition. The experimental results of our system tested with different human

activities from real video sequences have shown that our approach is capable of recognizing human

activities with high accuracy, about 93% in the recognition rate. This is significantly better than

the conventional approaches using binary silhouettes to recognize human activities could achieve.

6.1.2 Contributions

We proposed a new system to exploit information including poses and activities of a person in

stereo images. The system is developed with the parametric-based approach, which does not

require us to generate and maintain a large database of 3-D human body poses and of human

activity templates.

We show how to formulate a probabilistic registration framework consisting of hidden vari-

ables of body part labels, depths, and cues from RGB images to estimate human poses. We defined
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various probabilistic elements that reflect the likelihoods of hidden variables given RGB image ob-

servation, the conditional relationships among hidden variables, and the likelihoods of joint angles

given depth observation. The presented framework is robust and generic; any useful information

for locating the body parts can be flexibly integrated into this framework to improve the accuracy

of recovering poses. Conventional method maximizing the probabilistic formulation by maximum

likelihood with marginal integration over hidden variables is limited with a simple distribution. We

suggest the use of an approximate method with VEM for the complicated probabilistic inference

task.

We have presented a HAR work using the derived body joint angles. The proposed HAR is

able to recognize various human activities with a recognition performance outperforming that of

conventional human activity recognition techniques in which binary silhouettes are utilized. In

overall, the entire proposed system to acquire human poses and activities from depth images is

well suited to many practical applications.

6.2 Future Researches

The thesis is concluded with the discussions of open research directions expanded from the pro-

posed system recognizing human poses and activities from data acquired by a stereo camera.

6.2.1 Future researches of human pose recognition

Our human pose capturing system using a stereo camera is potentially applicable to many areas.

However, due to existing errors of recovered kinematic angles, our system might face difficulty

with practical applications requiring high accurate results of estimating motion. The other diffi-

culty of our method relates to estimating human motion from tricker movements or rapid changes

of trackers’ locations. In this situation, there are large variations of the human poses between two

consecutive frames. A part of information used to assign the label of 3-D data might get inac-

curate, causing a missing calculation of some body parts. For such reasons, we plan our future
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work to improve the reliability of our presented techniques and its robustness to handle the rapid

and complex changes of human poses in a video sequence. These targets could be achieved by

discovering more efficient likelihoods for body part detection, applying hierarchy registration to

reduce registration time, and concerning biomedical constraints as well as temporal information

to better guess a pose appearance in images.

Exploiting the likelihood of body part appearances using training data

Determining the likelihood of human body parts from an RGB image is even hard for human due

to the arbitrary appearances of human poses and the fusions of different body parts in images.

The arisen question is how we can perform the detection of body parts using only the cues from

a depth image, which provides even less information than an RGB image does. One way to make

this feasible is to learn the probability distribution of the body part appearances over an image

from training data. Actually, the body part likelihood of an area has not just been dependent from

visual features illustrated in that area but also from others. For instance, the areas relatively left

and behind other areas of a depth image get a high change to belong to a left leg rather than other

parts of the human body. Using this underlying idea, a set of depth images with the ground truths

of body part locations is used to learn the high-order relationships between different areas and is

further applied to estimate the body part likelihoods in a single stereo image.

Hierarchy registration to reduce processing time of fitting an articulated model to stereo

data

In our proposed algorithm, a large number of kinematic parameters processed in the algorithm

slow down the co-registration process. To mitigate this problem, we suggested a way of hierarchy

registration and computing the kinematic parameters with a small number of points. The strategy

to mitigate this problem involves an observation that there always exists a subset of 3-D points

sharing the same group of kinematic parameters. Thus, rather than all of kinematic parameters
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are simultaneously estimated, the kinematic parameters will be sequentially found in order. The

parameter that contributes to the largest number of points is first calculated. Continuously, the

parameter being the second in terms of number of points related to this parameter is computed.

The similar process is repeated until all of kinematic parameters are found. In this regard, the

first group affecting the rigid transformation that includes six DOF to transform the whole human

body from the global coordinate system to the local coordinate system at the hip should be esti-

mated first. Then, a kinematic chain of parameters of non-rigid transformations is consequently

computed to deform the human body shape in 3-D.

Biomechanical constraint and temporal information of kinematic angles

Various biomechanical constraints on kinematic angles of the human body can be established to

limit nonphysical configurations of estimated poses. Besides, if taking into account the temporal

information about the changes of kinematic angles from the current to the next frame [44, 134],

we can improve the accuracy of our algorithm to estimate human body poses and to deal with the

artifacts of stereo data. Concerned new integrations of temporal and biomechanical constraints, the

probabilistic formulation of our proposed method to recover human poses becomes complicated

with high-order relationships among kinematic parameters. Thus, the inference method with VEM

presented in our work must be generalized by Variational Bayesian Expectation Maximization

(VBEM) [81, 143, 12, 52, 48] to approximate the distributions of kinematic parameters.

6.2.2 Future researches of HAR

As the HAR method developed in this thesis work is able to obtain high recognition rates of short

time activities, we plan our future work to extend the proposed method to recognize long-term

human activities within complex situations.
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Long-term HAR

A reasoning engine to interpret a long-term HAR is implemented using the logging data of human

activities for a long duration. Here, a conventional HAR method like the one proposed in our work

is applied to recognize the primitive activities (i.e, a short time activity) of a monitored person and

stores the recognition results on a repository. Mining the logging information, a knowledge-and-

logic based engine [45, 66, 86, 112] allows us to infer the high-level structures and semantics of

human activities such as the habits and the preferences of a user. Such information can be utilized

in human activity prediction, which plays a certain role in the future developments of proactive

computing.

HAR in complex environment

In general, a HAR system must deal with complicated situations where a group of individuals

may enter into a system. Correspondingly, a method to identify a new person and to distinguish

different activities performed by separated persons should be considered. Also, due to the move-

ments of the human body in 3-D, the overlapping and occlusions of human body parts is difficult

to avoid. A good tracking algorithm to track the trajectories of human in 3-D and to reconstruct

the human poses even with occlusions is necessary in this situation. Although the appearances of

multiple individuals in a scene make HAR become harder, with appropriately use, the information

about the human-human and human-context interactions on contrary provides valuable cues to

better recognize human activities and thus should be concerned in future researches of HAR.
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Appendix A: Probabilistic Inference

with Parametric-based Approach

In statistics, the probabilistic inference refers to a method of assigning a probability model to an

event throughout empirical data. Also, it concerns about the probability computations of practical

interest such as Bayesian estimation or searching for the mode of a specified probability distri-

bution. In this appendix, we introduce probabilistic inference and its roles in computer vision, in

which human pose and activity recognition is one of practical applications. Since the thesis focus

is centered around the parametric-based approach, more essentials of probabilistic inference using

this approach are overviewed accordingly.

A.1 Probabilistic Inference and Computer Vision

The utilizations of probabilistic inference in machine learning have been an active research area

for last decades and provided many efficient methods to tackle various problems in fields includ-

ing computer vision. Here, the probabilistic inference refers to the meaning of fitting a probability

distribution to real data and performing further calculations on the data using the modeled distri-

bution and probability rules. Meanwhile, the task of computer vision concerns about designing

visual functions for a computer or machine such as recognizing objects, tracking objects’ motions,

or more complicated, understanding the context of scenes, from the images or video acquired by
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digital cameras. Usually, computer vision plays fundamental roles in such areas as robots, re-

mote sensing, or artificial intelligence. However, solving a practical problem in computer vision is

always challenging, because besides the uncertainty of visual data in images and video, the infor-

mation of an object in images cannot be easily well understood from the local features of isolated

pixels. Many global factors should be taken into account in order to acquire the visual informa-

tion of an object in image, e.g., the consistent appearances of objects with surrounding scenes

[123]. Therefore, a general framework based on probabilistic inference to handle the uncertainty

of visual data and to integrate different kinds of global information to address the problems of

computer vision is receiving a lot of attention from research communities.

However, whether applying probabilistic inference is an appropriate choice to address a prob-

lem of computer vision. As being known, the developments of computer vision have been closely

related to our understanding about how the brain works and what is the visual processing of the

brain. So far, many studies in physiology and psychophysics have been attempted to discover the

working mechanism of the human brain. Numerous biological evidences discovered by prominent

researches suggested the new way of using the Bayesian probability theories to explain undiscov-

ered functions of the brain [16, 49, 79]. In more details [73], in perception, the brain represents

the sensory inputs (e.g., auditory and visual data) in its neural circuits to maximize the compatible

probability of the stored information with the sensations. In decision making, the brain combines

the new sensory information about the world with the learned experiments from the past (the prior)

to give an action (i.e., send controlling signals to motor neurons to perform muscle contractions).

After an activity is performed, the new knowledge, the likelihood evaluating the performance of

the motor tasks with the observed sensations, might be integrated with the past prior to update the

learned experiments (the posterior or the new prior) in a fashion formulated by Bayesian statistics.

In the similar way, the visual processing could be expressed as estimating the posterior probabil-

ity of visual features such as categorization, location, or texture of an object, given the pictures
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observed though the human eyes [115, 116].

Regarding the knowledge about the visual processing inside the human brain, a task of com-

puter vision is conveniently described by a probabilistic inference of estimating the posterior dis-

tribution P (ϑ|I) of visual features ϑ given an image I [113]. Using the Bayesian theorem, the

posterior P (ϑ|I) is approximated by the product of the prior P (ϑ) and the likelihood P (I|ϑ),

P (ϑ|I) ∝ P (I|ϑ)P (ϑ), where the prior P (ϑ) presents the probability distributions of the visual

features and the likelihood P (I|ϑ) evaluates the compatibility between the image and the visual

features. From this equation, we can calculate the posterior P (ϑ|I) to update information about

the visual features ϑ. Additionally, the optimal values ϑ∗ of the random variable ϑ that maxi-

mizes the posterior distribution are correspondent to the visual features best compatible with the

observed image. It is obviously that the established framework is based on probability to cope

the uncertainty of input data and to deal with the object’s appearances with varying in locations,

shapes, and poses. Also, the framework is general to combine many global cues of visual features.

However, in practice, the probabilistic model for a particular problem might be complicated and

composed of a thousand of random variables. For such models, even a problem in computer vision

is already converted to a problem in probability, the computations related to this probability are

somehow intractable. Currently, there have been two approaches introduced to address complex

probability inference in statistics and extended to be used in machine learning (and also computer

vision). The first is namely the nonparametric-based approach and the other the parametric-based

approach.

• Nonparametric-based approach: The underlying concept behind the nonparametric-based

approach is that the random distribution of a complicated probability density function is

represented by a set of sampled values (point mass or ”particle”) of the random variables.

In the situation that the random variable is uniformly sampled, each sample is assigned a
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weight corresponding to its probability density at the sampling value. Meanwhile, if all of

the samples have the same weight, the appearance frequency of each sample is proportional

to the sample’s probability. A set of samples is used to replace the associated probability

for the further calculations on this probability.

• Parametric-based approach: The parametric-based approach expresses a particular problem

in statistics as a solution of an analytical problem. Each probability needs to be parame-

terized with a specific probability density function and mathematical tools are applied to

address the computations related to such probability distributions. Also, for the optimiza-

tion problems in which the exact analytical solution does not exist, the problems could be

mitigated by various ways including divide-and-conquer strategies and approximations.

The techniques, which have been applied throughout the thesis, are based on the parametric-

based approach. For a defined probability distribution p(z1, z2, ...., zn), the three fundamental

problems of probabilistic parametric inference [138] we need to address are

• Marginal computation: Estimating the marginal distribution of a joint density function p

over a subset of random variables Xs = {zs1 , zs2 , ..., zsl}, where Xs ⊂ {z1, z2, ..., zn}.

The marginal distribution of continuous variables is directly calculated by integrating over

a subset of random variables,

p(X) =

∫
p(X,Y )dY. (A.1)

Considering the probabilities with respect to discrete variables, the summarization is used

to replace the integration in equation (A.1).

• Optimization: This is the task of finding the optimal values (ẑ1, ẑ2, ...., ẑn) of (z1, z2, ..., zn)

to maximize p(z1, z2, ..., zn), or equal to estimating the mode of a probability distribution.
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• Bayesian estimation: The Bayesian estimation can be derived from the marginal computa-

tion: The estimations of the posterior distribution p(ϑ|X) are obtained by computing the

joint distribution of p(ϑ,X), computing the marginal distribution of p(X), and then apply-

ing an equation p(ϑ|X) = p(ϑ,X)/p(X).

In order to compute more complicated inference of multivariate distributions, a graphical

model is used to illustrate the conditional relationship among variables. Appropriate methods

are proposed to perform the inference, dependent on the structure and complexity of a probability

distribution.

A.2 Graphical Models of Probabilistic Distributions

In practice, the distribution formulated for a task of computer vision might be complicated when it

contains a thousand of random variables. For example, the posterior p(ϑ|I) of the visual fea-

tures given an image I can be completely expressed by p(ϑ1
1, ϑ

1
2, ..., ϑ

n
m|I1, I2, ..., Ik), where

ϑ1
1, ϑ

1
2, ..., ϑ

n
m are various parameters including the location, shape, or name of n objects ap-

pearing in the image and I1, I2, ..., Ik are the color of the k pixels in the image. Obviously,

the calculations over such a joint density function are increased exponentially with the number of

random variables. Thus, the such tasks as finding a maximum of the distribution or computing

the marginal distribution always seem intractable. A general framework to address these diffi-

culties is to construct a graphical model to analyze local relationships among random variables

[18]. A joint distribution of all random variables is thereby factorized into the products of density

distribution containing a subset of random variables. Based on this framework, we can eliminate

computations that makes the use of probabilistic approach in computer vision become feasible. As

follows, two kinds of graphical models using directed graph and undirected graphs are introduced

correspondingly.
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Model probabilistic distributions using directed graphs

Given a joint distribution, p(z1, z2, ...., zn), a directed graph of random variables, called Bayesian

network [59, 92, 121], containing a set of nodes {z1, z2, ..., zn} as random variables and a set of di-

rected edges is used to model this distribution. The edges connecting two nodes are associated by

the relationship of conditional probabilities. For example, suppose we have the conditional prob-

ability p(z3|z1, z2), then the two directed edges z1 → z3 and z2 → z3 are included into a graph.

Because a joint distribution has another presentation as a product of conditional distributions,

p(z1, z2, ..., zn) = p(z1)p(z2|z1)...p(zn|z1, ..., zn−1) (A.2)

there always exist a directed graph with full connections presenting a joint distribution. We give a

particular example with a joint distribution p(z1, z2, z3) as depicted by Fig. A.1

The method to reduce the complexity of a directed graph is related to the concept of condi-

z3z2

z1

z3z2

z1

(a) (b)

Figure A.1: A directed graph used to describe a probability with conditional relationship. (a) A

graph with full connections. (b) Using conditional independence to remove an edge.

tional independence. Considering the previous example with p(z1, z2, z3) = p(z1)p(z2|z1)p(z3|z1, z2),
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the edge between z1 and z3 is eliminated if z3 does not depend on z2 given z1

p(z3|z1, z2) = p(z3|z1), (A.3)

or in the other way

p(z3, z2|z1) = p(z3|z1, z2)p(z2|z1) = p(z3|z1)p(z2|z1). (A.4)

The expression of equation (A.4) reveals the fact that z3 and z2 are conditionally independent

given z1. In practice, usually each random variable zi only locally depends on a subset of random

variables ζ(zi). We are therefore able to apply the conditional independence of random variables

to simplify the structure of the modeled graph, correspondingly reducing the computations based

on the associated distribution,

p(z1, z2, ..., zn) =

n∏
i=1

p(zi|ζ(zi)). (A.5)

Fig. A.2 shows an example of pruning out some edges of the full connected graph, resulting a

simplification of a joint distribution:

p(z1, z2, ..., z6) = p(v1)p(v2|v1)p(v3|v1)p(v4|v1)p(v5|v2, v3)p(v6|v3). (A.6)

Model probabilistic distributions using undirected graphs

In another method, an undirected graph can also be used to represent a joint density function

p(z1, z2, ...., zn) [18, 138]. An undirected graph contains a set of cliques where each cliques s is

constructed by a full connected subset of nodes Zs = {zi ∈ s} and is associate with one function

φ(Zs) getting a non-negative value. The factorization of the joint density function p(z1, z2, ...., zn)

is given by

p(z1, z2, ..., zn) =
1

Z

∏
s⊂S

φs(Zs) (A.7)
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z3

z1

z2

z5

z4

z6

Figure A.2: A complicated distribution modeled by a directed graph after simplified.

where S is the number of cliques and Z is a normalized constant. Because there are no direct

relations are illustrated in this presentation, the probabilistic distributions are said to be modeled

by an undirected graph. Generally, it is possible to convert a directed graph into an undirected

graph. Given an example in Fig. A.3, the directed graph depicted in Fig. A.3(a) corresponds to a

joint density function

p(z1, z2, z3, z4) = p(z3|z1, z2)p(z1)p(z2)p(z4|z3). (A.8)

Suppose an undirected graph is given in Fig. A.3(b). Then the joint density function p(z1, z2, z3, z4)

can be factorized into the products of two functions φ1,2,3(z1, z2, z3) and φ3,4(z3, z4) defined on

the two cliques {z1, z2, z3} and {z3, z4}

p(z1, z2, z3, z4) = φ1,2,3(z1, z2, z3)φ3,4(z3, z4) (A.9)
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z3
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z3

z1

z4

z2

(a) (b)

Figure A.3: The differences between a directed graph and an undirected graph when we model

the same distribution. (a) A directed graph. (b) An undirected graph.

where φ1,2,3(z1, z2, z3) = p(z3|z1, z2)p(z1)p(z2) and φ3,4(z3, z4) = p(z4|z3).

In Fig. A.4, an undirected graph, pairwise Markov random fields (MRF) [70] arising in many

applications such as image denoising, stereo matching, image segmentation, etc. is introduced.

The density function described by this graph is expressed by

p(z|x) = 1

Z

∏
(i,j)

φi,j(zi, zj)
∏
i

φi(zi, xi) (A.10)

where Z is a normalized constant.
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Figure A.4: Markov random fields.

A.3 Probabilistic Parametric Inference on Probabilistic Graphical

Models

There exist analytical and numerical methods for the probabilistic inference of simple distribu-

tions. For instance, the problem of maximizing or minimizing a distribution is directly solved

using available optimization methods. Some typical methods of estimating optimal values of a

function often used in various areas include gradient ascent or descent method, conjugate gradient

method, Newton’s method, etc. However, the direct calculation of probabilistic inference is only

trivial with simple distributions consisting of a small number of variables. The integration of a

continuous function over numerous variables is a very difficult task. This is also true with finding

an optimal value of multivariate functions. Based on the graphical structure modeled for a prob-

abilistic problem, exact methods (see Appendix B) or appropriate methods (see Appendix C) are

appropriately suggested to address the probabilistic inference for the particular distribution.



Appendix B: Exact Probabilistic

Inference for HMMs and Kalman Filter

In the special but common case in which a graphical model of a distribution has the form of

tree, a graph without cycles, there exist exact methods for addressing the inference problems of

this distribution. The underlying idea of such methods is that we divide a complicated problem

into subproblems and combine the results of involved subproblems to get an overall solution. A

sample probability distribution described by a tree is given in Fig. B.1. It is straightforward that

the random variables at the depth k of a tree only conditionally depend on the random variables at

the depth k − 1. Let denote Zk = {zi|zi ∈ depth k} be a set of random variables belonging to the

depth k. The expression formulated this conditional relationship is given by

p(Zk|Z1, Z2, ..., Zk−1) = p(Zk|Zk−1). (B.1)

Therefore, a joint distribution p(Z1, Z2, ..., Zk) can be computed by

p(Z1, Z2, ..., Zk) = p(Zk|Z1, Z2, ..., Zk−1)p(Z1, Z2, ..., Zk−1)

= p(Zk|Zk−1)p(Z1, Z2, ..., Zk−1). (B.2)

Equation (B.2) shows that the inference of the joint distribution p(Z1, Z2, ..., Zk) can be relied

on the results of previous inference of p(Z1, Z2, ..., Zk−1). This leads to a recursive strategy to get

86
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an exact inference of a hierarchy model. To make it clear, we illustrate the method of computing

a marginal probability distribution over a tree. Assume that we want to estimate the marginal

distribution over all of the depth levels 1, 2, ..., k

pk(X) =

∫
p(Z1, Z2, ..., Zk, X)dZ1dZ2...dZk. (B.3)

We now substitute equation (B.2) into (B.3), giving

pk(X) =

∫
p(Z1, Z2, ..., Zk−1, X)p(Zk|Zk−1)dZ1dZ2...dZk

=

∫
p(Zk|Zk−1)

(∫
p(Z1, Z2, ..., Zk−1, X)dZ1dZ2...dZk−1

)
dZk

=

∫
p(Zk|Zk−1)pk−1(X)dZk. (B.4)

Clearly, this is a nice recursive formulation to compute the marginal of pk(X) over Z1, Z2, ..., Zk

throughout the marginal of pk−1(X) over Z1, Z2, ..., Zk−1. Repeating this operation beginning

from p0(X) along with increasing the depth level, we obtain the marginal distributions for all

random variables. The similar mechanism of formulating a complicated inference by a recursive

sequence of simpler inferences is also used to maximize or minimize a multivariate distribution

with tree-structured graphical models.

The two instances of the described graphical models involves hidden Markov model (HMM)

and Kalman filter. The HMM has been popular for the use in discovering a pattern from sequence

data such as speech, video, genes, etc. The Kalman filter has been adaptable in a linear dynamical

system (LDS) in which we want to measure the a value of an unknown quality z from the obser-

vation x acquired by a noisy sensor. The HMM and Kalman filter share the same hierarchy model

as shown by Fig B.2.

A density distribution with respect to random variables z0, z2, .., zn and x0, x2, ..., xn is ex-
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Figure B.1: A tree-structured graphical model.

xn-1x2

z2

xnx1x0

znz1

…

zn-1z0

Figure B.2: A graphical model of HMM and Kalman filter.

pressed by

p(Z,X) = p(z0)p(x0|z0)
n∏

i=1

p(zi|zi−1)

n∏
i=0

p(xi|zi). (B.5)

Here, Z = {z0, z2, ..., zn} is a set of state or hidden variables and X = {x0, x1, ..., xn} is a set

of observed variables. However, the HMM is defined with discrete state variables, meanwhile the

Kalman filter replies on a distribution of continuous random variables.

Mathematically, a multinomial distribution is used to formulate the conditional probability of

a HMM with the 1-of-K presentation for a state variable (each random variable zi is presented by
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a set of discrete elements z1i , z
2
i , ..., z

k
i , in which just one element zki gets a value of one, while the

others are set to zeros),

p(zi|zi−1) =
K∏
k=1

K∏
k=1

S
zki−1z

k
i

jk

p(z0) =

K∏
k=1

π
zk0
k (B.6)

where Sjk is known as a matrix of transition probability and πk is an initial probability. Alterna-

tively, we express the conditional probability p(zi|zi−1) using a Gaussian distribution in the case

of the Kalman filter

p(zi|zi−1) = N (zi|Azi−1,Σi)

p(z0) = N (z0|m0,Σ0) (B.7)

where Σi is a covariance matrix of Gaussian noise and m0 is an initial values of z. In order to

update the whole conditional probability p(zi|zi−1, zi−2, ..., z0), we utilize the two equations as

follows to calculate the Gaussian distribution of y and the conditional distribution of x given y

p(y) = N (y|Aµ+ b,Σ−1
2 +AΣ−1

1 AT ) (B.8)

p(x|y) = N (x|Σ{ATΣ2(y − b) + Σ1µ},Σ) (B.9)

Σ = (Σ1 +ATΣ2A)
−1 (B.10)

where we already have an assumption

p(x) = N (x|µ,Σ−1
1 ) (B.11)

p(y|x) = N (y|Ax+ b,Σ−1
2 ) (B.12)

More essentials of HMM are available in [67, 74] and of Kalman filter in [68, 149] respectively.



Appendix C: Variational Inference with

Expectation Maximization and

Variational Expectation Maximization

For a probability distribution defined on a complicated graphical model which does not have a

tree-structure, it remains challenging to perform exact parametric inference. Therefore, numerous

approximate approaches have been concerned so far to estimate just a closed optimal solution for

such inference. We mainly concentrate on the variational method and illustrate the applications

of this method for human pose estimation. First of all, we introduce the basic concepts related to

variational methods. Actually, the original of the variational method does not refer to the meaning

of approximations but to the calculus of variations, which is used to find functions to minimize

or maximize the value of quantities defined over these functions. The Euler-Lagrange equation

[47, 53] is the best known outcomes of this approach, which has yielded successes in many areas

of mathematics and physics. In the following, we draw our focus to the use of the variational

approach to address probabilistic inference with the EM algorithm and its extension with the VEM

algorithm.
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C.1 Expectation Maximization

In general, we may need to maximize the likelihood function containing hidden variables

argmaxθ∗p(X|θ) =
∫

p(X,Z|θ)dZ. (C.1)

However, the direct calculation of this optimization problem is somehow very complicated, mean-

while the optimization on the complete-likelihood p(X,Z|θ) may get easier suggesting that we

can transform an optimization of p(X|θ) into a less complex optimization of p(X,Z|θ). The EM

algorithm is developed based on this underlying idea [39, 85]. With a variation f(Z) defined over

the latent variables and with any choice of f(Z), we always have

ln p(X|θ) =
∫

f(Z) ln
p(X,Z|θ)
f(Z)

dZ +DKL(f ||p)

= Ef [p(X,Z|θ)] +DKL(f ||p)−
∫

f(Z) ln f(Z)dZ (C.2)

where DKL(f ||p) = −
∫
f(Z) ln p(Z|X,θ)

f(Z) dZ is the Kullback-Leibler distance between f and

p(Z|X, θ), that is always non-negative DKL(f ||p) ≥ 0. The equality happens if and only if

f(Z) = p(Z|X, θ). Regarding the non-negative properties of the Kullback-Leibler distance and

(C.2), the EM algorithm proposed to solve the problem in (C.1) is expressed by an iterative pro-

cedure whose each iteration consists of the following two main steps:

i) E-step: Assume that the current value of θ is θold . The E-step evaluates the analytical expres-

sion of the posterior distribution f(V ) as

f(Z) = p(Z|X, θold). (C.3)

ii) M-step: The M-step maximizes

Efold(Z)[log p(X,Z|θ)] (C.4)

with respect to θ where fold(Z) is found from the previous E-step.
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The algorithm is iterated until it converges to a stable value of θ.

C.2 Variational Expectation Maximization

Previously, the EM algorithm has been introduced to estimate the maximum values of a distribu-

tion p(X) from the joint distribution p(X,Z) containing latent variables Z. However, in particular

it might become difficult to get the analytical expression of the posterior distribution p(Z|X) in

the E-step. The way to reduce the complexity of p(Z|X) is to approximate it by close and sim-

pler distributions such that we can perform the inference on the replaced distributions. As already

known, it is able to formulate the statistical model of a complicated distribution in terms of a

graph, namely a graphical model. The task of inference can be analytically performed on a dis-

tribution with a tree-structure. Therefore, with the graphical model of a complicated distribution,

we can remove specified edges to build a spanning tree of this graph (The a spanning tree is the

best reconstruction from a graph with minimum eliminations of edges). A distribution described

by a spanning tree seems to achieve good appropriate approximation of the targeted distribution.

Alternatively, the mean-field algorithm [97] demonstrates a simpler method by partitioning a

distribution into the products of distributions independent over disjoint subset of random variables.

Here, we illustrate the way of formulating the variational method in this way. Let denote the

original distribution be p(Z|X) and the approximation of this distribution be f(Z). We assume

that f(Z) is independent over a subset of random variables Zi where i = 1, 2, ..., N ,

f(Z) =

N∏
i=1

fi(Zi) (C.5)

Here, Zi is a disjoint subset of Z. There are no restrictions on the form of fi(Zi), so that we need

to select an appropriate formulation of fi to make f(Z) to be as close as possible to p(Z|X) by

minimizing the Kullback-Leibler distance DKL(f ||p(Z|X)) between them. Similar to (C.2), we
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have

ln p(X) = Ef [p(X,Z)] +DKL(f ||p(Z|X))−
∫

f(Z) ln f(Z)dZ. (C.6)

Since the form of p(X) does not depend on Z and is considered as a constant with respect to Z,

minimizing DKL(f ||p(Z|X)) is correspondent to

argmaxfF(f) = Ef [p(X,Z)]−
∫

f(Z) ln f(Z)dZ. (C.7)

We now substitute the explicit form of f(Z) in (C.5) into Ef [p(X,Z)] to get

F(f) =

∫ ∏
j

fj(Zj) ln p(X,Z)dZ −
∑
j

∫ ∏
j

ln fj(Zj)dZ

=
∑
j

{∫
fjEi̸=j [ln p(X,Z)]dZj −

∫
fj ln fjdZj

}
+ const

=
∑
j

−DKL(fj | exp{Ei̸=j [ln p(X,Z)]}) + const (C.8)

where Ei ̸=j [ln p(X,Z)] =
∫
ln p(X,Z)

∏
i̸=j fi(Zi)dZi. It is obviously that maximizing the

value of F(f) is actually equal to minimizing DKL(fj | exp{Ei̸=j [ln p(X,Z)]}), satisfied when

fj(Zj) = ξj exp{Ei̸=j [ln p(X,Z)]} (C.9)

where ξj is a normalize constant that makes sure
∫
fj(Zj)dZj = 1. An equation of f(Z) formu-

lated over a set of equation fj(Zj) defined by (C.9) is the best approximation of p(Z|X) in term

of minimizing the Kullback-Leibler distance.

Similar to the EM algorithm, the VEM algorithm is proposed with the two main steps:

i) Variational E-step (VE-step): Assuming that the current value of θ is θold, the VE-step approx-

imates the posterior p(Z|X, θold) by a distribution f∗(V ) such that the Kullback-Leibler

distance between them is minimize

f∗(Z) = argminfDKL(f ||p(Z|X, θold)). (C.10)
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ii) M-step: The M-step maximizes

Ef∗(Z)[log p(X,Z|θ)] (C.11)

with respect to θ where f∗(Z) is found from the previous E-step.

The algorithm is iterated until it converges to a stable value of θ.



Appendix D: Locating the Nearest Point

in an Ellipsoid Surface to a Given Point

In Fig. 3.5, the transformation of X0 into the local coordinate system (x′, y′, z′) attached to the

ellipsoid is obtained as

[x′0, y
′
0, z

′
0, 1]

T = SQϑ[x0, y0, z0, 1]
T . (D.1)

In the 2-D coordinate system of the plane P (the origin of the plane P lies at the centroid of

the ellipsoid), these coordinates are converted to (
√

x′20 + y′20 , z
′
0). The intersection between the

plane P and the ellipsoid will be an ellipse with the major axis c and the minor axis a. Hence, the

nearest point Xt belonging to the ellipsoid surface of X0 in the plane P has the 2-D coordinate

(u, v) as the roots of the equation

f(u, v) =
u2

a2
+

v2

c2
− 1 = 0

(
√

x′20 + y′20 − u)
∂f(u, v)

∂v
= (z′0 − v)

∂f(u, v)

∂u
. (D.2)

This equation can be converted to a fourth-degree polynomial equation to find u and v. The

coordinate of Xt in (x′, y′, z′) is given by

x′t = u
x′0√

x′20 + y′20
, y′t = u

y′0√
x′20 + y′20

, z′t = v. (D.3)
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We expand the updated rules for computing Xt(x
′
t, y

′
t, z

′
t) when X0 moves to X0+dX0 in the

local coordinate system (x′, y′, z′). Let k = a2/c2 be a constant. Let

u =
√

x′2t + y′2t , v = z′t

r′0 =
√

x′20 + y′20

cos γ = x′0/r
′
0, sin γ = y′0/r

′
0. (D.4)

The new value of Xt(x
′
t, y

′
t, z

′
t) corresponding to X0 + dX0 = (x′0 + dx′0, y

′
0 + dy′0, z

′
0 + dz′0)

in the local coordinate system (x′, y′, z′) is computed by

ξ =
kv(cos γdx′0 + sin γdy′0)− udz′0
(1− k)(kv2 − u2)− k(vz′0 + ur′0)

u = u− kvξ, v = v + uξ

x′t = u cos γ, y′t = u sin γ, z′t = v. (D.5)

Note that when the point moves from outside into the ellipsoid or vice versa, x′t, y
′
t, and z′t

need to be recomputed from (D.2) and (D.3).

Transforming Xt(x
′
t, y

′
t, z

′
t) back to the global coordinate system (x, y, z), the coordinate of

Xt is given by

[xt, yt, zt, 1]
T = Q−1

ϑ S−1[x′t, y
′
t, z

′
t, 1]

T .



Appendix E: Computation of the

Jacobian Matrix for the Inverse

Kinematic Problem

In this appendix, we focus on the computation of the Jacobian matrix J of Zi(ϑ)
ε with respect to

ϑ. Assuming that the ellipsoid ε depends on the nε parameters ϑ1, ϑ2, ..., ϑnε , [Zi(ϑ)
ε, 1]T must

satisfy equation (3.3) with ϑ = (ϑ1, ϑ2, ..., ϑnε). Because Zi(ϑ)
ε belongs to an ellipsoid surface

in the global coordinate system, we apply a series of transformations to Zi(ϑ)
ε to get one point

Z0εi , independent of ϑ, lying in an ellipsoid surface in the local coordinate system

SQnε
(ϑnε)Qnε−1(ϑnε−1)...Q1(ϑ1)[Zi(ϑ)

ε, 1]T = [Z0i
ε, 1]T

or [Zi(ϑ)
ε, 1]T = Q1(ϑ1)

−1Q2(ϑ2)
−1...Qnε

(ϑnε)
−1S−1[Z0i

ε, 1]T . (E.1)
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The Jacobian matrix J consists of nε columns, where each column i, ∂Zi(ϑ)
ε/∂ϑi is given by

[
∂Zi(ϑ)

ε

∂ϑi
, 0]T = Q1(ϑ1)

−1Q2(ϑ2)
−1...

∂Qi(ϑi)
−1

∂ϑi

Qi+1(ϑi+1)
−1...Qnε

(ϑnε)
−1S−1[Z0i

ε, 1]T

= Q1(ϑ1)
−1Q2(ϑ2)

−1...
∂Qi(ϑi)

−1

∂ϑi

Qi(ϑi)...Q2(ϑ2)Q1(ϑ1)[Zi(ϑ)
ε, 1]T . (E.2)
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